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Robust transmission in topological insulators makes it possible to steer waves without attenuation along bent
paths within imperfectly fabricated photonic devices. But the absence of reflection does not guarantee the fidelity
of pulsed transmission which is essential for core photonic functionalities. Pulse transmission is disrupted by
localized modes in the bulk of topological insulators which coexist with the continuum edge mode and are
pushed deeper into the band gap with increasing disorder. Here we show in simulations of the Haldane model
that pulse propagation in disordered topological insulators is robust throughout the central portion of the band
gap where localized modes do not arise. Since transmission is robust in topological insulators, the essential field
variable is the phase of the transmitted field, or, equivalently, its spectral derivative, which is the transmission
time. Except near resonances with bulk localized modes that couple the upper and lower edges of a topological
insulator, the transmission time in a topological insulator is proportional to the density of states and to the
energy excited within the sample. The variance of the transmission time at the band edge for a random ensemble
with moderate disorder is dominated by fluctuations at resonances with localized states, and initially scales
quadratically. When modes are absent, such as in the center of the band gap, the transmission time self-averages
and its variance scales linearly. This leads to significant sample-to-sample fluctuations in the transmission time.
However, because the transmission time is the sum of contributions from the continuum edge mode, which
stretches across the band gap, and far-off-resonance modes of the passband and band edge, there are no sharp
features in the spectrum of transmission time in the center of the band gap. Instead of creating obstacles to be
circumvented with inevitable increase of the transmission time in the band edge mode, the transmission time of
the band edge mode is decreased by disorder. As a result, ultrashort, broadband pulses are faithfully transmitted
in the center of the band gap of topological insulators with moderate disorder and bent paths. This allows for
robust signal propagation in complex topological metawaveguides for applications in high-speed optoelectronics

and telecommunications.
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I. INTRODUCTION

There has been rapid progress in understanding and imple-
menting photonic topological insulators (TIs) in microwave
and optical metawaveguides and metamaterials since the elec-
tromagnetic analogy to topologically protected chiral edge
states in various quantum Hall effects was proposed a decade
ago [1-12]. Robust unidirectional propagation across the band
gap of the bulk of a two-dimensional (2D) material along
the boundary line between regions with different topological
invariants opens the way towards diverse applications and
compact device architectures. These include possibilities for
optical isolators, and for optical buffering and signal process-
ing on a chip [10,13,14]. The band gap of a TI can be closed
by disorder with all states localized but, with judiciously cho-
sen additional disorder, protected edge states can be created
[15,16]. Delocalized bulk states are also demonstrated numer-
ically in TIs [17,18]. Most potential applications of photonic
TIs depend not only on the robustness of transmission but
also on the fidelity of pulsed transmission in the presence
of nanoscale disorder that rises in fabrication of metawaveg-
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uides. Robust chiral edge states have been demonstrated for
acoustic waves in anomalous Floquet topological insulators
in strongly coupled ring lattices [19] in which pulses traveling
along bands in the edge are delayed by square-shaped detours
with four sharp bends [20]. However, the statistics of dynam-
ics in homogeneously disordered TIs has not been studied.

Since flux is perfectly transmitted through a TI, it is only
the phase of the transmitted field that can vary as the fre-
quency is tuned. The spectral derivative of the phase is equal
to the transmission time, Z—Z = 71 [21-31]. In a pioneering
study, Mittal et al. studied the transmission time through the
edge states of 2D lattices with a synthetic gauge field with
sizes of up to 15 x 15 coupled silicon ring resonators [7].
They found in samples with intrinsic fabrication imperfec-
tions that the distribution of the optical transmission time
normalized to its average across the band gap, P(tr/(7r)),
is approximately Gaussian with width independent of sample
size. This corresponds to quadratic scaling of the variance of
the transmission time, var(tp). Based on the analogy with
the statistics of transmission time in 1D coupled-resonator
optical waveguides (CROWSs) with silicon resonators [32],
they suggested that transport is diffusive in edge states even
when disorder is strong enough that waves are localized in the
bulk [7].
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But a closer examination is necessary because there is no
diffusive regime in random 1D systems since the localization
length is equal to the mean free path, £ = £; waves are either
ballistic, L < £, or localized, L > £. In addition, we show
below that var(zr) in random 1D media scales nearly quar-
tically rather than quadratically. Given the changing density
of localized bulk modes across the band gap [33-35], it is
valuable to explore the possibility of distinctive statistics of
transmission time near the edges and the center region of the
band gap.

The dynamics of transmission in nontopological random
media is linked to the spatial extent of the quasinormal modes
of the system. Modes extend throughout the sample in dif-
fusive systems and fall exponentially towards the sample
boundaries when waves are localized [36,37]. Because local-
ized modes are weakly coupled to the boundaries, they are
long-lived and exhibit sharp spectral peaks in transmission
[37,38]. However, since transmission in a TI is robust, modes
are not manifest in peaks in the transmission spectrum. The
nature of transport and the states underlying wave propagation
can be uncovered, however, in spectra of transmission time
and the area speckle pattern within the medium.

Here, we explore the dynamics of propagation in disor-
dered TIs in simulations of the tight-binding Haldane model
[39]. This provides a basis for evaluating the viability of TI
metawaveguides fabricated with inevitable disorder for rout-
ing pulses along bent paths [12,40,41]. Localized modes in the
band gap of disordered TIs differ from those in trivial random
media since they coexist with the extended continuum edge
state and their spectral width reflects their distance from the
edge, not from the input or output boundaries of the sample.
Localized modes appear near the band edge for moderate
disorder and move deeper into the band gap with increasing
disorder, until the band gap is washed out for extreme disorder
[33-35,42,43]. The transmission time 7y is proportional to the
density of states (DOS) p and to the energy excited inside
the medium for unit incident flux in all channels connecting
the medium to its environment U when systems are either
perfectly reciprocal or perfectly nonreciprocal. Large fluctua-
tions in 7r arise near resonance with localized states near the
band edge. But fluctuations in the DOS also arise in the center
of the band gap where localized modes are not present. These
fluctuations are associated with the continuum edge mode and
the tails of modes of the passband and band edge, which
are perturbed by disorder. These factors produce significant
sample-to-sample fluctuations at the center of the band gap,
but to a smooth spectrum of 7r in any single realization
of disorder. Thus, fluctuations in 71 relative to its value in
the pristine TI arise throughout the band gap with properties
that depend upon the strength of disorder and the frequency
shift from the band edge. For weak disorder near the band
edge or moderate disorder near the center of the band gap,
modes do not form and 7y self-averages and var(zr) scales
linearly. For moderate disorder near the band edge, however,
var(tr) initially scales quadratically. This scaling differs from
the nearly quartic universal scaling of var(zr) in trivial 1D
random media. The essential point for applications is that
disordered TIs are thus nonergodic near the band center in the
sense that the range of possible values of 7t in an individual
sample is smaller than the range in the ensemble. Because the

FIG. 1. Numerical simulation of propagation in the disordered
Haldane model near the band edge. The band gap of the system
covers the range [—0.5, 0.5]. (a) The disordered region is indicated in
black-white, while the pink region at the ends of the sample represent
the pristine leads. The lattice constant a is 1, the sample has width,
length, and disorder strength of w = 60, L = 400, and W = 1.6,
respectively. (b) The transmitted field through the upper edge. The
blue solid and red dashed curves give the magnitude and phase of
the transmitted field, respectively. (c)—(e) The spatial distribution of
intensity at the three frequencies indicated in (b).

dispersion in 7r near its minimum in the center of the band
gap in each sample is small, however, broadband pulses can be
transmitted with minimal distortion. The impact of dispersion
can be addressed using approaches that are employed fiber op-
tic communications. Thus, disorder does not limit the fidelity
of pulse propagation which is crucial for applications in signal
processing, isolation, and communication.

II. RESULTS AND DISCUSSION
A. Haldane model

We simulate propagation in a honeycomb lattice in the
Haldane model [39] with the Hamiltonian

H= Zc;rn,-c,- + Zc;tcj + Z c}ikgovijcj. (D
i (ij) (i)

(i)

Here cj (c;) denotes creation (annihilation) operators at site
i, the on-site energy 7; is uniformly distributed between —W /2
and W/2, and r =1 is the uniform hopping rate between
nearest neighbors (ij). Ago = 0.1 is the spin-orbit coupling
strength, and v;; = (c?l X 32)/|c?1 X c?zl, where c?] and 32 are
two nearest neighbor bonds connecting next-nearest-neighbor
((i)). The lattice constant is 1. The scattering region is at-
tached to two semi-infinite ordered leads, as shown in Fig. 1(a)
so there is only a single mode entering and leaving the
sample, with the upper (lower) boundary supporting a right-
(left-)moving edge state. Simulations are carried out using the
open-source package KWANT [44].

B. Propagation at the band edge

We first consider propagation near the band edge where
localized modes in the bulk coexist with the extended edge
state. The center of the band gap is at w = 0. We obtain the
transmitted signal in the right lead of a TI of finite width for a
wave injected into the left lead. The Green’s function between
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FIG. 2. Decomposition of the field into the sum of a continuum and discrete resonances. (a) A section of the spectrum shown in Fig. 1(b).
The thin lines correspond to the contributions of the continuum E; obtained from a linear extrapolation. (b) The complex representation of the
first resonant mode seen in (d) (red dashed), the edge mode (yellow arrow) and the sum, which is the total field (blue solid). (c) The dotted
red curve is the intensity associated with E-Ej. The blue curve is determined by a modal fit. (d) The Lorentzian functions for each mode are
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the input and output at the upper boundary in a typical sample
is shown in Fig. 1(b) with the magnitude and phase of the field
given by the blue solid and red dashed curves, respectively.
The magnitude is a constant baseline with several dips, while
the phase shows regions of nearly constant slope between
sharp jumps of 27 as the wave is tuned through resonance
with modes in the bulk. Drops in transmission occur when the
wave in the upper edge tunnels through a localized mode in
the bulk to the lower edge. The wave amplitude in the interior
of the sample at the frequencies marked ¢ and e in Fig. 1(b)
around which the phase of the Green’s function increases at
a nearly constant rate can be seen in Figs. 1(c) and 1(e) to be
similar. The excitation in these regions is due to the continuum
edge state and modes in the passbands which change slowly
with frequency. The peaks circled in Figs. 1(c) and 1(e) are
spectrally broad because they are strongly coupled to the
upper edge. Figure 1(d) shows a sharply peaked localized
mode further from the upper edge at the peak of the resonance
indicated by d in Fig. 1(b).

The transmitted field can be expressed as the super-
position of the continuum edge mode E, and the contri-
butions of quasinormal modes, G(r/, r, w) = (r/|

Z (}", |wnr) (Iﬂnllr)

o—wn il /2 where |v,,) and (| represent the
biorthogonal basis of H., and w, and I',, are the central
frequency and linewidth of the nth discrete mode. Thus, the

1 _
®—Heir |r> -

field at the output can be expressed as

Vi

E=E _ 2
0+;w—wn+il’n/2 @)

where V), is the amplitude coefficient of the nth discrete mode
[45]. In practice it is not possible to distinguish the featureless
contributions of the off-resonance contributions of modes in
the passband and the continuum edge mode to the spectrum
of the transmitted field. These contributions will therefore be
grouped together and denoted as the field due to the contin-
uum, Ey, while the modal sum will represent only modes with
discernable resonances in the spectrum which is analyzed.

Contributions of the continuum and localized modes to
simulations of the spectrum of the field transmitted through
the sample shown in Fig. 1(a) are found by fitting Eq. (2) to
the field spectrum. This gives the magnitude and phase of Ej,
which are plotted as the thin blue and red curves in Fig. 2(a).
In order to find the resonant contributions to the field, we first
determine the phase of Ey, 6, by a linear fit to the spectrum
of phase in a region between sharp modes. The transmission
time associated with the continuum in the disordered TI at
w=0.394, df/dw = 744, is smaller than the transmission
time in the periodic TI of 7o = 967. This may be due to the
removal of the contribution of discrete modes near the band
edge to Tt in the disordered system using Eq. (2).
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FIG. 3. Transmission and reflection times in the Haldane model. In this sample, w = 60, L = 200, and W = 1.6. (a) The red dotted and
blue solid curves are 7r and U, respectively, for a wave injected from the left. The transmission (blue solid) and reflection (red dashed) spectra
are shown in the lower panel. (b) Zoom-in of (a) in the region indicated by an arrow in (a). (c) The intensity pattern at @ = 0.3965. A mode in
the region circled in red gives the Lorentzian line in the reflection spectrum shown in (d).

The magnitude of E, can be obtained through an interpo-
lation of the baseline shown in Fig. 2(a). The separation of
the field into continuum and resonance contributions requires
a model of modal excitation for the proper analysis of the
variation of the phase near resonance. The increase of phase
by 27 when tuning through a resonance in a disordered TI
seen in Figs. 1(b) and 2(a) contrasts with the increase of 7
in a trivial random medium. The phase change of 27w can
be understood from the complex representation of the field
shown in Fig. 2(b) in which the curve of the complex field
encircles the original point in the presence of the continuum.
Subtracting the interpolated continuum field E from the total
field gives the transmitted field due to resonances, as shown in
Fig. 2(c). This spectrum is fit using the method of harmonic
inversion [46] to give the contribution of individual modes,
E, = #M which is plotted in Fig. 2(d).

The analysis of the field using Eq. (2) reveals the nature of
the phase variation of the continuum field and modes in TIs,
however, its application is limited to narrow frequency ranges
in which the slope of 6 is nearly constant. We therefore under-
take a more general approach to modal decomposition, which
also illuminates the way energy is excited within disordered
systems. In lossless reciprocal media, the DOS is proportional
to the Wigner time delay tw and to the energy integral over
the scattering region when all incoming channels are excited
by unit flux, U, p = 5-tw = 5-U [31,47,48]. Here, tw =
—iTr(STZ—aS)), where the scattering matrix S gives the field
transmission coefficients between all channels [23,29,30]. In
reciprocal systems, the transmission time is the same for a
wave launched from either side of the sample and the Wigner
time is twice tr, Tw = 277 [31], so that 7 = mwp = U/2.
The last equality is demonstrated for a reciprocal system in

Appendix A. In a perfectly nonreciprocal TI, tw = tr giving
Tr=2mp=U. 3)

Here, the U indicates the intensity integral when the upper
boundary is excited by the mode propagating to the right. In
Fig. 3(a), we compare tp with U in a sample with W = 1.6,
w = 60, and L = 200. Differences between tr and U are seen
in the dip in Figs. 3(a) and 3(b) near w = 0.3965. The speckle
pattern within the sample at this frequency in Fig. 3(c) shows
a localized mode within the red circle. This mode excited near
the lower boundary couples the wave propagating to the right
in the upper edge to the wave propagating to the left in the
lower edge of the sample. Figure 3(d) shows the Lorentzian
line in the spectrum of reflection time, g = %, where r
is the reflected field. When the reflection is not negligible,
and U are no longer equal, however, the Wigner time T is still
equals to the intensity integral U when all incoming channels
are excited, as shown in Appendix B.

When the sample width is increased so that waves moving
to the right on the top edge and waves moving to the left on
the bottom edge are not coupled, transmission will be perfect.
In Appendix C, we further clarify the effect of the width of
the lattice on reflection.

When transmission is perfect, the analysis of the central
frequency and linewidth of the modes inside the sample is
facilitated by Eq. (3) with 7r expressed as the sum of a
continuum and Lorentzians lines, as shown in Appendix D,

r,/2
(0 — w)* + (T,/2)*

rT=2n,o=27r,oo+ZZ €]

n
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FIG. 4. Scaling and statistics of transmission time and pulsed transmission for different strengths of disorder near the band edge. (a) The
scaling of transmission time relative to the ballistic time in the pristine sample for different disorder strengths in samples with w = 60 at w =
0.35. (b) The blue dashed curves are the input Gaussian pulse with bandwidth 8 x 10~* and central frequency 0.3937; the red solid curves show
the transmitted signal at the output for a sample with W = 0.6 (left) and W = 1.53 (right). (c),(d) The probability distributions of transmission
time for w = 0.35 normalized by the average value for W = 0.6 and 1.53, respectively. (e) Scaling of the variance of the transmission time for
W = 0.6 and the linear fit, giving var(rr) = 0.39L. (f) Scaling of the variance of the bulk of the distribution of transmission time relative to
the length for W = 1.53 using values of t1/(tr) < 10 and a quadratic fit giving var(ty) = 2.1L%.

In principle, pq is the DOS associated with the edge mode,
but, in practice, it also includes the contributions of the tails
of modes in the passband.

We now consider the scaling and statistics of Tt and pulsed
transmission near the band edge at w = 0.35 in TIs with
different degrees of disorder. The scaling of the ensemble
average of transmission time (rr) normalized by the ballistic
time in the pristine TI, 7y, is shown in Fig. 4(a). In samples
with W = 0.6 and 1.3, (t7)/f9 is nearly independent of length
and is elevated above #y by approximately 1 and 10%, respec-
tively. For stronger disorder, tr is significantly higher than #,
and (t1)/fo increases and appears to approach saturation.

The impact of disorder upon pulsed transmission near the
band edge is seen in Fig. 4(b). A Gaussian pulse with band-
width 8 x 10™* and central frequency 0.3937 injected into a
sample of length L = 400 is transmitted without significant
distortion for a sample with W = 0.6. In this sample, modes
are not pushed out of the passband to this frequency. When the
same pulse is injected into the sample with W = 1.53 with the
spectrum shown in Fig. 3(a), the transmitted signal oscillates
with a frequency corresponding to the frequency difference
between the two modes of the medium that fall within the
spectrum of the incident pulse, and decays in the decay rate
of the modes excited. These differences in pulse transmis-
sion in samples with W = 0.6 and 1.53 are accompanied by
distinctive differences in the statistics of vt over ensemble
of disordered TIs. Probability distribution functions of the
transmission time normalized by its average, P(tr/(tr)), for
a number of lengths for these two strengths of disorder are
plotted in Figs. 4(c) and 4(d). For W = 0.6, 7r self-averages.
P(tr/(rr)) narrows and approaches a Gaussian distribution as
the sample length increases and the variance of the transmis-
sion time scales linearly, as seen in Figs. 4(c) and 4(e). This
reflects the topological proscription of backscattering which

implies that the transit times through different segments of the
sample are statistically independent and the net transmission
time is the sum of the transit times in the individual segments.

The approach towards a narrowed Gaussian distribution of
7r with increasing length and the linear scaling of its variance
might also be expected to occur in more strongly scattering
samples, where backscattering is similarly prohibited. How-
ever, as is foreshadowed in the breakup of an incident pulse in
the ensemble with W = 1.53 shown in Fig. 4(b), the statistics
of dynamics changes when disorder increases. At a disorder
of W = 1.53, P(vr/(7r)) appears to converge to a fixed dis-
tribution over the length scale studied in the simulations, as
seen in Fig. 4(d). This corresponds to the quadratic scaling of
var(tr) for the bulk of the distribution, tt < 10{7T), seen in
Fig. 4(f). For this ensemble, the sum of transmission times in
the two halves of a sample is equal to the total transmission
time, as expected. Further, the transmission times of the two
halves are not correlated, as is borne out in the scatter plot
of transit times in the two halves of a sample shown in Ap-
pendix E. The source of the difference in the statistics for the
two samples is that sharp peaks in 77 associated with localized
modes appear in the spectrum of tp for moderate disorder of
W = 1.53 but do not appear for W = 0.6 in this region of
the band edge. These peaks dominate var(zr) in the sample
with moderate disorder. For L = 500, var(zy) can be seen in
Figs. 4(e) and 4(f) to be larger by a factor of nearly 3 x 10° for
the ensemble with W = 1.53 as compared to the sample with
W = 0.6. The long tail in the distribution of tr in Fig. 4(d) is a
general feature that arises when the edge mode interacts with
bulk modes. In Appendix F, we measured the transmission
time distribution of a disorder photonic system emulating the
Kane-Mele model; we also obtain a similar long tail in the
distribution of .
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FIG. 5. Spectra and statistics of transmission time in band gap of disordered TI. Spectra of transmission time and in an ordered TI and in
disordered samples with W = 1.6, w = 60, and L = 400 over entire band gap (a) and in the center of the band gap (b). The dispersion relation
in a periodic medium is shown in the inset in (a). Spectra of 77 in the center of the band gap are displaced so that their minima coincide in the
inset in (b). (c) Distribution of normalized transmission time and (d) the scaling of the variance of the transmission time.

C. Propagation in the center of the band gap

Spectra of v = 2w p = U [Eq. (3)] across the entire band
gap are shown in Fig. 5(a) for a periodic TT and for three ran-
dom configurations in samples drawn from the same ensemble
with W = 1.6 and L = 400. The absence of peaks in tr in the
central portion of the band gap indicates that localized states
are not formed away from the band edge and that the upper
and lower edges are not coupled. The central portions of the
spectra of Tt shown in Fig. 5(a) are displayed in Fig. 5(b) on a
scale that allows these spectra to be compared. The spectrum
of 7r in different regions of the band gap of a disordered TI are
determined by the contribution to the DOS of the continuum
edge mode and by the on- and off-resonance contributions of
the quasinormal modes of the bulk material. The relationship
between tr and the various contributions to the DOS near the
center of the band where transmission is robust is given by
Eq. (4).

The spectra of 7t for the three disordered TIs in Figs. 5(a)
and 5(b) have different minima and frequencies at which these
minima occur but, near the center of the band gap, all the spec-
tra fall below the spectrum of the ordered TI. The spectrum
of the transmission time of the edge mode f, in the periodic
TI is shown as the blue dots in Fig. 5(b). Here, 1o = L/v,,
where v, = dw/dk is obtained from the dispersion of the edge
mode in the Haldane model shown in the inset of Fig. 5(a).
The average of the transmission time in the disordered TI at
w =0, (rr) = 680, is 5% lower than the values in the peri-

odic TI of Tt = #y = 719. This corresponds to an increased
velocity, which may reflect the partial closing of the band
gap due to disorder. The reduction in 7r is different from the
increase in tr in samples in which direct transmission along
the edge is blocked by barriers at points along the edge of a
TI. The reduction in 7y does not depend on the type of edge.
This can be seen in the spectrum of the transmission time for
the bearded edge in Appendix G. The overlap of spectra of 7
and 7 in the band center for the periodic TI seen in Fig. 5(b)
indicates that the contribution of the continuum edge mode
to the DOS overwhelms any contribution of the modes of the
passband.

It is natural that the edge mode will dominate the DOS in
the band gap since it stretches across the entire sample with
undiminished intensity. But, for the same reason, one might
expect the off-resonance contribution of modes in the pass-
band to be significant as well since energy might be excited
within the bulk by the energy along the entire length of the
sample in the edge mode. In comparison, energy is excited
in nontopological nearly periodic systems near the surface
upon which energy is incident. The DOS in the band gap of
topologically trivial media is entirely due to modes associated
with the passband of the periodic system. The energy density
in the band gap falls rapidly away from the incident surface
so that the transmission time saturates with sample length, but
the DOS does not vanish. Since the minimum transmission
in a nontopological band gap for a sample that is periodic
on average is for the periodic sample [49], the average decay
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length of intensity inside the sample is smallest in this case.
In accord with this result, we find that (zr) in the center of
the band gap of nontopological random systems is increased
by disorder, as discussed in Appendix H. This is in contrast to
the decrease in (7r) in topological TIs seen in Fig. 5(b). The
reduction in (rr) in disordered TIs in the center of the band
gap also stands in contrast to the enhancement by over 70%
in the sample with W = 1.6 for ® = 0.35 [Fig. 4(a)], and to a
much greater enhancement in (tr) at values of w closer to the
band edge [Fig. 5(a)].

Disorder affects both the central frequency and linewidth
of the modes of the passband of the periodic system. The
central frequencies of modes in the passband of the periodic
system are randomized by disorder with the long-lived modes
at the band edge perturbed the most. Because modes tend
to be pushed into the band gap, the widths of the effective
band gaps are reduced. This increases the curvature of 7r
in the disordered TI, as seen in the inset of Fig. 5(b). The
linewidths of modes are also changed by disorder. Linewidths
are generally reduced by disorder since their lifetimes tend to
lengthen as modes become more localized. The increase in
(tt) near the band edge is due to resonances with localized
modes. This is seen in the spectra of tr in the individual
configurations in Figs. 1 -3 and 5(a). In samples with smaller,
but still substantial, values of W, modes do not form far from
the band edge of the periodic system and the enhancement in
(tT) close to the band edge is small [Fig. 4(a)].

Since Tt ~ fy in the pristine TI, the quasinormal modes
of the medium do not contribute substantially to the DOS, but
it is possible they do contribute to the DOS of the disordered
system. Since the DOS in the center of the band gap is raised
on average in topologically trivial systems by the increased
contribution of modes in the passband, this might be expected
to be the case as well in TIs. But since (7r) in the disordered TI
is lower than in the ordered TI, the drop must be due primarily
to the drop in the DOS of the edge mode.

The statistics of 71 in an ensemble of 1000 random real-
izations of the disordered TI with W = 1.6 near the center of
the band gap is seen in Figs. 5(c) and 5(d) to self-average: the
distribution P(tr/(tr)) narrows with increasing sample length
and approaching a Gaussian function, while var(ty) scales
linearly. This is similar to the statistics of tr near the band
edge with disorder of W = 0.6 which is not strong enough to
introduce modes into the band gap. var(zr) in a sample with
L =400 and W = 1.6 near the center of the band [Fig. 5(d)]
is smaller than near the band edge for W = 0.6 [Fig. 4(e)],
where the contribution of quasinormal modes is greater. Since
the modes of the passband do not appear to influence tr near
the band center, fluctuations in 7r characterized in Figs. 5(c)
and 5(d) are due primarily to fluctuations in the edge mode
in different configurations. The scaling factor in the linear
variance of the transmission time near the band center is an
indication of the impact of localized states on the statistics of
the transmission time. The scaling factor therefore changes
with the strength of disorder and frequency. It is therefore
not universal but a strong indicator of the impact of localized
modes on the density of states. The variance of the transmis-
sion time relative to the average transmission time would be a
dimensionless parameter equal to the variance of the relative
density of states.

The spectrum of each random configuration of a moder-
ately disordered TI in the central region of the band gap shows
no sharp structure, as seen in Fig. 5(b) since the contributions
of the DOS of the edge mode which stretches across the
band gap and of far-off-resonance modes in the passband vary
slowly with frequency. However, fluctuations in the speed of
the wave in different segments within a single sample results
in different values of 7r in different samples. As a result, the
variations in 7r within a single configuration over a narrow
frequency range are smaller than the differences between con-
figurations. Since only a fraction of the full range of 71 found
in the random ensemble is found in a single sample over a
narrow range of frequency, disordered TIs are not ergodic.

The degree of correlation of the transmitted field with
frequency when averaged over an ensemble of random sys-
tems relates spectral and temporal aspects of propagation in
random media. In ergodic systems, the correlation function
with frequency shift of the normalized transmitted field E ()
is the Fourier transform of the ensemble average of the re-
sponse to a delta-function pulse, (|E(t)|?) [50,51], known
as the photon time-of-flight distribution. It is of interest to
explore the extent to which the normalized field autocorrela-
tion function, Cp(Aw) = (E(0)E*(Aw))/{|E(0)]){|E(Aw)|),
corresponds to the Fourier transform of the time-of-flight dis-
tribution in disordered TIs which are not ergodic. The field
correlation function in a disordered ensemble of TIs of 500
samples of length L = 400 with frequency shift Aw relative
to the frequency of the minimum of zr in the pristine TI of
o = 0 is shown in Fig. 6(a). The real part of Cx (Aw) is shown
as the solid blue curve, the imaginary part as the red dashed
curve, and |Cg|, which gives the envelope of the oscillating
functions, is shown as the solid yellow curve. Since |E| is
constant through the band gap, the decay within the band gap
occurs because of variations between configurations in the
phase shift of the fields between w = 0 and Aw. In a single
disordered TI, the correlation function, shown in Fig. 6(b),
continues to oscillate with unit amplitude until the frequency
reaches the passband where the transmitted amplitude falls.

The Fourier transform of Cr in the disordered TI is shown
as the blue curve in Fig. 6(c). This cannot be precisely related
to the ensemble average of the response to a delta-function
pulse (Ip(t)) because the response of the system changes
over the frequency range of the band gap. The variation of
propagation variables with frequency is also a limitation in
random media. Nonetheless, Cr and the pulse response to a
wide bandwidth pulse (/(z)) have been demonstrated to be a
Fourier transform pair to high accuracy in optical [50] and
microwave [51] measurements in random media. The reason
for this is that the correlation frequency, in which the field
correlation falls appreciably and is approximately equal to the
mode linewidth in random media, is small compared to the
frequency range on which propagation variables change. In
the case of a disordered TI near the band center, the frequency
in which the magnitude of the field correlation function falls
to 1/e of approximately 0.15 is not a negligible fraction of the
band gap, but over this range the change in 7r is small, as
seen in Fig. 5(b). We choose a pulse bandwidth of 0.2, which
is larger than the correlation frequency but smaller than the
width of the band gap, for the incident Gaussian pulse. It is not
possible to choose a larger bandwidth because the pulse would
then span the band gap over which the dispersion in 7 is
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FIG. 6. Field correlation function and dynamics over random ensemble and single realization of disordered TIs. (a) Real and imaginary
parts and the amplitude of field correlation function with frequency shift between the center of band gap at @ = 0 and Aw over random
ensemble. (b) Field correlation function for a single random sample. (¢) Comparison of the Fourier transform of Cg (blue solid curve) and the

response to a Gaussian pulse with bandwidth of 0.2 (red solid curve).

large enough that the transmitted pulse would be substantially
broadened. With this choice, the Fourier transform of Cg,
given as the blue curve in Fig. 6(c), is in reasonable agreement
with (/(¢)).

Incident Gaussian pulses (blue) with bandwidths of 0.2 and
0.6 peaked at the center of the band gap and the responses
(red) in a single sample with W = 1.6 and L = 200 are shown
in Figs. 7(a) and 7(b), respectively. The incident 0.2-bandwith
pulse and the response in a bent sample with disorder W = 1.6
is shown in Fig. 7(c). The energy distributions in a section
of the pristine and disordered systems with a straight path
for steady-state excitation at w = 0 are shown in Fig. 7(d).
The corresponding distribution for the bent path is shown in
Fig. 7(e). Because the energy density falls off so rapidly from
the edge, the color bar encodes values of |E|'/2. For the nar-
rower linewidth incident pulse, the transmitted pulse appears
to have the same shape as the incident pulse. For the broader
band pulse, a long tail develops due to part of the spectrum
that is closer to the band edge where 7 is larger and the speed

along the edge is smaller. There seems to be no discernable
broadening of the pulse that encounters two bends, as seen
in Fig. 7(c). This demonstrates that pulse propagation near
the band center in a single sample is robust in the presence
of disorder and bending of the path. There is no evidence of
an increase in the energy density at any point along the path.
These results demonstrate that pulse propagation is robust in
the band gap of a disordered TI even for ultrashort pulses with
bandwidths which are a significant fraction of the width of the
band gap.

D. Propagation in random one-dimensional
nontopological media

We have seen that the statistics and scaling of 7r in dis-
ordered TIs differ through the band gap with initial quadratic
scaling where modes exist and linear scaling where they do
not. Since these statistics provide a window on the nature
of propagation in the medium, it is natural to compare these
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FIG. 7. Robust pulse propagation in the center of the band gap. (a)—(c) The blue dashed and red solid curves show the time dependent flux
in the incident Gaussian pulse and transmitted pulses, respectively. The bandwidth of the pulses is 0.2 in (a) and (c) and 0.6 in (b). The length
of the straight path along the edge is 200 in (a) and (b). The pulse in the straight and bent paths in (a) and (c) are not significantly distorted in
transmission through the TI. The wider-band pulse in (b) is slightly broadened by the dispersion in tr over the band gap, as can be seen in the

reduction of the peak intensity of the transmitted pulse. The spatial distribution of |E|

path shows only short-range fluctuations.

172 is plotted in (d) and (e). The energy density along the
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FIG. 8. Statistics of transmission time in 1D random media.
(a) The probability distribution of transmission for different sample
lengths with mean free path £ = 0.5 m. (b) Comparison between the
probability distribution of transmission time for different L and £ but
the same L/¢ shows that statistics are universal an depend only on
the parameter L/¢. (c) The scaling of the variance of transmission
time. (d) The same as (c) but in a log-log scale.

results to the statistics of propagation in trivial random 1D
media. In random media, it is possible to explore the statistics
of transmission as well as of the transmission time. The single
parameter scaling theory of localization developed for ran-
dom 1D media shows that the logarithm of the transmission
coefficient, InT, self-averages with an average that scales lin-
early, (InT') = —L/¢ [52]. Further, the probability distribution
of InT approaches a Gaussian for L >> ¢ with a variance
of transmission of 2L /¢, giving, (InT) = —L/¢ ~ var(InT)/2
[52,53]. Thus, L/Z is the universal dimensionless scaling pa-
rameter which determines both the centroid and variance of
Gaussian distribution of In7 and so all statistical properties.
However, because transmission is robust in disordered Tls, |E|
and T are constant, and £ is not a suitable transport parameter.
The only transmission variable is the phase of the transmitted
field. In perfectly nonreciprocal media, the transmission time,
de/ dw = 7r, the DOS, and energy excited in nonreciprocal
media may be found in accord with Eq. (3). We have seen that
the nature of propagation in disordered TIs can be described in
terms of the statistics of 7. The statistics of the transmission
time have been measured in multichannel quasi-1D random
media in the waveguide or wire geometry of constant cross
section and reflecting sides [27] and in slabs [31], and have
been calculated and compared to simulations for reflection
from a medium connected to free space via a single channel
[28], but the statistics of dynamics for transmission through
a random 1D media have not been reported. These statistics
are calculated using transfer matrix simulations in random
binary layered samples and shown in Fig. 8. Samples are
composed of layers with thickness selected randomly between
0 and 1 cm within a sample of length, L = 1m. The vacuum
wavelength is 0.3 cm and the indices of refraction of the layers
alternate between two values, n; = 1 — Anandn, = 1 + An.
An is selected to give the desired mean free path, which is

determined via the relation (In7) = —L/£. The statistics of
7 are calculated for ensembles with 10° samples.

The probability distribution P(tr/(rr)) in the random 1D
ensemble described above is shown in Fig. 8(a) for different
values of L for £ =0.5m. The statistics of transmission
time differ sharply from those in disordered TIs both when
modes are not present [Figs. 4(c) and 4(e)] and when they
are [Figs. 4(d) and 4(f)]. For L/¢ < 1, P(vr/{7r)) is narrow
and peaked near unity since the wave is ballistic and is barely
scattered. As L increases, the peak of P(tr/(tr)) shifts to
lower values of tp/(tr) and a long tail develops. In localized
systems, the average linewidth of modes falls exponentially
with thickness and the distribution of linewidths is wide since
it depends upon the separation of the location center from
the sample boundaries [37]. As a result, most frequencies fall
outside the linewidth of the nearest mode and the DOS and
7r for most frequencies are small. When the frequency falls
near resonance with a localized mode, however, the DOS, and
so 7r is high. This results in a long tail in P(ty/(tr)) with
decreasing weight as L increases. The universality of statistics
of tr/(tr) is demonstrated in Fig. 8(b) by the overlap of
P(tr /(7)) for different values of L and ¢ but the same value
of L/£. The scaling of the variance tr/(tr) is seen in Fig. 8(c)
to be universal and given by var(zr/(tT)) = 0.O9O(L/Z)1'88.
This corresponds to var(zy) = (0.098/£'38v,2)L388  as seen
in Fig. 8(d). This nearly quartic scaling differs from the linear
scaling in disordered TIs when modes are not present and the
quadratic scaling when modes are present. Another measure
of universal fluctuations in the DOS is the average of the
logarithm of the normalized transmission time (In(tr/(tr))).
For L > ¢, (In(rr/(rr))) falls linearly, as seen in
Appendix I.

We note that L/¢ is not a localization parameter in dimen-
sions higher than 1 since the transmittance, which is the sum
of transmission coefficients over all channels, T = Tr(¢'¢) =
lev T,,, also depends on the number of channels, N. Here, ¢ is
the transmission matrix and the 7, are the transmission eigen-
values. In ballistic or diffusive samples, in which transport is
not significantly renormalized by coherent backscattering, the
average transmittance is approximately given by (T) = N¢/L.
The average transmittance is equivalent to the dimension-
less conductance g, which is the electronic conductance in
units of the quantum of conductance, &2 /h. Thouless showed
that, in diffusive samples, the dimensionless conductance is
equivalent to the ratio of the average modal linewidth and
the average frequency difference between modes, § = g =
dw/Aw [37,54]. The Thouless number § thus represents the
degree of modal overlap. The inverse of the average mode
spacing is the DOS, p = 1/Aw. When modes are weakly
coupled to the boundaries at the two ends of the sample,
and modes are narrower than the mode spacing, § < 1 and
the modes are localized. Fluctuations of both steady state
quantities, such as 7, and dynamic quantities, such as zr, are
then large both within a single sample and between samples.
On the other hand, when the modes are extended, they couple
strongly to the boundaries. The modal linewidth is then larger
than the spacing between modes, § > 1, and fluctuations are
small. Unlike 7, the Thouless number is not defined at each
frequency in each random realization but is an average over
an ensemble.
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A dimensionless dynamical quantity which is defined at
each frequency in each member of a random ensemble is
or/{7r). It is equal to the ratio of the DOS to its average,
r/{tT) = p/{p), and, as we have seen, has universal statis-
tics for standard random systems. Unlike 7, whose average
is a universal scaling parameter, the average of =r/(tr) is
unity. However, the scaling of var(ty/(tr)) is universal and
in 1D depends only on L/¢, as does (InT) [28,31]. The
statistics of tr/(7r) is not universal in disordered TIs, but,
as we have seen, they provide a way of assessing the im-
pact of modes of the passband on transport in disordered
TIs.

III. CONCLUSION

We have shown that the nature of propagation and the
prospects for robust pulse transmission in disordered TIs in
samples with different strengths of disorder and at frequencies
throughout the band gap may be determined from the statistics
of the transmission time. Since the transmission time in TIs
is proportional to the DOS and to the energy excited inside
the medium, the transmission time and its statistics may be
related to the quasinormal modes of the medium and the con-
tinuum edge mode. Fluctuations of the central frequencies and
linewidths of modes in the passband of the ordered TI due to
disorder tend to raise 7r near the band edge. In regions of the
band gap in which modes are not introduced by disorder, tr
self-averages so that P(7r) approaches a Gaussian distribution
and var(tr) scales linearly. When modes are present in the
band gap, var(ty) initially scales quadratically due to large
fluctuations associated with narrow localized modes, which
coexist with the extended edge mode. Beyond the length at
which the full distribution of 7r is sampled in a given sam-
ple, we expect that the variance will scale linearly and be
indicative of the impact of localized modes on the dynamics
of transmission.

Though there are significant fluctuations between samples
near the center of the band gap, the spectrum of 7r in a
single configuration is smooth and even pulses short enough
that their bandwidth is a fraction of the band gap may be
transmitted without significant broadening in samples of mod-
erate length. In longer samples, pulses will be broadened by
dispersion, as is the case in optical fibers. But the impact of
dispersion can be minimized or compensated. The broadening
of pulses by dispersion is minimized near the minimum of zp
in the band gap and can be compensated by having succes-
sive metawaveguides with opposite dispersion. This can be
achieved by having a waveguide with the frequency of the
minimum in 7t above the incident frequency in one section
and below this frequency in the following section. Dispersion
may also be compensated with use of chirped fiber Bragg
gratings as is done in fiber optic communications [55]. Signals
may be transmitted at several wavelengths in the band gap
along a single metawaveguide as is done in wavelength di-
vision multiplexing in optical fiber telecommunication. Thus,
high data rate data may be routed in metawaveguides as long
as the band gap is not washed out by disorder [12,40]. In
addition, disorder in nonreciprocal photonic TIs would not de-
grade the functioning of optical isolators for protecting pulsed
laser sources.
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FIG. 9. Transmission time in a random medium. (a) The leads on
the left and right support a single channel. The sample parameters are
Wieaa = 6, W = 20, L = 400. (b) The red curve is the transmission
time. The blue dotted curve is one half the sum of the intensity
integral for waves incident from the left and right leads, U /2. The
inset shows the transmission spectrum.

In randomly disordered TIs, localized modes are formed
near the band edge. But it is possible to create localized modes
deep in the band gap adjacent to the edge of the TI which
would coexist with the extended edge modes. This would en-
able narrow-line lasing in electronically or optically pumped
defect states. Large area defects may be engineered so that the
device can be pumped effectively while the linewidth of the
mode may be controlled by the proximity of the defect mode
to the edge of the TI. This TI laser is distinct from the recently
demonstrated laser in which the gain is in the edge mode of
the TI [56]. Our results show that the advantages of robust
transmission are preserved for ultrafast signals in the central
portion of the band gap for both linear and nonlinear devices.
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APPENDIX A: RELATION BETWEEN THE
TRANSMISSION TIME AND THE INTENSITY INTEGRAL
IN A RECIPROCAL RANDOM SYSTEM

We simulate wave propagation in a reciprocal random
system without loss or gain which is connected to the sur-
roundings via single-channel leads on both sides of a sample,
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FIG. 10. Comparison of spectra of the transmission time, Wigner
time and of excitation in a strongly disordered TI in which localized
modes in the bulk couple the upper and lower edges of sample. The
sample parameters are W = 2, w = 60, and L = 200. (a) The red
circles are the transmission time and the blue curve is one half the
sum of the integrals of intensity for the wave incident from both sides
of the sample. (b) The red circles are the Wigner time and the blue
curve is the sum of the integrals of intensity for the wave incident
from both sides of the sample.

as shown in Fig. 9(a). The transmission time, DOS, and sum of
the integrals of intensity over the sample for unit flux flowing
into the two leads are connected via the set of relations,
r =mp = U/2 [31,47]. The equivalence of zr and U/2 is
shown in Fig. 9(b). The spectrum of tr shows contributions of
isolated and overlapping modes. The inset in Fig. 9(b) shows
the transmission in this system.

APPENDIX B: RELATION BETWEEN THE WIGNER TIME
AND THE INTENSITY INTEGRAL IN A
TOPOLOGICAL INSULATOR

We consider a TI following the Haldane model of the
sample in Fig. 1(a) with disorder strength W = 2, in which the
waves in the upper and lower edges are coupled via localized
modes in the bulk. The leads are a TT with the same structure
as the pristine sample without disorder and support a mode
moving to the right on the upper edge and a mode moving
to the left on the lower edge. Because the system is neither
perfectly reciprocal, with tp = w p = U/2, nor nonreciprocal
with unit transmission, with 7 = 2w p = U, the transmission
time is not proportional to the DOS and to U, as can be seen
in Fig. 10(a). However, the Wigner time is proportional to
the DOS and to U, ty = 2w p = U. This is confirmed in the
spectrum in Fig. 10(b). The baseline in Fig. 10 is due to the
edge mode.

APPENDIX C: EFFECT OF REFLECTION DUE
TO THE SYSTEM WIDTH

We further clarify the effect of the width of the lattice by
calculating the longitudinal variation of the average of the
logarithm of the integral of intensity over the cross section,
(In I(x)) (see Fig. 11). When the sample is wide, the coupling

0 20 40 60 80 100
X
FIG. 11. Variation of (In /) at the edge along the length of the

sample. The sample length is 100. Blue, red, and purple points
correspond to sample widths of 10.4, 16, and 18.4.

between the two counterpropagating edge states is weak and
(In I(x)) is nearly a flat line (purple). As the sample narrows,
the coupling between the edges becomes evident and (In 7(x))
decays linearly.

APPENDIX D: LORENTZIAN DECOMPOSITION
OF THE TRANSMISSION TIME

The transmission time and DOS of a disordered TI without
loss or gain are related as [30]

1 B B l Fn/z
ETT = p(@) = po(w) + T Z (@ — w,)* + (Ta/2)

n

(AD)
The first term in the expression for the DOS is the contri-
bution of the edge mode, which varies slowly with frequency.
The second term describes the contribution of narrow quasi-
normal modes. We use Eq. (A1) to fit the transmission time
for the spectrum shown in Fig. 3(a) to obtain the central fre-
quencies and linewidths of the modes. The Lorentzian modes
obtained are displayed in green in Fig. 12. The Lorentzian
lines correspond to the contributions of individual modes to
the transmission time. In this simulation, the resonant peak is

~10* and the background associated with p is ~102.

APPENDIX E: CORRELATION OF INTEGRATED
INTENSITY IN TWO HALVES OF A TI

We seek to understand the source of the quadratic scaling
of the distribution of the transmission time in the system
with moderate disorder, as seen in Fig. 4(f), in samples in
which backscattering is prohibited. We show in the scatter
plot of Fig. 13(a) in samples of total length L = 400 that
the integrals of the intensity within the two halves of random
samples, U(z), are uncorrelated. There are occasional large
fluctuations in U; and U,, but these tend not to occur in both
halves of the same sample. Only in one of 400 samples is
there a large fluctuation in both halves of the sample, as seen
in Fig. 13.

033507-11



KANG, HUANG, AND GENACK

PHYSICAL REVIEW A 103, 033507 (2021)

x10%
2 L 4
o
1 L 4
0 ‘
0.392 0.394 0.396 0.398
w

FIG. 12. Modal decomposition of the transmission time. The
curve of red dots is the transmission time and the blue curve is the fit
of Eq. (A1) to the time delay. The green curves are the contribution
of individual modes. There is a slowly varying background of 2200
due to the edge channel and modes outside of this frequency range.
The dip at @ = 0.3965 at which the fit fails is due to reflection at the
lower edge.

The bulk of the distributions of both U; and U, and their
sum U normalized to the respective averages coincide and
they all exhibit long tails. This corresponds to a variance of
the bulk of the distribution of integrated intensity that scales
quadratically, in accord with Figs. 4(d) and 4(f). When the full
range of values of U/(U), and so of 7r/(tr), are included in
the calculation of the variance, the result depends on just a few
large values, which can be larger than 100, so that the variance
cannot be determined based on the ensemble of 1000 samples
studied in this work. The large values of intensity and delay
time arise on resonance with narrow modes that are distant
from the edge.

APPENDIX F: MEASUREMENT OF THE PROBABILITY
DENSITY OF THE TRANSMISSION
TIME IN A PHOTONIC TI

We measured the probability density of the transmis-
sion time of microwave radiation along the edge between a
quantum-spin-Hall (QSH) and quantum-valley-Hall (QVH)
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FIG. 13. Integral of intensity in a TI system with W = 1.6,
width = 60 and length = 400. (a) The uncorrelated relation between
the intensity integral of the first and second half part of the sys-
tem. (b) The long-tail distribution of /) and / normalized by their
average.
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FIG. 14. Measurement of transmission time. (a) Photo of random
configuration of the TI is Fig. 1(a) of Ref. [57]. (b) Plots of trans-
mission spectra in a pristine system (blue curve) and in systems in
which 10 rods (red curve) and 20 rods (green curve) are displaced.
(c) Probability distribution of the transmission time within the band
gap between 20.8 and 21.5 GHz.

photonic crystal. The boundary between the QSH and QVH
crystals, with Chern numbers of 1 and 0, respectively, supports
a single edge mode. The parameters of the sample shown in
Fig. 14(a) are given in Ref. [57]. Disorder is QSH crystal is
introduced by pushing rods with a collar to randomly selected
positions of the collar between two copper plates. Measure-
ments are made in 15 random configurations. The edge mode
is supported along the boundary between the QSH and QVH
crystals. The band gap for the pristine system is between 20.5
and 22 GHz. Figure 14(b) shows the spectrum of transmission
time for different disorder strengths. Inside the band gap,
the transmission time for the edge mode to pass through the
40-cm-long boundary line is approximate 4 ns. At the band
edges, the transmission time increases due to the excitation of
modes in the bulk. The probability distribution of transmission
time between 20.8 and 21.5 GHz when 20 rods are disturbed
randomly is shown in Fig. 14(c). The distribution is asymmet-
rical with the peak near the ballistic time in the TI without
disorder. The probability distribution is for a frequency range
that includes the central region of the band gap as well as a
portion closer to the band edge. The separate contributions
of these regions would contribute a Gaussian component and
a long-time tail to the distribution, as in Figs. 5(c) and 4(d)
of the main text, respectively. We note that it is hard to
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FIG. 15. Transmission time for the bearded edge. Width = 60.4,
length = 400. Three spectra of transmission time are compared. Blue
curve is clean system. Red and yellow curves indicate disordered
system with strength W = 1.6.

eliminate pseudospin flipping in a photonic system with time
reversal [58] and a wave can be localized in the real photonic
systems.

APPENDIX G: TRANSMISSION TIME ALONG
THE BEARDED EDGE

We further calculate the spectrum of transmission time in a
sample with a bearded edge; see the inset in Fig. 15, where the
blue line indicates the clean system and red and yellow lines
indicate different disordered systems with disorder strength
W = 1.6. The transmission time is reduced in disordered sam-
ples.

APPENDIX H: STATISTICS OF TRANSMISSION TIME
IN NEARLY PERIODIC TOPOLOGICALLY
TRIVIAL 1D MEDIA

Transfer matrix simulations of the transmission time car-
ried out in a periodic and in three disordered photonic crystals
are shown in Fig. 16. Samples of length L = 0.80m are
composed of alternating layers of indices of refraction of 1
and 2. In the periodic system, the layers all have the same
thickness of d = 0.02 m, while the thickness of each layer is
chosen from a rectangular distribution with thickness in the
range [0.95, 1.05]d in the random samples. Spectra of 7t in
the center of the band gap are shown in Fig. 16(b). 7t in the
disordered system is generally higher than in the periodic pho-
tonic crystal (purple curve). The probability distribution of 7
normalized by its average, P(zr/(7r)), is shown in Fig. 16(c)
for three lengths. For each length (zr) is greater than the value
in the periodic system, which is expected since the disorder
enhances the wave transport in the band gap and thus increases
the DOS. The same might be expected for the disordered TI.
But the contribution of the modes of the passband to the DOS
in the center of the band is small and so the drop of (zt ) at the
center of the band of 5% seen in Fig. 5 is largely the result of a
drop in 77 for the edge mode. Because the local DOS (LDOS)
decays with depth into the sample in the band gap of trivial

(a) (b)
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FIG. 16. Spectra and statistics of transmission time in the band
gap of periodic and perturbed 1D nontopological media. Spectra
over the entire band gap (a) and in the center of the band gap (b).
(c) Distribution of normalized transmission time for different lengths,
and (d) the scaling of the variance of the transmission time.

systems, P(rr/(rr)) and var(ty) saturate with length, as seen
in Figs. 16(c) and 16(d).

APPENDIX I: SCALING OF THE LOGARITHM OF
TRANSMISSION TIME IN A TRIVIAL 1D SYSTEM

We have seen in Fig. 8 that the statistics of zr/(7rr) in
one dimension, which are the same as the statistics of the
normalized DOS, p/(p), are universal with var(zr/(7r)) =
0.090(L/£)1'88. Another measure of universal fluctuations in
the DOS is the average of the logarithm of the normalized
transmission time (In(zr/(7r))). For L > £, (In(zr/(tT)))
falls linearly and approaches a slope of approximately 0.09,
as seen in Fig. 17.
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FIG. 17. Scaling of the average of the logarithm of normalized
transmission time in nontopological trivial 1D random media.
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