PHYSICAL REVIEW RESEARCH 2, 013221 (2020)

Cavity-induced backscattering in a two-dimensional photonic topological system
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Topological protection of transmission has been demonstrated in the edge channel in topological insulators
in the face of bent paths and on-site randomness in the structure. Microwave measurements and couple-mode
theory of a topological medium possessing time-reversal symmetry with a cavity adjacent to the edge channel
show that spin is not conserved in scattering from the defect. The transmission time is negative near resonance

with the defect.
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I. INTRODUCTION

Recent progress in the study of photonic topological struc-
tures has opened new possibilities for robust wave transport
from microwave to optical frequencies [1,2]. Unimpeded
transport through edge states has been demonstrated along
paths on the boundary between topological and trivial do-
mains with different topological invariants when the path is
bent and when it is surrounded by distributed defects [3].

Several structures have been proposed to emulate the quan-
tum spin Hall (QSH) effect and test the robustness of edge
modes. Hafezi et al. [4-6] proposed a network of coupled
optical ring resonator waveguides in which the pseudospin
corresponds to clockwise and counterclockwise circulation in
the ring. They showed in optical experiments and numerical
simulations that transmission through the edge mode remains
near unity in the face of random fluctuations in the frequencies
of ring resonators comprising the system as the system size
increases. QSH-like topological insulators (TIs) were also
realized in bianisotropic metamaterials [7,8]. The measured
transmission time of edge modes averaged over disorder is
consistent with ballistic propagation [9].

In addition to perfect transmission, the ability to control
the transmission time in paths within the TI could be impor-
tant in many applications such as optical buffer and signal
processing [10]. The time delay can be modified by creating
localized modes inside the bulk region [11-13] by introduc-
ing disorder, by changing the length of the boundary line
between domains by introducing bends in the boundary line,
or by gradually changing the lattice parameter away from
the edge [14]. The impact of defects is also of interest
because of inevitable disorder introduced in the fabrication
of a topological structure, which produces discrete modes in
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the vicinity of the edge. Several different types of disorder
have been considered, including highly correlated disordered
crystals [15] and random fluctuations in on-site energy [16].
An immediate question is whether unidirectional propaga-
tion of the edge mode is maintained when a defect cavity
covering several lattice sites and supporting several modes
within the bulk band gap is introduced near the domain
edge. This is of particular interest because it is possible to
engineer the defect and its proximity to the edge to slow
down the edge mode by coupling to such states at particular
frequencies.

The magnitude and phase of the field transmitted through
a continuum channel coupled to a discrete mode have the
characteristics of a Fano resonance. The Fano resonance was
first proposed to explain the asymmetric spectrum of the
electron-molecule scattering cross section [17] arising from
the interference between the freely propagating continuum of
electron states and the discrete autoionized state. This phe-
nomenon can be extended to classical interference between a
discrete state with narrow linewidth and a broad continuum
state. The sharp dip in transmission in a Fano resonance has
many applications in photonic crystal waveguide structures
such as an optical switch from complete transmission to com-
plete reflection [18]. Here we observe a Fano resonance in a
nontrivial photonic crystal between the edge mode and several
discrete modes of an adjacent cavity within the band gap.
We will analyze the observed spectrum using coupled-mode
theory. Understanding the coupling between the edge mode
and modes of a cavity is the first step in tailoring transport in
TIs via cavity modes [6,19].

We study a TI with time reversal (TR) symmetry. This
system does not require real or auxiliary magnetic fields to
realize topological protection in bent paths and weak on-site
distributed disorder. The sample has a topological domain
with the triangular lattice shown in the upper half of Fig. 1(a)
adjacent to a trivial domain with the triangular lattice shown
in the lower half of the figure. The topological lattice is
composed of rods with a concentric collar. The position of
the collar between two bounding plates can be changed by
pushing the rod which protrudes through holes of a diameter
of 0.318 cm in the plates, which are separated by 1.089 cm.
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FIG. 1. Schematic diagram of the structure. (a) Structure without the upper plate. The red arrow indicates the direction of flow of the
incident wave. The blue and orange points are the positions of two detectors located within the cavity and at the output of the sample,
respectively. The sample parameters are given in Ref. [7]. They are as follows: The overall dimensions of the sample are 30 x 40 cm?.
Lattice constant: 1.0890 cm; spacing between plates: 1.0890 cm; height of collar: 0.3580 cm; diameter of collar: 0.6215 cm; diameter of
rod: 0.3175 cm; height of triangular prism: 0.5040 cm; gap between triangular prisms: 0.0810 cm; side length of triangular prism: 0.5020 cm.
Within the red border, rods are pushed up so that the attached collars are in contact with the upper plate. The real structure contains 15 layers of
triangular prisms and 25 layers of rods. (b) Band structure of edge mode. The bulk band gap extends from 20.3 to 21.3 GHz. (c) Schematic of
coupled-resonator model. K;/K, is the coupling coefficient between the cavity mode and the left or right side of the edge channel. K;,, denotes

the internal loss of the cavity.

The crystal elements and the top and bottom plates are made
of low-resistivity copper. In the experiment, the collars on the
rods are always pushed to touch one of the plates. To create
a cavity, seven rod-collar units are pushed to be in contact
with the upper plate. A second set of holes with diameters of
1 mm allows the source and detector antenna to be inserted
into the metacrystal. The entire length of the dipole antenna
of approximately 7 mm is inserted into the sample.

The waveguide supports both transverse-electric-like (TE)
and transverse-magnetic-like (TM) modes. When the collar is
midway between the plates, the TE and TM modes are de-
generate at the Dirac point. Pseudo-spin-up and pseudo-spin-
down states are the bonding and antibonding combinations of
these modes. TE and TM modes are coupled when the collar
is displaced from the midpoint between the plates, effectively
emulating spin-orbit coupling in electronic systems and lead-
ing to topological order. This system can be described by the
Kane-Mele model H = v(8k,T;500y + 8kyT0500y) + mT.5,07,
where the Pauli matrices T, s, and & act on the subspaces
of valley, spin, and double states, respectively. v is the group
velocity, and m is the mass term due to bianisotropy [7]. This
Hamiltonian is a good approximation near the Dirac point.

Pushing the rod to the opposite plate changes the sign of
m. The electromagnetic wave is confined to the boundary
between the two-dimensional (2D) lattice of rods and collars
and the 2D array of triangular prisms with a gap between
them, which form a trivial insulator with a band gap that
coincides with that of the adjacent TI [7,20]. Two pseudo-
spin-polarized edge modes propagate in opposite directions
along the interface to form a Kramers pair.

In an electronic TI with TR symmetry, the Kramers the-
orem ensures the decoupling of a single pair of helical edge
states [21]. Previous theoretical, numerical, and experimental
studies show that spin flipping in a photonic system is inhib-
ited, and reflection is suppressed. Although the effect of point
defects and bent path have been discussed, there has not been
much experimental study of the effect of a large cavity near
the edge channel on the reflection rate.

In this work, we measure microwave propagation in a QSH
TI in which a single defect cavity is introduced at different
distances from the edge. We extract the reflection through a fit
of an analytical model of the Fano resonance of the continuum
edge mode and cavity modes to measurements of field spectra
inside the cavity.
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TABLE I. The complex central frequency w, — il',oc of modes extracted from measurement (GHz).

Measurement (GHz)

Numeric eigenmode a b c d
1 20.376 20.397—-0.014i 20.397—-0.039i 20.364—0.0237i 20.376—0.0054i
2 20.502 20.464—0.0268i 20.478—0.0251i 20.488—0.0247i 20.481—0.0253i
3 20.571 20.707—-0.0187i 20.616—0.0305i 20.716—0.0336i 20.587—0.0199i
4 20.572 20.812—0.0217i 20.812—0.0243i 20.811-0.0262i
5 21.043 20.922—0.028i 20.931-0.0248i 20.932—0.0284i 20.939—-0.0198i
6 21.046 21.046—0.0207i 21.053-0.0164i 21.027-0.0488i 21.052—0.0184i

II. COUPLED-MODE THEORY

To analyze the measured tramssion spectrum and relate it
to the narrow-bandwidth modes inside the system, we apply
the coupled-mode theory. This model treats the propagation
of waves in a sample with a continuum channel and multiple
modes and internal loss in the cavity [22,23]. The complex
field of the nth mode a,, with central frequency w,, a, o e,
evolves as

da, . T
dt - (_lwn - l_‘nl - 1—‘nZ - I‘nim)an + K |S+)a
Is—) = Cls+) + Da. (H

Here C =[] j] is the scattering matrix directly through

the continuum state, a = (aj, az - -+ a,)%; Tu1, Thoy Thine de-
note the decay rates of the nth cavity mode due to cou-
pling to the left and right and internal loss, respectively. K
and D are the coupling matrices between discrete modes

and the incoming and outgoing ports, respectively. K =
[Kl] K>
K,  K»
the nth cavity and port 1/2. |Kyi/2|* = 21,2 [23]. Due to
electromagnetic reciprocity, D = K [24]. |s+) = (S14, $2+)7,
with s, = 0. From Eq. (1), we find a, = (w’j# Sy =
tsi+ + >, Kppa,. The transmission coefficient can then be
expressed as

,12;]; K12 is the strength of coupling between

Sy K1 K
=y )
Sl+ n l(a)n - (,()) + Fntot

where [0t = It + T + Dyine 1S the total linewidth of the
nth mode.

III. EXPERIMENTAL RESULTS
AND SPECTRAL ANALYSIS

To determine the linewidth and central frequency of the
cavity modes, we measure the spectrum of the field inside
the cavity. The source is far from the cavity. Only spin-up-
polarized light can propagate along the edge and interact with
the cavity mode. The spin-down component decays evanes-
cently along the edge. The probe is placed at the upper-left
corner of the cavity, which is indicated by the blue point in
Fig. 1(a). The position of the probe relative to the cavity is
fixed in measurements in which the separation of the cavity
from the boundary line is changed. The results for separations
between the cavity and boundary of one, three, five, and seven
layers are shown in Fig. 2. The red curves in the upper panels

of Figs. 2(a)-2(d) are the measured signals. The blue dotted
curves are the fits to the data based on the superposition of the
a, obtained from Eq. (1):

E@=Y_ S (T 3)

n a)—wn+irntot.

Here V,, describes the coupling between the modes of the
cavity and the edge mode, which depends on the detector
position and field distributions in the cavity modes.

The parameters w, and I are obtained from the modal
decomposition of the spectrum using the method of harmonic
inversion [25]. The blue dotted curves in the upper panels
of Figs. 2(a)-2(d) show the fit to the red curves of the
measured spectra. The lower panels in these figures show
the contribution of the individual modes between 19.5 and
22.5 GHz. The coupling strength decreases when the cavity is
moved further from the edge. Table I lists the complex central
frequency w, — il extracted from the measurements in
the range from 20.3 to 21.3 GHz. The absolute value of the
imaginary part of the frequency is the half linewidth of the
mode. The first column gives the eigenfrequencies of isolated
cavity modes found using COMSOL MODE SOLVER. Intensity
patterns of these eigenmodes are shown in Fig. 2(e).

The first, second, fifth, and sixth eigenmodes are observed
in measurements. No mode is found in experiments that are
centered near the frequencies of the third or fourth modes of
an isolated cavity. We also measured spectra at other positions
within the defect but did not observe an evident signal at
the frequency of the third or fourth cavity mode. These two
modes are more extended spatially than the others and overlap
more strongly with the edge. These modes may therefore be
shifted and broadened more than the other modes and they
may correspond to other peaks. They may not be seen in
Fig. 2(d) because the signal is smaller than in Figs. 2(a)-2(c).

Spectra of the intensity transmission coefficient and the
phase shift are shown in Figs. 3(a) and 3(b). An abrupt
phase change of —0.67 rad is observed at 21.06 GHz. The
intensity is near zero at this point, as expected for a Fano
resonance. The mode analysis described above shows that the
transmission spectrum is the result of the interference between
the edge mode and the cavity mode at 20.922-0.02 8i GHz.
The small neighboring peaks are due to nearby modes.

We first consider the case of a single localized mode and
simplify Eq. (2) to

2WTT: g

T=t4——
i(wp — w) + T

“
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FIG. 2. Measurement of cavity modes. (a)—(d) Upper panel: The red curve is the measured spectrum; the blue dotted curve is the fit to
the data based on the harmonic inversion method. The band gap is indicated by the shaded region. Lower panel: The contribution of each of
the quasinormal modes. The distances between the cavity and the boundary line are one, three, five, and seven layers in (a)—(d), respectively.
(e) Numerical calculation of the cavity eigenmodes within the bulk of the sample isolated from the edge. From left to right, the modes
correspond to the six numeric eigenmodes in Table I.

The subscript n is omitted and ¢ is the phase difference Since the scattering matrix is not unitary in a dissipative
between the resonant term and the direct coupling term ¢, system, another constraint is needed to determine ¢. Yoon
which can be taken to be a constant real number in the narrow etal. treat the quasireversibility [26] of the scattering matrix as
frequency range near the resonance follows: In a dissipative system, |s_) = Sjoss|S+). From Eq. (1)
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FIG. 3. Transmission spectra. Spectra of (a) transmission coefficient and (b) phase at the edge on the output surface. The blue and red curves
indicate the measured and analytical results, respectively. (c), (d) Representations in the complex plane of individual modal contributions at the
frequencies indicated by arrows ¢ and d in (a). The orange vector indicates the edge channel, while the blue, red, and green vectors correspond
to the modes represented by the blue, red, and green dashed lines at around 21 GHz in the lower panel of Fig. 2(a).
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In the case of time

, while the internal

*. By replac-
KKT

: _ KKT
we obtain Sjeg —.C + oS
reversal, |s)* will be scattered to |s_)*
loss is replaced by gain, so that |s;.)* = Sgain|s—)
ing iy with —T'jy, we obtain Sgin = C + Ry e s
S‘ince Sk =9 g_am, this relation uniquely determines the phase
difference ¢ between the edge mode term ¢ and resonance

term in Eq. (4), and yields [26]
(I'y + o)t
2JT

The transmission spectrum reflecting the interference be-
tween a continuum state and a single discrete mode can

be expressed as |7|> = |t|2(g;r fl) [17], with the normalized
frequency, § = (w — wp)/T’, wyp is the central frequency, I is
the decay rate of energy in the resonant mode, and ¢ is the
shape parameter determined by the coupling between resonant
and nonresonant modes. g is obtained from the frequency
difference between the central frequency of the discrete mode
and the zero intensity point in the transmission spectrum.
The value of ¢ is estimated from the peak signal Tp, =
|t|>(¢> + 1). The final analytical fit is shown in Figs. 3(a)
and 3(b). Without loss, the phase change would be —7 and
the transmission would vanish. In the measurement, the phase
change is affected by internal dissipation and by the presence
of other modes. The data are fit using three cavity modes at
20.812, 20.922, and 21.046 GHz in the model. The contri-
bution of each mode at the peak and valley of the signal is
shown in Figs. 3(c) and 3(d). The edge mode and resonance
mode interfere destructively at the minimum in intensity. The
analytical results ignore the nearby modes, so that the phase
at the two ends of the spectrum does not align with the
measurement.

We consider the quasinormal mode at 20.922 GHz. It
should be noticed that the parameters obtained in the fit are not
uniquely determined; however, I'| cannot be zero. Comparing
Eq. (4) with the standard Fano expression for the interaction of

the continuum with a single mode [17] gives ¢> + 1 = ‘;Fz‘ 1;22

cosp = —

&)

[26]. Thus i > Lvit@Hbe | v12(¢12+1)t2 0.3. We conclude that at
least 30% of the linewidth of the cavity mode is due to
coupling to the backward channel s;_. Since the forward and
backward channels only support the spin-up-polarized and
spin-down-polarized mode, respectively, the large value of
indicates that the cavity is coupled to the backward as well zfé
the forward edge channels and pseudo-spin-polarization is not
conserved for the electromagnetic interaction with the cavity.
Based on the Hamiltonian approximation mentioned previ-
ously, the disorder introduced here is proportional to 5, so that
this kind of disorder should not mix the spin-up and spin-down
states. We might expect spin flipping to be inhibited when the
disorder has TR symmetry. However, in the experiment, the
Dirac cone is at 21 GHz and a band gap of ~1 GHz is opened.
This band gap is not a small perturbation, and we cannot
determine the extent to which this approximation is valid. Our
measurements show this Hamiltonian approximation does not
work well over the entire band gap in the presence of a large
resonant cavity. Spin coupling is not negligible.

The reflection of an edge mode is demonstrated in COMSOL
simulations. The intensity distribution in the metacrystal at

(a)
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40 : : 2 ‘ : ‘
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FIG. 4. Reflection induced by cavity. (a) Simulations of the
intensity distribution of the wave at 21.02 GHz. The region of cavity
is between 0.2 and 0.25 m. (b) The phase change along the boundary.
(c) The phase difference between E; and B, along the boundary.

21.02 GHz, which is on resonance with the fifth mode, is
shown in Fig. 4(a). The intensity is stronger in front of the
cavity than behind as a result of the reflection of the wave
propagating along the domain wall toward the cavity. To
further demonstrate the reflection of the wave, we plot the
phase of E, along the boundary line in Fig. 4(b). The cavity
lies at a distance of between 0.2 and 0.25 m from the input. For
x > 0.25m, the phase change increases linearly, indicating a
forward propagating wave. In contrast, the wave in front of the
cavity is modulated with a period of one half the wavelength
as a result of the interference of the incident and reflected
waves.

A simulation of the phase difference between E, and
B, along the boundary is plotted in Fig. 4(c). The forward
(backward) edge mode corresponds to spin-up (spin-down)
states, which are the bonding (antibonding) combinations of
the TE and TM modes. The phase difference between E, and
B, for the forward and backward edge mode is 0/7. The phase
difference is seen in Fig. 4(c) to oscillate between —m/3 and
/3 before the cavity due to interference. After the cavity, the
phase difference between E, and B, is 0, corresponding to a
forward propagating mode.

The delay time in transmission at a given frequency is
the delay of a pulse in the limit of diverging pulse length
and vanishing bandwidth. It is equal to the derivative of the
phase of the transmitted field with angular frequency d¢/dw.
The negative phase derivative at the zero-intensity point is an
indication of the reshaping of the pulse at this frequency [27].

IV. GENERALIZATION TO SYSTEM
WITHOUT TR SYMMETRY

The analysis of the transmission spectrum shows that re-
flection is present in this TI system. However, transmission
along the edge can be robust in a nonreciprocal system, as it
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FIG. 5. Transmission through a nonreciprocal system. (a) General complex representation of transmission. (b) Complex representation
for three cases with n = 1, 0.5, and 0.3 with phase variation as shown in (c). The arrow represents the direction of increasing 8. (d) Tight-
binding simulation following the Haldane model H = ), cj)u,-c,- + Zw) Cthj + Z((ij)) cjiksov,-jcj, for on-site energy A; = 4, nearest-neighbor
hopping # = —1, and spin-obit coupling strength Aso = 0.1. Inside the cavity, Ago = —0.1. v;; = &1. The blue line is the phase change of the
transmitted field. Two discrete modes are excited. The inset shows the intensity distribution at the two energies indicated by the red dots.

is for the chiral edge state in a gyromagnetic photonic crystal
[28-30]. We now consider the Fano resonance in a sample
which only supports the forward channel.

In the case of a single discrete mode, the matrix D in
Eq. (1) becomes the outgoing coupling coefficient d while
K becomes the incoming coupling coefficient k. Mann et al.

[31] demonstrate that td* = —k for a nonreciprocal system.
Equation (2) can be rewritten to give [32]
t+ dk
T = _
i(wy — w) + Tyt

_ [|:1 2Frad i|
i(wo — @) + Tor

2n
=t|1-— , 6
< 1—i5) ©
dd*

where I'yyg = “5- is the linewidth due to outgoing coupling,

n = and§ = (@ = )/ T

The complex representation of T is a circle centered at
[(1 — n)t, O] with radius nt, as shown in Fig. 5(a). As shown in
Figs. 5(b) and 5(c), the circle crosses the origin when n = 0.5,
and there is an abrupt phase change of —mw. For n > 0.5,
the phase increases by 27 through the mode. In contrast, the
phase derivative will be negative for n < 0.5 as shown in the
green curve in Fig. 5(c).

We further check this in the tight-binding model. The
effect of a cavity was emulated in the lossless system (n =
1) following the Haldane model [33]. Numerical results are
obtained using the open-source package KWANT [34]. The

transmission coefficient is unity since there is no backward
propagating channel. We therefore focus on the phase change.
The phase variation of the transmitted field is shown in
Fig. 5(d). The phase increases by 27 twice, once gradually
between 4.322 and 4.33 and once sharply near 4.334, indicat-
ing that the cavity supports two modes within this frequency
range. The speckle patterns at the central frequencies of these
two modes are plotted in the inset. In this case, we find the
phase derivative equals the integral of the intensity over the
sample for unit incident flux from the left divided by 27, so
that density of states (DOS) is propotional to the intensity
integral.

V. CONCLUSION

We have observed a Fano resonance between a continuum
edge mode and an extended defect in a time-reversal-invariant
TI metacrystal. In contrast to previous work, in which the edge
state resisted spin flipping in the presence of point defects,
the defect flips a spin and the wave can be backscattered
[8,20]. The transmission time near resonance increases at a
rate reflecting the energy inside the system. In the present
work, we find backscattering induced by an extended cavity,
which accounts for 30% of the linewidth of the cavity mode.
Thus, it is not possible to increase the transport time while
maintaining perfect transmission in a bianisotropic structure
with TR symmetry by introducing a cavity. This design can
be used as a narrow-band filter for the transmitted signal
along the edge in the TI whose complex frequency can be
adjusted by the structure of the cavity, the dissipation rate,
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and the distance to the edge. The same cavity design can
be utilized in systems without reciprocity to produce narrow
peaks in delay time without backscattering. Based on the
coupled-mode theory, the phase change is positive as long as
the decay rate due to internal dissipation is smaller than the
coupling rate between the edge and cavity. Transmitted pulses
can be modified and the time delay lengthened by introducing
a cavity in a nonreciprocal system. This work points the way
toward a broader class of disordered TI systems in which the
edge mode is coupled to extended defects along the length
of the edge. The defects may be extended cavities arranged

either periodically or randomly. Defect modes may also arise
in systems with random disorder in which spatially localized
modes are introduced into the band gap as a result of Anderson
localization.
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