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Abstract
This paper describes a method for solving smooth nonconvex minimization problems
subject to bound constraints with goodworst-case complexity guarantees and practical
performance. The method contains elements of two existing methods: the classi-
cal gradient projection approach for bound-constrained optimization and a recently
proposed Newton-conjugate gradient algorithm for unconstrained nonconvex opti-
mization.Using a newdefinition of approximate second-order optimality parametrized
by some tolerance ε (which is comparedwith related definitions from previous works),
we derive complexity bounds in terms of ε for both the number of iterations required
and the total amount of computation. The latter is measured by the number of gradient
evaluations or Hessian-vector products. We also describe illustrative computational
results on several test problems from low-rank matrix optimization.
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1 Introduction

We consider the problem

min f (x) subject to x ∈ Ω, (1)

where f : R
n → R is twice continuously differentiable and is bounded below by

flow > −∞ on the closed feasible set Ω . We focus on Ω defined by nonnegativity
constraints on a subset I of the variables, that is,

Ω � {x ∈ R
n | xi ≥ 0, i ∈ I}, where I ⊆ {1, 2, . . . , n}. (2)

Bounds are the simplest type of inequality constraint. Euclidean projection onto the
feasible set Ω , a trivial operation when Ω is defined by bounds, is a fundamental
component of several successful algorithms. Bound-constrained subproblems often
arise in algorithms for more complicated constrained optimization problems, such
as augmented Lagrangian methods. Bound constraints also appear in popular prob-
lems such as nonnegative least-squares and nonnegative matrix factorization [15].
Approaches of several types have been proposed for solving this problem, includ-
ing gradient projection, active set methods, and interior-point methods. See [24] for
details.

In this paper, we describe a line-search method for solving (1), (2) that exploits
the simplicity of Euclidean projection onto Ω . It combines gradient projection with
a Newton-conjugate gradient (Newton-CG) method for smooth nonconvex uncon-
strained optimization proposed recently in [27]. The elements of our method are
well known for their good practical performance in various optimization contexts.
By combining these elements in the right way, and introducing judicious strategies for
diagonal scaling, step length acceptance, and detection of negative curvature, we equip
the method with a worst-case complexity theory that matches best-known theoretical
bounds for bound-constrained optimization and even for unconstrained optimization.
Preliminary numerical results confirm that the method has appealing practical perfor-
mance. In contrast to most previous works on complexity, we prove results for both
iteration and computational complexity. The latter is measured in terms of two key
operations: evaluation of a gradient at a given point, and computation of a Hessian-
vector product involving an arbitrary vector. (The latter is known to cost a modest
multiple of a gradient evaluation when computational differentiation techniques are
used [18].) Our method does not require explicit calculation or storage of the Hessian;
it accesses the Hessian only via products with given vectors.

Background and Prior Work There has been renewed interest in devising optimization
algorithms with worst-case complexity guarantees for constrained nonconvex opti-
mization. Interior-point type methods were developed to solve nonconvex problems
with bound constraints [4], or with bounds and linear equality constraints [19]. A
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log-barrier method for bound-constrained problems was proposed in [26]. Like the
present paper, this method made use of the Newton-CG method of [27], but in a quite
different way. An adaptive cubic regularization algorithm was proposed in [8] to solve
nonconvex optimization with general convex constraints. Later, in [9], the authors of
[8] designed a novel two-phase target-following algorithm to address a more general
problem class: nonconvex optimization with nonlinear equality constraints and a gen-
eral convex feasible region. They also generalize the concept of approximate first-order
optimal point to arbitrary high-order and apply a conceptual high-order algorithm for
obtaining such a point [10]. In [6], a high-order algorithm that obtains an approximate
first-order optimal point of a nonconvex optimization problemwith general constraints
was described. The paper [7] considered a high-order universal adaptive regularization
algorithm to find approximate first-order optimal points for nonconvex problems with
convex constraints, but they have even less stringent assumptions on the smoothness of
the objective. Specifically, they required qth-order derivatives to beHölder continuous,
and they obtained complexity results that depend on the degree of smoothness and / or
the regularization power1 (see details below). For high-order adaptive regularization
methods, [11] showed that the complexity may not be affected when a non-Lipschitz
singular function (l p-norm, p ∈ (0, 1)) is introduced into the objective. Other works
include [25], which uses a trust region method to locate second-order optimal point of
nonconvex problems with linear constraints. A Hessian barrier algorithm was recently
proposed in [13], based on self-concordant barrier functions, which solves nonconvex
problems with general conic constraints and linear equality constraints.

In these articles, good complexity results follow from the use of the Hessian
and sometimes higher-order derivatives: O(ε−3/2) iteration/evaluation2 complexity
to locate an ε-approximate first-order optimal point [6, 8, 9] or a (ε,

√
ε)-approximate

second-order optimal point [4, 13, 19, 25, 26]. (Here ε and
√

ε represent the pre-
cision of first- and second-order optimality conditions, respectively.) The qth-order
algorithm in [10] locates an ε-approximate qth-order solution in O(ε−(q+1)) itera-
tions, while the qth-order algorithms in [6] finds an ε-approximate first-order solution
in O(ε−(q+1)/q) iterations. The algorithm that exploits the qth-order Taylor model
in [7] locates the ε-approximate first-order solution in O(ε−(q+α)/(q+α−1)) iterations
under the assumption that the objective’s qth-order derivative (with q ≥ 1) is Hölder
continuous with exponent α (with 0 < α ≤ 1) and the regularization power is high
enough.

Complexity results in the works discussed above focus on iteration/evaluation com-
plexity; less attention is paid to the bounds on the total amount of computation required.
In fact, these methods can require solution of nonconvex subproblems that may them-
selves require a significant and undetermined amount of computation. For example,
in [8, 9], a potentially expensive cubic-regularized subproblem (itself a constrained
nonconvex problem) needs to be solved to approximate first-order optimality at each
iteration, while the higher-order methods of [6, 7, 10, 11] require solution of subprob-
lems involving higher-order derivatives. In [25], checking the second-order stationary

1 Order of the regularization term. For example, a cubic regularization has power 3.
2 Iteration complexity in this paper is a bound on the number of outer iterations in an algorithm. It is
equivalent to evaluation complexity (a count of the number of evaluations of gradients, Hessians, or higher-
order derivatives) for purposes of this discussion.
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condition can be NP-hard, and the constrained nonconvex subproblem needs to be
solved to at least first-order stationary per iteration. Moreover, implementations of
these methods may require explicit evaluation of the Hessian or higher-order deriva-
tives. The method of this paper, by contrast, requires explicit evaluation only of
gradients; theHessians are accessed only via Hessian-vector products. This fact allows
us to define meaningful bounds on computational complexity.

The pursuit of optimal iteration/evaluation complexity results may compromise
the practicality of algorithms. For example, subproblems in the second-order algo-
rithms from [4, 19] have a small trust-region radius that depends on ε. The log-barrier
approach of [26] has unimpressive practical performance, as we see in Sect. 5.

Other works that address complexity of constrained nonconvex optimization,
include [12], which discusses the trust funnel algorithm to solve optimization with
equality constraints; [5, 17, 29, 31], which discuss augmented Lagrangian methods
(ALM); and [22], concerning penalty methods. In [17], ALM and appropriate first-
order algorithms to solve subproblems are utilized to locate ε approximate first-order
point, with evaluation complexity arbitrarily close to O(ε−4). Complexity of a safe-
guarded ALM is derived in [5] to find first-order stationary points, but the cost of
solving the subproblems is not well defined. In [22], complexity results are estab-
lished in terms of the number of proximal gradient steps needed to find an ε first-order
stationary points. The complexity can be improved to O(ε−5/2) (omitting logarithm
terms) when the constraint functions are convex and Slater’s condition holds. [12,
29, 31] consider optimization with equality constraints that do not accommodate the
bound-constrained problem class (1), (2).

A complicating factor in comparing complexity ofmethods for finding approximate
optimal points is that the definitions of such points vary between papers. This is
not unexpected since different papers consider a variety of constraint types, and the
approximate optimality conditions are adapted to the particular formulations. The
relation between different definitions has not been discussed in any detail, even for
the case of optimization with bounds. We believe that a proper discussion facilitates a
better understanding of the goals and characteristics of different algorithms.

Approach and contributions We describe an algorithm for locating an approxi-
mate second-order point of the problem (1),(2) that has good worst-case complexity
bounds—similar to the unconstrained case (Ω = R

n in (1))—and is also practical.
As a preliminary to our description of the algorithm, we state our definition

of approximate second-order optimality, alongside four other definitions that have
appeared in the literature. These definitions are typically parametrized by a tolerance
ε.We introduce a second parameter p that represents the power of ε that determines the
approximate condition involving the Hessian, and refer to the resulting conditions as
“(ε, p)-second-order optimality" or “(ε, p)-2o" for short. The alternative definitions
that we discuss in this article are based on those from [4, 10, 19, 26], specialized to
the bound-constrained problem (1),(2), with I = {1, . . . , n}. We make comparisons
among all these definitions, using a new notion of “essentially stronger”.

Practical methods that make use of gradient projection and Newton scaling have
yet to be considered seriously as methods with good complexity guarantees for bound-
constrained problems. Such methods exploit the simplicity of the projection operation
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for Ω in (2), as well as the benefits of second-order information that have been shown
in the unconstrained context. The two-metric projection framework proposed by Bert-
sekas [1, 2] provides a potential framework, for appropriate choice of scaling matrix.
This method takes steps of the form

xk+1 � P(xk − αk Dk∇ f (xk)), (3)

where Dk is a symmetric positive definite matrix (with a certain structure defined
below) and P(z) is the projection onto the feasible set Ω in (2), defined by

[P(z)]i =
{
max{zi , 0} i ∈ I,

zi otherwise.
(4)

The matrix Dk scales the free and active parts of the gradient differently, in a way that
guarantees decrease in the objective function for sufficiently small positive steplengths
αk . Denoting a set of “apparently-active” components of xk by

I+k (εk) � {i ∈ I | 0 ≤ xik ≤ εk, ∇i f (xk) > 0}, (5)

for small positive εk , Dk is assumed to be positive diagonal in the I+k (εk) components,
that is, Dk[i, j] = 0 if either i or j is in I+k (εk) with j 
= i , and Dk[i, i] > 0 for all
i ∈ I+k (εk). The two-metric projectionmethod can have rapid convergence when f (x)
is convex and the square submatrix of Dk for the “apparently-free" indices i /∈ I+k (εk)

is derived from the corresponding submatrix of the Hessian∇2 f (xk). The complexity
properties of this method in the setting of nonconvex f are the subject of ongoing
work.

Inspired by both two-metric gradient projection approach and the Newton-CG
algorithm for unconstrained optimization described in [27], we propose a projected
Newton-CG algorithm. We show that the algorithm terminates within O(ε−3/2) iter-
ations and outputs an (ε, 1

2 )-2o point with high probability. In each iteration of the
projectedNewton-CG,we either (1) take a gradient projection step; (2) take a projected
Newton-CG step, obtained via a capped CG procedure applied to the apparently-free
components, or (3) take a projected step along a negative curvature direction of a
diagonally scaled Hessian. The operations required to calculate each type of step are
well defined, and are similar to those used in [27, 28]. These “fundamental operations"
are of two types: (1) a gradient calculation, and (2) computation of the product of the
Hessian with an arbitrary vector—an operation that does not require explicit computa-
tion or knowledge of the Hessian and that can be performed at roughly equivalent cost
to a gradient evaluation; see [18]. The other potentially significant computations are
(1) function evaluations performed during the backtracking line searches, the number
of which is bounded by an O(log ε) multiple of the number of gradient evaluations,
and which are usually significantly cheaper than gradient evaluations; and (2) vector
operations involving vectors of length n (inner products and saxpys), whose O(n)

cost is dominated by the cost of the fundamental operations for all functions of inter-
est. By contrast, other methods require solution of potentially expensive constrained
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Table 1 Complexity estimates for nonconvex optimization procedures involving bounds

Definition of (ε, p)-2o∗ Iteration/evaluation complexity Operation complexity (p = 1
2 ) References

(12) O(ε−3)�� (p = 1) − [10]

(13) O(ε−3/2) (p = 1/2) − [19]

(14) Õ(nε−1/2 + ε−3/2)†
(p = 1/2)

Õ(nε−3/4 + ε−7/4), n large
Õ(nε−3/2), n small

[26]

(15) O(ε−3/2) (p = 1/2) − [4]

(9) w. I = {1, . . . , n} O(ε−3/2) (p = 1/2) O(ε−3/2 min{n, ε−1/4 log( n
εδ

)}) (here)

∗: Definition of (ε, p)-2o is based on the paper in ed to problem (1),(2) with I = {1, . . . , n}.
��: When p = 1, accuracy on the optimality condition involving Hessian is higher, leading to a higher
complexity bound
†: Õ represents O with logarithmic factors omitted

nonconvex subproblems in each iteration [6, 8–10] and possibly explicit evaluation of
Hessians and higher derivatives. These requirements have the potential to make the
computational complexity less competitive.

Table 1shows iteration/evaluation complexity and operation complexity results for
our algorithm (last row) and existing algorithms, based on their respective definitions
of (ε, p)-2o. The “operation complexity” results are upper bounds on the number of
fundamental operations required to find an approximate solution.

Illustrative numerical experiments on nonnegative matrix factorization problems
show that the projected Newton-CG algorithm has good practical performance: It
contends well with gradient projection method and the log-barrier Newton-CG algo-
rithm proposed in [26], and is comparable to approaches that are specialized to this
problem in relatively low dimensions.

With minor modifications (c.f. Appendix B), the projected Newton-CG can be
applied to problems with two-sided bounds, where Ω is redefined as {x ∈ R

n | 0 ≤
xi ≤ ui , i ∈ I}, I ⊆ {1, 2, . . . , n}, with the same complexity guarantees.

Organization. In Sect. 2, we introduce some basic assumptions and definitions to be
used throughout the article. Definitions of the approximate second-order optimal point
in our work and others are discussed in Sect. 3. The projected Newton-CG is presented
and analyzed in Sect. 4. Section5 describes numerical experiments. Section6 contains
some concluding remarks.

We include in the Appendix details of the relationship between different definitions
of approximate second-order optimality, the oracles utilized in the projected Newton-
CG algorithm, and extension to two-sided bounds.

2 Preliminaries

We summarize here some notations, two assumptions used throughout the paper, and
(exact) optimality conditions for (1), (2).
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Notation.We use subscripts for iteration numbers (usually k) throughout, and denote
components of vectors by superscripts and components of matrices using square-
bracket notation, with [i, j] denotes the i, j element. We use the following notation
for gradient and Hessian of f at xk :

gk � ∇ f (xk), Hk � ∇2 f (xk).

We use ∇i f (x) to denote the i th component of ∇ f (x). diag(v) is a diagonal matrix
with vi being its [i, i] element. sgn(z) = 1 if z ≥ 0 and sgn(z) = −1 otherwise.
‖ · ‖ denotes the 2-norm of a vector or a matrix. c+ � max{c, 0} for a scalar c ∈ R.
Ic � {1, . . . , n}\I. P(·) denotes the projection onto the feasible region Ω .

Assumptions. The following assumptions are used throughout the paper, though they
are not mentioned explicitly in the statements of some lemmas.

Assumption 1 The level set L f (x0) � {x ∈ R
n | x ∈ Ω, f (x) ≤ f (x0)} is compact.

Assumption 2 f is twice Lipschitz continuously differentiable on an open convex set
containing L f (x0) and all the trial points generated by Algorithm 1.

Lipschitz constants for f ,∇ f (x) and∇2 f (x) on the set described in Assumption 2
are denoted by L f , Lg and LH , respectively. Thus, for any x, v ∈ R

n such that x and
x + v are in this set, we have

f (x + v) ≤ f (x)+ L f ‖v‖, (6a)

f (x + v) ≤ f (x)+ ∇ f (x)T v + Lg

2
‖v‖2, (6b)

f (x + v) ≤ f (x)+ ∇ f (x)T v + 1

2
vT∇2 f (x)v + LH

6
‖v‖3. (6c)

Therefore, ‖∇ f (x)‖ ≤ L f and ‖∇2 f (x)‖ ≤ Lg over L f (x0).

Optimality Conditions.We can write first-order optimality conditions for (1), (2) (also
known as stationarity conditions) at a point x̄ as follows:

x̄ i ≥ 0, ∇i f (x̄) ≥ 0, ∀i ∈ I;
∇i f (x̄) = 0, ∀i ∈ Ic ∪ {i ∈ I | x̄ i > 0}. (7)

A weak second-order condition for (1), (2) is that the two-sided projection of ∇2 f (x̄)
onto the variables i such that x̄ i > 0 or i ∈ Ic is positive semidefinite, which is
equivalent to

zT∇2 f (x̄)z ≥ 0, ∀z ∈ {z ∈ R
n | zi = 0, i ∈ {i ∈ I | x̄ i = 0}}. (8)

This condition coincides with the usual second-order necessary condition where there
are no “degenerate” indices, that is, indices i ∈ I for which both x̄ i = 0 and∇i f (x̄) =
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0. When such indices exist, a standard second-order necessary condition is:

zT∇2 f (x̄)z ≥ 0, ∀z ∈
{
z ∈ R

n
∣∣∣ zi = 0, if i ∈ I, x̄ i = 0,∇i f (x̄) > 0,
zi ≥ 0 if i ∈ I, x̄ i = 0,∇i f (x̄) = 0.

}
.

However, checking this condition can be as hard as checking copositivity of a matrix,
which is NP-hard. Thus, as in previous works (such as [26]), we base our analysis on
the less stringent condition (8).

3 Approximate second-order optimal points

In this section we give our definition of (ε, p)-approximate second-order optimal
points and compare it with similar definitions in the literature. For simplicity of
notation, we use (ε, p)-2o points to denote (ε, p)-approximate second-order optimal
points. We assume ε, p > 0 throughout.

Our definition of an (ε, p)-2o point is as follows.

Definition 1 ((ε, p)-2o, Def1) x is an (ε, p)-2o point of (1),(2) according to Def1 if
x ∈ Ω and for sets J+ and J− defined by

J+ � {i ∈ I | 0 ≤ xi ≤ √ε},
J− � {1, . . . , n} \ J+ = Ic ∪ {i ∈ I | xi >

√
ε},

and for diagonal matrix S = diag(s) with si = 1 when i ∈ J− and si = xi when
i ∈ J+, we have

‖S∇ f (x)‖ ≤ 2ε, ∇i f (x) ≥ −ε3/4, for all i ∈ J+, (9a)

S∇2 f (x)S � −ε p I . (9b)

Definition 1 is motivated by the (weak) second-order optimal conditions (7) and
(8). In fact, if we let ε = 0, then the (0, p)-2o point satisfies (7) and (8) exactly. The
following lemma further justifies Definition 1 and our purpose to find an (ε, p)-2o
point given small ε.

Lemma 1 Consider problem (1), (2). Suppose we have a positive scalar sequence {εk}
with εk ↓ 0 and vector sequence {xk} ⊆ Ω with xk → x∗ such that xk is an (εk, p)-2o
point according to Definition 1. Then x∗ satisfies second-order optimal conditions (7),
(8). That is, for sets J −∗ and J −∗ defined by

J −∗ � Ic ∪ {i ∈ I | (x∗)i > 0}, J +∗ � {1, 2, . . . , n} \ J −∗ ,

we have

(x∗)i ≥ 0, ∇i f (x
∗) ≥ 0, ∀i ∈ I; (10a)

∇i f (x
∗) = 0, ∀i ∈ J −∗ ; (10b)
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zT∇2 f (x∗)z ≥ 0, ∀z ∈ {z ∈ R
n | zi = 0, i ∈ J +∗ }. (10c)

Proof Denote sets J +k , J −k and diagonal matrix Sk = diag(sk) which correspond to
J+, J−, and S in Definition 1 with x = xk , ε = εk and s = sk . Note that since
xk → x∗ and εk ↓ 0, there exists k̄ such that for any k > k̄, we have J +k ⊆ J +∗ ,
J −∗ ⊆ J −k . Our claim that x∗ satisfies (10) is a consequence of the following four
observations.

(i) Feasibility of x∗ follows from closedness of Ω .
(ii) For any i ∈ I and any k, either i ∈ J +k so ∇i f (xk) ≥ −ε

3/4
k , or i ∈ J −k

so |∇i f (xk)| ≤ 2εk �⇒ ∇i f (xk) ≥ −2εk . By taking limits, we have
∇i f (x∗) ≥ 0.

(iii) Fix any i ∈ J −∗ . For all k > k̄, we have i ∈ J −k . Therefore, sik = 1 and
|∇i f (xk)| ≤ 2εk . By taking limits, we have ∇i f (x∗) = 0.

(iv) Fix any z ∈ {z ∈ R
n | zi = 0, i ∈ J +∗ }. For all k > k̄, we have i ∈ J +k �⇒

i ∈ J +∗ �⇒ zi = 0, so that Sk z = z. Since zTSk∇2 f (xk)Sk z ≥ −ε
p
k ‖z‖2

for any k, we have by taking limits that zT∇2 f (x∗)z ≥ 0.

��
Wenow identify several definitions of approximate second-order optimal conditions

proposed in literature and discuss their relationship. For simplicity, we assume in the
rest of this section that

I � {1, 2, . . . , n}, (11)

(so that Ω = R
n+, the nonnegative orthant). When we refer to Definition 1 or Def1 in

the rest of this section, we implicitly assume that (11) holds.
We start from a definition in [10], which is defined for optimization with general

convex constraints and high-order optimal points. Here we tailor it to fit the scope of
this paper: second-order optimal points and bound-constrained optimization: (1), (2),
(11).

Definition 2 ([10], Def2) x is an (ε, p)-2o point of (1), (2), (11) according to Def2 if
x ≥ 0 and, for some user-defined constant Δmax that is independent of x and ε, there
exists Δ ∈ (0,Δmax] such that

∣∣∣globalminx+d∈Ω,‖d‖≤Δ ∇ f (x)T d
∣∣∣ ≤ Δε,∣∣∣∣globalminx+d∈Ω,‖d‖≤Δ ∇ f (x)T d + 1

2
dT∇2 f (x)d

∣∣∣∣ ≤ Δ2ε p.
(12)

Δmax is often chosen to reduce the effort in global minimization.
The following three definitions are from [4, 19, 26] tailored to our problem of

interest. Here we let X = diag(x), X̄ = diag(min{x, 1}) and 1 denotes the vectors
with all elements being 1.
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Definition 3 ([19], Def3) x is an (ε, p)-2o point of (1), (2), (11) according to Def3 if

x ≥ 0, ∇ f (x) ≥ −ε1, ‖X∇ f (x)‖∞ ≤ ε,

X∇2 f (x)X � −ε p In .
(13)

Definition 4 [[26], Def4] x is an (ε, p)-2o point of (1), (2), (11) according to Def4 if

x ≥ 0, ∇ f (x) ≥ −ε1, ‖X̄∇ f (x)‖∞ ≤ ε,

X̄∇2 f (x)X̄ � −ε p In .
(14)

Definition 5 ([4], Def5) x is an (ε, p)-2o point of (1), (2), (11) according to Def5 if

x ≥ 0, ‖X∇ f (x)‖∞ ≤ ε,

X∇2 f (x)X � −ε p In .
(15)

The relationship between each of these definitions and second-order criticality has
been discussed in the respective work. In order to discuss the relation between any two
of these definitions including ours, we propose the following concept, which relates
pairs of definitions of (ε, p)-2o under the assumption that x is confined to a compact
set X .

Definition 6 We say that DefA is essentially stronger than DefB on X if given any
sufficiently small ε ∈ (0, 1], any (ε, p)-2o point x ∈ X by DefA is also a (cε, p)-2o
point byDefB, where c > 0 is a constant independent of ε or x . We denote this relation
as DefA � f ,X ,p DefB, simplified as DefA � DefB. We say that DefA and DefB are
essentially equivalent (denoted DefA ≈ DefB) if DefA � DefB and DefB � DefA.

Transitivity of the relation � is shown in Lemma 6.
Comparison and evaluation of complexity of different algorithmsmakesmore sense

if we are able to relate the guarantees on the points they produce according to the
relations in Definition 6. In fact, if we care most about the complexity as a function
of the accuracy parameter ε, Definition 6 is natural and intuitive due to the following
theorem.

Theorem 1 Given any ε > 0 sufficiently small, suppose that an algorithm can find
an (ε, p)-2o point x ∈ X by DefA in O(ε−q) iterations (q > 0) and DefA � DefB.
Then the algorithm can also locate an (ε, p)-2o point by DefB in O(ε−q) iterations.

Proof SinceDefA � DefB, there is a constant c > 0 such that for all ε > 0 sufficiently
small, an (ε/c, p)-2o point byDefA is an (ε, p)-2o point byDefB. By assumption, the
algorithm can an locate (ε/c, p)-2o point by DefA inO((ε/c)−q) = O(ε−q) number
of iterations. The result follows. ��

We can now clarify several pairwise relations between the Definitions 1-5. The
proof of the following result appears in Appendix A.

Theorem 2 Suppose that X is a compact set. Then we have the following.
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(1) Def2 � Def3.
(2) Def3 ≈ Def4.
(3) Def4 � Def5.
(4) Def1 � Def5.

The assumption in Theorem 2 on compactness of X is mild. In fact, many works
in literature assume that the iterates generated by their algorithms lie in a compact
region, for example, the sublevel set of the objective function. By Theorem 2, we have
the following relation chart of Definitions 1–5:

Def2 � Def3 ≈ Def4 � Def5, Def1 � Def5.

Note that each � relation above is probably strict. For example, Def2 considers the
global minimum of the first-order and second-order Taylor expansions of f over a
small trust region, while Def3 (in fact all other definitions) is only closely related
to the weak second-order necessary conditions (7),(8) for x being a local minimal
point.Def5 is weaker than others since it does not offer an appropriate lower bound on
∇i f (x)when xi = 0. In fact, the relation betweenDef5 and second-order criticality is
also weaker than others. Unfortunately, we cannot describe by � the relation between
our definition (Def1) with definitions other than Def5. On one hand, the condition
∇i f (x) ≥ −ε−3/4, i ∈ J+ in Def1 is weaker; on the other hand, the condition
‖S∇ f (x)‖ ≤ 2cε is strong and cannot be implied by other (ε, p)-2o definitions for
any constant c independent of ε. An illustrative example is given in Appendix A
(Example 1).

During the review process, we found that the definition used in [25] is also relevant.
When tailored to the scope in this paper (see Definition 7 in Appendix A), it can be
placed between Def2 and Def3 (see Theorem 4 Appendix A).

4 Projected Newton-CGmethod and its complexity

We now describe a projected Newton-CG algorithm to find an (ε, 1
2 )-2o point

according to Definition 1 for problem (1), (2), and analyze its complexity properties.

4.1 Description of the algorithm

Given the sequence of iterates {xk} and a positive scalar sequence {εk} we define the
following index sets inspired by the two-metric projection method (3), (5):

J+k � {i ∈ I | 0 ≤ xik ≤ εk},
J−k � {1, . . . , n} \ J+k = Ic ∪ {i ∈ I | xik > εk}.

(16)

Let g−k , H
−
k be the subvector and square submatrix of gk and Hk , resp., corresponding

to index set J−k . Similarly, we use g+k and H+k for the subvector and square submatrix
of gk and Hk , resp., corresponding to index set J

+
k . For search direction dk , denote d

−
k
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and d+k in the same fashion. Define the scaling vector sk and diagonal scaling matrix
Sk as follows:

sik �
{
xik, i ∈ J+k
1, i ∈ J−k

, Sk � diag(sk). (17)

We can then define the projected Newton-CG algorithm as Algorithm 1.
Elements of Algorithm 1. As in the two-metric projection method (3), our method
starts each iteration by partitioning the components of x into the “apparently-free" and
“apparently-active" indices based on their proximity to the boundary and a threshold
parameter εk . Then one of three types of steps is taken. For all such steps, backtracking
in combinationwith projection onto the feasible set is used to determine an appropriate
steplength.

– Gradient projection step: If examination of the gradient components correspond-
ing to the apparently-active components indicate that a significant improvement
in f can be obtained by taking a standard gradient projection step, such a step is
taken.

– Newton-CG step on apparently-free components: When the gradient corre-
sponding to the apparently-free components is above the threshold εg , the Capped
CG procedure (c.f. Algorithm 3 in [30], originally Algorithm 1 in [27]) is called
to either find an approximate Newton step in these components, or else return a
direction of negative curvature. Only the apparently-free components are modified
in a step of this type.

– Scaled negative curvature step (full-dimensional): When neither of the two
types of steps defined above is deemed appropriate, the current iterate xk satisfies
the approximate optimality conditions ofDefinition 1, except for the condition (9b)
on the scaled Hessian. We therefore check this condition and, if it is not satisfied,
find a scaled negative curvature step that will lead to a significant decrease in
f . While the other type of negative curvature step (obtained from Capped CG)
changes only the apparently-free components, this scaled negative curvature step
changes all components, in general. We believe that this type of step will rarely be
taken; most instances of negative curvature will be detected during computation
of the Newton-CG step.

Connections to known methods for bound-constrained and unconstrained optimiza-
tion. The way in which Algorithm 1 combines Newton-CG steps with gradient
projection steps is inspired in part by Moré and Toraldo [23], who use CG iterations
applied to the Newton system to “explore" a face of the feasible orthant and gradient
projection to move to a new face. However, [23] addresses only convex quadratic
problems and has no complexity analysis.

There are obvious connections between Algorithm 1 and the Newton-CG methods
for unconstrained nonconvex optimization described in [27] and [28]. The latter meth-
ods make use of Capped CG procedures (where the "cap" refers to an implicit bound
on the number of CG iterations allowed at each invocation), as well as negative curva-
ture directions and backtracking line searches. We leverage the similarities by using
the same “subroutines" for Capped CG and negative curvature detection as in [27];

123



Complexity of a projected Newton-CG method…

Algorithm 1 Projected Newton-CG (PNCG)
(Initialization) Choose an initial point x0 ≥ 0, tolerance εg > 0, scalar sequence {εk } with εk ∈ (0, 1)
for all k, backtracking parameters θ ∈ (0, 1), accuracy parameter ζ ∈ (0, 1), step acceptance parameter

η ∈
(
0, 1−ζ

2

)
.

for k = 0, 1, 2, . . . do
if J+k 
= ∅ and ( gik < −ε

3/2
k for some i ∈ J+k or ‖S+k g+k ‖ > ε2k ) then

(Gradient Projection step) Let dk := −gk ;
Let m̃k be the smallest nonnegative integer m such that

f (P(xk + θmdk )) < f (xk )− 1

2
(xk − P(xk + θmdk ))

T gk ;

Let xk+1 := P(xk + θ m̃k dk );
else if J−k 
= ∅ and ‖g−k ‖ > εg then

(Newton-CG step)Call Capped CG ([30, Algorithm 3], originally [27, Algoritm 1]) with H := H−k ,

ε := εk , g := g−k , accuracy parameter ζ and upper bound M on Hessian norm (if provided). Obtain

outputs t ∈ R
|J−k | and d_type;

if d_type = NC then

Let d−k := −sgn(tT g−k )
|tT H−k t |
‖t‖2

t
‖t‖ ; (Negative curvature direction)

else
Let d−k := t ; (Approx. solution to reduced Newton equations)

end if
Let d+k = 0 (Complete dk with zeros in the active components)
Let mk be smallest nonnegative integer m such that

f (P(xk + θmdk )) < f (xk )− ηθ2mεk‖dk‖2;

Let αk := θmk , xk+1 := P(xk + θmk dk );
else
Call Minimum Eigenvalue Oracle (MEO) ([30, Procedure 4], originally [27, Procedure 2]) with
H := Sk Hk Sk , ε := εk and the upper bound of norm of H if known.
if MEO certifies that Sk Hk Sk � −εk I then
STOP and output xk ;

end if
(Negative curvature step) Let dk := − sgn(gTk Skd) · |dT Sk Hk Skd| · d, where d is the output of
MEO;
Let m̄k be the smallest nonnegative integer m such that

f (P(xk + θmSkdk )) < f (xk )− ηθ2m‖dk‖3.

Let xk+1 := P(xk + θ m̄k Skdk );
end if

end for

these methods are stated for completeness in Appendices B and C in the full version
[30], along with their key properties. However, the modifications required to adapt the
approach of [27] to handle bound constraints, in away that allows complexity results to
be proved, are significant and non-obvious. For one thing, we cannot simply project the
approximate Newton step onto the feasible region, as this may not yield descent even
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for convex f ; see [2, Section 1.5]. Indeed, Bertsekas proposed the two-metric gradi-
ent projection approach precisely to deal with this issue. Essentially, the proximity of
iterates xk to the boundary of the feasible set Ω and the use of projection inhibit steps
in ways that may prevent the “significant decrease" in objective f required at each
iteration to prove complexity. We need to use scaling of steps and Hessians, modified
steplength acceptance criteria, and novel partitions of the set of components to over-
come this potential hazard. Differences with prior work, particularly the unconstrained
Newton-CG approach of [27], can be summarized as follows.

1. Our partition of {1, 2, . . . , n} into apparently-active and apparently-free parts (16)
differs from standard two-metric gradient projection in not considering the sign of
the gradient.

2. We use a gradient projection step in certain conditions; devising these conditions
in such a way that the step yields the significant improvement in f required by our
complexity analysis (see Lemma 2) is somewhat intricate.

3. We utilize a different sufficient decrease criterion for the Newton-CG step from the
one in [27], and this step takes place only in the subspace of apparently-free vari-
ables. The analysis in proofs of Lemmas 3 and 4 is similar to that of corresponding
results in [27], but takes the presence of bound constraints in the apparently-free
variables into account.

4. We compute the full-dimensional negative curvature direction on a diagonally
scaled version of the Hessian, and need a scaled direction and a different sufficient
decrease condition from [27].

4.2 Complexity of Algorithm 1

The following four results—Lemmas 2 to 5—prove a lower bound on the amount of
decrease in f at a single iteration in each of the following four cases. (We assume
that Assumptions 1 and 2 hold with Ω in (2) for all these results, although we do not
mention them in the statement of each result.)

(i) A gradient projection step is taken (Lemma 2);
(ii) The Newton-CG step is triggered and the Capped CG algorithm returns

d_type = NC, resulting in a negative curvature step involving the apparently-
free components (Lemma 3);

(iii) The Newton-CG step is triggered and the Capped CG algorithm returns
d_type = SOL, resulting in a Newton-like step (Lemma 4);

(iv) The MEO procedure returns a negative curvature direction instead of a
certificate of optimality, and a negative curvature step is taken (Lemma 5).

We state and prove these results without further elaboration.

Lemma 2 Suppose that J+k 
= ∅ at iteration k, and that gik < −ε
3/2
k for some i ∈ J+k

or ‖S+k g+k ‖ > ε2k , so that a projected gradient step is taken. Then

f (xk)− f (xk+1) >
1

4
min{θ/Lg, 1}ε3k .
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Proof If gik < −ε
3/2
k for some i ∈ J+k or ‖S+k g+k ‖ > ε2k at the gradient projection

step, then for any steplength β > 0, at least one of two cases occurs. In the first case
of gik < −ε

3/2
k for some i ∈ J+k , we have

gik < −ε
3/2
k �⇒ (gik)

2 > ε3k �⇒ (xik − (xik − βgik)+)gik = β(gik)
2 > βε3k .

(18)

In the second case, we have

‖S+k g+k ‖2 > ε4k �⇒
∑
i∈J+k

(xik)
2(gik)

2 > ε4k

�⇒
∑

i∈J+k ,βgik≤xik
(xik)

2(gik)
2 +

∑
i∈J+k ,βgik>xik

(xik)
2(gik)

2 > ε4k .

Therefore, either

∑
i∈J+k ,βgik≤xik

(xik)
2(gik)

2 ≥ ε4k /2
(xik≤εk ,∀i∈J+k )�⇒

∑
i∈J+k ,βgik≤xik

(gik)
2 ≥ ε2k /2,

or

∑
i∈J+k ,βgik>xik

(xik)
2(gik)

2 ≥ ε4k /2 �⇒
∑

i∈J+k ,βgik>xik

xikg
i
k ≥ ε2k /

√
2.

Thus in this case, we have

∑
i∈J+k

(xik − (xik − βgik)+)gik =
∑

i∈J+k ,βgik≤xik
β(gik)

2 +
∑

i∈J+k ,βgik>xik

xikg
i
k

≥ min{β/2, 1/
√
2}ε2k

(εk<1)
> min{β/2, 1/

√
2}ε3k . (19)

By noting gik(x
i
k − (xik − βgik)+) ≥ 0 for any i ∈ I, we have for any β > 0 that

gTk (xk − P(xk − βgk)) =
∑
i∈I

gik(x
i
k − (xik − βgik)+)+

∑
i∈Ic

β(gik)
2

≥
∑
i∈J+k

gik(x
i
k − (xik − βgik)+)

(18),(19)
> min{β/2, 1/

√
2}ε3k . (20)
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Note for any 0 < β < 1
Lg
, where Lg is the Lipschitz constant of ∇ f , we have

f (P(xk − βgk)) ≤ f (xk)− gTk (xk − P(xk − βgk))+ Lg

2
‖xk − P(xk − βgk)‖2

≤ f (xk)− gTk (xk − P(xk − βgk))+ Lg

2
βgTk (xk − P(xk − βgk))

< f (xk)− gTk (xk − P(xk − βgk))+ 1

2
gTk (xk − P(xk − βgk))

= f (xk)− 1

2
gTk (xk − P(xk − βgk)),

where the second inequality holds because (u − v)T (P(u) − P(v)) ≥ ‖P(u) −
P(v)‖2 for any u, v ∈ R

n , and the third inequality holds because β < 1/Lg and
gTk (xk − P(xk − βgk)) > 0 by (20). Therefore, by the line search rule, m̃k < +∞
and θ m̃k ≥ min

{
θ
Lg

, 1
}
. Thus, by the lower bound for θ m̃k , the bound (20), and the

backtracking line search mechanism, we have

f (xk)− f (xk+1) >
1

2
gTk (xk − P(xk − θ m̃k gk)) >

1

4
min

{
θ/Lg, 1

}
ε3k .

��
Lemma 3 Suppose that at iteration k, a Newton-CG step is triggered and that Capped
CG returns d_type = NC. Then we have mk < +∞ and

f (xk)− f (P(xk + αkdk)) > cncε
3
k ,

where cnc � ηmin

{
(3−6η)2θ2

L2
H

, θ2
}
.

Proof For the Newton-CG step, if ‖αdk‖ ≤ εk for some α > 0, then ‖αd−k ‖∞ =
‖αdk‖∞ ≤ εk and P(xk + αdk) = xk + αdk . From (6c), we have

f (P(xk + αdk)) = f (xk + αdk)

≤ f (xk)+ αgTk dk +
α2

2
dTk Hkdk + LH

6
α3‖dk‖3. (21)

Since d_type = NC, we have that (d−k )T g−k ≤ 0, and from Lemma 7 in [30](let

d̄ = d−k ,ε = εk) that
(d−k )T H−k d−k
‖d−k ‖2

= −‖d−k ‖ ≤ −εk . Then for any 0 < α <
3−6η
LH

,

f (xk)+ αgTk dk +
α2

2
dTk Hkdk + LH

6
α3‖dk‖3

= f (xk)+ α(g−k )T d−k +
α2

2
(d−k )T H−k d−k +

LH

6
α3‖d−k ‖3
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≤ f (xk)− α2

2
‖d−k ‖3 +

LH

6
α3‖d−k ‖3

< f (xk)− ηα2‖d−k ‖3 ≤ f (xk)− ηα2εk‖dk‖2. (22)

Then, by leveraging (21) and (22), we have that if α < min
{
3−6η
LH

,
εk‖dk‖
}
, then

f (P(xk+αdk)) < f (xk)−ηα2εk‖dk‖2. Therefore, backtracking will terminate when

αk drops below min
{
3−6η
LH

,
εk‖dk‖
}
, if not earlier. Further, because of the backtracking

mechanism, αk cannot be less than θ times this value. As a result, we have

αk ≥min

{
θ min

{
3− 6η

LH
,

εk

‖dk‖
}

, 1

}

�⇒ αk‖dk‖ ≥min

{
(3− 6η)θ‖dk‖

LH
, θεk, ‖dk‖

}
(‖dk‖≥εk )≥ min

{
(3− 6η)θ

LH
, θ, 1

}
εk

�⇒ α2
k εk‖dk‖2 ≥min

{
(3− 6η)2θ2

L2
H

, θ2

}
ε3k .

Also, ‖dk‖ = ‖d−k ‖ = |(d−k )T H−k d−k |
‖d−k ‖2

≤ ‖H−k ‖2 ≤ ‖Hk‖2 ≤ Lg and

αk ≥ min

{
θ min

{
3− 6η

LH
,

εk

‖dk‖
}

, 1

}
(‖dk‖≤Lg)≥ min

{
(3− 6η)θ

LH
,
θεk

Lg
, 1

}

�⇒ mk = logθ αk ≤ max

{
logθ

(
(3− 6η)θ

LH

)
, logθ

(
θεk

Lg

)
, 0

}
,

verifying that mk is finite and completing the proof. ��
Lemma 4 Suppose that at iteration k, a Newton-CG step is triggered. Moreover,
Capped CG returns d_type = SOL. Then mk < +∞ and

f (xk)− f (P(xk + αkdk)) > csol min{‖∇ f (P(xk + αkdk)) |J−k ‖
2ε−1k , ε3k }, (23)

where

csol � ηmin

{
4

25+ 8LH
, θ2,

9(1− ζ − 2η)2θ2

L2
H

,
(1− ζ )2θ2

(LH/3+ 2η)2

}
.

Proof Define

lk � min
{
l ∈ N | θ l‖dk‖ ≤ εk

}
jk �
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min

{
j ≥ lk, j ∈ N | θ j gTk dk +

θ2 j

2
dTk Hkdk + LH θ3 j

6
‖dk‖3 < −ηθ2 jεk‖dk‖2

}
.

Then from (21) and the definition of jk , we have that

f (P(xk + θ jk dk)) < f (xk)− ηθ2 jk εk‖dk‖2.

Therefore, by the definition ofmk inAlgorithm 1, it follows thatmk ≤ jk . By Lemma 7
in [30](d = d−k , g = g−k , ε = εk), we have

‖dk‖ = ‖d−k ‖ ≤ 1.1ε−1k ‖g−k ‖ ≤ 1.1ε−1k ‖gk‖ ≤ 1.1ε−1k L f ,

so that

lk ≤
[
logθ

(
εk

‖dk‖
)]

+
+ 1 ≤

[
logθ

(
ε2k

1.1L f

)]
+
+ 1. (24)

According to Lemma 7 in [30] (with d = d−k , H = H−k , g = g−k , ε = εk), we have
that

(d−k )T (H−k + 2εk I )d
−
k ≥ εk‖d−k ‖2, (25a)

‖r−k ‖ ≤
1

2
εkζ‖d−k ‖, (25b)

where r−k � (H−k + 2εk I )d
−
k + g−k . Then,

θ j (g−k )T d−k +
θ2 j

2
(d−k )T H−k d−k +

LH θ3 j

6
‖d−k ‖3

= −θ j (H−k d−k + 2εkd
−
k − r−k )T d−k +

θ2 j

2
(d−k )T H−k d−k +

LH θ3 j

6
‖d−k ‖3

= −θ j
(
1− θ j

2

)
(d−k )T (H−k + 2εk I )d

−
k − εkθ

2 j‖d−k ‖2 − θ j (r−k )T d−k

+ LH θ3 j

6
‖d−k ‖3

(25a)≤ −θ j
(
1− θ j

2

)
εk‖d−k ‖2 + θ j‖r−k ‖‖d−k ‖ +

LH θ3 j

6
‖d−k ‖3

(25b)≤ −θ j

2
εk‖d−k ‖2 +

θ j

2
εkζ‖d−k ‖2 +

LH θ3 j

6
‖d−k ‖3

= −θ j

2
(1− ζ )εk‖d−k ‖2 +

LH θ3 j

6
‖d−k ‖3. (26)
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It can be verified that for any j ≥
[
logθ

(
(1−ζ )εk

ηεk+
√

η2ε2k+1.1LH (1−ζ )L f /3

)]
+
+ 1, we

have

θ j <
(1− ζ )εk

ηεk +
√

η2ε2k + 1.1LH (1− ζ )L f /3

(‖d−k ‖≤1.1ε−1k L f )�⇒ θ j <
(1− ζ )εk

ηεk +
√

η2ε2k + LH (1− ζ )εk‖d−k ‖/3
.

It then follows from the quadratic formula applied to the following quadratic
inequality3 in θ j ,

LH‖d−k ‖
6

θ2 j + ηεkθ
j − (1− ζ )εk

2
< 0

�⇒ −θ j

2
(1− ζ )εk‖d−k ‖2 +

LH

6
θ3 j‖d−k ‖3 < −ηθ2 jεk‖d−k ‖2

(26)�⇒ θ j (g−k )T d−k +
θ2 j

2
(d−k )T H−k d−k +

LH θ3 j

6
‖d−k ‖3 < −ηθ2 jεk‖d−k ‖2

�⇒ θ j gTk dk +
θ2 j

2
dTk Hkdk + LH θ3 j

6
‖dk‖3 < −ηθ2 jεk‖dk‖2.

Then by the definitions of jk and lk together with (24), we have

jk≤1+max

⎧⎪⎨
⎪⎩
[
logθ

(
ε2k

1.1L f

)]
+

,

⎡
⎣logθ

⎛
⎝ (1− ζ )εk

ηεk +
√

η2ε2k + 1.1LH (1− ζ )L f /3

⎞
⎠
⎤
⎦
+

⎫⎪⎬
⎪⎭ ,

which is also an upper bound for mk .
Next, we derive the lower bound for α2

k εk‖dk‖2 which, when scaled by η, is the
required amount of decrease in f . We consider four cases.
Case 1. jk = lk = 0. In this case we have mk = 0, αk = 1, and ‖d−k ‖ = ‖dk‖ ≤ εk .
Therefore, xik + dik ≥ 0,∀i ∈ I ∩ J−k �⇒ P(xk + αkdk) = xk + dk . Then we have

‖∇ f (P(xk + αkdk)) |J−k ‖ = ‖∇ f (xk + dk) |J−k ‖
= ‖∇ f (xk + dk) |J−k −g

−
k + g−k ‖

= ‖∇ f (xk + dk) |J−k −g
−
k − H−k d−k − 2εkd

−
k + r−k ‖

≤ LH

2
‖d−k ‖2 + 2εk‖d−k ‖ + ‖r−k ‖

3 if a > 0, then z ≥ 0 and az2 + bz+ c < 0 together are equivalent to 0 ≤ z < −2c
b+
√
b2−4ac ; if a = 0 and

b > 0, then the equivalence still holds trivially.
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(25b)≤ LH

2
‖d−k ‖2 +

4+ ζ

2
εk‖d−k ‖

(ζ<1)≤ LH

2
‖d−k ‖2 +

5

2
εk‖d−k ‖.

By applying the quadratic formula to the inequality above (which involves a quadratic
in ‖d−k ‖), we obtain

‖d−k ‖ ≥
− 5

2 +
√

25
4 + 2LH‖∇ f (P(xk + αkdk)) |J−k ‖/ε

2
k

LH
· εk

=
−5+

√
25+ 8LH min{‖∇ f (P(xk + αkdk)) |J−k ‖/ε

2
k , 1}

2LH
· εk

=
4min{‖∇ f (P(xk + αkdk)) |J−k ‖/ε

2
k , 1}

5+
√
25+ 8LH min{‖∇ f (P(xk + αkdk)) |J−k ‖/ε

2
k , 1}

· εk

≥ 4

5+√25+ 8LH
min{‖∇ f (P(xk + αkdk)) |J−k ‖ε

−1
k , εk}

≥ 2√
25+ 8LH

min{‖∇ f (P(xk + αkdk)) |J−k ‖ε
−1
k , εk}

⇓ (αk = 1, ‖dk‖ = ‖d−k ‖)
α2
k εk‖dk‖2 ≥

4

25+ 8LH
min{‖∇ f (P(xk + αkdk)) |J−k ‖

2ε−1k , ε3k }.

Case 2. jk = lk ≥ 1. In this case, since αk = θmk with mk ≤ jk = lk , we have

θ lk‖dk‖ > θεk �⇒ αk‖dk‖ = θmk‖dk‖ > θεk

�⇒ α2
k εk‖dk‖2 = (αk‖dk‖)2εk > θ2ε3k .

Case 3. jk > lk = 0. For j = 0 and j = jk − 1, we must have

θ j gTk dk +
θ2 j

2
dTk Hkdk + LH θ3 j

6
‖dk‖3 ≥ −ηθ2 jεk‖dk‖2

�⇒ θ j (g−k )T d−k +
θ2 j

2
(d−k )T H−k d−k +

LH θ3 j

6
‖d−k ‖3 ≥ −ηθ2 jεk‖d−k ‖2

(26)�⇒ −θ j

2
(1− ζ )εk‖d−k ‖2 +

LH

6
θ3 j‖d−k ‖3 ≥ −ηθ2 jεk‖d−k ‖2

�⇒ LH

6
θ2 j + ηεk

‖d−k ‖
θ j − (1− ζ )εk

2‖d−k ‖
≥ 0. (27)
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By setting j = 0 in this inequality, we have ‖d−k ‖ ≥ (3(1 − ζ ) − 6η)εk/LH . By
setting j = jk − 1 in this same inequality, and using θ jk > θ2 jk , we have

(
LH

6
+ ηεk

‖d−k ‖

)
θ jk−1 ≥ (1− ζ )εk

2‖d−k ‖
�⇒ θ jk‖d−k ‖ ≥

(1− ζ )θεk

(LH/3)+ 2ηεk/‖d−k ‖
(28)

≥ (1− ζ )θεk

(LH/3)+ 2ηLH/(3(1− ζ )− 6η)

= 3(1− ζ − 2η)θεk

LH
,

where the final equality follows by elementarymanipulation. Using again αk = θmk ≥
θ jk , we have

α2
k εk‖dk‖2 = α2

k εk‖d−k ‖2 ≥ (θ jk‖d−k ‖)2εk ≥
9(1− ζ − 2η)2θ2ε3k

L2
H

.

Case 4. jk > lk ≥ 1. By the same argument as in Case 3, (28) holds. Moreover,
‖d−k ‖ = ‖dk‖ > εk since lk ≥ 1. Therefore, we have

(28) �⇒ θ jk‖d−k ‖ ≥
(1− ζ )θεk

LH/3+ 2ηεk/‖d−k ‖
>

(1− ζ )θεk

LH/3+ 2η

�⇒ α2
k εk‖dk‖2 ≥ (θ jk‖dk‖)2εk ≥ (1− ζ )2θ2ε3k

(LH/3+ 2η)2

By combining the four cases analyzed above, we obtain

α2
k εk‖dk‖2 ≥

1

η
csol min{‖∇ f (P(xk + αkdk)) |J−k ‖

2ε−1k , ε3k }.

Therefore, by the line search rule, (23) holds. ��
Lemma 5 Suppose that at iteration k of Algorithm 1, MEO is invoked and identifies a
direction with curvature less than or equal to − 1

2εk . Then we have

f (xk)− f (xk+1) > ηmin

{
(3− 6η)2θ2

8L2
H

,
θ2

2
,
1

8

}
ε3k ≥ min

{cnc
8

,
η

8

}
ε3k .

Proof Let scalar λ and vector d be the quantities returned by MEO, so that
dT Sk Hk Skd = λ ≤ −εk/2 and ‖d‖ = 1. From the subsequent definition of dk in
Algorithm 1, we have that

gTk Skdk = −|gTk Skd||dT Sk Hk Skd| ≤ 0, (29a)
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‖dk‖ = |dT Sk Hk Skd|‖d‖ = |λ| ≥ 1
2εk, (29b)

dk Sk Hk Skdk = (dT Sk Hk Skd)3 = λ3 = −‖dk‖3. (29c)

Then, for any 0 < γ <
3−6η
LH

, we have

f (xk + γ Skdk) ≤ f (xk)+ γ gTk Skdk +
γ 2

2
dTk Sk Hk Skdk + LH

6
γ 3‖Skdk‖3

(Sk [i,i]≤1)≤ f (xk)+ γ gTk Skdk +
γ 2

2
dTk Sk Hk Skdk + LH

6
γ 3‖dk‖3

(29)≤ f (xk)− γ 2

2
‖dk‖3 + LH

6
γ 3‖dk‖3

< f (xk)− ηγ 2‖dk‖3.

Note that if γ ‖dk‖ ≤ εk < 1 then γ ‖dk‖∞ ≤ εk < 1 and P(xk + γ Skdk) =
xk + γ Skdk . In fact, by invoking (17), we have

i ∈ J+k �⇒ xik + γ sikd
i
k ≥ xik − xik‖γ dk‖∞ ≥ 0,

i ∈ J−k ∩ I �⇒ xik + γ sikd
i
k = xik + γ dik ≥ xik − εk > 0.

Thus for any γ < min
{
3−6η
LH

,
εk‖dk‖
}
, we have

f (P(xk + γ Skdk)) = f (xk + γ Skdk) < f (xk)− ηγ 2‖dk‖3.

Therefore, because of the backtracking mechanism and the definition of m̄k , we have

θ m̄k ≥ min

{
θ min

{
3− 6η

LH
,

εk

‖dk‖
}

, 1

}

�⇒ θ m̄k‖dk‖ ≥ min

{
(3− 6η)θ‖dk‖

LH
, θεk, ‖dk‖

}
(‖dk‖=|λ|≥ εk

2 )

≥ min

{
(3− 6η)θ

2LH
, θ,

1

2

}
εk . (30)

Then, based on the line search rule and the bounds (30) and (29b), we have

f (xk)− f (xk+1) = f (xk)− f (P(xk + θ m̄k Skdk))

> ηθ2m̄k‖dk‖3

≥ ηmin

{
(3− 6η)2θ2

8L2
H

,
θ2

2
,
1

8

}
ε3k . ��

The final inequality follows from the definition of cnc in Lemma 3.
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We now state and prove the main complexity result for Algorithm 1. Note that εg
is the parameter in the condition triggering the Newton-CG step in Algorithm 1.

Theorem 3 Suppose that Assumptions 1 and 2 hold for the problem (1), (2). Consider
Algorithm 1 with εk ≡ εH < 1. Then Algorithm 1 will stop within

Kpncg �

⎢⎢⎢⎣ 16( f (x0)− flow)

min
{
cnc, 8csol, 2θ

Lg
, η
} max{ε−2g εH , ε−3H }

⎥⎥⎥⎦+ 2 (31)

iterations, and outputs a vector x ∈ Ω such that the following approximate first-order
optimality conditions hold

xi ≥ 0 for i ∈ I, ‖S∇ f (x)‖ ≤ εg + ε2H , (32a)

∇i f (x) ≥ −ε
3/2
H , ∀i ∈ J+ � {i ∈ I | 0 ≤ xi ≤ εH }, (32b)

with probability 1. Moreover, S∇2 f (x)S � −εH I with probability at least (1 −
δ)Kpncg , where S = diag(s) is a diagonal matrix with si = xi ,∀i ∈ J+ and si = 1
otherwise; and δ ∈ [0, 1) is the probability of failure in MEO. In particular, if we set
εg = ε and εH = √ε, then the algorithm outputs an (ε, 1/2)-2o point (according to
Definition 1) with probability at least (1− δ)Kpncg within O(ε−3/2) iterations.

Proof We prove by estimating the function decrease when the algorithm does not stop
at iteration k or k + 1.
Case 1. A gradient projection step is taken at iteration k. Then by Lemma 2, we have

f (xk)− f (xk+1) >
1

4
min

{
θ

Lg
, 1

}
ε3k . (33)

Case 2. The Newton-CG step is triggered at iteration k, J−k+1 
= ∅ and ‖g−k+1‖ > εg .
Note that εk ≡ εH indicates that J−k+1 ⊆ J−k . Therefore, we have

‖∇ f (xk+1) |J−k ‖ ≥ ‖g
−
k+1‖ > εg.

Thus, by Lemmas 3 and 4, we have that

f (xk)− f (xk+1) ≥ min{cnc, csol}min{‖∇ f (xk+1) |J−k ‖
2ε−1H , ε3H }

> min{cnc, csol}min{ε2gε−1H , ε3H }.

Case 3. The MEO procedure is triggered and a negative curvature step is taken at
iteration k. Lemma 5 then implies that

f (xk)− f (xk+1) > min
{cnc

8
,
η

8

}
ε3k . (34)
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Case 4. The Newton-CG step is triggered at iteration k, but J−k+1 = ∅ or ‖g−k+1‖ ≤ εg .
We have from Lemmas 3 and 4 that f (xk) > f (xk+1). Moreover, since the algorithm
does not stop at iteration k+1, xk+2 is calculated from a step that is analyzed in either
Case 1 or Case 3. It follows that either (33) or (34) is satisfied with k replaced by k+1.

We now combine the lower bounds for function value decrease derived in the above
four cases, let εk ≡ εH < 1, and we have that for any k ≥ 0 such that the algorithm
does not stop at iteration k and k + 1, that

f (xk)− f (xk+2) > min

{
csol,

cnc
8

,
θ

4Lg
,
η

8

}
min{ε2gε−1H , ε3H }

if the stopping criterion is not satisfied. Therefore, the algorithm must stop within the
number of iterations stated in the theorem. When the algorithm stops, the output xk
satisfies:

‖g−k ‖ ≤ εg, gik ≥ −ε
3/2
H , ∀i ∈ J+k , ‖S+k g+k ‖ ≤ ε2H . (35)

Now let us derive the probability that the output xk does not satisfies Sk Hk Sk �
−εH I . Denote by pk,F the probability that the algorithm does not stop before iteration
k− 1 and xk does not satisfy λmin(Sk∇2 f (xk)Sk) ≥ −εH . (We set p0,F � 1.) Denote
by pk,F,stop the probability that the algorithm stops at iteration k but xk does not
satisfy λmin(Sk∇2 f (xk)Sk) ≥ −εH . Therefore, since the failure probability of MEO
is δ, we have that

pk,F,stop ≤ δ pk,F .

We know that the algorithm must stop within Kpncg number of iterations. Therefore,
if we denote the probability of failure of PNCG as pF , then

pF =
Kpncg−1∑

k=0
pk,F,stop.

We have that for any k = 0, 1, . . . , Kpncg − 1 that

pk,F +
k−1∑
t=0

pt,F,stop ≤ 1,

so that

pk,F,stop ≤ δ

(
1−

k−1∑
t=0

pt,F,stop

)
, k = 0, 1, . . . , Kpncg − 1.

Next we show that
∑k

t=0 pt,F,stop ≤ 1 − (1 − δ)k+1, k = 0, 1, . . . , Kpncg − 1 by
induction. The claim is trivial for k = 0. Supposing that it holds when k = k̄ ∈
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{0, 1, . . . , Kpncg − 2}, we have

k̄+1∑
t=0

pt,F,stop =
k̄∑

t=0
pt,F,stop + pk̄+1,F,stop

≤
k̄∑

t=0
pt,F,stop + δ

⎛
⎝1− k̄∑

t=0
pt,F,stop

⎞
⎠

= δ + (1− δ)

k̄∑
t=0

pt,F,stop

≤ δ + (1− δ)[1− (1− δ)k̄+1]
= 1− (1− δ)k̄+2.

This proves that the desired bound holds for k = k̄ + 1, completing the induction.
Therefore, we have that

pF =
Kpncg−1∑

k=0
pk,F,stop ≤ 1− (1− δ)Kpncg .

Then we proved that with probability at least (1 − δ)Kpncg , the output xk satisfies
Sk Hk Sk � −εH I . This condition for xk combined with (35) indicate the output
property. ��

In the statement of Theorem 3, δ is a user-defined parameter. It can be chosen small
enough to ensure that (1− δ)Kpncg is large. Specifically, by Bernoulli’s inequality, for
δ ∈ [0, 1) and K ≥ 1,

(1− δ)K ≥ 1− K δ.

If, for example, we set δ = 0.01/Kpncg, then (1 − δ)Kpncg ≥ 1 − 0.01 = 0.99.
Note that the value of δ only affects the operation complexity (involving Hessian-
vectors products), which depends only logarithmically on δ (see Corollary 1 below).
Therefore, we are free to choose very small values of δ without affecting the operation
complexity significantly.

We now state a result for operation complexity of this approach, based on the
fundamental operations of gradient evaluation and Hessian-vector products.

Corollary 1 Suppose that Assumptions 1, 2 hold for the problem (1), (2). For some
ε ∈ (0, 1), consider Algorithm 1 with εk ≡ √ε and εg = ε. Then Algorithm 1 stops
and outputs an (ε, 1/2)-2o point with probability at least (1− δ)Kpncg (Kpncg defined
in (31)) within

O
(
ε−3/2 min

{
n, ε−1/4 log

( n

δε

)})
.
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fundamental operations (gradient evaluations or Hessian-vector products).

Proof The bound on Hessian-vector products before Algorithm 1 stops is:

Kpncg−1∑
k=0

(max{2min{n, Jk} + 1, Nmeo
k }), (36)

where 2min{n, Jk} + 1 and Nmeo
k are the bound on Hessian-vector products of

the Capped CG and MEO procedure, respectively, at iteration k. By Lemma 8

and 9 in Appendix B and C from [30], given κ � ‖H−k ‖+εk
εk

≤ Lg+εk
εk

, Cmeo
k =

log
(
2.75n

δ2

) √‖H‖
2 ≤ log

(
2.75n/δ2

)√
Lg/2 and εk ≡ √ε, we have that:

Jk ≤ min

{
n,

⌈(√
κ + 1

2

)
log

(
144(

√
κ + 1)2κ6

ζ 2

)⌉}

�⇒ Jk = O
(
min

{
n, ε−

1
4 log

(
ε−1
)})

Nmeo
k = min

{
n, 1+ �Cmeo

k ε
− 1

2
k �

}
= O

(
min

{
n, ε−

1
4 log (n/δ)

})
,

Therefore, by Theorem 3 we have that

(36) ≤
Kpncg−1∑

k=0
2(max{Jk, Nmeo

k } + 1)

= O
(
Kpncg min

{
n, ε−

1
4 max

{
log
(
ε−1
)

, log (n/δ)
}})

= O
(
Kpncg min

{
n, ε−

1
4

(
log
(
ε−1
)
+ log (n/δ)

)})
= O

(
ε−

3
2 min

{
n, ε−

1
4 log

( n

δε

)})

Then the result follows by noticing that the number of gradient evaluation is bounded
by the number of outer-loop iterations of Algorithm 1, i.e., Kpncg. ��

5 Numerical experiment

We test the practicality of PNCG (Algorithm 1) by comparing it with several other
approaches on the well-known Nonnegative Matrix Factorization (NMF) problem.
The competitors include the gradient projection method (pgrad) described in [3, Sec-
tion 3.3] (also see Algorithm 2 in [30]), a log-barrier Newton-CG (LBNCG) proposed
in [26] for optimization with bounds, and two approaches that are specialized to NMF.
Preliminary results show that PNCG contends well with pgrad and LBNCG, and
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is competitive with the specialized methods on problems with relatively low dimen-
sions.4 We use 〈A, B〉 to denote the inner product of matrices A, B ∈ R

d1×d2 defined
by Tr(AT B), while the Frobenius norm is ‖A‖F = √〈A, A〉.

NMF is stated as follows, for a given matrix V ∈ R
m×n :

min
W∈Rm×r ,Y∈Rr×n F(W ,Y ) � 1

2
‖WY − V ‖2F , subject to W ≥ 0, Y ≥ 0, (37)

where the nonnegativity constraints apply componentwise, that is, all elements of W
and Y are required to be nonnegative. NMF has a wide range of applications in image
processing and text mining; see [15] for a comprehensive review.

In all following experiments, we create synthetic datasets following the approach
in [20]: Matrices W̄ ∈ R

m×r and Ȳ ∈ R
r×n are generated randomly where each

element has half standard normal distribution (to ensure W̄ ≥ 0 and Ȳ ≥ 0). Then
approximately 60% of the elements of these matrices (chosen uniformly at random)
are replaced by zeros. We then set V = W̄ Ȳ + E , where E is elementwise Gaussian
with mean 0 and standard deviation of 5% of average elementwise magnitude of W̄ Ȳ .
Finally, V is normalized such that its average elementwise magnitude is 1.

5.1 Comparison with other solvers with complexity guarantees

In this subsectionwe solveNMFusingPNCG and other solvers, including the gradient
projection method (pgrad) and the log-barrier Newton-CG (LBNCG). The former is
a known practical method for constrained nonlinear optimization [3, Section 3.3].
However, it is only guaranteed to seek an approximate first-order optimal point; its
complexity guarantees (O(ε−2)) (c.f. [14]) are generally worse than second-order
methods (O(ε−3/2)) in the nonconvex regime. The latter is proposed in [26], which
does have competitive complexity guarantees (see Table 1). Although PNCG and
LBNCG are able to locate approximate second-order optimal solutions, we stop these
algorithms as long as a first-order point is found or time/iteration limit is reached, so
that comparison with pgrad is fair.

Methods. First we specify the methods implemented in the experiment and their
settings. We make use here of notation ∇P introduced in [21] and defined as follows:

∇P
i f (x) =

{
∇i f (x) ifxi > 0 or i ∈ Ic,

min{0,∇i f (x)} ifxi = 0 and i ∈ I.
(38)

(Note that ∇P f (x) = 0 implies the first-order optimality conditions of (7).)

4 Experiments in this section are conducted using Matlab R2018b on MacBook Air 1.3 GHz Intel
Core i5. Source codes of experiments in this section can be found at: https://github.com/yue-xie/
ProjectedNewton.
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1. PNCG (Algorithm 1)5: Set εg = 10−6, εk ≡ √εg , θ = ζ = 1/2, η = 0.2. For

the parameter ζ̂ in Capped CG, we set it initially .1, but decrease by a factor of
10 whenever the line search procedure in the outer-loop fails to find a descent
direction, until a lower bound of ζ

3κ is reached. We do not use Procedure MEO,

terminating Algorithm 1 when gik ≥ −ε
3/2
k for all i ∈ J+k and ‖S+k g+k ‖ ≤ ε2k and

‖g−k ‖ ≤ εg , because we are interested only in finding an approximate first-order
solution satisfying (32).

2. pgrad (Algorithm 2 in [30]): Projected gradient method [3, Section 3.3] directly
applied to NMF. This method uses Armijo rule along the projection arc [3], with
backtracking parameterβ = 1/2 and step acceptance parameterσ = 1/2 is chosen
as such to be consistent with the gradient projection step in Algorithm 1 (where
the step acceptance parameter is set as the default value 1/2). This algorithm is
terminated when ‖∇P F(W ,Y )‖F ≤ 10−4.

3. LBNCG: Log-barrier Newton-conjugate-gradient [26]. This method is equipped
with worst case complexity guarantees (see Table 1) but its practical performance
has not been studied to date.We implement it asAlgorithm1 in [26]with parameter
choices εg = 10−4, θ = 1/2, ξr = 1/2, ξ̄ = 1/2, β = 1/2, η = 1/2.We deal with
the CG accuracy tolerance ξ̂r and cμ similarly as in our implementation of PNCG,
setting them initially to .1 and decreasing them when we find that the modified
CG is not yielding descent directions. Similar as in PNCG, we turn off Procedure
3 (MEO) in Algorithm 1 in [26] because we are only interested in locating an
approximate first-order solution. Termination criterion is ∇F(Wk,Yk) > −10−4
and |min{[WT

k , Yk], 1} � [∇W F(Wk,Yk)T ,∇Y F(Wk,Yk)]| ≤ 10−4, where >,≤
,min{}, | · | hold elementwisely and � denotes elementwise multiplication.

An outer-loop iteration limit of 5000 and a running time of 100s are set for PNCG
and pgrad. An outer-loop iteration limit of 10000 and a time limit of 60 s are applied
to LBNCG.

Experiment settings and metrics. To create Table 2, we generate three different sce-
narios ((m, n, r) ∈ {(150, 100, 15), (300, 200, 15), (600, 400, 15)}). The elements of
the initial matrices W0 and Y0 are chosen from the half standard normal distribution,
then normalized so that the average elementwise magnitude of either W0 or Y0 is 1.
Given x̄ ≥ 0, the residual of (1),(2) is defined following Definition 1:

residual = max

{
‖S̄∇ f (x̄)‖,− min

i∈J+
{∇i f (x̄)}

}
, (39)

where J+ � {i ∈ I | 0 ≤ x̄ i ≤ √εr }, J− � {1, . . . , n}\J+ = Ic ∪ {i ∈ I | x̄ i >√
εr }, and S̄ = diag(s̄) is a diagonal matrix with s̄i = 1 when i ∈ J− and s̄i = x̄ i

when i ∈ J+. In this experiment we let εr = 10−6.

5 Note that Assumption 1 may not hold for (37), but we can modify the formulation to ensure this property,
for example by adding elementwise upper bounds to W and H or adding a penalty ‖WTW − YY T ‖2 to
the objective. We omit these modifications to allow a more direct comparison with the specialized solvers
for (37) described later.

123



Complexity of a projected Newton-CG method…

Table 2 Comparison of three solvers with complexity guarantees on NMF

Algorithm Outer-loop iteration Time(s) F∗ Residual Projnorm

m = 150, n = 100, r = 15

PNCG 1030.4 1.3 15.8 2.7e−05 6.3e−05
pgrad 1275.2 1.4 15.8 9.4e−05 9.5e−05
LBNCG 9774.8 57.7 4574.0 2.6e+04 4.4e+04

m = 300, n = 200, r = 15

PNCG 639.4 2.3 68.9 2.8e−05 1.4e−04
pgrad 708.8 2.2 68.9 9.3e−05 9.5e−05
LBNCG 4529.4 60.0 23,702.8 7.5e+04 1.4e+05

m = 600, n = 400, r = 15

PNCG 579.2 8.1 285.5 3.0e−05 1.1e−04
pgrad 619.4 8.8 285.5 9.3e−05 9.7e−05
LBNCG 1364.8 60.0 146,213.1 2.1e+05 4.3e+05

Three scenarios are considered with different dimensions m and n. In each scenario, 5 trials are run from
different initial points (each of the four algorithms starts from the same initial point on each trial) and
average results are reported. Elapsed time of each algorithm is reported. F∗ is the objective function value
of the output. residual is defined in (39) and projnorm represents ‖∇P F(W , Y )‖F . PNCG and pgrad
have similar performance that clearly dominates LBNCG, which always fails to converge in the allotted
time/iteration limit

Results.Table 2 indicates thatPNCG and pgrad are close in performance, withPNCG
attaining slightly better residual measures. PNCG requires fewer outer-loop iterations
because the Newton-CG steps taken on some iterations yield more progress than a
first-order step.LBNCG is not competitive, perhaps not surprisingly since this method
was designed with good worst-case complexity in mind, rather than for any practical
considerations.

5.2 Comparison with specialized NMF schemes

We now compare PNCG with efficient alternating-direction schemes that are
specialized for NMF. The following methods are compared.

1. PNCG(Algorithm 1): We use the same settings as in in Sect. 5.1, except that MEO
is turned on and implemented using CG (see [27, Theorem 1]) with δ = .01. This
procedure enables PNCG to escape from a saddle point, as is shown in Fig. 1(d).

2. alspgrad: Alternating nonnegative least squares using projected gradient,
described in [21]. Parameter settings are as described in [21], except that the
algorithm is stopped when ‖∇P F(W ,Y )‖F ≤ 10−4 (instead of ‖∇P F(W ,Y )‖F
≤ 10−4 × ‖∇F(W0,Y0)‖F ) and the initial tolerance for the subproblem is set as
10−3 (instead of 10−3 × ‖∇F(W0,Y0)‖F ).

3. pnm: Alternating nonnegative least squares using two-metric gradient projection,
described in [16]. Parameter settings from [16] are used, except that the algo-
rithm is stopped when ‖∇P F(W ,Y )‖F ≤ 10−4 and the initial tolerance for the
subproblem is set as 10−3.
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Fig. 1 Comparison between PNCG and specialized solver alspgrad, showing the objective function value
plotted against time. The algorithms are started near saddle points constructed as in (40)

Table 3 Comparison between
PNCG and two solvers that are
specialized to NMF, showing
time, objective function value
F∗ and projnorm
‖∇P F(W , Y )‖F of the output.
For each group of (m, n, r), we
generate synthetic data and
initial points randomly. Then
repeat 10 times and report the
average values of run time, final
objective value, and norm of
projected gradient

Algorithm time(s) F∗ projnorm

m = 300, n = 200, r = 10

PNCG 1.06 70.065 3.1e−05
alspgrad 0.59 70.065 5.6e−05
pnm 0.79 70.065 7.8e−05
m = 300, n = 200, r = 15

PNCG 2.37 68.692 6.9e−05
alspgrad 1.70 68.692 8.1e−05
pnm 1.19 68.692 8.0e−05

An outer-loop iteration limit of 5000 and a running time limit of 100s are set for
PNCG, while limits of 1000 and 100s are applied to the other two algorithms.
Settings. Synthetic datasets are created as above, with m = 300 and n = 200, and
r = 10, 15. For Table 3, we use 10 cases of randomly generated datasets and initial
matrices for each triple (m, n, r) and record the average outcome. In particular, the
initial matrices W0, Y0 are generated i.i.d. elementwise from a half standard normal
distribution, then normalized such that the average magnitude of either W0 or Y0 is 1.
For Fig. 1, we start both algorithms near a saddle point of (37), constructed according
to the following observation. If U ∈ R

m×r0 and R ∈ R
r0×n constitute a first-order

optimal point of (37) (that is, ∇P F(U , R) = 0) when r = r0, then

W � 1

k1
(1, . . . , 1)︸ ︷︷ ︸

k1×k2
⊗U , Y � 1

k2
(1; . . . ; 1)︸ ︷︷ ︸

k1×k2
⊗R (40)

constitute a first-order optimal point of (37) when r = r0k1k2. In the experiment,
we first use alspgrad to solve (37) with r = r0 and obtain the approximate solution
U and R. We then set W0 and Y0 as in (40), and run alspgrad with r = r0k1k2
from this starting point, to see if it is able to escape from the saddle point. The other
approaches are run from the same choice of W0 and Y0. In Fig. 1, we record three
cases: (r , r0, k1, k2) = (10, 1, 5, 2), (10, 2, 5, 1),(15, 5, 3, 1).
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Results. Table 3 averages results over ten runs for each choice of (m, n, r). We see
that PNCG is slower in computation time (though within a factor of two of the fastest
specialized solver) but locates a slightly more accurate solution, as measured by the
Frobenius norm of the projected gradient. Note that alspgrad and pnm are methods
designed exclusively to solve NMF; they are not equipped with complexity results.
When m and n are larger than the values used here, the discrepancy in computation
time between PNCG and the specialized methods may grow. In fact, the cost of the
Hessian-vector product or gradient evaluation or checking step acceptance criterion
in PNCG is O(mnr); the cost of the gradient evaluation or step acceptance criterion
validation in the subproblem of alspgrad is either O(mr2) or O(nr2); the cost of
gradient evaluation or partial Hessian evaluation or step acceptance criterion validation
in pnm is eitherO(mr2) orO(nr2), while the step direction calculation in pnm costs
either O(m̄s̄3) or O(n̄s̄3) where m̄ ≤ m, n̄ ≤ n, s̄ ≤ r . Therefore, when m ! r ,
n ! r , the higher costs of these basic operations compromise the performance of
PNCG.

In Fig. 1, where the algorithms are initialized at the saddle point, pnm cannot be
applied since the Hessian for the subproblem is singular at the initial point. The first-
order method alspgrad is able to escape from the vicinity of the current saddle point
and reduce the objective further, but it appears to get stuck at another suboptimal point.
Meanwhile, PNCG appears to exit the saddle point, due to a call to MEO. We include
Fig. 1 to verify the theory for PNCG in the worst-case scenario of starting at a saddle
point. Random starts like those used in the other plots are likely to yield convergence
of the specialized methods to local minima.

6 Conclusion

In this article, we relate and compare different definitions of approximate second-
order optimal point in literature and define our own for optimization with bounds. We
proposed a projected Newton-CG method. It has good complexity guarantees and is
designed with practicality in mind, and is related to the two-metric projection algo-
rithms proposed in the 1980s. The projected Newton-CG terminates withinO(ε−3/2)
iterations or Õ(ε−7/4) number of Hessian-vector product/gradient evaluation opera-
tions and finds a point that is approximately second-order optimal to tolerance ε, with
high probability. Numerical experiments on nonnegative matrix factorization illustrate
practicality of the methods.

In future work, we will consider extensions of the algorithms to solve optimization
problems with more complex structures such as polyhedral feasible sets, �1-norm
terms, and even more general convex constraints that allow for cheap projection. We
will also investigate complexity guarantees of the two-metric projection algorithm
proposed by Bertsekas.

A Comparing approximate second-order optimality conditions

We show that the relation � is transitive.
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Lemma 6 If DefA � DefB and DefB � DefC, then DefA � DefC.

Proof Since DefA � DefB, there exists εA ∈ (0, 1] and cA > 0 such that for any
x ∈ X and ε ∈ (0, εA], if x is an (ε, p)-2o point byDefA, then x is also a (cAε, p)-2o
point by DefB.

Likewise, since DefB � DefC, there exists εB ∈ (0, 1] and cB > 0 such that
for any x ∈ X and ε ∈ (0, εB], if x is an (ε, p)-2o point by DefB, then x is also a
(cBε, p)-2o point by DefC.

Let ε̄ = min{εA, εB/cA}. Take arbitrary x ∈ X and ε ∈ (0, ε̄]. Suppose that x is an
(ε, p)-2o point byDefA. SinceDefA � DefB and ε ≤ εA, x is a (cAε, p)-2o point by
DefB; Since DefB � DefC and cAε ≤ εB , x is also a (cBcAε, p)-2o point by DefC.
Since the choice of x ∈ X and ε ∈ (0, ε̄] is arbitrary, we have that DefA � DefC. ��

We now give the proof of Theorem 2.

Proof Let UX � maxx∈X ‖x‖∞.

(1) Suppose that x is an (ε, p)-2o point by Def2 and ε ≤ 1. We show (1) through the
following steps.

(1a) Fix any index i . Choose d such that di = Δ and d j = 0,∀ j 
= i , then (12)
�⇒ ∇ f (x)T d = ∇i f (x)Δ ≥ −Δε �⇒ ∇i f (x) ≥ −ε. This indicates
that ∇ f (x) ≥ −ε1.

(1b) Fix any index i . Let di = −sign(∇i f (x))min{Δ, xi } and d j = 0, ∀ j 
= i .
Then (12) �⇒ ∇ f (x)T d = −|∇i f (x)|min{Δ, xi } ≥ −Δε �⇒
|∇i f (x)| ≤ Δε

min{Δ,xi } �⇒ |∇i f (x)xi | ≤ Δxi ε
min{Δ,xi } = max{xi ,Δ}ε ≤

max{UX ,Δ}ε. This indicates that ‖X∇ f (x)‖∞ ≤ max{UX ,Δ}ε ≤
max{UX ,Δmax}ε.

(1c) If x = 0, then second row of (13) holds trivially. Suppose that x 
= 0. Let

d � cd Xv, where cd � min
{

Δ
‖x‖∞ , 1

}
, v is an arbitrary vector with ‖v‖2 = 1.

Therefore, we have that x + d ≥ 0, x − d ≥ 0, ‖d‖ ≤ Δ. Therefore,

−Δ2ε p (12)≤ ∇ f (x)T d + 1

2
dT∇2 f (x)d

and also,

−Δ2ε p (12)≤ −∇ f (x)T d + 1

2
dT∇2 f (x)d.

Therefore,

−Δ2ε p ≤ 1

2
dT∇2 f (x)d = c2d

2
vT X∇2 f (x)Xv

�⇒ vT X∇2 f (x)Xv ≥ −2Δ2

c2d
ε p ≥ −2max{‖x‖2∞,Δ2}ε p ≥ −2max{U2

X ,Δ2
max}ε p.

Denote cΔ �
(
2max{U 2

X ,Δ2
max}

)1/p
. Therefore, by (1a)-(1c), x is an (cε, p)-2o

point by Def3, where c � max{1,UX ,Δmax, cΔ}.
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(2) Given x ≥ 0, let T � diag(t) be a diagonal matrix of n × n such that t i = 1 if
xi ≤ 1 and t i = 1/xi if xi > 1. Then we have that X̄ = XT = T X .Def3 � Def4.
Suppose that x is an (ε, p)-2o point by Def3. Note

‖X̄∇ f (x)‖∞ ≤ ‖X∇ f (x)‖∞ ≤ ε.

dT X̄∇2 f (x)X̄d = (Td)T X∇2 f (x)XTd ≥ −ε p‖Td‖2 ≥ −ε p‖d‖2,∀d ∈ R
n .

Therefore, x is also an (ε, p)-2o point by Def4. Def4 � Def3. x is an (ε, p)-2o
point by Def4. Then

‖X∇ f (x)‖∞ = ‖T−1 X̄∇ f (x)‖∞ ≤ ‖x‖∞‖X̄∇ f (x)‖∞ ≤ UX ε.

dT X∇2 f (x)Xd = (T−1d)T X̄∇2 f (x)X̄(T−1d) ≥ −ε p‖T−1d‖2
≥ −ε p‖x‖2∞‖d‖2 ≥ −(U 2/p

X ε)p‖d‖2.

Then x is also an (max{UX ,U 2/p
X }ε, p)-2o point by Def3.

(3) Obviously we have that Def3 � Def5. By (2) and the property of � and ≈,
Def4 � Def5.

(4) Suppose that x is an (ε, p)-2o point by Def1. Let J+, J−, and S be associated
with x as in Def1. Let T = diag(t) be a diagonal matrix of dimension n × n with
t i = 1 for i ∈ J+ and t i = xi , for i ∈ J−. Then X = T S and

‖X∇ f (x)‖∞ ≤ ‖X∇ f (x)‖ = ‖T S∇ f (x)‖ ≤ ‖T ‖‖S∇ f (x)‖
≤ max{‖x‖∞, 1}‖S∇ f (x)‖ ≤ 2max{UX , 1}ε ≤ max{U 2/p

X , 2UX , 2}ε.

Also, for any d ∈ R
n , we have

dT X∇2 f (x)Xd = dT T S∇2 f (x)STd ≥ −ε p‖Td‖2
≥ −ε p max{‖x‖2∞, 1}‖d‖2 = −(ε max{‖x‖2/p∞ , 1})p‖d‖2
≥ −(ε max{U 2/p

X , 1})p‖d‖2 ≥ −(ε max{U 2/p
X , 2UX , 2})p‖d‖2.

If we let c = max{U 2/p
X , 2UX , 2}, then x is an (cε, p)-2o point by Def5.

��
The following example illustrates why Def2,Def3,Def4 are not essentially stronger
than Def1.

Example 1 Consider problem (1),(2),(11) in 1-dimension. Let f (x) = 1
4 x

4 and p ∈
(0, 1]. Given any c > 0, there exists ε̄ ∈ (0, 1) such that for any ε ∈ (0, ε̄), we can
find an x ≥ 0 that is an (ε, p)-2o point byDef2,Def3,Def4, but not a (cε, p)-2o point
by Def1. In particular, choose ε̄ such that for any ε ∈ (0, ε̄),

ε7/24 ≤ Δmax, ε1/6 ≤ Δmax, ε1/6 ≤ 6Δ2
max, ε5/24 < c−1/2, ε1/8 <

1

2c
. (41)
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Let x = ε7/24. Then f ′(x) = x3 = ε7/8, x f ′(x) = x4 = ε7/6, f ′′(x) = 3x2 ≥
0,∀x ≥ 0. Apparently, x is an (ε, p)-2o point by Def3, Def4. Note that by (41),

min
x+d≥0,|d|≤Δmax

f ′(x)d = −x3 · x = −ε7/6 ≥ −Δmaxε.

min
x+d≥0,|d|≤Δmax

f ′(x)d + 1

2
f ′′(x)d2 = min

x+d≥0,|d|≤Δmax
x3d + 3x2

2
· d2

(d∗=−x/3)= −x4/6 = −ε7/6/6 ≥ −Δ2
maxε

p.

Therefore, x is also an (ε, p)-2o point by Def2(let Δ = Δmax). However, note that by
(41),

x >
√
cε �⇒ J− = {1}; f ′(x) = ε7/8 > 2cε,

so x is not an (cε, p)-2o point by Def1.

A definition of approximate second-order optimality proposed in [25] is adapted to
the scope of our study by setting Ω = R

n+, to obtain the following definition.

Definition 7 ([25], Def7) x is an (ε, p)-2o point of (1), (2), (11) according to Def7 if
x ∈ Ω , and

∣∣∣globalminx+d∈Ω,‖d‖≤1 ∇ f (x)T d
∣∣∣ ≤ ε,∣∣∣globalminx+d∈Ω,‖d‖≤1,∇ f (x)T d≤0 dT∇2 f (x)d
∣∣∣ ≤ ε p.

(42)

The next result states that Def2 is essentially stronger than Def7, which in turn is
essentially stronger than Def3.

Theorem 4 (1). Def2 � Def7; (2). Def7 � Def3.

Proof (1) Suppose that x is an (ε, p)-2o point byDef2. Let d∗1 and d∗2 be the solution of
the first and second problems in (42), respectively.WLOG, suppose that ‖d∗1‖ 
= 0,
‖d∗2‖ 
= 0. Define d̄i = d∗i min{Δ/‖d∗i ‖, 1}, i = 1, 2. Then d̄1 and d̄2 are feasible
points in (12). Then we have

∇ f (x)T d̄1 ≥ −Δε,

�⇒ ∇ f (x)T d∗1 = ∇ f (x)T d̄1 max{‖d∗1‖/Δ, 1}
≥ −Δmax{‖d∗1‖/Δ, 1}ε = −max{‖d∗1‖,Δ}ε ≥ −max{Δmax, 1}ε.

Moreover, we have

1

2
d̄T2 ∇2 f (x)d̄2 + ∇ f (x)T d̄2 ≥ −Δ2ε p,
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which implies that

1

2
d̄T2 ∇2 f (x)d̄2 ≥ −Δ2ε p,

since ∇ f (x)T d̄2 ≤ 0. Therefore, we have

1

2
(d∗2 )T∇2 f (x)d∗2

= 1

2
d̄T2 ∇2 f (x)d̄2(max{‖d∗2‖/Δ, 1})2 ≥ −Δ2(max{‖d∗2‖/Δ, 1})2ε p

= −max{‖d∗2‖2,Δ2}ε p ≥ −max{Δ2
max, 1}ε p.

Altogether, these expressions imply that x is an (cε, p)-2o point by Def7 where
c = max{21/pΔ2/p

max,Δmax, 21/p}.
(2) Let UX � maxx∈X ‖x‖∞. Suppose that x is an (ε, p)-2o point by Def7. Similar

to the proof of Theorem 2, first row of (13) holds because ∇ f (x) ≥ −ε1, and
‖X∇ f (x)‖∞ ≤ max{UX , 1}ε. Consider now the second rowof (13). If x = 0, this

condition holds trivially. When x 
= 0, let d � cd Xv, where cd � min
{

1
‖x‖∞ , 1

}
,

v is an arbitrary vector with ‖v‖2 = 1. Let d̄ = −sign(∇ f (x)T d)d. Therefore,
we have that x + d̄ ≥ 0, ‖d̄‖ ≤ 1, ∇ f (x)T d̄ ≤ 0. According to Def7, we have

d̄T∇2 f (x)d̄ ≥ −ε p

Therefore,

−ε p ≤ d̄T∇2 f (x)d̄ = dT∇2 f (x)d = c2dv
T X∇2 f (x)Xv

�⇒ vT X∇2 f (x)Xv ≥ −ε p/c2d ≥ −max{‖x‖2∞, 1}ε p ≥ −max{U 2
X , 1}ε p.

Altogether, x is an (cε, p)-2o point by Def3, where c = max{U 2/p
X ,UX , 1}.

��

B Two-sided bounds

In this section we consider the two-sided bound-constrained optimization:

min f (x) s.t. x ∈ Ω � {x ∈ R
n | 0 ≤ xi ≤ ui , i ∈ I} (43)

where f : Rn → R is twice continuously differentiable and is bounded below by flow
on the feasible regionΩ , and I ⊂ {1, 2, . . . , n}. We assume without loss of generality
that ui > 0 for all i ∈ I. We allow ui = ∞, that is, not all components xi for i ∈ I
have upper bounds.

Extending Definition 1, we define approximate optimality for (43) as follows.
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Definition 8 ((ε, p)-2o of (43)) We say that x is an (ε, p)-2o point for (43) if and only
if

0 ≤ xi ≤ ui , i ∈ I, ‖S∇ f (x)‖ ≤ 2ε, and{
∇i f (x) ≥ −ε3/4, i ∈ I, xik ≤

√
ε,

∇i f (x) ≤ ε3/4, i ∈ I, xik ≥ ui −√ε,

S∇2 f (x)S � −ε p I ,

where we define J+ � {i ∈ I | 0 ≤ xi ≤ √
ε or ui − √ε ≤ xi ≤ ui }, J− �

{1, . . . , n}\J+, S = diag(s), where si = min{xi , ui − xi } if i ∈ J+, and si = 1 if
i ∈ J−. Again, this definition reduces to Definition 1 when ui = +∞ for all i ∈ I,
and can be motivated by exact (weak) second-order optimal conditions of (43). The
extension of projected Newton-CG (Algorithm 1) to the general bound-constrained
optimization (43) is relatively straightforward. We redefine the projection operator P ,
index sets J+k and J−k , and Sk = diag(sk) as follows:

[P(x)]i �
{
mid(0, xi , ui ) i ∈ I,

xi otherwise,

J+k � {i ∈ I | 0 ≤ xik ≤ εk or u
i − εk ≤ xik ≤ ui },

J−k � {1, . . . , n} \ J+k = {i ∈ I | εk < xik < ui − εk} ∪ Ic.

sik =
{
min{xik, ui − xik}, if i ∈ J+k ,

1, otherwise.

The definitions of g−k , H
−
k , g+k and S+k , are the same, modulo the redefined P , J+k , J−k ,

and Sk . For Algorithm 1, the only adjustment to be made is the conditions to trigger
the gradient step, which become

gik < −ε
3/2
k , xik ≤ εk, i ∈ I or gik > ε

3/2
k , xik ≥ ui − εk, i ∈ I or ‖S+k g+k ‖ ≥ ε2k .

We make an additional assumption on εk that

2εk ≤ ui , ∀k ≥ 0, i ∈ I,

and assume that Assumption 1 and 2 hold when Ω includes two-sided bounds. It
can then be verified that Lemmas 3, 4 and 5 still hold for the modified Algorithm 1.
Lemma 2 also holds if the conditions to trigger the gradient step is tailored accordingly.
Furthermore, if we let εk ≡ εH = √ε and εg = ε, then the Algorithm stops within the
same number of iterations specified in Theorem3 (O(ε−3/2)) and locates an x that is an
(ε, 1/2)-2o point of (43) with probability at least (1− δ)Kpncg , where δ ∈ [0, 1) is the
probability of failure in MEO. Moreover, the complexity of fundamental operations
(gradient evaluations or Hessian-vector products) is also Õ(ε−7/4).
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