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ABSTRACT KEYWORDS

Deep Neural Networks (DNNs) are becoming an integral part of
many real-world applications, such as autonomous driving and
financial management. While these models enable autonomy, there
are however concerns regarding their ethics in decision making.
For instance, fairness is an aspect that requires particular attention.
A number of fairness testing techniques have been proposed to
address this issue, e.g., by generating test cases called individual
discriminatory instances for repairing DNNs. Although they have
demonstrated great potential, they tend to generate many test cases
that are not directly effective in improving fairness and incur sub-
stantial computation overhead. We propose a new model repair
technique, RULER, by discriminating sensitive and non-sensitive at-
tributes during test case generation for model repair. The generated
cases are then used in training to improve DNN fairness. RULER
balances the trade-off between accuracy and fairness by decom-
posing the training procedure into two phases and introducing a
novel iterative adversarial training method for fairness. Compared
to the state-of-the-art techniques on four datasets, RULER has 7-
28 times more effective repair test cases generated, is 10-15 times
faster in test generation, and has 26-43% more fairness improvement
on average.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; - Computing methodologies — Neural networks.
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1 INTRODUCTION

Deep Neural Networks (DNNs) are being widely employed in real-
world applications, such as face recognition [10], speech recogni-
tion [11], autonomous driving [12]. A criminal identification system
may determine whether a suspect is an actual criminal based on the
background information of the suspect, such as prior record, race,
gender, etc. A financial institution may decide whether to authorize
a loan to a customer based on one’s personal information. Fairness
in such decisions is hence particularly important. For instance, a
criminal identification system with biases towards a certain race
would have detrimental societal ramifications.

The fairness problems in DNNs can be the discrimination against
certain protected or sensitive attributes, such as race, gender, etc [6].
That is, a DNN model’s prediction is inappropriately tied with spe-
cific values of protected/sensitive attributes (e.g., gender) [2, 45].
The bias/unfairness of DNNs can also lie in the prediction outcome
differences towards different labels, such as divergent predication
errors for different persons in face identification. There exist a
number of fairness types in the literature, such as individual dis-
crimination [14], group discrimination [15], etc. Different fairness
problems require specific designs to achieve the mitigation goal.
In this paper, we focus on the individual discrimination problem
following existing works [43, 45]. Specifically, given an input x,
there exists another sample x” that has different values on sensitive
attributes but the same values on non-sensitive ones. Sample x” is
an individual discriminatory instance (ID]) if the model produces
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different predictions for x and x’. Addressing the individual dis-
crimination problem is hence to reduce the number of such cases
for a given model.

In order to build a fair DNN model, existing techniques aim to
generate IDIs [1, 2, 4, 16] and some use generated IDIs to repair the
model [14, 37, 42, 43]. THEMIS [16] randomly selects values from
the valid ranges of all attributes to generate IDIs. AEQUITAS [37]
first exhaustively enumerates all the values for sensitive attributes
to generate random samples. It then perturbs other attributes of
each random sample. To improve the diversity of IDIs, SG [2] lever-
ages dynamic symbolic execution to generate IDIs. The aforemen-
tioned methods, namely, THEMIS, AEQUITAS, and SG, are mainly
designed for traditional machine learning models, such as logistic re-
gression [26], support vector machine [8], and decision tree [9], etc.
They may be inapplicable to DNNs or too expensive as DNNs are
more complex. Recent work leverages gradient information from
DNN models to better assist fairness improvement (e.g., ADF [43],
EIDIG [42], and NeuronFair [45]). They mainly follow a similar
instance generation procedure by adversarially perturbing input
attributes and leveraging majority voting [25] to assign labels for
IDIs during retraining. The magnitude of adversarial perturbation
on those attributes is usually not bounded, which can lead to ille-
gitimate samples. Existing techniques strictly follow the definition
of individual discrimination (details in Section 2.2) during instance
generation and only perturb one sensitive attribute at a time. This
incurs substantial computation overhead and may generate samples
that are not IDIs. In addition, existing techniques are not iterative
in model repair due to their high cost. They hence may not achieve
the optimal fairness improvement.

Adversarial training is one of the most effective techniques in
constructing robust models [28, 36]. It iteratively generates adver-
sarial examples with respect to the current state of the model at
each training step. It aims to flip the prediction of an input by
adding a small perturbation on the input. A straightforward idea
is to directly leverage adversarial training for improving fairness.
We observe that adversarial training can address the problem but
at the cost of non-trivial accuracy degradation. It is known that
adversarial training affects normal functionalities [28].

We propose a novel fair model training method, called RULER,
which is specially designed for improving fairness. It decomposes
the training procedure into two phases: warm-up and fairness ad-
versarial training. The first phase follows the normal training to
ensure the functionalities (i.e., model accuracy). A validation set
is utilized to determine whether a model has satisfactory perfor-
mance on normal samples. In the fairness adversarial training phase,
RULER iteratively generates IDIs for repair. Different from existing
fairness improving techniques that strictly follow the definition
of individual discrimination by requiring a coupling sample that
only differs on sensitive attributes from an input when perturbing
sensitive and non-sensitive attributes, RULER relaxes the conditions
by allowing small perturbations on non-sensitive attributes without
coupling samples. Although perturbing non-sensitive attributes has
been explored before, the relaxation in RULER and the small bound
on non-sensitive attributes substantially enlarges the chance of
generated samples being real IDIs. Specifically, we impose different
bounds on sensitive and non-sensitive attributes, where sensitive
attributes shall be within their valid value ranges, and non-sensitive
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ones shall be in the neighborhood of the original input (bounded
by a small Le,). RULER also introduces a queue to ensure that all the
original training samples are utilized in each adversarial training
epoch to prevent model accuracy degradation. By balancing the
number of normal samples and IDIs during repair, RULER achieves
better accuracy and fairness compared to the state-of-the-art. In
this paper, we mainly focus on tabular data with explicitly extracted
features. RULER can be possibly extended to other domains, which
is discussed in Section 6.
Our contributions are summarized as follows.

e We relax the conditions in individual discrimination defi-
nition and allow small perturbations on non-sensitive at-
tributes without coupling samples. It leads to more effective
and efficient IDI generation.

We formulate the fairness improvement task as a min-max
optimization problem by adversarially and iteratively train-
ing on generated IDIs. It also features a warm-up phase and
a sample fusion technique to retain normal functionalities
of the repaired model.

We develop a prototype RULER and evaluate it on four widely
used public datasets. The experimental results demonstrate
that RULER has 97.86% relative fairness improvement with
only 0.55% accuracy degradation on average. We compare
with three state-of-the-art fairness improvement techniques
and show that RULER is 10-15 times faster in generating IDIs
and has 26-43% more fairness improvement. The implemen-
tation is publicly available [35].

2 BACKGROUND

In this section, we briefly review relevant background, including
DNN, individual discrimination, and adversarial attack. We then
define our problem.

2.1 Deep Neural Network

A DNN can be represented as a function f : X — Y, where X
is the input space and Y the output space. A DNN model usually
consists of a sequence of n layers that are connected as follows.

Jo(x) = fa—10 fa—z - 0 fo(x), (1)
where fj is the first layer and f;,—; the last. Variable 6 denotes all
the weight parameters in the n layers. To train a model that can
correctly predict output y € Y given an input x € X, aloss function
L is utilized for searching the optimal parameters 0 such that the
empirical risk is minimized as follows.

| £(fo00). )| 2)

arg min E

0 (ey~{XY}
The empirical risk is the expectation of the loss on all the samples in
the given training set as shown above. The goal is to obtain a set of
parameters 6 that has the smallest empirical risk, which is supposed
to correctly predict unseen inputs, i.e., those from the test set. The
prediction accuracy on the test set denotes the functionality of f.
The higher the test accuracy is, the better a DNN model is.

2.2 Individual Discrimination

Individual discrimination describes the scenario where a decision-
making outcome is inappropriately tied with a specific value of
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some sensitive/protected attribute, such as gender and race. In this
paper, we follow the formal problem definition introduced in the
literature [42, 43, 45].

Let X € R™ be the input space, where n is the number of
input samples and d the number of attributes. We use A = {a;|i €
{1, - -+, d}} to denote the attributes. Suppose each attribute a; €
I; (valid value domain), then I = I; X Iz X --- X I; denotes all
possible combinations of attribute values. Let P C A denote a set
of sensitive/protected attributes, and A\P the set of non-sensitive
attributes. An individual discriminatory instance for a DNN model
f trained on X is defined as follows.

DEFINITION 1 (INDIVIDUAL DISCRIMINATORY INSTANCE). Let x =
{x1,x2, - -+, x4} be an arbitrary instance in I, where x; is the value
of the i-th attribute, i.e., a;. Instance x is considered an individual
discriminatory instance for model f if there exists an instance x” € 1
that satisfies the following conditions:

e dpePxp# xl',
* Vg€ A\P,xq = x
o f(x) # f(x)

Pair (x, x") denotes an individual discriminatory instance pair.
The above conditions are strict and defined on the whole value
space [. In real world scenarios, the input space X is a subset of
all possible instances in the value range I. There may not exist an
x’ that satisfies the above conditions. To explore more possible
individual discriminatory instances, we relax the conditions during
instance generation, which is discussed in Section 4.2.

2.3 Adversarial Attack

Adversarial attacks craft human-imperceptible small perturbations
that can induce misclassification on DNNs when added to normal
inputs [33]. It has been extensively studied in the literature [3, 13, 20,
21, 38, 40, 44]. A pioneer work by Goodfellow et al. [33] introduces
Fast Gradient Sign Method (FGSM) that leverages the gradient sign
to perturb an input. Specifically, it computes the gradient of a loss
function with respect to the input and adds the sign value of the
gradient (with some proportion) onto the input. Given an input x
and a subject model loss function L (e.g., cross entropy loss), an
adversarial example is crafted as follows.

xadv = x+4e- Sjgn(vx.ﬁ(fe (x)’ y))’ (3)

where € is a hyper-parameter determining the magnitude of added
perturbation; sign(-) takes the sign of input values (e.g., —1 for
value —2.5); L is the loss function of subject model fy with 6 the
weight parameters and y the ground truth label; Vy computes the
gradient of £ with respect to the input x. FGSM uses one step of
gradient information according to the loss function to construct
adversarial examples. The perturbation magnitude is constrained
by the hyper-parameter e such that ||x9%? — x||o < €.

Advanced adversarial attacks extend FGSM for leveraging the
gradient information via multiple steps [7, 24, 27]. Projected Gra-
dient Descent (PGD) [28] is one of such variants. It also projects
the perturbed input onto the valid input space (i.e., the legitimate
value range) at each step during adversarial generation. Formally,

= [ (v sn(m o) @

x+S
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where x'*1 is the modified input at step ¢ + 1; S is a set of allowed
perturbations within the valid input space; [ | denotes the projection
to valid space x + S; Variable « is a hyper-parameter controlling
the perturbation magnitude at each step.

2.4 Problem Statement

Existing DNNs have undesirable discrimination against certain
sensitive attributes. That is, the prediction of a model can be flipped
when only some sensitive attribute of an input is altered. This leads
to unfair decision-makings when such models are used in critical
systems, such as criminal identification system. In this paper, we
aim to repair DNNs by mitigating the discrimination rooted in
models. A repaired DNN model shall produce the same prediction if
two inputs only differ on sensitive attributes. Given an input x € X
and a model f, the fairness goal is as follows.

Vx', Vp € P,xp # x5, Vg € A—p,xq :x"], fx)=1", (5)

where p € P is a sensitive attribute and A — p the attributes other
than p. As it is infeasible of having the whole input distribution, a
sampled set X is commonly used in practice to evaluate the per-
formance of f. For every sample x € X, a validation tool evaluates
the fairness of model f according to Equation 5. The details are
elaborated in Section 5.2. The more samples satisfy the goal, the
fairer a model is on sensitive attributes.

3 MOTIVATION

Effectively generating individual discriminatory instances is the
first step towards mitigating unfairness in DNNs. Existing tech-
niques [42, 43, 45] mainly follow a similar instance generation
procedure by (1) adversarially perturbing input features and (2)
leveraging majority voting [25] to assign labels for a set of randomly
selected discriminatory instances. In the first phase of adversarial
perturbation, existing techniques do not constrain the magnitude
of the perturbation. That is, any input feature dimensions can be
altered to arbitrary values (e.g., changing age 50 to 10) as long as
they can induce the intended output, i.e., flipping the predicted
label (e.g., from authorizing to NOT authorizing a loan). As the pre-
diction changes when the sensitive attribute is altered, this sample
x’ (from the original input x) might be considered an individual
discriminatory instance (IDI). Hence, to improve the model fairness,
this sample x” will be added to the original training dataset by re-
taining its original label y (e.g., authorizing a loan). However, there
is no guarantee for those generated instances to be legitimate as
they may not follow the normal data distribution (e.g., authorizing
a loan to an age 10). To determine whether the generated samples
are indeed IDIs, existing techniques adopt a majority voting pro-
cess. Specifically, they first train a set of models on the original
training dataset without the sensitive attributes and then feed the
generated samples to obtain predictions. The final label z is deter-
mined by the majority voting on these predictions. As the majority
voting models are not trained on sensitive attributes, they may
produce a legitimate label (of not authorizing a loan to an age 10).
Ideally, all the generated samples shall be IDIs, whose labels shall
be the same as the original labels (before perturbations) according
to Equation 5, i.e. z = y. However, we find that more than 40% of
the generated samples by the state-of-the-art techniques ADF [43]
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Table 1: Unfairness of models trained with different strate-
gies. Sen. Att. denotes sensitive attributes. OL denotes using
the original labels of the generated samples.

Sen. Att. Original ADF ADFOL | EIDIG EIDIG OL
Age 11.7% 4.45% 27.7% 2.28% 24.8%
Race 9.9% 2.61% 24.5% 1.00% 18.9%
Gender 3.6% 1.24% 12.1% 0.89% 9.6%
Accuracy 84.32% | 83.66% 82.64% | 84.12% 82.85%

and EIDIG [42] have labels (by voting) different from their original
labels (z # y), meaning those samples are not real IDIs but some
arbitrary samples. As a result, using these samples in training can
hardly improve fairness. In addition, existing techniques strictly
follow Definition 1 when generating IDIs. That is, the adversarial
perturbation ought to have the same gradient direction (the value
sign) on non-sensitive attributes for the coupling pair x and x” such
that they only differ on sensitive attributes. They also only generate
instances for one single sensitive attribute at a time. This induces
high computation costs during generation. They often take minutes
to produce one thousand instances (10x times slower than RULER)
as shown in Section 5.3.

We conduct a study to validate the discrimination of generated
samples by existing techniques, that is, using the original labels in-
stead of the majority voted ones as the labels to train. We then train
the subject model with these samples following the same procedure
in [42, 43]. We use the Adult dataset [22] as an example. Table 1
shows the unfairness of different models. Rows 2-4 show the model
unfairness on three sensitive attributes (Sen. Att.), i.e., Age, Race,
and Gender. The smaller the value, the fairer the model on sensitive
attributes. The last row denotes model accuracy on the test set (the
higher, the better). Column 2 shows the results of the original DNN
model without any discrimination mitigation techniques. Columns
3 and 5 show the results of two state-of-the-art techniques ADF [43]
and EIDIG [42]. Columns 4 and 6 present the results of removing
the majority voting component in ADF and EIDIG and using the
original labels as the ground truth (ADF OL and EIDIG OL). Ob-
serve that both ADF and EIDIG have reasonable performances in
improving fairness. However, when considering all the generated
samples as IDIs by assigning them their original labels, the fairness
on all three sensitive attributes becomes substantially worse. The
test accuracies are also lower. This validates our hypothesis that
a large number of generated samples by existing techniques are
in fact not IDIs. It undermines the effectiveness and efficiency of
existing techniques as we will demonstrate in Section 5.3.

The ultimate goal of generating discriminatory instances is to
construct DNN models with improved fairness. Existing techniques
usually randomly select 5-10% of their generated instances and add
them to the original training dataset for retraining [42, 43, 45]. Such
a procedure only focuses on the discriminatory cases regarding the
original model. Just like adversarial examples can still be generated
for the model retained on a set of previously generated adversarial
examples, discriminatory instances still exist in the models fixed
by existing techniques. Iteratively applying existing techniques for
retraining the model is very expensive as many generated cases
are non-discriminatory, and the cost is high as discussed earlier.
Adversarial training generates adversarial examples with respect
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to the current state of the model at each training step. It aims to
flip the prediction of an input by adding a small perturbation to
the input. The perturbation on every dimension of the input is
bounded by the same L, norm. A straightforward idea is to directly
leverage adversarial training for improving fairness. We employ a
well-known adversarial training approach PGD [28] and show the
results in Figure 1. The x-axis denotes the training epoch, and the y-
axes denote the validation accuracy on the left and unfairness on the
right. The red triangle line (Acc_PGD) shows the accuracy and the
red circle line (Unfair_PGD) the unfairness for PGD-trained model.
Observe that adversarial training can reduce the discriminatory
instances to almost 0%. The accuracy, however, is only 76.56%,
much lower than that of a naturally trained model (84.32%). It
is known that adversarial training leads to non-trivial accuracy
degradation [28], which is undesirable for normal functionalities.

Our solution. We propose a novel adversarial training technique
RULER particularly designed for improving fairness. We decompose
the training procedure into two phases: warm-up and discriminative
and iterative adversarial training. In the first phase, RULER follows
the normal training to construct a model such that the normal
functionalities (i.e., model accuracy) are guaranteed. We leverage
a validation set to determine whether a preset criterion is met. If
so, RULER moves to the next phase for fairness adversarial training.
Unlike traditional adversarial training that treats each input feature
indiscriminately, RULER distinguishes sensitive and non-sensitive
attributes. As we aim to expose any potential unfair problems in
the model for sensitive attributes, RULER does not constrain the per-
turbation on these input features. That is, as long as the adversarial
perturbations are within the valid value range, they are legitimate.
For non-sensitive attributes, RULER uses a small L, bound to ensure
that the generated sample is within the neighborhood. While clas-
sic adversarial training induces non-trivial accuracy degradation,
we address the problem by limiting the number of discriminatory
instances in each training batch. RULER also introduces a queue to
ensure that all the training samples are utilized in each epoch. This
is important as there are a limited number of training samples (for
representing the whole input distribution). Missing any of those
training samples may affect the final accuracy. The blue lines in
Figure 1 (Acc_RULER denotes the accuracy and Unfair_ RULER the
unfairness) show the results of RULER on the Adult dataset. Ob-
serve that RULER achieves a higher accuracy (83.73%) than PGD
adversarial training (76.56%) with a similar unfairness value. In
Section 5.3, we empirically demonstrate that RULER outperforms
three state-of-the-art techniques in improving fairness.

4 DESIGN

Figure 2 illustrates the overview of RULER. Given a set of training
data, RULER decomposes the training process into two phases: warm-
up and fairness adversarial training. In the first phase, it follows
the traditional DNN training procedure that updates model weights
guided by the cross entropy loss. RULER periodically checks the
functionality of model by computing the prediction accuracy on the
validation data. If it meets a preset criterion, RULER proceeds to the
second phase, in which an adversarial sample generation method
is introduced for generating IDIs ((D). Different from existing tech-
niques, RULER relaxes the conditions in Definition 1 by allowing
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Figure 1: Comparison of PGD adver-
sarial training and RULER.

small perturbations on non-sensitive attributes without requiring
coupling samples. It adopts different constraints on the sensitive
and non-sensitive attributes when adversarially perturbing the in-
put ((2). Details are discussed in Section 4.2. RULER combines the
generated discriminatory samples with normal training data using
a sample fusion method ((3)). This method balances the percentage
of normal samples and IDIs in each training batch. All the original
training data are guaranteed to be utilized in every training epoch.
The training is iterative and terminates when it converges. Please
see details in Section 4.2. Note that iterative training is easily af-
fordable in RULER due to the low cost in generating discriminatory
samples. In contrast, existing techniques are not iterative. Finally,
RULER outputs a model with improved fairness.

4.1 Warm-up

The goal of RULER is to improve model fairness while preserving
normal functionalities (i.e., high test accuracy). It is known that
adversarial training causes undesirable accuracy degradation on
the trained model, which is also demonstrated in Figure 1 in Sec-
tion 3. In addition, unlike adversarial examples existing in almost
all the models, IDIs might not be found when the model has a low
accuracy. This is because the existence of IDIs relies on the model
overfitting on certain sensitive attribute values, causing the model
to misclassify when these attributes are modified. If a model is not
well-trained, it may underfit on these attributes and hence is not
easy to be exploited with discriminatory cases. To this end, we
resort to first constructing a base model with a reasonable accu-
racy such that we can further explore IDIs regarding this model.
The cross entropy loss L, is utilized for updating model weights
during the warm-up as follows.

argmin E

min B Ly D=@YL @

where 0 denotes the weight parameters of the DNN model fy(-);
(x,y) is a sample from the training dataset D with x € X the input
data and y € Y the output label. The training aims to minimize the
expectation of the cross entropy loss over the whole training dataset.
To validate the functionality of the model during warm-up, RULER
leverages the validation set to compute the prediction accuracy,
which is a common practice in DNN training [17, 34, 45]. We use a
threshold to determine whether the base model is satisfactory for
proceeding to the next training phase.
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Figure 2: Framework of RULER

4.2 Discriminative and Iterative Adversarial
Training

To improve model fairness, a commonly employed approach is to
generate IDIs and then repair the model by training on these cases.
Those instance generation methods aim to explore the input space
where the pre-trained model is unfair regrading some sensitive
attribute(s). Existing works only focus on the discrimination of the
final state of the subject model and aim to repair it regardless the
following states (e.g., the state after retraining). They hence can
hardly consider the constantly changing states of a model during
retraining regarding discrimination. As we will show in Section 5.3,
the design choice is likely due to the high cost of generating discrim-
inatory samples in existing works. Just like adversarial examples,
discriminatory instances can still be found after one-time repair
by existing works (as discussed in Section 3). It is hence crucial
to model the changing discriminatory states of the DNN during
retraining. We formulate it as a min-max optimization problem in
the following.

argmin E [ max Lee(fp(x"), y)], (7)
0 (xy)~Dlx'=g(x)

where g(+) is our discriminative adversarial sample generation func-
tion that produces IDIs, which is discussed later in this section. The
inner maximization problem aims to find an IDI for a given input
x that has a maximum cross entropy loss. This is a harder case
than simply finding an arbitrary discriminatory instance as in the
existing works. The outer minimization problem is to find a set of
optimal parameters so that the hard discriminatory cases produced
by the inner problem are eliminated. This is the problem of training
a fair DNN model against the hardest discriminatory scenarios.

Discriminative Adversarial Sample Generation. Existing gen-
eration methods [42, 43, 45] strictly follow Definition 1 to produce
IDIs. That is, they mutate both sensitive and non-sensitive attributes
by requiring a coupling sample that only differs on sensitive at-
tributes from an input. They also only perturb one single sensitive
attribute at a time and do not constrain the change on non-sensitive
attributes. This however largely restricts the possibility of exploring
the neighborhood of the input, especially when the input space
X is limited and only a subset of the whole distribution is avail-
able. Existing techniques have low effectiveness and efficiency as
demonstrated in Section 3. We relax the conditions in Definition 1
by allowing any perturbations on non-sensitive attributes within
a small bound (no coupling sample is required). For sensitive at-
tributes, there is no constraint on the magnitude of perturbations
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Algorithm 1 Discriminative Adversarial Sample Generation

Algorithm 2 Sample Fusion

Input: input sample x, generation budget K, DNN model f
Output: success flag true/false, discriminatory instance x’
1 x0 —x

2: foriin 0...K do

3 x e xiy sign(in Lee(f(xD), y))

4 x’:“  clipp (xl:+1) > p: sensitive attributes
5. il clipq(?_fm) > g: non-sensitive attributes
6 if f(x) # f(x**!) then

7 ¥ — xi+1

8 return true, x’

9:  endif

10: end for

11: return false, x

as long as they are within the valid value range. We use function g
in Equation 7 to generate hard discriminatory instances. Formally,

Ign(i))( Lee (fé’ (g(x)), y)>

Vg € A\P, [1g(x)q — xqlle < €,

®)

s.t.

where g € A\P denotes non-sensitive attributes; g(x)q is the value
of the generated instance for attribute g; € is the upper bound of
the allowed perturbation for non-sensitive attributes. Note that
we do not constrain the perturbation on sensitive attributes as we
aim to explore as many cases as possible when perturbing these
attributes. In addition, multiple sensitive attributes can be explored
simultaneously as the gradient can be applied on all the attributes.
The discriminative adversarial sample generation function g can
be instantiated in various ways following Equation 8.

We use Algorithm 1 to realize g. Given an input x, we first com-
pute the gradient with respect to all the attributes using the cross
entropy loss (line 3). Note that each input attribute has already been
discretized into integer values. We hence directly use the gradient
sign as the perturbation without a hyper-parameter « to control the
magnitude as in Equation 4. Our discriminative sample generation
distinguishes sensitive and non-sensitive attributes, namely, we use
different clipping functions to project attributes to their desired
value ranges. For sensitive attributes, we clip the perturbed values
to the valid range of these attributes (line 4). For non-sensitive at-
tributes, the mutated values shall satisfy the condition in Equation 8,
whose magnitude is bounded by € (line 5). We use € = 1 in the paper.
If the perturbed sample at some step is already a discriminatory
instance, we output this instance and stop the generation process
(lines 6-9). Otherwise, we keep mutating the input until the budget
K. We return with the original sample if no discriminatory instance
can be found (line 11).

Sample Fusion. The key of improving fairness is to incorporate
generated IDIs in the training as illustrated in Equation 7. Directly
adopting adversarial training in our context leads to non-trivial
accuracy degradation as demonstrated in Section 3. We hence de-
compose the training procedure into two phases where the first
phase ensures a reasonable accuracy, which is discussed earlier in
this section. However, when training on discriminatory instances,
the normal functionality may still be compromised if not designed
carefully. Our design hence considers the balance between normal
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Input: training set X, batch size b, model f, threshold n
Output: repaired model f”

1 flef

2: batch < 0

3: num_idi < 0

4: Q « Queue()
5: Q.EnQueue(X)
6: while Q.Empty() == false do

> batch of samples
> number of individual discriminatory instances

7 while batch.size < b do
8: x «— Q.DeQueue()
9 batch « batch|J{x}
10: if batch.size == b then
11: break
12: end if
13: flag,x" < DiscriminativeAdvGen(x, K, ') > Algorithm 1
14: if flag == true then
15: batch « batch|J{x'}
16: num_idi «— num_idi + 1
17: end if
18: if num_idi > n x b then
19: batch « batch|J) Q.DeQueue(b — batch.size)
20: break
21: end if
22 end while
23: [’ « train(f’, batch) > update f using cross entropy loss

24: end while

training samples and generated discriminatory instances. Exces-
sive normal samples leads to limited fairness improvement and too
many discriminatory instances causes accuracy degradation. We
hence limit the number of discriminatory instances in each training
batch using a hyper-parameter 7. If the ratio of discriminatory in-
stances exceeds 7 in a batch, we stop including more such instances
in the current batch. In addition, since there are only a limited
number of samples in the original training dataset (for representing
the whole input distribution), missing any of them during training
may lead to low accuracy. We encourage incorporating all original
samples in each training epoch. Particularly, we leverage a queue
to monitor the usage of samples. A sample is dequeued when used
in the training. An epoch of training is finalized when no sample is
left in the queue.

Algorithm 2 illustrates the sample fusion procedure in one train-
ing epoch. Note that RULER trains for multiple epochs to obtain a
final repaired model. We initialize necessary variables in lines 1-5,
such as batch for storing a batch of samples, num_idi for counting
the number of IDIs in the batch, and Q for monitoring the usage
of original training samples. For a sample x in the training set, we
add it to the current training batch if the batch is not full (lines
8-12). Otherwise, it will be added to the next batch. We then use
Algorithm 1 to generate a discriminatory instance x’ for the given
x in line 13. If the generated sample can induce misclassification,
we add this sample x’ to the batch as well and increase num_idi
by one (lines 14-17). When the total number of IDIs exceeds the
preset threshold, we fill the remaining batch with normal samples
from the training set (lines 18-21). The model parameters are then
updated according to the cross entropy loss in line 23. Observe that
all the training samples are utilized in one epoch. Multiples rounds
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Table 2: Dataset statistics

Dataset #Attributes Sen. Att. Size
Adult 12 age, race, gender | 48,842
Statlog 24 age, gender 1,000
Bank 16 age 45,211
COMPAS 12 race 5,278

of Algorithm 2 are applied when repairing a DNN model. RULER
outputs a repaired model with improved fairness when the training
converges and terminates.

5 EVALUATION

We conduct experiments to answer the following questions:

RQ1. How effective is RULER in improving fairness?

RQ2. How effective is RULER in generating individual discrim-
inatory instances?

RQ3. How efficient is RULER in generating individual discrimi-
natory instances?

RQ4. How does the warm-up phase affect RULER’s perfor-
mance?

RQ5. How do hyper-parameters in RULER affect the results?

RQ6. Why does RULER work with non-sensitive attributes per-
turbed without coupling samples?

5.1 Experimental Setup

Datasets and Models. We evaluate RULER on four real-world
datasets, which are most commonly used in studying individual
discrimination problems [2, 16, 19, 37, 41-43], including Adult [22],
Statlog [18], Bank Marketing [30], and COMPAS [29]. Details of
each dataset are shown in the following:

o Adult is a dataset for predicting whether one’s income ex-
ceeds $50K/yr based on census data. It is also known as Cen-
sus Income [42, 43] or Adult Income [41] dataset. It contains
12 attributes with three sensitive attributes.

Statlog is a dataset used to classify customers’ credit risk
level. It is also known as German Credit dataset [41-43]. It
has 24 attributes with two sensitive ones (age and gender).

e Bank Marketing (abbr. Bank): is a dataset from direct
marketing campaigns (phone calls) of a Portuguese banking
institution. It is used to predict whether a client will subscribe
a term deposit.

COMPAS is a dataset for assessing the likelihood of a crim-
inal defendant re-offending. It is also known as COMPAS
Score [41]. It has 12 attributes with race the sensitive one.

Table 2 presents the statistics of the four datasets, including the
number of attributes, sensitive attributes, and the size of the dataset.
We use a DNN architecture with 6 fully-connected layers, which is
the same as existing works [40, 41, 43].

Settings. For a fair comparison, all the baselines are configured with
the settings that have the best performance reported in the original
papers [42, 43, 45]. Table 3 shows the hyper-parameters used in
our experiment for reproducing baselines. In the table, num_c de-
notes the number of clusters for global generation; num_g denotes
the number of seeds for global generation; max_iter denotes the
maximum number of iterations for each seed; step_size denotes
the perturbation size for each iteration. We also set the maximum
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Table 3: Baseline hyper-parameter settings. Global and lo-
cal denote the corresponding hyper-parameters used in the
global and local phases, respectively. Symbol ‘-’ denotes the
corresponding hyper-parameter is not required.

Value (global/local)
Parameter -
ADF [43] | EIDIG [42] | NeuronFair [45]
num_c 4/- 4/- 4/-
num_g 1,000/- 1,000/- 1,000/-
max_iter 40/1,000 10/1,000 10/1,000
step_size 1.0/1.0 1.0/1.0 1.0/1.0

iteration max_iter to 10 and the perturbation size of each iteration
step_size to 1.0 in RULER, which are the same as in [42, 43]. We set
the ratio of discriminatory instances in a batch to n = 0.3 and the
number of adversarial training epochs to 70. We study the effect of
these two hyper-parameters in Section 5.3.

All the experiments are conducted on a server with Intel Xeon
Gold 5218R 2.10GHz CPU, Nvidia RTX 3090, and 503 GB RAM. The
operating system is Ubuntu 20.04.

5.2 Evaluation Metrics

We leverage four metrics in the evaluation, including fairness im-
provement, the total number of generated individual discriminatory
instances (#IDIs), the generation diversity, and the time cost.

Fairness Improvement. The purpose of generating IDIs is to
improve model fairness regarding sensitive attributes. We adopt
an existing unfairness estimation method to evaluate the unfair-
ness of the original model and the repaired model. The estimation
method is proposed by Sakshi Udeshi et al. [37] based on the Law
of Large Numbers (LLN), which has been extensively used in the
literature [37, 42, 43]. Specifically, the method randomly samples a
large set of instances and computes the percentage of IDIs in this set.
For one trial of evaluation, it first generates m samples uniformly
at random, which are independent and identically distributed (IID).
It then passes these samples to the model and counts the number of
samples being discriminatory, denoted as m’. The estimated unfair-
ness for this trial is hence e = % The method carries out T trails

to obtain the final estimated unfairness E = @ The lower the
estimated unfairness, the fairer the model is. We use m = 10000
and T = 100 in our experiments for estimating unfairness. We then
calculate the fairness improvement using the following equation.

|Erepaired - Eoriginal|

E

X 100%, )

original

where Eorigi,,al is the unfairness of the original model and Erepaired
the unfairness of the model repaired by various methods.

Number of Individual Discriminatory Instances (#IDIs). A
true IDI shall satisfy the conditions in Definition 1. To evaluate the
effectiveness of different instance generation methods, for the gen-
erated instances, we count the total number of true IDIs according
to Definition 1. Note that duplicate instances are filtered out.

Generation Diversity. The generation diversity evaluates how di-
verse our generated instances are compared to baselines. The more
diverse the generated samples are, the more discriminatory space
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Table 4: Overall performance on fairness improvement

Guanhong Tao, Weisong Sun, Tingxu Han, Chunrong Fang, and Xiangyu Zhang

Table 5: Model accuracy before/after repair

Dataset | Sen. Attr. | Original ADF EIDIG NeuronFair RULER Dataset | Original Repaired
) ) g Repaired Improve.|Repaired Improve.|Repaired Improve. |Repaired Improve. & ADF | EIDIG | NeuronFair | RULER
Age 11.78%| 4.45% 62.22%| 228% 80.65%| 3.80% 67.74%| 0.50% 95.76%| |Adult 84.32% | 83.66% | 84.12% 84.29% | 83.82%
Adult  |Race 933%| 261% 7203%| 1.00% 89.28%| 5.15% 44.80%| 0.29% 96.89%| [Statlog | 78.00%]|77.25%|77.00% 76.00% | 77.50%
Gender 3.81%| 124%  67.45%| 0.89% 76.64%| 2.81% 26.25%| 0.07% 98.16%| [Bank 89.22% | 89.03% | 89.14% 87.93% | 89.12%
Statlog | €° 30.80%| 1.80% 94.16%| 2.20% 92.86%| 6.44% 79.09%| 0.00% 100.00%| [COMPAS| 76.61%|75.28% |74.72% 70.73% | 75.50%
Gender 9.20%| 3.50% 6196%| 240% 7391%| 470% 4891%| 0.00% 100.00%| e trn ey iy [siasn]  79.73%]8149%
Bank  |Age 10.36%| 3.73% 64.00%| 2.83% 72.68%| 0.00% 100.00%| 0.60% 94.21%
COMPAS [Race 0.05%| 0.07% -40.00%| 0.04% 20.00%| 0.01% 84.40%| 0.00% 100.00%
[ Average [ 10.76%] 2.49% 5455%] 1.66% 72.29%| 3.27% 6445%] 0.21% 97.86%|
the technique explores. We use the following metric to calculate 2 o
i g L S atlog (Age
the diversity as in [45). i Ut ) <« Ui G2 (RO SO,
CR e SO REE R
GDRurrr (pcos, B) = —_Ruter—B g 33% & 14{- RULERVs. Reatontair S tioor (Genden)
| CRB-RuLer g " g 12
g 102 <
3 40 8 = 1.2
< \ 6 & Sl
. . 20 4 1y VM
#IDIs of baselines fall in []ryrer o L =09
CRRuLer-B = - (10) o 1 3 3 4 3 & 7020 022 024 026 028 030
#IDIs of baselines Round °© Poons
#IDIs of RULER fall in [ Figure 3: Iterative training us- Figure 4: Diversity of gener-
CRB-RuLer = ing EIDIG ated IDIs

#IDIs of RULER

where B denotes the baseline method; CRry rr—B represents the
coverage rate of RULER’s IDIs to baseline’s IDIs; [[pyzg is the area
with RuLER’s IDIs as the center and cosine distance p¢os as the
radius. The RULER’s IDIs are more diverse when GDRyrgg > 1.

Efficiency. We compute the time cost of generating 1,000 IDIs
(#sec/1,000 IDIs) following [43, 45].

5.3 Evaluation Results

In this section, we present and analyze the experimental results to
answer the five research questions.

RQ1: How effective is RULER in improving fairness?

Table 4 and Table 5 show the unfairness and accuracy of repaired
models by different techniques. In Table 4, the first two columns
denote the evaluated dataset and sensitive attribute. The third col-
umn shows the unfairness of the original model. Column Repaired
presents the unfairness of repaired models and column Improve-
ment the relative improvement over the original model (computed
using Equation 9). Observe that existing techniques have reason-
able performance in improving DNN fairness. However, they fail
in some cases. For instance, ADF cannot improve the fairness for
Race attribute on COMPAS dataset with -40% improvement. EIDIG
has slightly better performance with 20% improvement. NeuronFair
can further improve the result (with the sacrifice of accuracy as
shown in Table 5) but still has discriminatory cases. RULER, on the
other side, can completely remove the discrimination against Race
on COMPAS. The COMPAS dataset is to assess the likelihood of a
criminal defendant re-offending. The decision made by DNNs for
this task is critical as any discrimination against Race can cause
negative social impacts. RULER is able to completely address the
problem. For the Statlog dataset, ADF, EIDIG, and NeuronFair have
limited improvement for the Gender attribute, i.e., from 48.91% to
73.91%. RULER can reduce the unfairness to 0% (with 100% improve-
ment). Overall, RULER has the largest fairness improvement with
97.86%, outperforming the three state-of-the-art techniques. Table 5
shows the model accuracy before and after repair. Observe that
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almost all the repaired models have minimal accuracy degradation
except for NeuronFair on COMPAS. The repaired model by Neuron-
Fair on COMPAS has more than 5% accuracy degradation, which
is substantial. We suspect this is due to incorrect identifications of
biased neurons.

As RULER iteratively generates individual discriminatory in-
stances (IDIs) and uses them for repair, we also study the perfor-
mance of iteratively applying existing techniques. We use one of
the state-of-the-art techniques EIDIG and the Statlog dataset for the
study. We run EIDIG for five rounds. In each round, EIDIG generates
IDIs and repair the previous round model following the procedure
in the original paper [42]. Figure 3 shows the results of EIDIG for
the different rounds. The x-axis denotes the training round and the
y-axes denote the accuracy on the left and the unfairness on the
right. Observe that EIDIG can improve the fairness in the first round
but it saturates after that. This is because EIDIG and other existing
methods generate IDIs for each sensitive attribute independently.
They do not consider the correlations between different sensitive
attributes. Once they fix the independent discrimination problem
for a single attribute, they can hardly further improve the overall
fairness. In addition, EIDIG and existing techniques use majority
voting to assign labels for the generated samples. The first-round
model may already learn the pattern of those samples from major-
ity voting, which is fixed in later rounds. Table 6 shows the cost
of each part in each round. Column Global and Local denote the
two generation phases in EIDIG that focus on different parts of
the input. Column Retrain denotes retraining the model using the
original training samples and IDIs. Observe that EIDIG takes more
than 11 hours to repair a model for the first round. As the first-
round repaired model has better fairness, the number of generated
IDIs decreases in later rounds so as the repair time. However, it
still takes more than 1.5 hours. In total, it takes 18.73 hours to run
EIDIG for 5 rounds, where RULER only needs 6 minutes to train for



RULER: Discriminative and Iterative Adversarial Training for Deep Neural Network Fairness

ESEC/FSE *22, November 14-18, 2022, Singapore, Singapore

Table 6: Time cost (in seconds) of iter- Table 7: Number of individual discriminatory Table 8: Time cost (in seconds) of gener-

atively applying EIDIG instances (#IDIs) generated in 300 seconds ating 1,000 IDIs
IDI Generation Dataset | Sen. Att. | ADF | EIDIG | NeuronFair | RULER Dataset |Sen. Att.| ADF|EIDIG|NeuronFair|RULER
Round Global Local Retrain| Total Age 540 | 7,699 6,817 | 26,342 Age 218.31(163.96 105.64| 11.97
Age Gender| Age Gender Adult Race 164 281 6,137 | 24,206 Adult Race 349.78(300.61 114.25| 13.25
1 286 26,111| 495 15,586  106|42,834 Gender | 215| 4,477 3,807 | 22,610 Gender |237.66(178.20 121.56| 10.91
2 | 471 2,268 536 1,522 10| 5,279 Age 2,240 | 7,847 1,388 33,843 Statlor | 28° 142.32[117.29 103.91| 14.45
3 | 467 2,091 586 2,341 14| 5893 Statlog | Gender | 570 | 2,894 1,729 | 27,404 & |Gender |220.00(180.35 296.46| 17.04
4 | 705 2,634| 702 2,097 12| 6,856 Bank Age 1,524| 9,699 3,918 27,813 Bank  |Age 156.34[118.49 116.52| 8.04
5 708 2,387 694 2,061 11] 6,569 COMPAS | Race 103 ] 3,389 952(11,324 COMPAS [Race 236.41]198.57 187.50| 26.31
[Total [2,620 35420[3,013 23,607] 152[67,431] [ Average | 876] 5184] 3,535]24,792] [ Average  |22297]179.64]  149.41] 14.57]
Table 9: Effect of warm-up. RULER-NT denotes performing
. .. . . .. . i~ 0.1~ 02+ 03+ 04+ 05 7> 0.Fe- 0.2+ 03~ 04 05
discriminative adversarial training from scratch (without 86
- g
warm-up). % . 2
g <4
5 g
— g s
Dataset |Sen. Attr. Ongmal' RULER—N’I" RULER ‘ §80 %5
Accuracy Unfairness|Accuracy Unfairness|Accuracy Unfairness 278 g
£1
Age 84.32%  11.78%| 83.34% 0.33%| 83.82% 0.50% g .
76 I e s =
Adult  [Race 84.32% 9.33%| 83.34% 0.09%| 83.82% 0.29% e e o \5:? 3
Gender | 84.32% 3.81%| 83.34% 0.92%| 83.82% 0.07% adv_epoch adv_epoch
Statlogr | 2€€ 78.00%  30.80%| 70.50% 0.00%| 77.50% 0.00% )
atlog Gender 78.00% 9.20%|  70.50% 0.00%|  77.50% 0.00% (a) Effect on accuracy (b) Effect on unfairness for Age
Bank  |Age 89.22%  10.36%| 89.05% 0.80%| 89.12% 0.60%
COMPAS|Race 76.61% 0.05%| 72.35% 0.00%| 75.50% 0.00% e Os- 02+ 03+ 04+ 05 pee 0o 02+ 03+ 04e 05
5
;\? g(l.S
B4 504
. . . . . . £ 5
70 epochs. In summary, iteratively applying existing techniques is g 3 o3
less effective and efficient than RULER. 52 702
3 E
RQ2: How effective is RULER in generating individual dis- g! “‘go'l
. . . —————
criminatory instances? T % w0 005
adv_epoch adv_epoch

We consider two aspects of instance generation, namely, the
number of generated individual discriminatory instances (#IDIs)
and their diversity. Table 7 shows #IDIs generated by different meth-
ods in 300 seconds. Observe that RULER substantially outperforms
baselines with 7-28 times more generated IDIs. This allows RULER
to explore more discrimination problems resident in the model.
For studying the diversity, we randomly select a few datasets and
sensitive attributes. Figure 4 presents the diversity of generated
IDIs, which is computed according to Equation 10. It measures
how different the generated IDIs by different generation methods
are. The x-axis denotes the radius and y-axis the diversity value.
The diversity value larger than 1 indicates that RULER has more
diverse IDIs than the compared counterpart. Observe that the di-
versity values are all larger than 1 in Figure 4. Particularly, RULER
has relatively more diverse IDIs compared to ADF and EIDIG on
Statlog for Gender. With the increase of radius, the diversity values
decrease. This is reasonable as a large radius may already cover all
the generated IDIs.

RQ3: How efficient is RULER in generating individual dis-
criminatory instances?

Table 8 shows the time cost of generating one thousand IDIs by
different techniques. Observe that ADF has the highest time cost
with an average of 222.97 seconds. EIDIG has lower time cost of
179.64 seconds on average. NeuronFair further reduces the time
cost. RULER is the most efficient method with 14.57 seconds for
generating 1,000 IDIs, which is 10-15 times faster than baselines.

RQ4: How does the warm-up phase affect RULER’s perfor-
mance?

(c) Effect on unfairness for Race (d) Effect on unfairness for Gender

Figure 5: Effect of hyper-parameters  and adv_epoch

In order to preserve normal functionalities of the DNN model,
we introduce a warm-up phase in RULER. We conduct an ablation
study to understand the effect of this phase on the accuracy and
unfairness of repaired models. Table 9 presents the results. Column
RULER-NT denotes the results without the warm-up. Observe that
RULER obtains better accuracy on repaired models compared to
RULER-NT. Especially on Statlog and COMPAS, the repaired models
by RULER have 7% and 3.15% higher accuracy than those of RULER-
NT, respectively. The fairness improvement are similar for RULER
and RULER-NT, delineating the effectiveness of our discriminative
and iterative adversarial training in improving DNN fairness.

RQ5: How do hyper-parameters in RULER affect the results?

Two hyper-parameters are used in RULER, namely, n and adv_
epoch, to control the number of IDIs in each batch and the number
of adversarial training epochs, respectively. We conduct an ablation
study on Adult dataset and the results are shown in Figure 5. From
Figure 5(a), observe that with the increase of epochs, the accuracy
increases as the model gradually converges. Different values of 1
have slightly different convergence speeds but they all converge
at 50 epochs and have similar accuracy. We use adv_epoch = 70 in
all our experiments. Figures 5(b), 5(c), and 5(d) show the results on
unfairness for different sensitive attributes. Parameter n = 0.1 has
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Table 10: Description of attributes in COMPAS

Guanhong Tao, Weisong Sun, Tingxu Han, Chunrong Fang, and Xiangyu Zhang

Table 11: Case study

nile felonies

a continuous variable containing the number of juve-
nile misdemeanors

a continuous variable containing the number of prior
juvenile convictions that are not considered either
felonies or misdemeanors

a continuous variable containing the number of prior
crimes committed

days between the arrest and COMPAS screening (a
negative value means the screening is taken before the
arrest)

the total number of days arrested in jail

the date interval between two times arrested in jail
0: “Felony”; 1: “Misdemeanor charge”

0: “not a recidivist™; 1: “a recidivist”

juv_misd_count (JMC)

juv_other_count (JOC)

priors_count (PC)

days_b_screening_arrest
(DBSA)

jail_time (JT)
date_dif_in_jail (DDIJ)
charge_degree (CD)
is_recid (IR)

the largest impact on unfairness for Age and Gender. The unfairness
results fluctuate during training. The is because the number of IDIs
is too small, which makes the model not able to fully learn IDIs in
each epoch. Other values of  have minimal impact on unfairness
for all three sensitive attributes. We use 1 = 0.3 in the paper.

RQ6: Why does RULER work with non-sensitive attributes
perturbed without coupling samples?

As RULER perturbs both sensitive and non-sensitive attributes
simultaneously without requiring coupling samples, we measure
the number of perturbed non-sensitive features in IDIs. On aver-
age, 4.62/9, 9.85/22, 7.23/15, and 5.69/11 non-sensitive features are
perturbed for Adult, Statlog, Bank, and COMPAS, respectively. As
RULER uses the original labels for those IDIs during model repair,
one may wonder whether this is reasonable to preserve the labels
for those IDIs with such a number of changes on the input features.
We study a few cases in the COMPAS dataset as an example to
show the validity of label preserving.

The COMPAS dataset is to assess the likelihood of a criminal de-
fendant re-offending (label 1 means high risk and label 0 means low
risk). It has 12 attributes with race the sensitive one. Table 10 lists
each attribute name and its meaning. Table 11 shows a few example
pairs of original samples and our generated adversarial samples.
The first row denotes the attributes. The following every two rows
show the original sample (Original) and the generated adversarial
sample (Adversarial). The last column presents the predicted label
of the sample.

In the first case, six attributes are perturbed, namely, age, race,
priors_count (PC), days_b_screening_arrest (DBSA), jail_time (JT),
and date_dif_in_jail (DDIJ), respectively. Observe that the sensitive
attribute race is changed from “Caucasian” to “African-American”.
Other attributes in the adversarial example are similar to those
in the original sample. Values for priors_count (PC) and jail_time
(JT) of the adversarial sample are smaller than those of the origi-
nal sample. This adversarial sample is predicted as label 1 by the
model, meaning the defendant has high risk, which does not seem
reasonable compared to the original sample. We hence use label 0
during training.

Attribute Description Attribute |sex age race JFC JMC JOC PC DBSA JT DDIJ CD IR|Label
sex 0: “Female”; 1: “Male” Original 1 1 0 1 0 0 0 5 0 6 7 0 0 0
age 0: “25-45”; 1: “Greater than 45”; 2: “Less than 25 Adversarial 1| 1 1 0 0 0 0 4 1 5 6 0 0 1
race 0: “African-American”; 1: “Caucasian” Original 2 1 0 0 0 0 0 0 -1 41 41 0 0 0
juv_fel_count (JFC) a continuous variable containing the number of juve- Adversarial_ 2| 0 0 1 0 0 0 0 -2 40 42 0 O 1
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In the second case, the perturbed attributes are sex, race, days_b
_screening_arrest (DBSA), jail_time (JT), and date_dif_in_jail (DDI]),
respectively. Observe that the race attribute is changed from “African-
American” to “Caucasian”. The value of jail_time (JT) is reduced.
The date interval (date_dif_in_jail) is larger between two times
arrested in jail. The predicted label for this adversarial sample how-
ever is 1 (high risk), different from the original label. We hence use
label 0 for training.

The above two cases demonstrate that although RULER perturbs
non-sensitive attributes, it ensures that the generated sample is
within the neighborhood of the original input as we use a small
bound on perturbed attributes. Samples within the neighborhood
of the original input hence shall maintain the same label, which
avoids introducing abnormal data distribution.

6 THREATS TO VALIDITY

Limited Model Structures and Machine Learning Algorithms.
We evaluate on the fully-connected deep neural networks in the
experiments following the literature [42, 43, 45] as the tasks are rel-
atively simple. The key idea of RULER is generic and can be directly
applied on more complex neural networks such as convolutional
neural networks (CNNs) as long as the model is differentiable. If
non-NN machine learning (ML) algorithms are not differentiable,
there are many existing techniques such as evolution algorithm, gra-
dient approximation [5], etc., to obtain the perturbation directions.
RULER can then constrain the obtained perturbation according to
Equation 8 and repair those algorithms. For ML models with primi-
tive inputs such as images, the key challenge is to identify sensitive
regions of the input regarding fairness. One possible solution is to
first use the gradient (e.g. Grad-CAM [31]) to locate such regions
and then apply RULER to improve the fairness. For NLP tasks, it
is possible to construct a list of sensitive words and RULER can
leverage the gradient to search for the replacement of those words.
The fairness then can be improved by RULER’s adversarial training.
We leave the experimental exploration to future work.

Access to Model Parameters. RULER is a white-box technique
that generates individual discriminatory instances based on the
gradient according to the loss function of the subject model. It
requires the full access to the model parameters, which is the same
as in the literature [43, 45]. It is a common practice to have the full
knowledge of the subject model for repairing [45].

Hyper-parameter. The step size of RULER during instance genera-
tion is set to 1 following existing work [43]. The datasets evaluated
in the paper have categorized attributes. It hence is straightforward
to use 1 as the step size. For other non-categorical datasets, further
study may be needed to determine the optimal step size. We leave
the exploration to future work.
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7 RELATED WORK

There is a line of work aiming to generate test inputs for exposing
individual discrimination resident in the model. THEMIS [16] auto-
matically generates individual discriminatory instances (IDIs) by
randomly selecting values from the valid range for all the attributes.
It measures the discrimination of the subject system based on
whether the system discriminates certain attributes. AEQUITAS [37]
adopts a two-phase generation method. In the global phase, it gen-
erates a random sample in the input domain and exhaustively enu-
merates all the values for sensitive attributes to obtain an IDIs. In
the local phase, it then perturbs other attributes for the generated
IDIs in the first phase. However, AEQUITAS can only search in a
narrow input space and it easily falls into the local optimum [45].
To improve the diversity of IDIs, SG [2] leverages dynamic symbolic
execution to generate IDIs. The aforementioned methods, namely,
THEMIS, AEQUITAS, and SG, are mainly designed for traditional
machine learning models, such as logistic regression, support vec-
tor machine, and decision tree, etc. They may not be applicable
to deep neural networks (DNNs) or are very expensive as DNNs
are more complex. A few methods have been proposed recently
that are specifically designed for DNNs. Zhang et al. [43] propose a
gradient-based method called ADF for generating individual dis-
criminatory instances. They demonstrate that ADF can improve
the effectiveness and efficiency of IDIs generation for DNNs based
on the guidance of gradients. EIDIG [42] extends ADF by leverag-
ing prior gradient information (i.e., momentum) to accelerate the
convergence of instance generation. However, it may still suffer
from gradient vanishing, leading to local optimization [45]. FairNeu-
ron [17] detects neurons that particularly contribute to sensitive
attributes to generate IDIs. Similarly, NeuronFair [45] searches for
biased neurons and generates samples to enlarge the activation val-
ues of those neurons. More related works can be found in survey [6].
We compare RULER with three state-of-the-art techniques, namely,
ADF, EIDIG, and NeuronFair, in Section 5.3. RULER outperforms
these baselines in improving fairness on four evaluated datasets.

Adversarial training is one of the most effective methods in im-
proving model robustness [23, 28, 32, 36, 39]. They can be leveraged
to improve fairness as demonstrated in Section 3. However, it is
known that adversarial training induces non-trivial accuracy degra-
dation. We also have the same observation in our context. RULER
improves traditional adversarial training by decomposing the train-
ing into two phases and introducing sample fusion to have a better
accuracy-fairness balance.

8 CONCLUSION

We propose a novel discriminative and iterative adversarial training
method particularly designed for improving DNN fairness. We
evaluate our prototype RULER on four popular datasets. It has 97.86%
relative fairness improvement with only 0.55% accuracy degradation
on average, outperforming three state-of-the-art techniques.
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