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Abstract

We obtain asymptotic expansions for local probabilities of partial sums for uniformly bounded
independent but not necessarily identically distributed integer-valued random variables. The expansions
involve products of polynomials and trigonometric polynomials. These results also have counterparts
for triangular arrays. Our results do not require any additional assumptions. As an application of our
expansions we find necessary and sufficient conditions for the classical Edgeworth expansion. It turns
out that there are two possible obstructions for the validity of the Edgeworth expansion of order r. First,
the distance between the distribution of the underlying partial sums modulo some /4 € N and the uniform
distribution could fail to be o(o }{]_r), where oy is the standard deviation of the partial sum. Second, this
distribution could have the required closeness but this closeness is unstable, in the sense that it could
be destroyed by removing finitely many terms. In the first case, the expansion of order r fails. In the
second case it may or may not hold depending on the behavior of the derivatives of the characteristic
functions of the summands whose removal causes the break-up of the uniform distribution. We also
show that a quantitative version of the classical Prokhorov condition (for the strong local central limit
theorem) is sufficient for Edgeworth expansions, and moreover this condition is, in some sense, optimal.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Let X, X»,... be a uniformly bounded sequence of independent integer-valued random
variables. Set Sy = X1 + Xo +---+ Xy, Vv = V(Sy) = Var(Sy) and oy = +/Vy. Assume
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also that Vy — oo as N — oo. Then the central limit theorem (CLT) holds true, namely the
distribution of (Sy — E(Sy))/on converges to the standard normal distribution as N — oo.
Recall that the local central limit theorem (LLT) states that, uniformly in k we have

P(Sy = k) = e~ k=ESN)?/2Vy | o7,

1
A/ 2o N
This theorem is also a classical result, and it has origins in the de Moivre-Laplace theorem. The
stable local central limit theorem (SLLT) states that the LLT holds true for any integer-valued
square integrable independent sequence X|, X, ... which differs from X;, X», ... by a finite
number of elements. We recall a classical result due to Prokhorov.

Theorem 1.1 ([32]). The SLLT holds iff for each integer h > 1,
Z]P(X,, # m, mod h) = 00 (1.1)

where m,, = m,(h) is the most likely residue of X, modulo h.

We refer the readers to [33,36] for extensions of this result to the case when X,,’s are not
necessarily bounded (for instance, the result holds true when sup || X, ||;3 < oo). Related results
n
for local convergence to more general limit laws are discussed in [6,25].

The above result provides a necessary and sufficient condition for the SLLT. It turns out
that the difference between LLT and SLLT is not that big.

Proposition 1.2. Suppose Sy obeys LLT. Then for each integer h > 2 at least one of the
following conditions occur:
either (a) Y (X, # m,(h) mod h) = oc.

k
or (b) 3j1, ja, ..., jx with k < h such that Z X, mod h is uniformly distributed. In that
s=1
case for all N > max(ji, ..., jr) we have that Sy mod h is uniformly distributed.

Since we could not find this result in the literature we include the proof in Section 6.
Next, we provide necessary and sufficient conditions for the regular LLT. We need an
additional notation. Let K = sup || X,|~. Call ¢ resonant if t = % with 0 < m < 2K
n

and 0 <[ < m.

Theorem 1.3. The following conditions are equivalent:
(a) Sy satisfies LLT; _
(b) For each € e R\ Z, Nlim E (e*55V) = 0;
— 00 .
(c) For each non-zero resonant point &, Nlim E (eZ”’ESN) =0;
—00

(d) For each integer h the distribution of Sy mod h converges to uniform.

The proof of this result is also given in Section 6. We refer the readers to [8,11] for related
results in more general settings.

The local limit theorem deals with approximation of P(Sy = k) up to an error term of order
o(a;l). Given r > 1, the Edgeworth expansion of order r holds true if there are polynomials
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P, n, whose coefficients are uniformly bounded in N and their degrees do no depend on N,
so that uniformly in k € Z we have that

P, vk
Besy =0 = 3 22V 04 1 o) (1.2)

b=1 On

r

where ky = (k — E(Sy)) /oy and g(u) = J#z?e‘”z/z. In Section 5 we will show, in particular,
that Edgeworth expansions of any order r are unique up to terms of order o(c,"), and so
the case r = 1 coincides with the LLT. Edgeworth expansions for discrete (lattice-valued)
random variables have been studied in literature for iid random variables [18, Theorem 4.5.4]
[30, Chapter VII], (see also [12, Theorem 5]), homogeneous Markov chains [28, Theorems
2-4], decomposable statistics [24], or dynamical systems [15] with good spectral properties
such as expanding maps. Papers [2,16] discuss the rate of convergence in the LLT. Results for
non-lattice variables were obtained in [1,3,5,13] (which considered random vectors) and [15]
(see also [17] for corresponding results for random expanding dynamical systems).

In this paper we obtain analogues of Theorems 1.1 and 1.3 for higher order Edgeworth
expansions for independent but not identically distributed integer-valued uniformly bounded
random variables. We begin with the following result.

Theorem 1.4. Let K = sup || X[ p~. For each r € N there is a constant R=R(r, K) such

J
that the Edgeworth expansion of order r holds if for all N we have
N
My == min ZP(Xn # my(h) mod h) > R1n Vy.
n=1

2<h<2K

In particular, Sy obeys Edgeworth expansions of all orders if
My
im =
N—oo In Vi

The number R(r, K) can be chosen according to Remark 3.6. This theorem is a quantitative
version of Prokhorov’s Theorem 1.1. We observe that logarithmic in Vi growth of various non-
periodicity characteristics of individual summands are often used in the theory of local limit
theorems (see e.g. [20,21,23]). We will see from the examples of Section 10 that this result
is close to optimal. However, to justify the optimality we need to understand the conditions
necessary for the validity of the Edgeworth expansion.

Theorem 1.5. For any r > 1, the Edgeworth expansion of order r holds if and only if for
any nonzero resonant point t and 0 < £ < r we have

&5%)(2‘) =0 (af,"']_r) .
where @N(x) = E[e*GON"ESN] gnd 551(5)(0 is its £-th derivative.

This result generalizes Theorem 1.3, however in contrast with that theorem, in the case
r > 1 we also need to take into account the behavior of the derivatives of the characteristic
function at nonzero resonant points. The values of the characteristic function at the resonant
points 27l/m have clear probabilistic meaning. Namely, they control the rate equidistribution
modulo m (see part (d) of Theorem 1.3 or Lemma 6.2). Unfortunately, the probabilistic meaning
of the derivatives is less clear, so it is desirable to characterize the validity of the Edgeworth
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expansions of orders higher than 1 without considering the derivatives. Example 10.2 shows that
this is impossible without additional assumptions. Some of the reasonable additional conditions
are presented below.

We start with the expansion of order 2.

Theorem 1.6. Suppose Sy obeys the SLLT. Then the following are equivalent:
(a) Edgeworth expansion of order 2 holds,
(b) |Pn(t)| = o(oﬁl)for each nonzero resonant point t;
(c) For each h < 2K the distribution of Sy mod h is 0(01;1) close to uniform.

Corollary 7.3 provides an extension of Theorem 1.6 for expansions of an arbitrary order r
under an additional assumption that ¢ = mi&l inf |¢,(t)| > 0, where R is the set of all nonzero
te n

resonant points. The latter condition implies in particular, that for each ¢ there is a uniform
lower bound on the distance between the distribution of X, + X,,, +---+ X,,, mod m and the

uniform distribution, when {n, ns, ..., ng} € N¢ and m > 2.
Next we discuss an analogue of Theorem 1.1 for expansions of order higher than 2. It
requires a stronger condition which uses an additional notation. Given j;, js, ..., j; with

Ji € [1, N] we write

s
SN:jt s = SN — § Xj-
=1

Thus Sy ;. j....js 1S a partial sum of our sequence with s terms removed. We will say that
{X,} admits an Edgeworth expansion of order r in a superstable way (which will be denoted
by {X,) € EeSs(r)) if for each 5 and each sequence j[, j)', ..., j with sy < § there are
polynomials P, 5 whose coefficients are O(1) in N and their degrees do not depend on N so
that uniformly in k € Z we have that

r

Py n(ky) _
P(Sy v . =) = ; =g 0k ooy (13)
and the estimates in O(1) and o(oy") are uniform in the choice of the tuples le e, jslyv .

That is, by removing a finite number of terms we cannot destroy the validity of the Edgeworth
expansion (even though the coefficients of the underlying polynomials will of course depend
on the choice of the removed terms). Let Py, j,...;,(t) be the characteristic function of

SN;jlvj2v~~~vjs'

Remark 1.7. We note that in contrast with SLLT, in the definition of the superstrong Edgeworth
expansion one is only allowed to remove old terms, but not to add new ones. This difference in
the definition is not essential, since adding terms with sufficiently many moments (in particular,
adding bounded terms) does not destroy the validity of the Edgeworth expansion. See the proof
of Theorem 1.8(i) or the second part of Example 10.1, starting with Eq. (10.2), for details.

Theorem 1.8. (1) Sy € EeSs(1) (that is, Sy satisfies the LLT in a superstable way) if and
only if it satisfies the SLLT.

(2) For arbitrary r > 1 the following conditions are equivalent:

(a) {X,} € EeSs(r);

(b) For each j]N, ij, ey jgv and each nonzero resonant point t we have @N:/‘.NJ{V _____ s (H) =
0(011,_’ :
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(c) For each j]N, ij, R jf)’v and each h < 2K the distribution of SN;]-INJZI\/”_“]A% mod h is

o(ali,_r) close to uniform.

To prove the above results we will show that for any order r, we can always approximate
P(Sy = k) up to an error o(cy") provided that instead of polynomials we use products
of regular and the trigonometric polynomials. Those products allow us to take into account
possible oscillatory behavior of P(Sy = k) when k belongs to different residues mod %, where
h is denominator of a resonant frequency. When My > RVy for R large enough, the new
expansion coincides with the usual Edgeworth expansions. Thus the condition My > RIn Vy
is in a certain sense optimal.

Finally, let us note that in Section 11 we obtain similar results for triangular arrays of
independent random variables. While this is a more general setup, in order not to overload
the notation we do not want to include these results and their proofs in the main body of the
paper, and we refer the interested readers to Section 11.

2. Main result

Let X, X», ... be a sequence of independent integer-valued random variables. For each
N
N € N we set Sy = Z X, and Vy = Var(Sy). We assume in this paper that Nlim Vv = o0
—00
=1
and that there is a coﬁstant K such that

sup [ XL < K.
n

Denote oy = +/Vy. For each positive integer m, let g, (m) be the second largest among
Z PX,=)=PX,=jmodm), j=1,2,....m
I=j mod m

and j,(m) be the corresponding residue class. Set

N
My(m) = an(m) and My = min My(m).

n=1

Theorem 2.1. There 3J = J(K) < oo and polynomials P, y, where a € 0,...,J — 1,
b € N, with degrees depending only on b but not on a, K or on any other characteristic of
{X,}, such that the coefficients of P, n are uniformly bounded in N, and, for any r > 1
uniformly in k € Z we have

J-1 r
P(SN _ k) _ Z Z Pa,b,N((ka—b aN)/GN)g((k _ aN)/O_N)eZT[iak/] — O(U;r)
a=0 b=1 N

where ay = E(Sy) and g(u) = ﬁe‘”z/z.
Moreover, Py n = 1, and given K, r, there exists R = R(K,r) such that if My > Rln Vy

then we can choose P, n =0 for a # 0.

We refer the readers to (6.1) for more details on these expansions in the case r = 1,
and to Section 6 for a discussion about the relations with local limit theorems. The resulting
expansions in the case r = 2 are given in (9.1). We note that the constants J(K) and R(K, r)
can be recovered from the proof of Theorem 2.1.
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Remark 2.2. Since the coefficients of the polynomials P, ».y are uniformly bounded, the terms
corresponding to b = r + 1 are of order O(oy Dy uniformly in k. Therefore, in the rth order
expansion we actually get that the error term is O(o, (”1))

Remark 2.3. In fact, the coefficients of the polynomials P, ; y for a > 0 are bounded by a
constant times (1 4+ M7,)e M~ where ¢y > 0 depends only on K and ¢ > 0 depends only on
r and K. Therefore, these coefficient are small when My is large. When My > R(r, K)In Vy
these coefficients become of order 0(0,;’). Therefore, they only contribute to the error term,
and so we can replace them by 0, as stated in Theorem 2.1.

Remark 2.4. As in the derivation of the classical Edgeworth expansion, the main idea of the
proof of Theorem 2.1 is the stationary phase analysis of the characteristic function. However,
in contrast with the iid case there may be resonances other than O which contribute to the
oscillatory terms in the expansion. Another interesting case where the classical Edgeworth
analysis fails is the case of iid terms where the summands are non-arithmetic but take only
finitely many values. It is shown in [9] that in that case, the leading correction to the Edgeworth
expansion also comes from resonances. However, in the case studied in [9] the geometry
of resonances is more complicated, so in contrast to our Theorem 2.1, [9] does not get the
expansion of all orders.

3. Edgeworth expansions under quantitative Prokhorov condition

In this section we prove Theorem 1.4. In the course of the proof we obtain the estimates
of the characteristic function on intervals not containing resonant points which will also play
an important role in the proof of Theorem 2.1. The proof of Theorem 2.1 will be completed
in Section 4 where we analyze additional contribution coming from nonzero resonant points
which appear in the case My < RlInoy. Those contributions constitute the source of the
trigonometric polynomials in the generalized Edgeworth expansions.

3.1. Characteristic function near 0

Here we recall some facts about the behavior of the characteristic function near 0, which will
be useful in the proofs of Theorems 1.4 and 2.1. The first result holds for general uniformly
bounded sequences {X,} (which are not necessarily integer-valued).

Proposition 3.1.  Suppose that 11m oy = 00, where oy = /Vy = /V(Sy). Then for

k=1,2,3,... there exists a sequence of polynomials (Ax n)N whose degree d; depends only
on k so that for any r > 1 there are §, > 0 and C, > 0 such that for all N > 1 and
t e [_8r0N9 8FUN])

r r+1
E (¢SN B /on _ 214 Z Ay N(1) -c Y G.1)
ox ot

Moreover, the coefficients of Ay n are of the form Pey pk where Py y are polynomial functions
of the moments of X,,’s and they are uniformly bounj\ed in N. Furthermore
i -ttt 1
Arn@) = —Zynt’ and Ay y(®) = Au(Syoy’ ;= zevat’ (3.2)
where Sy = Sy — E(Sy), YN = E[(SN)3]/01%/ and A4(Sy) is the Sfourth cumulant of Sy.
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The proof is quite standard, so we just sketch the argument. The idea is to fix some
B, > By > 0, and to partition {1, ..., N} into intervals I, ..., I,, so that By < Var(S;) < B,
where for each I we set §;, = ZX j- It is clear that my /01%, is bounded away from O and

JEn
oo uniformly in N. Recall next that there are constants C,, p > 2 so that for any n > 1 and
m > 0 we have

n+m n+m
Y (x;-Ex))| <C,[1+]D(x; - Ex)) : (3.3)
j=n Lp j=n 12

This is a consequence of the multinomial theorem and some elementary estimates, and we
refer the readers to either Lemma 2.7 in [11], or Theorem 6.17 in [22] for such a result in
a much more general settings. Using the latter estimates we get that the L”-norms of S§j, are
uniformly bounded in [. This reduces the problem to the case when the variance of X, is
uniformly bounded from below, and all the moments of X,, — E(X,,) are uniformly bounded.
In this case, the proposition follows by considering the Taylor expansion of the function
InE(e/"SN—ESN/on) 4 112 see [13, § XVL6].

Proposition 3.2. Given a square integrable random variable X, let X = X —F(X). Then for
each h € R we have
% 1
B - 1] < SHVX).

Proof. Set ¢(h) = E(¢! hX ). Then by the integral form of the second order Taylor reminder we
have

h
lp(h) — @(0) — h¢'(0)] = |p(h) — ¢(0)] = /O (t — h)e"(1)dt

A
< V(X) (|h|—t)dt:%h2V(X). O
0

3.2. Non resonant intervals

As in almost all the proofs of the LLT, the starting point in the proof of Theorem 1.4 (and
Theorem 2.1) is that for k, N € N we have

2
2rP(Sy = k) = / e RE(eSN ) dr. (3.4)
0

Denote T = R/2nx7Z. Let

N
() = @) = [Tou(®) where  ¢,() = (™).
n=1
Divide T into intervals I; of small size § such that each interval contains at most one
resonant point and this point is strictly inside /;. We call an interval resonant if it contains
a resonant point inside. Then

2P(Sy =k) =) / e FE(e"SN)dt. (3.5)
i
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We will consider the integrals appearing in the above sum individually.

Lemma 3.3. There are constants C,c > 0 which depend only on § and K so that for any
non-resonant interval 1; and N > 1 we have

f | Dy (0)|dt < Ce VN .

1

Proof. Let
}; € argmax{P(X, = j): j € Z} and ]_,, € argmax{P(X,, = j):j # };}.

Set g, =P(X, = ;’:,) and g, = P(X,, = j,). In other words, )
qn, qn are the largest and the second largest values of P(X, = j) and let j,, j, be the
corresponding values. Note that g, and g, might be equal. Then

Gu(D) = Gue " + Gue" + Y P(X, = D', (3.6)
I#]n+Jn
Since I; is non resonant, the angle between eitin and eftin is uniformly bounded from below.

Indeed if this was not the case we would have tj_'n — t;'; ~ 2ml, for some [, € Z. This would
imply t ~ 2;% where m, = j, — j, contradicting the assumption that /; is non-resonant.

Accordingly 3c; > 0 such that eitin 4 gitin < 2(1 = ¢y). Therefore

Gne" "+ 3" | < @ = @) + G | + €| < Gy + G — 201G,

Plugging this into (3.6), we conclude that |¢,(¢)] < 1 — 2c¢1g, for t € I;. Multiplying these
estimates over n and using that 1 —x <e™, x > 0, we get

| By (1)] < e 2,
Since V(X,) < c»g, for a suitable constant ¢, we can rewrite the preceding as
| &y < e 3™, ¢3 > 0. (3.7)

Integrating over /; we obtain the result. [J

3.3. Prokhorov estimates

Next we consider the case where /; contains a nonzero resonant point t; = %

Lemma 3.4. There is a constant co which depends only on K so that for any nonzero resonant
point t; = 2mwl/m we have
sup |[E(e’N)| < eoMnm) (3.8)

tEIj

Thus, for any r > 1 there is a constant R = R(r, K) such that if My(m) > RlInVy, then
the integral f,j e KE(e SVt is o(oy") uniformly in k, and so it only contributes to the error
term.
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Proof. The estimate (3.8) follows from the arguments in [33], but for readers’ convenience
we recall its proof. Let X be an integer-valued random variable so that || X[, < K. Let
to = 2ml/m be a nonzero resonant point, where ged(/, m) = 1. Let t € T be so that

[t — o] <4, (3.9)
where § is a small positive number. Let ¢x(-) denote the characteristic function of X. Since
x < e*~! for any real x we have

|¢X(f)|2 < e\¢x(t)\2—1_

Next, we have
2K

lpx(1))> — 1 = px(px(—t) — 1= > P;jcos(tj) — 1]

j=—2K
where

P = ZIP’(X =P(X = j +5).

Fix some —2K < j < 2K. We claim that if § in (3.9) is small enough and j # 0 mod m then
for each integer w we have |t — 2w w/j| > &y for some &y > 0 which depends only on K. This
follows from the fact that —2K < j < 2K and that 27 w/j # ty (and there is a finite number
of resonant points). Therefore,

cos(tj)—1 < —dy
for some §y > 0. On the other hand, if j = km for some integer k then with w = [k we have

cos(tj) — 1 = —2sin’(tj/2) = —2sin® ((tj — 2mw)/2)

= —2sin’ (j(t — 10)/2) < =81t — 10)°

for some §; > 0 (assuming that |t — 79| is small enough). We conclude that

lpx (O — 1< =80 Y Pj = 81t —10)° Y _ P;

JEA jeB

where A = A(X) is the set of j’s between —2K and 2K such that j % 0 mod m and B = B(X)

is its complement in Z N [—2K, 2K]. Let s be the most likely residue of X mod m and s; be
the second most likely residue class. Since

1
P(X =so mod m) > — and P(X =s; mod m) = g, (X)
m

- (X
it follows that Z P; > anl ).
m

jeA
- 1
Combining this with the trivial bound Z P; > ]P’Z(X =50) > — we obtain
m
jEeB

1 [ 8ogm (X Si(t — t0)?
lpx (1)) Sexp_[§< oqm( ), 1(tm2t0) )}

Applying the above with tp =¢; and X = X,,, 1 <n < N we get that

|¢N(t)| < e—L‘oMN(m)—E()N(T—Ij)Z < e—coMN(m) (310)

for some constant ¢y. [

494



D. Dolgopyat and Y. Hafouta Stochastic Processes and their Applications 152 (2022) 486-532

Remark 3.5. Using the first inequality in (3.10) and arguing as in [33, page 264], we can
deduce that there are positive constants C, ¢y, ¢ such that

) —co My (m)
/ IE(e"N)|dt < C (ﬂ"’N + e—) . G.11)
1

ON

This estimate plays an important role in the proof of the SLLT in [33], but for our purposes a
weaker bound (3.8) is enough. Note also that in order to prove (3.8) we could have just used
the trivial inequality cos(t;) — 1 < 0 when j = 0 mod m, but we have decided to present this
part from [33] in full.

Remark 3.6. Let dr be the minimal distance between two different resonant points. Then,
when 6 < 2dg, we can take §o = 1 — cos(dr) in the proof of Lemma 3.4. Therefore, we can

take o = ©=5“=) in (3.8). Hence Lemma 3.4 holds with R(r, K) = 5.

3.4. Proof of Theorem 1.4

Fix some r > 1. Lemmas 3.3 and 3.4 show that if My > R(r, K)In Vy, then all the integrals
in the right hand side of (3.5) are of order o(c,"), except for the one corresponding to the
resonant point f; = 0. That is, for any § > 0 small enough, uniformly in k we have

8

2nP(Sy = k) = / e " py(h)dh + o(ay").
—6

In order to complete the proof of Theorem 1.4, we need to expand the above integral. Making

a change of variables 1 — h/oy and using Proposition 3.1, we conclude that if § is small
enough then

P
/ e My (h)dh =
—§

Son ) r Au h
01;1/ efzhkNefh2/2 (1 +Z ,1\2( )> dh+

oy u=1 On

S
foy ! / |+ e A dn
-5

where |#| < C, and ky = (k —E(Sy)) /on. Since the coefficients of the polynomials A, y
are uniformly bounded in N, we can just replace the above integral with the corresponding
integral over all R (i.e. replace +8o with +00). Now the Edgeworth expansions are achieved
using that for any nonnegative integer g we have that (it)‘fe"z/ 2 is the Fourier transform of
the gth derivative of n(r) = \/%7@4 /2 and that for any real a,

/ " D)t = n9(a) = \/%(—l)qu(a)e‘“z/2 (3.12)
— T

oo
where H,(a) is the gth Hermite polynomial.
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4. Generalized edgeworth expansions: Proof of Theorem 2.1

4.1. Contributions of resonant intervals

Let r > 1. As in the proof of Theorem 1.4, our starting point is the equality

0

27
27P(Sy = k) = / e RE(eSV Y = § : / e RE(e VYt @.1)
. N
J J

which holds for any k € Z. We will consider the integrals appearing in the above sum
individually. By Lemma 3.3 the integrals over non-resonant intervals are of order o(o,"), and
so they can be disregarded. Moreover, in Section 3.4 we have expanded the integral over the
resonant interval containing 0. Now we will see that in the case My < R(r, K)InVy the
contribution of nonzero resonant points need not be negligible.

Lett; = % be a nonzero resonant point such that My(m) < R(r, K)In Vy and let I; be
the resonant interval containing it. Theorem 2.1 will follow from an appropriate expansion of

the integral

/ e—ifk]E(eil‘SN Ydt.
I
We need the following simple result, which for readers’ convenience is formulated as a lemma.

Lemma 4.1. There exists ¢ > 0 so that for each n > 1 with q,(m) < & we have |¢,(t;)| > %

- 1
In fact, we can take € = I

Proof. Recall that t; = 27r!//m. The lemma follows since for any random variable X we have
[Ee™ )| =

gitismX) _ Z (e”f's(’”*x) — e”f'”)P(X = u mod m)
uz#s(m,X) mod m
> 1—2mq(m, X)
where s(m, X) is the most likely value of X mod m and g(m, X) is the second largest value
among P(X =u mod m), u =0, 1,2,...,m — 1. Therefore, we can take & = #. O

Next, set ¢ = # and let Ng = No(N, t;, &) be the number of all n’s between 1 to N so
that g,(m) > €. Then Ny < “’7‘/"’ because My(m) < RInVy. By permuting the indexes

n = 1,2,..., N if necessary we can assume that g,(m) is non increasing. Then N is the
largest number such that gy, > £. Decompose
Dn(t) = Py (1) Py, N (1) 4.2)

N
where @y, () = 1_[ On(1).

n=Np+1
Lemma 4.2. If the length § of I; is small enough then for any
t=ti+heljand N > 1 we have

Py N () = Py n(tj) Py, v (h) Py v (H)
496



D. Dolgopyat and Y. Hafouta Stochastic Processes and their Applications 152 (2022) 486-532

where

00
Wny,n(h) = exp |:0(sz(m)) Z(O(l))“h“] .
u=1
Proof. Denote
i =E(X,),  Xp=Xy =ty Ga(t) = E(e™).
Let j,(m) be the most likely residue mod m for X,,. Decompose
Xy=s,+Y,+ 2,
where Z,, € mZ, s, = j,(m) — [y, so that P(Y,, # 0) < mg,(m). Then for t =t; + h,

Bult) = " E (") = (1) () “3)
where
B iRE(e 7 X,) — R (X)) + ...
%”n(h) - (1 + E(eitjyn) ’

Next, using that for any x € (—1, 1) we have

14 x = M0 — gx—x?/2423 3=

we obtain that for 4 small enough

k
2\ (=1t 1 (ih)? .
W(h) = : (X, 4.4
Vu(h) = exp ; p E(e,,jyn); e CRRCOR 44)
>\ (=1 1 Ly o
= exp T —_E('"i (X))
= Kk 1<§;_jk (E(e -'Y))’“E Jr!
_ o [ x- D B (X)) -,
= eXp ; — k j]+§k uﬂ E(@”IYH)]‘ (ih)

Observe next that

Ele""(X,)"] = E (""" — D((Xn)" — E[(X,)"])] + EI[(X,)" JE(e ™).
Thus letting with C = 2K, we have

Ele"™ (X,)"]
Plugging this into (4.4) and using that for 2 small enough,

o0 u k1 Jr -
oo |2 (L T [T | = ()

u=1 \ k=1 J1t+tj=ur=1

= 0(qu(m)O(C’) + E[(X,,)"].

we conclude that

Yu(h) = E(e™ ) exp [Z(O(l))m(qn(m))h”} :
u=1
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Therefore,
Py N (@) = Py n(tj) Py v (h) Py v (R)
where

N 00
A OES | (wn(me”’m"“)=exp[0<MN<m)>Z(0<1»“h“}. O

j=No+1 u=1

Remark 4.3. We will see in Section 4.2 that the coefficients of the polynomials appearing
in Theorem 2.1 depend on the coefficients of the power series Wy, () (see, in particular,

N
(4.22)). The first term in this series is ik Z ayn,j, Where
n=Np+1
]E iijn _ l )_(n ]E i[anXn
;= B = DE]_ B X, @)
E(e”l ,,) E(eltj n)
2 N
while the second term is > Z b,,;, where
n=~No+1
b — El(e"i"™ — DX, 1> E[(e"" — D((X,)* — V(X)) 4.6)
n,jg — E(eithn)z E(eithn) .
)

n,j E(eitj Xn)
In Section 9 we will use (4.5) to compute the coefficients of the polynomials from Theorem 2.1
in the case r = 2, and (4.6) is one of the main ingredients for the computation in the case r = 3
(which will not be explicitly discussed in this manuscript).

The next step in the proof of Theorem 2.1 is the following.

Lemma 4.4. Fort=t;+h € I; we can decompose

L b
Dy (1) = Dy (t; +h) = %h’ + 0 ((hInVy)"*). 4.7
1=0 ’

Proof. The lemma follows from the observation that the derivatives of @y, satisfy |¢1(\],2(t)| <
ONH <(Cmvyt. O

4.2. Completing the proof

Recall (4.1) and consider a resonant interval /; which does not contain O such that My (m) <
R(r,K)Inoy.Set U; = [~u;,v;] = I; —t;. Let Ng be as described below Lemma 4.1. Denote

Sno.N = SN — Sngs So =0, (4.8)

VNO,N = VE]I(SN - SN(J) = VN - VNO and ONy,N = VNO,N-
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Then
Vno.v = Vv + O(InVy) = V(1 + o(1)). 4.9
Denote iy, n = h/ony,n. By (3.1), if |hy n,| is small enough then
E(eihNO,NsNO,N) _ (4.10)

r +1
¢!No.NESNg.N) p=1?/2 (1 + Z Ak.l\?’N(h)> +6 h:H e

=1  ONo.N No,N

where |0| < C, and Ay n, n are polynomials with bounded coefficients (the degree of Ay ny n
depends only on k). By Lemma 4.2,

/ e R Py (dt = 4.11)

1

— QSNO,N(t.i)/ e MR P (t; 4 1) Py () Uy n () dh.
Yj

Therefore, it is enough to expand the integral on the RHS of (4.11). Fix a large positive
integer L and plug (4.7) into (4.11). Note that for N is large enough, /#y small enough and
|h| < hg, Proposition 3.2 and (4.9) show that there exist positive constants ¢y, ¢ such that

| Dy ()] = [E(e M0V )| < e~ 0N=VNH* < pmeVuh?, (4.12)

Thus, using also Lemma 4.2 we see that the contribution coming from the term O ((h In VN)L“)
in the right hand side of (4.7) is at most of order

V,\If&‘(ln V”)L+1 /Oo |h|L+le—cVNh2dh
—0oQ
where § is the diameter of I;, R = R(r, K) and ¢ is some positive constant. Changing variables
x = oynh, where oy = +/Vy we get that the latter term is of order (In V,,)LHGIQ(LH_ZRC“S)
and so when L is large enough we get that this term is 0(01;’_1) (alternatively, we can take
L =r and § to be sufficiently small). This means that it is enough to expand each integral of
the form

[ e n g g i (4.13)
Uj
where [ =0, 1, ..., L (after changing variables the above integral is divided by UIIV-:;,IN)' Next,
Lemma 4.2 shows that for any d € Z we have
d
Uyon(h) = 14> Cypnyh" +hH O + My(m)* )| V|0, (4.14)

u=1

where C,, y = Cu,n,; are O(My(m)) = O((In Vy)"). Note that, with a, ; and b, ; defined in
Remark 4.3, we have

N
Civ=i Y an; (4.15)
n:N0+l
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and
2
1< Y
Cony = 5 Z bn.j — 5 Z An, j
n=Ny+1 n=Ny+1

Take d large enough and plug (4.14) into (4.13). Using (4.12), we get again that the
contribution of the term

RO 4+ My (m) ) V| PR By, n(h)

to the above integral is o(coy"). Thus, it is enough to expand each term of the form
f e " gy, y(h)dh
U.

where 0 < g < L +d. Using (4.10) and making the change of variables h — h/oy, n it is
enough to expand

/°° o~ ih=EISNg ND/oNg.N pd p—h2/2 (1 +> A“’*"I’B’N(h)) dh (4.16)

w=1 aNQ,N UNOvN

This is achieved by using that (i t)qe”z/ 2 is the Fourier transform of the gth derivative of
n() = J%e"z/z and that for any real a,

o~ 1 2
—iat 1 (q) — @ o~ (_1\ —a“/2
/_Ooe n9)dt =n'?(a) = m( 1) H,(a)e (4.17)
where H,(a) is the gth Hermite polynomial.

Note that in the above expansion we get polynomials in the variable ky,n =
k—E[Sy — Sn,]
ON,Ny
where ay, v = on/on, v = O(1), the binomial theorem shows that such polynomials can be
rewritten as polynomials in the variable ky whose coefficients are uniformly bounded in N.

We also remark that in the above expansions we get the exponential terms

, not in the variable ky = %;SN) Since ky, v = knany n + O(Inaoy/oy),

(1<—a}\10,1\/)2

—
e N =Vg) where aNy, N = E[Sy — SNO]

and not e~*=a)’/2Vv (as claimed in Theorem 2.1). In order to address this fix some & < 1/2.

1
1y
Note that for [k —ay,n| = Vy * we have

2
e NN = 0o(e™YV) and e W = o(e "N ) for some ¢ > 0.
(k=apy, N>
. _ . . VeV -
Since both terms are o(oy*) for any s, it is enough to explain how to replace e "V’ with
_kzay)? e . 1o
e 2 when |k —ay,n| < Vy  (in which case |k —ay| = O(Vy )). For such k’s we
can write
2
(k — any.n)
exp [——0 - (4.18)
2(Vy — V)

ox _(k_aNO,N)2 x _(k_aNO,N)ZVNO
P 2Vy P 2Vn(Vy — Vivy) ]
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(k — any,n)* Vi,
2VN(Vn — Vi)

k — 2y,
exp _k—ann) Vg — (4.19)
2VN(VN — Vi)

Since =0 (V];(1738)>, for any d; we have

d J j
21: Vo <(k — aNO,N)z)J L Oy @ra=30y
Sy =V P\ o "

Note that (using the binomial formula) the first term on the above right hand side is a
polynomial of the variable (k — ay)/oy whose coefficients are uniformly bounded in N.
Next we analyze the first factor in the RHS of (4.18). As before, it is enough to consider

1
k’s such that |k —ay| < Vy ™ for a sufficiently small ¢. We have

k —an,ny)*
S\ S50 EQ 4.20

exp [ A (4.20)

k —ay)? 2(k — an)ay, + ay,
exp| —————— |exp| — .

2VN 2VN
(k—aN)aN0+aNO
Note that Ty = knBny,n + Ony, N, Where

5 ay, _0 Inoy 40 6112\/0 0 In? oN
— an =— = .
No.N 2 ON oN No.N 2VN VN
(kfaN)aN0+a12V0
Approximating e 2VN by a polynomial of a sufficiently large degree d, in the

(k—ay)ay

+a
Wy Al completes the proof of existence of polynomials P, y claimed in the

variable

—d
theorem (the Taylor reminder for the last approximation is of order O (V 2 8)) thus we

can take d, = 4(r + 1) assuming that ¢ is small enough).

Finally, let us show that the coefficients of the polynomials P, y constructed above are
uniformly bounded in N. In fact, we will show that for each nonzero resonant point t; =
2ml/m, the coefficients of the polynomials coming from integration over /; are of order

O ((1 + My (m)e M)

where gy = go(r) depends only on r.

Observe that the additional contribution to the coefficients of the polynomials coming from
the transition between the variables ky and ky, ny is uniformly bounded in N. Hence we
only need to show that the coefficients of the (original) polynomials in the variable ky,
are uniformly bounded in N. The possible largeness of these coefficients can only come from
the terms Cy v ,;, foru =0, 1,2, ..., d which are of order M}, (m), respectively. However, the
corresponding terms are multiplied by terms of the form Dy, y(z;) Q(Z)(t ;) for certain £’s which
are uniformly bounded in N (see also (4.22)). We conclude that there are constants W; € N and
a; € N which depend only on ¢; and r so that the coefficients of the resultmg polynomlals are
composed of a sum of at most W; terms of order (My(m))* Py, n(t;) P g(t_ ), where £ < E(r)
for some E(r) € N. Next, we have

DY) () Prg v (8)) = 4.21)
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k
> v [0l @n [T ¢
q=1

ny,.ng <No; n<N, n#nj
L+t =t

where y;, .. ¢, are bounded coefficients of combinatorial nature. Using (3.8) we see that for each
ni, ..., ng the product in the square brackets is at most Ce~oMym+0WM) £for some C, ¢y > 0.
Hence

| BN (1)) vy n (1)) < CNG e~ 0V ¢ > 0,

Now, observe that the definition! of Ny gives My(m) > &yNg, &g > 0. Therefore

|Q5](§3(tA,~)Q5NO, n(tj)| < CoM f\,(m)e_COMN @ and so each one of the above coefficients is of order

M (m)e= oM™ for some ¢’ which does not depend on N. [

Remark 4.5. The transition between the variables ky, y and ky changes the monomials of

the polynomials P, ; y, a # 0 coming from integration over /;, for ¢; # 0 into monomials of
J1 _j2 .03
CNay. O
the form % for some bounded sequence (cy), ji, j2, j3 = 0 and u € N. As we have
. N . . . s
explained, the coefficients of these monomials are uniformly bounded. Still, it seems more
natural to consider such monomials as part of the polynomial P, 54, n. In this case we still get
polynomials with bounded coefficients since ay, and oy, are both O(Nyp), No = O(My(m))

and cy contains a term of the form @%g(tj)@]v(h N(tj).

Remark 4.6. As can be seen from the proof, the resulting expansions might contain terms
corresponding to o* for s > r. Such terms can be disregarded. For “‘;—zm < Vy this follows

because the coefficients of our expansions are O(1) and for @ > Vy, this follows from
(4.12). In practice, some of the polynomials P, ; y with b < r might have coefficients which
are o(af,*’) (e.g. when b + u > r in the last remark) so they also can be disregarded. The
question when the terms P, , y may be disregarded is in the heart of the proof of Theorem 1.5
given in the next section.

4.3. A summary

The proofs of Proposition 1.2, Theorem 1.3 and Theorem 1.5 will be based on careful
analysis of the formulas of the polynomials from Theorem 2.1. For this purpose, it will be
helpful to summarize the main conclusions from the proof of Theorem 2.1. Let r > 1 and
tj = 2ml/m be a nonzero resonant point. Then the arguments in the proof of Theorem 2.1
yield that the contribution to the expansion coming from ¢#; is

C;(k) == (4.22)

ik B (1))Cu N s
ey Y| D / e RS By w(h)dR
. U

s<r—1 \u+l=s J
where U; = I; —t;, C, y are given by (4.14) and Cyp y = 1. When ¢; = 0O then it is sufficient
to consider only s = 0, Ny = 0 and the contribution is just the integral

§
/ e "k @y (h)dh

-4

1 Recall that Ny has been defined before Lemma 4.2.
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where § is small enough. As in (4.16), changing variables we can replace the integral
corresponding to h* with?

00 ,—ih(k=E[SNg ND/ONy.N 1,5 ,—h%/2 r
e 0 oNhSe Aw,N N(h)
/_ (1 +) (;+> dh. (4.23)

—s—1
o0 O Ny, N w=1 No,N

After that was established, the proof was completed using (4.17) and some estimates whose
purpose was to make the transition between the variables ky, v and ky.

5. Uniqueness of trigonometric expansions

In several proofs we will need the following result.

Lemma 5.1. Letr > 1 and d > 0. Set Ry = R U {0} where R is the set of nonzero resonant

points. For any t; € Ry, let Ag n(t)), ..., Agn(t;) be sequences so that, uniformly in k such
that ky = w = O(1) we have
ON
d
Z e itk (Z kﬁAm,N(tj)> =o(oy").
1;€Rg m=0

Then for all m and t;
Amn(tj) = 0(oy"). (5.1)

In particular the polynomials from the definition of the (generalized) Edgeworth expansions
are unique up to terms of order o(oy").

Proof. The proof is by induction on d. Let us first set d = 0. Then, for any k € N we have

> et Ag () = oloy"). (5.2)
tjER()
Let T be the number of nonzero resonant points, and let us relabel them as {xi,..., xr}.

Consider the vector

Ay = (Ao,n(0), Ag,n(x1), ..., Ao n(xT)).

Let V be the transpose of the Vandermonde matrix of the distinct numbers o; = e/, j =
0,1,2,...,T where xo := 0. Then V is invertible and by considering k = 0,1,2,...,T in
(5.2) we see that (5.2) holds true if and only if

Ay = V"o(a,;’) =o(oy").

Alternatively, let O be the least common multiple of the denominators of ; € R. Let ay(p) =

Ao nQ2rp/Q) if 2rp/Q is a resonant point and O otherwise. Then form = 0,1,..., 0 — 1
we have
0-1
an(m) =Y ay(p)e” "¢ = o(oy").
p=0

2 We should delete the red term now.
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Therefore, by the inversion formula of the discrete Fourier transform,

0-1
an(p) = Q™" Y an(m)e™ /¢ = o(oy").
m=0
Assume now that the theorem is true for some d > 0 and any sequences functions
Ao n()), ..., AgNn(t)). Let Ao n(2)), ..., Agr1,n(t;) be sequences so that uniformly in k such
k — E(Sn
that ky == J = O(1) we have
ON
d+1
> ek (Z kﬁAm,N(t_,-)> =o(oy"). (5.3)
leRO m=0

Let us replace k with X' = k + [ox]Q, where Q is the least common multiply of all the
denominators of the nonzero ;’s. Then e™/% = ¢™/*" Thus,

A d+1
Z e_lt./k (Z(kx}n — k]rG)Am,N(t])> = O(Oilgr)'

tj eRy m=0

Set Ly = [ox]Q/on = Q. Then the LHS above equals

d
Ly Z L (ZkiVAS‘N(t'i)>
s=0

l_/ER()
where
d+1
—s—1
An(p) = > Apn)HLY ™
m=s—+1

By the induction hypothesis we get that
A n(tj) = oloy")
forany s =0, 1, ...,d. In particular
Aan(t)) = Agpin(t;) = oloy”).
Substituting this into (5.3) we can disregard the last term Agiq n(¢;). Using the induction
hypothesis with Ao n(t;), A1 n(t), ..., Aqn(t;) we obtain (5.1). O
6. First order expansions

In this section we will consider the case r = 1. By (4.22) and (4.23), we see that the
contribution coming from the integral over /; is

) 2
G&OI’Nef”fk @N(tj)«/ﬂe kivg.n /2 + 0(0;1)

where ky, v = (k — E(Sny,~))/0N,.~. Now, using the arguments at the end of the proof of

. —k% /2. 2 . ..
Theorem 2.1 when r = 1 we can just replace ¢ Mo-V/* with e~ *—ESN*/2Vn (since it is enough

to consider the case when ky, v and ko y are of order V). Therefore, taking into account that

0’1;01,]\, — o,;l = 0(0,\72No) we get

V2rP(Sy = k) = (6.1)
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1+ Z e_i’kaN(tj) Gile_(k_]E[SN])z/ZVN _}_0(61\71).
tieER
Here R is the set of all nonzero resonant points ¢; = 2r/; /m ;. Indeed the contribution of the
resonant points satisfying My(m;) < R(r, K)In Vy is analyzed in Section 4.2. The contribution
of the other nonzero resonant points ¢ is 0(01;1) due to (3.8) in Section 3. In particular, (3.8)
implies that Py (t) = o(oy 1) so adding the points with My(m;) > R(r, K)In Vy only changes
the sum in the RHS of (6.1) by 0(0151).

Corollary 6.1. The local limit theorem holds if and only if ma% | DN ()] = o(1).
te

Proof. It follows from (6.1) that the LLT holds true if and only if for any k& we have
> et o) = o(1).
tjE'R,

Now, the corollary follows from Lemma 5.1. O

Before proving Theorem 1.3 we recall a standard fact which will also be useful in the proofs
of Theorems 1.6 and 1.8.

Lemma 6.2. Let {iuy} be a sequence of probability measures on 7./ mZ and {yy} be a positive
sequence. Then uy(a) = % + O(yn) for all a € Z/mZ if and only iff fiy(b) = O(yy) for all
b € (Z/mZ) \ {0} where [i is the Fourier transform of ..

Proof. If uy(a) = 1 + O(y,) then

m—1 m—1

~ wiab/m 1 wiab/m

An(b) =Y pn(@e I =Y — eI 1 O(yy) = Oy
a=0 a=0

Next (iy(0) = 1 since wy are probabilities. Hence if fiy(b) = O(yy) for all b € (Z/mZ) \ {0}
then

m—1 m—1

1 ~ —_2mwiba/m 1 ~ —2miba/m 1

(@)= — 3" f(b)e M = [1 + 3 Anbye it } = —+00m)
b=0 b=1

as claimed. O

Proof of Theorem 1.3. The equivalence of conditions (b) and (c) comes from the fact that for
non-resonant points the characteristic function decays faster than any power of oy (see (3.7)).

The equivalence of (a) and (c) is due to Corollary 6.1. Finally, the equivalence between (c)
and (d) comes from Lemma 6.2. [

Remark 6.3. Theorem 1.3 can also be deduced from [8, Corollary 1.4]. Indeed the corollary
says that either the LLT holds or there is an integer & € (0, 2K) and a bounded sequence {ay}
such that the limit

p(j) = lim P(Sy —ay = j mod h)
N—o00
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exists and moreover if k — a, = j mod h then
: k —E(Sn) _
onP(Sy = k) = p(j)hg <G—N) +o(oyh).
N

Thus in the second case the LLT holds iff p(j) = }l for all j which is equivalent to Sy
being asymptotically uniformly distributed mod A and also to the Fourier transform of p(j)
regarded as the measure on Z/(hZ) being the § measure at 0. Thus the conditions (a), (c) and
(d) of the theorem are equivalent. Also by the results of [8, Section 2] (see also [§3.3.2][11])

. i T . Lo
if E (e’gSN ) does not converge to 0 for some non zero & then | — | Z ﬂ 2r7Z is a lattice in

R which implies that £ is resonant, so condition (b) of the theorem is also equivalent to the
other conditions.

Proof of Proposition 1.2. Let Sy satisfy LLT. Fix m € N and suppose that an(m) < 00.
n
Let s, be the most likely residue of X, mod m. Then for ¢t = 27”1 we have
gu() =€ — 3 P(X,=jmodm) (e — V),
Jj#sp mod m
so that 1 > |¢,(#)] = 1 — 2 mg,(m). It follows that for each ¢ > 0 there is N(e) such that

oo

[T ¢:(®|>1—e. Applying this for & = J we have

n=N(e)+1
|
3 = 1}vﬁ_l)lorcl)f|¢1v(1/2),1v(f)| # 0. (6.2)
On the other hand the LLT implies that
lim &y(r) =0. (6.3)
N—oo

. . . 2l
Since @N = @N(I/Z) @N(I/Z),N’ (62) and (63) ll’l’lply that ¢N(1/2)(t) = 0. Since ¢N(1/2) <7) =
N2 o

l—[ bn <—) we conclude that there exists n; < N(1/2) such that ¢n,(2'—’;l) = 0. Hence

m

n=1
Y = X, + Xy, +-- Xy, , satisfies E (e27*/™¥) =0 fork = 1,...m — 1. By Lemma 6.2
both Y and Sy for N > N(1/2) are uniformly distributed. This proves the proposition. [J

7. Characterizations of Edgeworth expansions of all orders
7.1. Derivatives of the non-perturbative factor
Proposition 7.1. Fix r > 1, and assume that My < R(r, K)Inoy (possibly along a

subsequence). Then Edgeworth expansions of order r hold true (i.e. (1.2) holds for such N’s)
iff for each t; € R and 0 < £ < r (along the underlying subsequence) we have

ot By, N (1) DY) (27) = o(1). (7.1)

Proof. First, in view of (4.12) and (4.22), it is clear that the condition (7.1) is sufficient for
expansions of order r.
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Let us now prove that the condition (7.1) is necessary for the expansion of order r.
We will use induction on r. For r = 1 (see (6.1)) our expansions read

P(Sy = k) =0y e 52 | 14+ 3" ek dy () | +oloy").
t_,'ER

Therefore if

P(Sy = k) = o e V2 Py (k) + o(oy ")
for some polynomial Py then Lemma 5.1 tells us that, in particular $x(¢;) = o(1) for each
ti €R.

Let us assume now that the necessity part in Proposition 7.1 holds for r’ = r — 1 and prove

that it holds for r. We will use the following lemma.
Lemma 7.2. Assume that for some t; € R,

ol > ¢N0,N(fj)¢§\lzz,(fj) =o0(1),1=0,1,...,r —2. (71.2)
Then, up to an o(cy') error term, the contribution of t; to the generalized Edgeworth

expansions of order r is

o—itik =K% /2 Dy (1)) +i%v,q(k1v)

o 4 (7.3)
q=2 N
with
Ay (X)) = Hy 4 (x5 1)) = (7.4)
HN,q,l(x) + HN,q,Z(x) + HN,q,S(x) + HN,q,4(x)
where
o ) = ()1~ Hy 1 (x) Dy v (1)) (1))
et (g — D! ’
(0171 Hy 1 (X) By v (1) B2 (8))C v,
HN,q,Z(x) = (l] 2)' s
any ()12 H) () Dy, (1) B2 (1))
Hyg3(x) = =2 ,
xan, ()72 Hy2(x) By n (1) DY (1))
HN,qA(X) = - (q— 2)! 0 s

and H, are Hermite polynomials.

Here C, N is given by (4.15) when My(m) < R(K,r)Ilnoy, and C, N = = 0 when
My(m) > R(K r)Inoy. (Note that in either case Ci, N = = O(My(@m)) = O(lnaN))

As a consequence, when the Edgeworth expansions of order r hold true and (7.2) holds,
then uniformly in k so that ky = O(1) we have

Dy (t; "y kit
N(j)+z N,q(qN j)

— o(o"). (1.5)
ON p Oy
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The proof of the lemma will be given in Section 7.2 after we finish the proof of
Proposition 7.1.

By the induction hypothesis the condition (7.2) holds true. Let us prove now that for
£=0,1,2,...,r — 1 and t; € R we have

Do (1) B (27) = o(oy ).

Let us write

’ r—1
Dy (1)) n Z M = Zk]'(',Am,N(lj)~

ON Oy

q=2 m=0

Applying Lemmas 5.1 and 7.2 we get that
Ap () = oloy")

foreachO<m <r—1andt; € R.
Fix t; € R. Using Lemma 7.2 and the fact that the Hermite polynomials H, have the same
parity as u and that their leading coefficient is 1 we have

(r = DVA,_1 n(1)) = oy (i) 7 ( i Py N () By V() /(r = 1) (7.6)

+ Dy n (1) B D ()Cry — any) )= o(oy")
and

(r = A, o n(t) = oy TG ( i Py N () B2 (1)) (r = 2) (1.7)

+ Dy n (1) B V() ECLy — any) )= o(oy").

Since qSNO,N(zj)@gf)(tj) = o(oyh), (7.7) yields
Do () By 2 (1)) = o(oy ' Ino).
Plugging this into (7.6) we get
Do n (1) By V(1) = o(1).

Therefore we can just disregard 47 y(ky; t;) since its coefficients are of order o(oy"). Since
the term H,. y(ky; t;) no longer appears, repeating the above arguments with r — 1 in place of
r we have

Aran(ty) = oy @) (z‘ Do () By () /(= 3)

+ By N (1) By ) Cry — aNO)) = o(oy").

Since Py, N(t‘/‘)@x(;4)(t i) =o(oy 2), the above asymptotic equality yields that
Dy (1)) By (1)) = o(0y” Inoy).
Plugging this into (7.7) we get

QNO,N(tj) @1(\;0_2)(”) = 0(0’1;1).
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Hence, we can disregard also the term JZ_; y(ky;t;). Proceeding this way we get that

Do N (1)) DY (1)) = ooy ™) forany 0 < £ < r. O

Before proving Lemma 7.2, let us state the following result, which is a consequence of
Proposition 7.1 and (3.8).

Corollary 7.3.  Suppose that for each nonzero resonant point t we have inf|¢,(t)] > 0.

n
Then for any r, the sequence Sy obeys Edgeworth expansions of order r if and only if
Oy (1) = 0(013,_’) for each nonzero resonant point t.

7.2. Proof of Lemma 7.2

Proof. First, because of (7.2), for each 0 < s < r — 1, the terms indexed by I < s — 1
in (4.22), are of order o(oy") and so they can be disregarded. Therefore, we need only to
consider the terms indexed by [ = s and / = s — 1. For such /, using again (7.2) we can
disregard all the terms in (4.23) indexed by w > 1, since the resulting terms are of order
o(oy" "Inoy) = o(oy"). Now, since a,;ol,N — 01;1 = O(VNO/ag,) we can replace oy, y Wwith
oy "in (4.22), as the remaining terms are of order 0(01;’_1). Therefore, using (4.17) we get
the following contributions from ¢; € R,

itk k% o2 | Pt Moy q(kng.n)

’/ke NO,N/ (J)+Z qqo

(o}
N q=2 On

e

where Hy ,(x) = Hy g,1(x) +Hn g 2(x) and Hy 4 j, j = 1, 2 are defined after (7.4). Note that
when x = O(1) and g < r,

H H
N~6];11(x) — 0(0’1\7’+1) and qu—nq2(x) — O(O‘]Gr In GN)- (78)
Oyn Oy
while when g =r,
—HN*’;I(’C) = O(0y" Inoy) and —HN*’;Z(’C) = o(oy" Inoy). (7.9)
Oyn Oy

Next

CZNO
kno, v = (1 4 png. 8k + — + Ony. N
oN
where PNy,.N = GN/GNO,N —1= O(IHO'N/O‘I%,) and
1 1
ONng. N = an,

— —> = O(In*oy/0}).
ONy,N oN

Hence, when |ky, | < o}, (and so ky = O(oy)) for some ¢ > 0 small enough then for each

m > 1 we have

kﬁO’N =ky + mk%ilaNO/oN + 0(0,;1).

Therefore, (7.8) and (7.9) show that upon replacing H,_i(ky, n) with H, i(ky) the only
additional term is

any 1 H) _ (k) vy v (1) (1))

(g — Do
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forg =2,3,...,r — 1. We thus get that the contribution of ¢; is

g2 Dy (2 " Cy 4k
e_”/ke kNO,N/z N(j) +Z N,qg N)

ON Oy

q=2

where

any (D12 H) () By n (1) D 2 (17)
(g —2)! '

Note that Cy »(-) = Hu 2(-). Finally, we can replace e NO

CN,q(x) = HN,q(x) +

N2 with

(1 — kyayy /oy )e™ v/

since all other terms in the transition between eik}z"OJ" 2 to e’klzv/ 2 are of order o(oy 1) (see
(4.18) and (4.19)). The term —kyay,/oy shifts the uth order term to the u + 1-th term,
u = 1,2,...,r — 1 multiplied by —kyay,. Next, relying on (7.8) and (7.9) we see that
after multiplied by kyay, /oy, the second term Hy 4 2(ky) from the definition of Hy ,(kn)
is of order o(oy r1n? on)o s and so this product can be disregarded. Similarly, we can ignore
the additional contribution coming from multiplying the second term from the definition of
Cnq(kn) by —kyay,/on (since this term is of order o(oy" In on)oy). We conclude that, up to
a term of order o(oy"), the total contribution of ¢; is

e

Stk - Dy(t) | N~ gk 1))
itik o—ky /2 NALj +Z AN L

oN = oy
xany ()12 Hyo(x) By n () By 2(2))
where Ay ,(x;t;)) = Cnq(x) — 0 1 07N VT which completes the

(g —2)
proof of (7.3).

Next we prove (7.5). On the one hand, by assumption we have Edgeworth expansions or
order r, and, on the other hand, we have the expansions from Theorem 2.1. Therefore, the
difference between the two must be o(o,"). Since the usual Edgeworth expansions contain
no terms corresponding to nonzero resonant points, applying Lemma 5.1 and (7.3) we obtain
(7.5). O

Note that the formulas of Lemma 7.2 together with already proven Proposition 7.1 give the
following result.

Corollary 7.4. Suppose that E(Sy) is bounded, Sy admits the Edgeworth expansion of order
r — 1, and, either
(a) for some & < 1/(8K) we have Ny = No(N, t;, €) = 0 for each nonzero resonant point
tj,
or (b) ¢ == mininf|¢, ()| > 0.
teR n

Then
V27P(Sy = k)
Pn(t ikyC Dy (t; .
— k2 S(kN)-i-Z( N(j) ! LN’;j N(j)>€”fk +o(oy")
ON

1;eER
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where E.(-) is the Edgeworth polynomial of order r (i.e. the contribution of t = 0), and we
recall that
N

Z E(eith,, Xn)

lCl’N’tj = E(eithn) :

n=1

Proof. Part (a) holds since under the assumption that Ng = 0 all terms Hy 4 ; in (7.4) except
‘Hn 2.2 vanish. Part (b) holds since in this case the argument proceeds similarly to the proof of
Theorem 2.1 if we set Ny = 0 for any #; (since we only needed Ny to obtain a positive lower
bound on |¢,(#;)| for t; € R and Ngo <n < N). 0O

Remark 7.5. Observe that o, s |C1,N,tj|a,§2, so if the conditions of the corollary are

satisfied but |y (1)) < ccr,{,_' (possibly along a subsequence), then the leading correction
to the Edgeworth expansion comes from

e Z <¢>N(t,-)> .
leR oN
Thus Corollary 7.4 strengthens Corollary 7.3 by computing the leading correction to the
Edgeworth expansion when the expansion does not hold.
7.3. Proof of Theorem 1.5
We will use the following.

Lemma 7.6. Let t; be a nonzero resonant point, r > 1 and suppose that My < Rlnoy,
R = R(r, K) and that |[E(Sy)| = O(Inoy). Then (7.1) holds for all 0 < £ < r if and only if

105 (t)] = 0 (oy 1) (7.10)
forall0 <{ <.

Proof. Let us first assume that (7.1) holds. Because the summands are independent we have

Dy (t) = Py (t) Py, n(1). (7.11)
Recall that by Lemma 4.2 we have
Py N (@) = Py n(tj) Py v (h) Py n(R) (7.12)
where t =¢; + h and
[e.¢]
Uny.n(h) = exp |:0(MN(m)) Z(O(l))”h“] . (7.13)
u=1
For ¢ = 0O the result reduces to (7.11). For larger £’s we have
-1
14 _
(1) = Dy n ()P + Y <k> D M) D)) (7.14)
k=0

Fix some k < £. Notice that S’NO,N = Sy, — E(Sy,,n) satisfies |E[(S’N0,N)q]| < C;af\’,o,N, for
some constant C ; > 0. Indeed, by (3.3) we have

[Svo.n ]y = Co (14 [Snon ) -
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. 2 _ 2 2 . . . .
However, since oy = oy + oy - and Ny is of logarithmic order in oy we get that

oy < Coy,,n for some constant C > 0. Now the desired upper bound follows since oy — 00
(which implies that for N large enough we have 1 + || SNy, N ||2 <2 || SNy, N ||2). Combing this
with (7.12), we see that

t—k

k u u
e @NON(;,)Z< >q5< RO Zval (V) (7.15)
_ —k
= O(In O—N)¢NO,N(tj)~
Therefore
DY VAN DY) = 0" oy) By (1) B (1)). (7.16)

Finally, by (7.1) we have
Do () Py () = o(oh' ")
and so, since k < ¢,
SR oLt)) = (o).

This completes the proof that (7.10) holds.
Next, suppose that (7.10) holds for each 0 < £ < r. Let use prove by induction on £ that

| g v Dy ()] = 0 (o). (7.17)

For £ = 0 we notice that (7.1) and (7.10) coincide. For the sake of clarity, let us also prove
the case £ = 1 directly, relying on the case £ = 0. For £ = 1, by (7.15) applied with k — ¢ =1
we have

By, n (1)) = O(noy) Dy, v (1))
and so

Py (t)) = Py (t)) Py (1) + Py, (1)) Prg (1))

= O(Inoy) Pn(t)) + Py, (1)) Py N (1))

By assumption we have &, (t;) = o(o, r+2) and by the induction base we have dy(7;) =
O(GN’H). Thus

Py, (1) Py N (t)) = Py(t)) — O(lnoy) Py(t)) = oo, ).

Now take £ > 1 and assume that (7.17) holds with & in place of ¢ for each k < €. By (7.14),
(7.16) and the induction hypothesis we get

DY (t7) = By n () PN (1) + 0oy,
By assumption we have o )(t,) 0(0Hl ") and hence
Do (1) B () = ol ™)

as claimed. O
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Theorem 1.5 in the case My < RInoy follows now by first replacing X,, with X, — ¢,
where (c,) is a bounded sequence of integers so that E[Sy — Cy] = O(1), where

Cy =ch (7.18)

(see Lemma 3.4 in [11]), and then applying Lemma 7.6 and Proposition 7.1.

It remains to consider the case when My(m) > Rlnoy where R is large enough. In that
case, by Theorem 1.4, the Edgeworth expansion of order r holds true, and so, after the reduction
to the case when E(Sy) is bounded, it is enough to show that ¢\(1;) = o (o5 ") for all
0 < ¢ < r. By the arguments of Lemma 7.6 (starting from (7.15)) it suffices to show that for
each 0 < ¢ < r we have

My (m) By (1)) By (1) = 0(oy").

To this end we write

{4 “yq)
PN Dy Nt = Y i | |¢ (1) [T o
nyseng <Ngs n<N, n#nj
Lyttt =L

where y;, . ¢, are bounded coefficients of combinatorial nature. Using (3.8) we see that for each
ni, ..., n; the product in the square brackets is at most Ce™0MN+0WM) for some C, ¢y > 0.
Hence

| B3 (2)) Drg v (1))] < CNG eMvem,
It remains to note that the definition of Ny gives My (m) > &Ny. Thus
My (m)| B (1) Dy n (1)) < CMR (m) €MV = o(oy")

provided that My > RInoy for R large enough. [

8. Edgeworth expansions and uniform distribution

8.1. Proof of Theorem 1.6

In view of Proposition 7.1 with r = 2, it is enough to show that if dy(t;) = o(algl) then
the SLLT implies that

| D, v (1)) Py, ()] = o(1) 8.1

for any non-zero resonant point #; (note that the equivalence of conditions (b) and (c) of the
theorem follows from Lemma 6.2).
Denote ®y.(f) = ]_[ i(t).
Ik, I<N
Let us first assume that ¢(¢;) # O for all 1 < k < N. Then ¢, (t;)Pn.(t;)) =

Gt Pn(t))/di(t)). Let ey = I‘L‘LN. If for all 1 <k < Ny we have |¢(;)| > ey then

No No
sbNO,N(r,-)@’NO(t,-)) = DBt Buat))| < [ By Y 14t/ i)l
k=1 k=1

< Cey'Noly(t))] < Cloy|Dn(t;)| — 0 as N — oo
513



D. Dolgopyat and Y. Hafouta Stochastic Processes and their Applications 152 (2022) 486-532

where we have used that Ny = O(In V). Next suppose there is at least one 1 < k < Ny such
that |¢(¢;)| < en. Let us pick some k = ky with the latter property. Then for any k # ky,
1 <k < Ny we have

| () Pk ()] < Clopry ()] < Cen.

Therefore,

/12
Z (1) Dyk(t))| < ooy = o(1).
oN

k#kn, 1<k<Ng

It follows that
Py N (1) Py, (1)) = Pk (), (2)) + (D). (8.2)

Next, in the case when ¢y, (t;) = 0 for some 1 < ko < Ny, then (8.2) clearly holds true with
ky = ko since all the other terms vanish.
In summary, either (8.1) holds or we have (8.2). In the later case, using (3.8) we obtain

‘IE (ei’jsNikN)‘ < o~ 2 Lshy s<n 450 _ =My (m)=giy (m) (8.3)
where Sy.x = Sy — Xk, and ¢, > 0 depends only on K. Since the SLLT holds true, My

converges to oo as N — 00. Taking into account that 0 < g, (m) < 1 we get that the left
hand side of (9.6) converges to 0, proving (8.1). [

8.2. Proof of Theorem 1.8

We start with the proof of part (1). Assume that the LLT holds in a superstable way. Let

X, X}, ... be a square integrable integer-valued independent sequence which differs from
X1, X,, ... by a finite number of elements. Then there is ny € N so that X, = X/, for any
N

n>np. Set Sy =Y X, ¥ =8, and Yy = YI(Y| < 0)/*™), where & > 0 is a small
constant. By the Ma;ll?olv inequality we have

P(Y| = o)/ *") = P(Y? = 0y™) < |V [2,04" 7% = o(oy)).
Therefore, for any k € N and N > ny we have

P(Sy =k) = P(Sy:1.2.my + Y = k) + 0(03")

= E[P(Sn:12...n0 = k — YnIX], ..., X))+ 0(oy )

= E[Py:12....no(k — YN)] + 0(oy ")

where Py.12,. no(s) = P(Sn;1,2,..ny = §) for any s € Z. Since the LLT holds in a superstable
way, we have, uniformly in k and the realizations of Xi, ..., X, that

o~ k=YN—E(Sy)?/2VN)

Pn:1p,. gtk — YN) = Nz + o(cr,Ql).
ON
Therefore,
P(S, = k) = (8.4)

514



D. Dolgopyat and Y. Hafouta Stochastic Processes and their Applications 152 (2022) 486-532

e~ —ESn)?/2Vy

\/EGN
Next, since |Yy| < 011,/%8 we have that ||Y1%,/(2VN)||Loo < off_l, and so when ¢ < 1/2 we
have ||Y]%,/2VN||Loo = o(1). Recall that ky = (k — E(Sy))/on. Suppose first that |ky| > o,
with ¢ < 1/4.
Since

E(e—<k—E<sN)>YN/VN+Y§,/<2VN>) +ooyh).

el
|(k = E(Sy)Yn/Vn| < lkyloy 2,

we get that the RHS of (8.4) is 0(01;1) (uniformly in such k’s).
On the other hand, if |ky| < oy then

E(e—(k—]E(SN))YN/VN+Y1%]/2VN) =14o0(1)
(uniformly in that range of k’s).
We conclude that, uniformly in k, we have

) o~ —ESn)?/2Vy) |
PSSy =k)=—————— 4+ 0(oy).
A/ 27TCTN N

Lastly, since sup |E(Sy) — E(Sy)|< oo and sup |Var(Sy) — Var(Sy)| <oo,
N N

o~ K=E(Sy)?/2V})
V2moy
where V}, = Var(Sy) and o, = /Vj,.

Conversely, if the SLLT holds then by Eq. (1.1) we have that My (h) — oo for each h > 2.
Now if ¢ is a nonzero resonant point with denominator 4 then (3.8) gives

P(Sy = k) = +o(1/oy)

—cMy ()+C5 ~
| By v gy (D] < Ce VIS €. C > 0

for any choice of j, ...,jfxl and 5 with sy < 5. Since the RHS tends to 0 as N — oo,
{X,} € EeSS(1) completing the proof of part (1).

For part (2) we only need to show that (a) is equivalent to (b) as the equivalence of (b)
and (c) comes from Lemma 6.2. By replacing again X, with X, — ¢, it is enough to prove
the equivalency in the case when E(Sy) = O(1). The proof that (a) and (b) are equivalent
consists of two parts. The first part is the following statement whose proof is a straightforward
adaptation of the proof of Theorem 1.5 and is therefore omitted.

Proposition 8.1. {X,} € SsEe(r) if and only if for each 5, each sequence jI, jV, ...,j;;’v
with sy <5, each £ < r and each t € R we have
(] _ l+1—r
@N;le,ij ..... i @) =o(oy ). (8.5)
Note that the above proposition shows that the condition @N;jlzv’jé}v ..... iy ) = o((r]:/—r) is
necessary. N
The second part of the argument is to show that if
¢N;j1N,j2N J'sg}lv(t) = O(Glbir)

.....
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holds for every finite modification of Sy with sy < s+£ (uniformly) then (8.5) holds for every
modifications with sy <5 so that the condition @, A (1) = 0(01},_’) is also sufficient.

To this end we introduce some notation. Fix a nonzero resonant point ¢ = % Let y be the
characteristic function of the sum Sy of all X,’s such that 1 <n < N, n ¢ UGN, jsl;’]}
il T Sy and
let @y (1) be the characteristic function of Sy. Similarly to the proof of Theorem 1.5 it suffices
to show that for each £ < r

)Eb;? @N(t)( = o(c)")

and g,(m) > €. Let N be the number of terms in S'N. Denote S’N = SN.le A

and, moreover, we can assume that My(m) < RInoy and therefore N = O(Inoy). We have
(cf. (4.21)),

k
o ovty = Y []rve.adl) I1 n(t))
nk w=1

N :N N
s né{ny,no..ng, jiv L jiv...,
Oty =t #{ny.ny k2Jy 52 JSN}

where the summation is over all tuples ny, ny, ..., nx such that g, (m) > €. Note that the

absolute value of each term in the above sum is bounded by C| @N,nl s i il )l = o(o,{,_r).
T i

It follows that the whole sum is

0 (O_]{]—r](](f> =0 (o]{,_’ In* UN)

completing the proof. [l

Remark 8.2. Lemma 6.2 and Theorem 1.5 show that the convergence to uniform distribution
on any factor Z/hZ with the speed 0(0]{,”) is necessary for Edgeworth expansion of order r.
This is quite intuitive. Indeed calling &, the Edgeworth function of order r, (i.e. the contribution
from zero), then it is a standard result from numerical integration (see, for instance, [10, Lemma
A.2]) that for each s € N and each j € Z

i + hk o
Yons () = [ s toe) = 1 0oy
keZ oN —00

where in the last inequality we have used that the non-constant Hermite polynomials have
zero mean with respect to the standard normal law (since they are orthogonal to the constant
functions). However, using this result to show that

D P(Sy = j +kh) =
keZ

1 -
—+o(oy”)

h

requires a good control on large values of k. While it appears possible to obtain such control
using the large deviations theory it seems simpler to estimate the convergence rate towards
uniform distribution from our generalized Edgeworth expansion.

9. Second order expansions

In this section we will compute the polynomials in the general expansions in the case r = 2.
First, let us introduce some notations which depend on a resonant point ¢;. Let t; = 27l;/m
be a nonzero resonant point such that My(m;) < R(2, K)InVy where R(2, K) is specified
in Remark 3.6. Let 551-. y be the characteristic function of the sum S ;,~ of all X,,’s such
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that 1 < n < N and g,(m;) > € = ﬁ Note that 5‘ij was previously denoted by Sy,.
Let S N = Sy — S ;,~ and denote by (NPJ-, ~ its characteristic function. (In previous sections
we denoted the same expression by Sy, n, but here we want to emphasize the dependence
on t;.) Let y; x be the ratio between the third moment of S N — E(S j.~v) and its variance.
Recall that by (3.3) |yjny| < C for some C. Also, let Cin, be given by (4.15), with
the indexes rearranged so that the n’s with g,(m) > & are the first Ny ones (Cj y, 4 is at
most of order My(m) = O(InVy)). For the sake of convenience, when either 1; = 0 or
MN(mJ) > R(2,K)InVy we set C|, N = =0, SJN = Sy and SN] = 0. In this case @11\; = @N
and QJ,N = 1. Also denote ky = (k — E(Sy))/on, Sy = Sy — E(Sy), and yy = E(SN)/ Vv,
(yn is bounded).

Proposition 9.1. Uniformly in k, we have

V2rP(Sy = k) = (1 + 3 ek ey )) 52 ©.1)

1;eER

_9 _32 itk —
one N2 ynkd /6 + Y ek by () Py k) | + oloy?)
tjeER
where

Py i(x) = (éN,j(tj)(iCl.N,tj — E(gN,j)) +ié;\],j(tj))x + éNA,j(f_,')J/N,jx3/6~

Proof. The starting point of the proof is the equality (4.1). In Section 4.3 we have proven that
the contribution to (S, = k) of the integrals over the non-resonant intervals /; is negligible,
while the contribution of the integral over resonant intervals /; is given by the quantify C;(k)
defined by (4.22). Let t; = 2’” be a resonant point with M N(m) <R(2, K)In Vy. First, in order
to compute the term correspondlng to O’NO% y we need only to consider the case s < 1 in (4.23).
Using (3.2) we end up with the following contribution of the interval containing ¢;,

o
\/(Zn)_'e_”/k@v,j(tj)GNOl,N </ e~ hEISN.VIoN.j = 12 g

S o
+oy / e ihk=EISN jD/on,; <?]E[(SN, i —ESy.)) ]aN,> dh
—00
0 -
oy L (Con By ) + By (1) / ¢ HOEN N ) P g )
= _”Jk@Nj(tj)V (27‘[) le kNj/2 71 ( ¢Nj(tj) +1(C1 th @N j(tj)+ QSNJ(IJ))
xky. joy s + i51v,j(lj)(k13v,j - 3kN,j)7/N,j<71\7,lj/6>

where oy ; = ,/V(S'N,j), kyj = %Sj”) and yy ; = w (which is uniformly
bounded). "

As before we shall only consider the case where |ky| < Vy with ¢ = 0.01 since otherwise
both the LHS and the RHS (9.1) are O(o,") for all r. Then, the last display can be rewritten
as I + I where

e—itik

=2 kil gyt 9.2
m(w! N (E)); 9.2)
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—ltjk

M= ——— 0
V2moy
[@N(tj) (icl,N,,_,.kN,j + % (K, — 3kN,,-)) +ié§v,j(zj)isN,j(tj)kN,j] .
In the region |ky| < V§ we have
1= i ek /2 [1—gn jkn] Pn(t) +o0 (0_2)
\/EO'N s J N

where

gn.j =EGSy.)/on. =ESy j)/on + O(noy/oy) = O(noy/oy)
while

e*l‘tjk

- «/27‘[0’1%/
|:¢N(tj) <iC1,N,l‘jkN +

2
e /2%

)/

yn,j (k3 — 3k)

. ) +i é},yj(t,,‘)@N,,/(f.i)kN}
+o(0y7).

This yields (9.1) with Ry in place of R, where Ry is the set of nonzero resonant points ¢; =
2nl/m such that My(m) < R(2, K)In Vy. Next, (3.8) shows that if My(m) > R(2,k)InVy
then

—c -2
sup | Py (1) < e”OMN™ — o(01 %)
t€1j

and so the contribution of /; to the right hand side of (9.1) is 0(0,;2). Finally, the contribution
coming from ¢; =0 is

2 . _
eV (o + oy vk /6)
and the proof of the proposition is complete. [

Remark 9.2. Suppose that My(m) > R(2, K)In Vy and let Ny is the number of n’s between
1 to N so that g,(m) > SLK. Then using (3.8) we also have

By DBy ()l < D [EIXe 50| | Byou(r)]

neBz(m)
< CNy(N, t;,8)e OMNM < C" My (m)e~oMnim,
where
Byg(m)={l <n <N :q,(m) > &)}.
Since My(m) > R(2, K)In Vy, for any 0 < ¢; < ¢g, when N is large enough we have
My (m)e™ MV < CremetMNim — o(g ).
Similarly, |E(Sy ;) @y ()| = o(oy?) and
Crna; On(t)) = OMy(m) Dy (1)) = ooy

Therefore we get (9.1) when S’N, j and S’M j are defined in the same way as in the case
My(@m) < R(2, K)InVy.
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Under additional assumptions the order 2 expansion can be simplified.

Corollary 9.3. If Sy satisfies SLLT then

ek /2 itk ynky )
V21P(Sy = k) = - L+ Y e dy(t)) — b + o(oy?).

t_,'ER

Proof. It is enough to show that all terms in the second line of (9.1) except the first one make
a negligible contribution, namely that

(1+ My(m)) Dy ;(t;) By, j(1;) = o(1) 9.3)
and

Dy (1) By (1)) = o(1). 9.4)
Since Sy = S; v + S_,;N we have

Dy (1)) B (1) = Py(t) = O(e~0MN M)

where the last equality follows from (3.8). Since by Eq. (1.1) the SLLT implies that My (m) —
00, (9.3) follows.
Next we prove (9.4). Similarly to Remark 9.2, if My(m) > R(2, K)In Vy then

By (1)) By (1)) < C'My(m)e 0¥V = o(1),

Hence it is enough to consider the case when My(m) = O(Iln Vy). The proof in this case
proceeds very similarly to the beginning of Section 8.1, but for readers’ convenience we will
provide all the details.

Let A; = A;(N) denote the set of all 1 < k < N so that gi(m) > 8+< Then the size |A ]
of A;, which was previously denoted by Ny, is at most of order My(m). Let us first suppose
that ¢(t;) # O for all k € A;. Now, if for all k € A; we have |¢y(;)] > ey = U2

5, where
. . - . My (m)
co > 0 is some constant, then similarly to the beginning of Section 8.1 we have

Dy j(t) D), ,-(t;)] =) Gt Pyat))| < DY 17t/ it
kEAj kEAJ‘
< Cey'|A; || On(t))| < C'My(m)| Dy(tj)| — 0 as N — o0

where the last limit is indeed 0 because of (3.8) and taking into account that My(m) — oo

(by Eq. (1.1)).
Next suppose there is at least one k € A; so that |¢(¢;)| < ey. Pick some k = ky with the
latter property. Then for any k # ky, k € A; we have

9 (1)) P (t)] < Clpry (1)) < Cen.

Therefore,

Z &) Pyi(t))| < ClenlAj|

keAj\lk)

= O(|A;*(Myn(m))7) = o(1/My(m)) = o(1).
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It follows that
DN () P\ (1)) = By (1)1, (1) + o(1). (9.5)

Next, in the case when ¢, (t;) = O for some ky € Aj, then (9.5) clearly holds true with
ky = ko since all the other terms vanish.
Using (3.8) we obtain

|¢N;kN(tj)’ — ‘E (eithN?kN)’ < e 2 Zs;/:kN,lsssN qs(m) — E—CZMN(m)—qu(m) (9.6)

where Sy.x = Sy — Xk, and ¢; > 0 depends only on K. Since the SLLT holds, My(m)
converges to co as N — oo. Taking into account that 0 < g, (m) < 1 we get that also the
first term on the right hand side of (9.5) is o(1), and the proof of the corollary is complete.

O
Next, assume that Sy satisfies the LLT but not SLLT. According to Proposition 1.2, in
this case there exists m such that My (m) is bounded and for k = 1,...,m — 1 there exists

n = n(k) such that ¢,(k/m) = 0. Let R, denote the set of nonzero resonant points t; = 2,’;—"

so that My (m) is bounded and Ge; (1)) = 0 for unique ¢;.

Corollary 9.4. Uniformly in k, we have
V2rP(Sy = k) :( 1+ Z P ¢N([j) ) a;lefk%’/z

[jER

2 _i2 . it _
—oy e Nk} (6 + Y ieT R by 1)@y (1 | + oloy).
1 €Rs

Proof. As in the proof of Corollary 9.3 we see that the contribution of the terms with k/m
with My (m) — oo is negligible. Next, for terms in R the only non-zero term in the second
line in (9.1) corresponds to Py ¢ (tj)¢y .(t;) while for the resonant points such that ¢.(¢;) = 0
for two different £s all terms vanish.

10. Examples

Example 10.1. Suppose X, are iid integer valued with step 4 > 1. That is there is s € Z
such that P(X,, € s+hZ) = 1 and h is the smallest number with this property. In this case [18,
Theorem 4.5.4] (see also [12, Theorem 5]) shows that there are polynomials P, such that

r

P(Sy=k)=Y_ Py((k = E[bSN])/GN)g (k — ]E(SN)> +o(oy" (10.1)
=1 O'N oN
for all kK € sN + hZ. Then
h—1 r
: ) P,((k — E[S
303 emiatosoyn PO BISWDION) 4 5,y
a=0 b=1 on

provides o(o") approximation to P(Sy = k) which is valid for all k € Z.
Next let Sy = Xo + Sy where X is bounded and arithmetic with step 1. Then using the
identity

PSy=k= Y  P(Xo=wP(Sy=k—u, (10.2)
u=k—sN mod h
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k—u—E(S
invoking (10.1) and expanding g u—(N)> in the Taylor series about EESY) we
ON
conclude that there are polynomials P, ; such that we have for k € j + hZ,
- ~ Py ;((k —E[Sy])/o k —E(S
PGSy = k) = Z b, (( b[ ~1)/ N)g( ( N)) + ooy,
b=1 ONn oN

Again

h—1 h—1 r E

Zezma(k—j)/h Z Py, j((k — [SN])/O'N)g (k - IE(SN))
b
a=0 j— b=1 On ON

provides the oscillatory expansion valid for all integers.

Example 10.2. Our next example is a small variation of the previous one. Fix a positive
integer m. Let X’ be a random variable such that X’ mod m is uniformly distributed. Then
its characteristic function satisfies ¢X/(2;T1—“) =0fora=1,...,m — 1. We also assume that
c/);(,(zZl—“) # 0 for a as above (for example one can suppose that X’ takes the values Lm,
1,2,...,m— 1 with equal probabilities where L is a large integer). Let X” take values in mZ
and have zero mean. We also assume that X” does not take values at moZ for a larger my.
Then g(X”, mg) > 0 for any mg # m. Fix r € N and let

X n<r,
X, =
X" n>r.

Then My (mg) grows linearly fast in N if my # m and My (m) is bounded in N. We claim that
Sy admits the Edgeworth expansion of order r but does not admit Edgeworth expansion of
order r + 1. The first statement holds due to Theorem 1.5, since @%)(2;’7“) =0 foreacha € Z
and each ¢ < r. On the other hand, since @%)(zjf—la) = 0 for any £ < r, using Lemma 7.6 we
see that the conditions of Lemma 7.2 are satisfied with » 4 1 in place of r. Moreover, with
tj = 2ma/m, a # 0 we have Hy ,415(x,¢;) = 0 forany ¢ < r + 1 and s = 2, 3,4 while
Hw,quw(x,t;) =0 for any g <r and w = 1, 2, 3, 4. Furthermore, when N > r we have

i H,(x)(¢xrQra/m))" " 80 2ma/m)

r!

Hyr1,1(x5 1)) =
= () H)(DyQra/m)).

We conclude that

P(Sy = k)
e*k,zV/Z i - 2riak/m ’ 2ra '
= — Sr k + T e ! " ( / <_>> Hr k )
7 | &) e ; P | = (kn
+0(O_];r71)

where &, the Edgeworth polynomial (i.e. the contribution of 0) and H,(x) is the Hermite
polynomial.

Observe that since the uniform distribution on Z/mZ is shift invariant, Sy are uniformly
distributed mod m for all N € N. This shows that for r > 1, one cannot characterize Edgeworth
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expansions just in term of the distributions of Sy mod m, so the additional assumptions in
Theorems 1.6 and 1.8 are necessary.

Next, consider a more general case where for each n, X, equals in law to either X" or X",
however, now we assume that X’ appears infinitely often. In this case Sy obeys Edgeworth
expansions of all orders since for large N, Py (¢) has zeroes of order greater N at all points
of the form 2;;—“ a=1,...,m— 1. In fact, the Edgeworth expansions hold in the superstable

way since removing a finite number of terms does not make the order of zero to fall below r.

Example 10.3. Let p, = min(l, %) and let X, take value O with probability p, and values

+1 with probability 1‘%. In this example the only non-zero resonant point is 7 = 2w x %

Then for small 6 the contributions of P;; y (the only non-zero a is 1) are significant and as
a result Sy does not admit the ordinary Edgeworth expansion. Increasing 6 we can make Sy
to admit Edgeworth expansions of higher and higher orders. Namely we get that for large n,

26 )
¢n(m) = — — 1. Accordingly
n

20 1
In(—,(0) =~ +0 (;> .

Now the asymptotic relation

N

1 1

—=InN+c+0|—),
by mmrero(s)
where c¢ is the Euler—Mascheroni constant, implies that there is a constant I'(f) such that
(_ I)NeF(O)

-1
Therefore Sy admits the Edgeworth expansions of order r iff 6 > rT Moreover, if

r—2 r—1
0 e 71 | then Corollary 7.4 shows that

—k% /2

(_1)N+ker(9) 1
P(Sy = k) = ﬁ |:5r(kN) + N26+(1/2) +0 (N20+1 >i|

where &, is the Edgeworth polynomial of order r. In particular if 8 € (0, 1/4) then using that

InN
Vv =N+ O(InN)=N (1 + 0 <T)) (10.3)

and hence
InN
on = VN (1 +o0 (%)) (10.4)

we conclude that

esz/(zzv) 1 (_1)N+keF((~)) 1
= B o ()]
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Next, take p, = min ( 1, n% . Then the SLLT does not hold, since the Prokhorov condition
fails. Instead we have (6.1) with R = {rr}. Namely, uniformly in k we have

N
V2rP(Sy = k) = (1 + D] T@pa - 1)) oy e oo,

u=1

Next, p, is summable and moreover

N
[]@p.— 1 ==DNUua+o0a/Ny)

u=1

o0
where U = l—[(l — 2p,). We conclude that
n=1
V2RP(Sy = k) = (1 + (=D U) o7 e ™2 1 0 (0?) (10.5)

uniformly in k. In this case the usual LLT holds true if and only if U = 0 in agreement with
Proposition 1.2.

In fact, in this case we have a faster rate of convergence. To see this we consider expansions
of order 2 for p,, as above. We observe that ¢,,(2) = p, for large n. Thus

[E(e™ )| = 1—2p,
and so |E(e™X")| > % when n > Ny for some minimal Ny. Therefore, we can take Ny = Ny.
Note also that we have Y, = X, mod 2 — 1. We conclude that for n > Ny we have
E[(-D)" — DX,] _

E[(—1)]
and so the term C; y vanishes. Next, we observe that
N
Zn=N0+1 E(Xﬁ)
W= SN, L

2 n=ng+1(1 = Pn)

Finally, we note that E[(—1)*"X,,] = 0, and hence @}vo(n) = 0. Therefore, the second term in
(9.1) vanishes and we have

V2rP(Sy = k) = (1 + (=N U) o3'e /2 4 0 (077) .
Taking into account (10.3) and (10.4) we obtain

1 -1 k+NU
V2 P(Sy = k) = % e KN 4 o (N’3/2) )

In particular, (10.5) holds with the stronger rate O (o]; 3).

n = Qn,j =

Example 10.4. The last example exhibited significant simplifications. Namely, there was only
one resonant point, and, in addition, the second term vanished due to the symmetry. We now
show how a similar analysis could be performed when the above simplifications are not present.
Let us assume that X, takes the values —1,0 and 3 with probabilities a,, b, and ¢, so that
a, + b, +c, = 1. Let us also assume that b, < % and that a,, ¢, > p > 0 for some constant
p. Then

V(Xy) = 9(cn — ) + 6aycy + (an — ay) = 6p
and so Vy grows linearly fast in N.
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Next, since we can take K = 3, the denominators m of the nonzero resonant points can
only be 2, 3,4, 5 or 6. An easy check shows that for m = 3, 5, 6 we have g,(m) > p, and that
for m = 2,4 we have g,(m) = b,,. Therefore, for m = 3,5, 6 we have My(m) > pN, and so
we can disregard all the nonzero resonant points except for /2, w and 37 /2. For the latter
points we have

T .
¢ (3) = bu—i(1 = by), (10.6)
$u(m) =2b, — 1, ¢, <37n> = b, +i(l —by). (10.7)

Hence, denoting 1, = b,(1 — b,), we have

w5 =l (5 T

n\ ~ = n = 1= ns n (7T = 1= n-

) ) n n

Since we suppose that 1, < b, < é it follows that 1 — 4n, > % Then for the above three

resonant points we can take Ny = 0. Now Proposition 7.1 and a simple calculation show that
for any r we get the Edgeworth expansions of order r if and only if

N
[Ja—2n)=0(N"").

n=1

Let us focus for the moment on the case when b, = y/n for n large enough where y > 0 is
a constant. Rewriting (10.6), (10.7) as

T 3
%—(.2) =1 —=by) +iby, ¢”(—2) = (1 =by) —iby, (10.8)
—1 l
—¢n(r) =1 =2b,
and, using that the condition b,, < % implies that ¢, (r) % O foralln € Nand all t € {%, T, 37” },
we conclude similarly to Example 10.3 that there are non-zero complex numbers ki, k3 and a
non-zero real number «, such that

T (—i)NKl iyInN 1

o (5) =N ¢ +oly))
37 iNK3 : 1

) sy —iyInN 1 ol = ,
N( 2 ) nr ¢ ( TO\N

K@V N 1
dy(m) = (DN 2N2y <l + 0 <N)) .

It follows that Sy admits Edgeworth expansion of order r iff y > %1 In fact if % <y <
then Corollary 7.4 shows that

r
2

—Kk%./2 iylnN —iyInN

e N Kie K3e _
P(Sy =k) = ——| & (k O (N
v == [+ S S o (v

where &, is the Edgeworth polynomial of order r and n=min (2y, §) + 3.
To give a specific example, let us suppose that % <y < 1 and that E(X,,) = 0 which means
that

3(1 = by,) 1-b,
= -, cl’l = .
4 4

n

(10.9)
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Then
Vy =3N =3y InN + O(l), E(Sy)=6N—6yInN + O(1), (10.10)
so Proposition 9.1 gives
V2rP(Sy = k) =
. |: 1 (1 N ki ik—NeiyInN +K3iNkeiylnN> - i3 i|
V3N NY 81/3N3

+0 (N77?)

Next, we return to the general case and stop assuming (10.9). Instead, let us provide the

second order trigonometric expansions under the sole assumption that 1 — 45, > % and

a,,c, > p. As we have mentioned, we only need to consider the nonzero resonant points
/2, w, 3w /2 and for these points we have Ny = 0. Therefore, the term involving the derivative

in the right hand side of (9.1) vanishes. Now, a direct calculation shows that

N X, T N
]E(em)(n Xn) (an - 3Cn)bn
Cing = ; e = 2'; T
and
N . N .
(an B 3Cn)(l + l)bn (an B 3Cn)(l - l)bn
Cinnp = , Cinznpn = - .
L ; by —i(1=by) L ; by +i(1—by)
Note that 3¢, — a, = E(X,,). Set
N N N

iy =[] —i0 =by), Doy =[]@bs—1. Isy=]]®u+i0=by).

n=1 n=1 n=1

Then Iy y = E(ewzlsl"). We also set
On =Cinsnplyn, s=1,2,3

and
3 3
Tyt =" e ™ 2T,y Oyt =Y eI Tk2g, .
j=1 j=1

Then by Proposition 9.1 and Remark 9.2, uniformly in k we have

V2 P(Sy = k) = o' (1 4 Iy(k)) e v/ (10.11)

—oi? (T (1 + Tw() + iky On (k) e V2 + 0(0?)

N
> E(X)
=1

where Ty = = , X, = X, — E(X,).

6Vy
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Finally let us return to a more specific situation. Namely we suppose that b, = n% for
large n and that E(X,) = 0. Then (10.9) shows that C; y /> = 0. Next (10.8) gives

T N _
QZN.()?V)=1_[[<1—bn>+ibn]= —
—1
"=t [ 1 —bw)+ib,]
n=N+1

(L wa=b (1
a1+ 2021 0(3))

e ¢}
where & = [ [I(1 = b,) + ib,]. Likewise

n=1

By (3 2p(1 4 |
Nl](vz)zlz3(1+—yi/;l)+0<ﬁ>>

¢N(ﬂ)_ 4y 1
oy <1+f+O(N>>'

Taking into account (10.10) we can reduce (10.11) to the following expansion

1
VITP(Sy = k) = e KI5V [ (1 + Z" i M)
V3N —

e b e O B 1
+N(_?+ A3 +0(W)

s=1

where ky = k/~/3N.

and

Example 10.5. Let X’ take value £1 with probability %, X" take values 0 and 1 with
probability 1 5» and X%, 8 € [0,1] be the mixture of X’ and X” with weights d and 1 — 6.
Thus X° take value —1 with probability 2 5, the value 0 with probability 152 and value 1 with
probablhty 3 Therefore, E(e’“xﬁ) = —§. We suppose that X5, and Xy, have the same law
which we call Y,,. The distribution of Y,, 1s defined as follows. Set k; = 33 and let Yk have
the same distribution as X% where 8 = . Whenm ¢ {k;} we let ¥,, have the dlStrlbllthIl

of X'. It is clear that Vyy grows linearly fast 1n N Note also that E(e™ /) = —&; whenm =k;
for some j, and otherwise E(e™¥m) = —1. Now, take N € N such that N > 2k2, and let JN
be so that 2k;, < N < 2kj, 4+1. Then

Y
|on(m)l < [ ki
j=1
Since k;, < % < kjy41 and k; = (kj41)"/? we have kJ_A:H <2Nlandksyigpm <28 N
Iy—1
for any 0 < m < Jy. Denote oy = Z 37/, Since ay > 1/3 we get that
j=1
| &y ()] < 22NN = o(N~'717),
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Similarly, for each j;, j» < N,

| Py, ()| < 222NTVEN = (N3 (10.12)
and

| Dy:jy 5 ()] < 22NN = o(N~'/3). (10.13)

Indeed, the largest possible values are obtained for ji = 2kj, (or j1 = 2kj,,, — 1 if it is
smaller than N + 1) and j, = 2kj, — 1 (or j» = 2k;,). Using the same estimates as in the

proof of Theorem 1.8 we conclude from (10.12) that &) () = o (1 /«/ﬁ ) and we conclude

from (10.13) that @y () = o(1). It follows from Lemma 7.6 and Proposition 7.1 that Sy
satisfies an Edgeworth expansion of order 3. The same conclusion holds if we remove a finite
number of terms from the beginning of the sequence {X,} because the smallness of @y ()
comes from the terms X 2%j—1 and X 2%; for arbitrary large j’s.
On the other hand
j—1
@kj;zkj,zqu,zkj_l,2kj_171(7T)) = l_[ (3_3 )

s=2
39/2 1 .
—»— =3
N
It follows that Szkj;zkj,ij—l,zk,_l,2k,_1—1 does not obey the Edgeworth expansion of order 3.
Accordingly, stable Edgeworth expansions need not be superstable if » = 3. A similar argument
allows to construct examples showing that those notions are different for all » > 2.

_ 3—(31' -9)/2 _

11. Extension for uniformly bounded integer-valued triangular arrays

In this section we will describe our results for arrays of independent random variables. We
refer to [7,13,26,27,29,35] and [11] for results for triangular arrays of inhomogeneous Markov
chains. Example where Markov arrays appear naturally include the theory of large deviations
for inhomogeneous systems (see [14,31,34] and references wherein), random walks in random
scenery [4,16], and statistical mechanics [19].

Let XM, 1 <n < Ly be a triangular array such that for each fixed N, the random variables
XN) are independent and integer valued. Moreover, we assume that

K = supsup [| XV 10 < o0.
N n

Ly
For each N we set Sy = ZX,(IN). Let Viy = Var(Sy). We assume that Vy — oo, so that, by
n=1
Lindeberg—Feller Theorem, the sequence (Sy —E(Sy))/on obeys the CLT, where oy = +/Vy.
We say that the array X\ obeys the SLLT if for any k the LLT holds true for any uniformly
square integrable array Y™, 1 <n < Ly, so that Y™ = X™ for all but k indexes n. Set

Ly

My = mi P(X, (N) > R1
N ZSI‘LI;I;KZ]( #m™(h) mod h) > RIn Vy

where m(h) is the most likely value of X¥ modulo /. Observe now that the proofs
of Proposition 3.1 and Lemmas 3.3, 3.4, 4.2 and 4.4 proceed exactly the same for arrays.
Therefore, all the arguments in the proof of Theorem 2.1 proceed the same for arrays instead
of a fixed sequence X,. That is, we have
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Theorem 11.1. There 3J = J(K) < oo and polynomials P, , n with degrees depending only
on a and b, whose coefficients are uniformly bounded in N such that, for any r > 1 uniformly
in k € Z we have

J-1 r

IP(SN _ k) _ Z Z Pa,b,N((k —b CZN)/UN)g((k _ aN)/oN)ezmak/j _ 0(017)
a=0 b=1 on
7u2/2.

where ay = E(Sy) and g(u) = \/;273
Moreover, Py y = 1 and given K, r, there exists R = R(K, r) such that if My > RlnVy
then we can choose P, n =0 for a # 0.

All the formulas for the coefficients of the polynomials P, ; y remain the same in the arrays
setup. In particular, we get that, uniformly in £ we have

V2rP(Sy = k) = (1 + Z e itk @N(t)) e*k?v/zojgl + ooy ") (11.1)
teR
where @y (1) = E(e'"SV). This formula is a generalization of (6.1).
Next, our version for Proposition 1.2 for arrays is as follows.

Proposition 11.2. Suppose Sy obeys LLT. Then for each integer h > 2, at least one of the
Ly

following conditions occur: either (a) Nlim E P(X, # mElN)(h) mod h) = oo. or (b) there
—> 00
n=1

exists a subsequence Ny, numbers s € N and ¢y > 0 and indexes 1 < jlk, ...,j;; < Ly,

Sk
Sy < s so that the distribution of ZXESI") converges to uniform mod h, and the distance

u=1

Sk
between the distribution of Sy, — Z X;]qv") and the uniform distribution mod h is at least &.
g=1

Proof. First, by (11.1) and Lemma 5.1 if the LLT holds then for any nonzero resonant point

t we have ngnOo | PN (2)] = 0. Now, if (a) does not hold true then there is a subsequence N; so
Ly,

that Zq(XfZN“, h) < C, where C is some constant. Set q,SNk)(h) =gq (X,(qN"), h) Then there
n=1

are at most 84C n’s between 1 and Ly, so that qlek)(h) > # Let us denote these n’s by

ik, .- Ng ks Sk < 8hC. Next, for any n and a nonzero resonant point t = 2rr//h we have

(Ng)
BNI@)] = 1 = 2hgMO(h) = & 27 han " (11.2)

where ¢f,N") is the characteristic function of Xf,N") and y is such that for 6 € [0, 1/4] we have

1—6 > e We thus get that

[T 1@ = [T a-2rg™ @) = co (11.3)
né{ny, k} né{ny k}
where Cy > 0 is some constant. Therefore,
Sk
|8y, (0] = [ T16N @)1 - Co
u=1
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and so we must have

Jim ]_[ (0] = (11.4)

Now (b) follows from (11.3), (11.4) and Lemma 6.2. [

Using (11.1) we can now prove a version of Theorem 1.1 for arrays.

Theorem 11.3. The SLLT holds iff for each integer h > 1,
N
li P(XNM # m, mod h) = 11.
Ngnoo;(,l # m, mod h) = 00 (11.5)

where m,, = mffv)(h) is the most likely residue of Xilm modulo h.

Proof. First, the arguments in the proof of (3.8) show that there are constants ¢y, C > 0 so
that for any nonzero resonant point ¢ = 27l/h we have

Ly
| Dy (1) < Ce MV where My (h) :=Zq(xf,N>,h). (11.6)

n=I

Let us assume that (11.5) holds for all integers 4 > 1. Consider sy—tuples 1 < ]1 ey jw <

Ly, where sy < 5 is bounded in N. Then by applying (11.6) with Sy = Sy — ZX(N)

=1
have

im IE(eS)| = 0. (11.7)
Now, arguing as in the proof of Theorem 1.8(1), given a uniformly square integrable array

Y™ as in the definition of the SLLT, we still have (11.1), even though the new array is not
necessarily uniformly bounded. Applying (11.7) we see that for any nonzero resonant point ¢

we have
(exp |:zt Z Y(N):|> ‘

Ly

and so SyY = Z Y™ satisfies the LLT.

hm

Now let us ansglllme that My(h) /> oo for some 2 < h < 2K (it not difficult to see that
(11.5) holds for any h > 2K).

In other words after taking a subsequence we have that My, (h) < L for some L < oo.
The proof of Proposition 11.2 shows that there exists s < oo such that after possibly removing
terms ny g, no, - . ., gk With sp < s we can obtain that qu")(h) < n & {nj}. In this case
(11.2) shows that for each ¢

8h’

|Qst;nl,k"“*nSk,k(zne/h)l > e*ZyL.

By Proposition 11.2, SNk;m,k,---,nsk,k does not satisfy the LLT. [
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Next, all the other arguments in our paper proceed similarly for arrays since they essentially
rely only on the specific structure of the polynomials from Theorem 2.1. For the sake of
completeness, let us formulate the main (remaining) results here.

Theorem 11.4. The following conditions are equivalent:
(a) Sy satisfies LLT;
(b) For each £ € R\ Z, lim E (”5%) = 0;
N—oo )
(c) For each non-zero resonant point &, ngnooIE (ezmésN) =0y

(d) For each integer h the distribution of Sy mod h converges to uniform.

Theorem 11.5. For each r there is R = R(r, K) such that the Edgeworth expansion of order
r holds true if My > R1nVy. In particular, Sy obeys Edgeworth expansions of all orders if
My

lim = 00
N—oo In VN

Theorem 11.6. For any r > 1, the Edgeworth expansion of order r holds if and only if for
any nonzero resonant point t and 0 < £ < r we have

o) =0 (oy")

where @y (x) = E[e*SN—EGSM)],

Theorem 11.7. Suppose Sy obeys the SLLT. Then the following are equivalent:
(a) Edgeworth expansion of order 2 holds;
(b) |Pn()| = o(ajgl)for each nonzero resonant point t;
(c) For each h < 2K the distribution of Sy mod h is 0(0,;1) close to uniform.

Next, we say that an array {X'M} admits an Edgeworth expansion of order r in a superstable
way (denoted by {XM'} € EeSs(r)) if for each § and each sequence j', ji', '-szlx, with
sy <5 and jl.N < Ly there are polynomials P, y whose coefficients are O(1) in N and their
degrees do not depend on N so that uniformly in k € Z we have that

r

Py n(ky) —r
P(Sy v v =k =Y T gky) + o(oy") (11.8)
1 2 SN — o'N
and the estimates in O(1) and o(oy") are uniform in the choice of the tuples le s jS]IVV.

Let @y, jy,...;, (t) be the characteristic function of Sy, i, .. j;-

Theorem 11.8. (1) Sy € EeSs(1) (that is, Sy satisfies the LLT in a superstable way) if and
only if it satisfies the SLLT.

(2) For arbitrary r > 1 the following conditions are equivalent:

(a) (XM} € EeSs(r);

(b) For each le, ij, e, jS’X, and each nonzero resonant point t we have @N,j{v P ) =
NN L 5
ooy
(c) For each j]N, ij, R jf;’v, and each h < 2K the distribution of SN,]-IN A mod h is

0(011,4) close to uniform.
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