
Available online at www.sciencedirect.com

ScienceDirect

Stochastic Processes and their Applications 152 (2022) 486±532

www.elsevier.com/locate/spa

Edgeworth expansions for independent bounded integer

valued random variables

Dmitry Dolgopyat, Yeor Hafouta∗

Department of Mathematics, University of Maryland, United States of America

Ohio State University, United States of America

Received 2 February 2021; received in revised form 9 January 2022; accepted 7 July 2022

Available online 20 July 2022

Abstract

We obtain asymptotic expansions for local probabilities of partial sums for uniformly bounded

independent but not necessarily identically distributed integer-valued random variables. The expansions

involve products of polynomials and trigonometric polynomials. These results also have counterparts

for triangular arrays. Our results do not require any additional assumptions. As an application of our

expansions we find necessary and sufficient conditions for the classical Edgeworth expansion. It turns

out that there are two possible obstructions for the validity of the Edgeworth expansion of order r . First,

the distance between the distribution of the underlying partial sums modulo some h ∈ N and the uniform

distribution could fail to be o(σ 1−r
N

), where σN is the standard deviation of the partial sum. Second, this

distribution could have the required closeness but this closeness is unstable, in the sense that it could

be destroyed by removing finitely many terms. In the first case, the expansion of order r fails. In the

second case it may or may not hold depending on the behavior of the derivatives of the characteristic

functions of the summands whose removal causes the break-up of the uniform distribution. We also

show that a quantitative version of the classical Prokhorov condition (for the strong local central limit

theorem) is sufficient for Edgeworth expansions, and moreover this condition is, in some sense, optimal.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Let X1, X2, . . . be a uniformly bounded sequence of independent integer-valued random

variables. Set SN = X1 + X2 + · · · + X N , VN = V (SN ) = Var(SN ) and σN =
√

VN . Assume
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also that VN → ∞ as N → ∞. Then the central limit theorem (CLT) holds true, namely the

distribution of (SN − E(SN ))/σN converges to the standard normal distribution as N → ∞.

Recall that the local central limit theorem (LLT) states that, uniformly in k we have

P(SN = k) = 1√
2πσN

e−(k−E(SN ))2/2VN + o(σ−1
N ).

This theorem is also a classical result, and it has origins in the de Moivre±Laplace theorem. The

stable local central limit theorem (SLLT) states that the LLT holds true for any integer-valued

square integrable independent sequence X ′
1, X ′

2, . . . which differs from X1, X2, . . . by a finite

number of elements. We recall a classical result due to Prokhorov.

Theorem 1.1 ([32]). The SLLT holds iff for each integer h > 1,
∑

n

P(Xn ̸= mn mod h) = ∞ (1.1)

where mn = mn(h) is the most likely residue of Xn modulo h.

We refer the readers to [33,36] for extensions of this result to the case when Xn’s are not

necessarily bounded (for instance, the result holds true when sup
n

∥Xn∥L3 < ∞). Related results

for local convergence to more general limit laws are discussed in [6,25].

The above result provides a necessary and sufficient condition for the SLLT. It turns out

that the difference between LLT and SLLT is not that big.

Proposition 1.2. Suppose SN obeys LLT. Then for each integer h ≥ 2 at least one of the

following conditions occur:

either (a)
∑

n

P(Xn ̸= mn(h) mod h) = ∞.

or (b) ∃ j1, j2, . . . , jk with k < h such that

k∑

s=1

X js mod h is uniformly distributed. In that

case for all N ≥ max( j1, . . . , jk) we have that SN mod h is uniformly distributed.

Since we could not find this result in the literature we include the proof in Section 6.

Next, we provide necessary and sufficient conditions for the regular LLT. We need an

additional notation. Let K = sup
n

∥Xn∥L∞ . Call t resonant if t = 2πl
m

with 0 < m ≤ 2K

and 0 ≤ l < m.

Theorem 1.3. The following conditions are equivalent:

(a) SN satisfies LLT;

(b) For each ξ ∈ R \ Z, lim
N→∞

E
(
e2π iξ SN

)
= 0;

(c) For each non-zero resonant point ξ , lim
N→∞

E
(
e2π iξ SN

)
= 0;

(d) For each integer h the distribution of SN mod h converges to uniform.

The proof of this result is also given in Section 6. We refer the readers to [8,11] for related

results in more general settings.

The local limit theorem deals with approximation of P(SN = k) up to an error term of order

o(σ−1
N ). Given r ≥ 1, the Edgeworth expansion of order r holds true if there are polynomials
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Pb,N , whose coefficients are uniformly bounded in N and their degrees do no depend on N ,

so that uniformly in k ∈ Z we have that

P(SN = k) =
r∑

b=1

Pb,N (kN )

σ b
N

g(kN ) + o(σ−r
N ) (1.2)

where kN = (k − E(SN )) /σN and g(u) = 1√
2π

e−u2/2. In Section 5 we will show, in particular,

that Edgeworth expansions of any order r are unique up to terms of order o(σ−r
N ), and so

the case r = 1 coincides with the LLT. Edgeworth expansions for discrete (lattice-valued)

random variables have been studied in literature for iid random variables [18, Theorem 4.5.4]

[30, Chapter VII], (see also [12, Theorem 5]), homogeneous Markov chains [28, Theorems

2-4], decomposable statistics [24], or dynamical systems [15] with good spectral properties

such as expanding maps. Papers [2,16] discuss the rate of convergence in the LLT. Results for

non-lattice variables were obtained in [1,3,5,13] (which considered random vectors) and [15]

(see also [17] for corresponding results for random expanding dynamical systems).

In this paper we obtain analogues of Theorems 1.1 and 1.3 for higher order Edgeworth

expansions for independent but not identically distributed integer-valued uniformly bounded

random variables. We begin with the following result.

Theorem 1.4. Let K = sup
j

∥X j∥L∞ . For each r ∈ N there is a constant R=R(r, K ) such

that the Edgeworth expansion of order r holds if for all N we have

MN := min
2≤h≤2K

N∑

n=1

P(Xn ̸= mn(h) mod h) ≥ R ln VN .

In particular, SN obeys Edgeworth expansions of all orders if

lim
N→∞

MN

ln VN

= ∞.

The number R(r, K ) can be chosen according to Remark 3.6. This theorem is a quantitative

version of Prokhorov’s Theorem 1.1. We observe that logarithmic in VN growth of various non-

periodicity characteristics of individual summands are often used in the theory of local limit

theorems (see e.g. [20,21,23]). We will see from the examples of Section 10 that this result

is close to optimal. However, to justify the optimality we need to understand the conditions

necessary for the validity of the Edgeworth expansion.

Theorem 1.5. For any r ≥ 1, the Edgeworth expansion of order r holds if and only if for

any nonzero resonant point t and 0 ≤ ℓ < r we have

Φ̄
(ℓ)
N (t) = o

(
σ ℓ+1−r

N

)
.

where Φ̄N (x) = E[ei x(SN −E(SN ))] and Φ̄
(ℓ)
N (·) is its ℓ-th derivative.

This result generalizes Theorem 1.3, however in contrast with that theorem, in the case

r > 1 we also need to take into account the behavior of the derivatives of the characteristic

function at nonzero resonant points. The values of the characteristic function at the resonant

points 2πl/m have clear probabilistic meaning. Namely, they control the rate equidistribution

modulo m (see part (d) of Theorem 1.3 or Lemma 6.2). Unfortunately, the probabilistic meaning

of the derivatives is less clear, so it is desirable to characterize the validity of the Edgeworth
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expansions of orders higher than 1 without considering the derivatives. Example 10.2 shows that

this is impossible without additional assumptions. Some of the reasonable additional conditions

are presented below.

We start with the expansion of order 2.

Theorem 1.6. Suppose SN obeys the SLLT. Then the following are equivalent:

(a) Edgeworth expansion of order 2 holds;

(b) |ΦN (t)| = o(σ−1
N ) for each nonzero resonant point t;

(c) For each h ≤ 2K the distribution of SN mod h is o(σ−1
N ) close to uniform.

Corollary 7.3 provides an extension of Theorem 1.6 for expansions of an arbitrary order r

under an additional assumption that ϕ := min
t∈R

inf
n

|φn(t)| > 0, where R is the set of all nonzero

resonant points. The latter condition implies in particular, that for each ℓ there is a uniform

lower bound on the distance between the distribution of Xn1
+ Xn2

+· · ·+ Xnℓ mod m and the

uniform distribution, when {n1, n2, . . . , nℓ} ∈ N
ℓ and m ≥ 2.

Next we discuss an analogue of Theorem 1.1 for expansions of order higher than 2. It

requires a stronger condition which uses an additional notation. Given j1, j2, . . . , js with

jl ∈ [1, N ] we write

SN ; j1, j2,..., js = SN −
s∑

l=1

X jl .

Thus SN ; j1, j2,..., js is a partial sum of our sequence with s terms removed. We will say that

{Xn} admits an Edgeworth expansion of order r in a superstable way (which will be denoted

by {Xn} ∈ EeSs(r )) if for each s̄ and each sequence j N
1 , j N

2 , . . . , j N
sN

with sN ≤ s̄ there are

polynomials Pb,N whose coefficients are O(1) in N and their degrees do not depend on N so

that uniformly in k ∈ Z we have that

P(SN ; j N
1
, j N

2
,..., j N

sN
= k) =

r∑

b=1

Pb,N (kN )

σ b
N

g(kN ) + o(σ−r
N ) (1.3)

and the estimates in O(1) and o(σ−r
N ) are uniform in the choice of the tuples j N

1 , . . . , j N
sN

.

That is, by removing a finite number of terms we cannot destroy the validity of the Edgeworth

expansion (even though the coefficients of the underlying polynomials will of course depend

on the choice of the removed terms). Let ΦN ; j1, j2,..., js (t) be the characteristic function of

SN ; j1, j2,..., js .

Remark 1.7. We note that in contrast with SLLT, in the definition of the superstrong Edgeworth

expansion one is only allowed to remove old terms, but not to add new ones. This difference in

the definition is not essential, since adding terms with sufficiently many moments (in particular,

adding bounded terms) does not destroy the validity of the Edgeworth expansion. See the proof

of Theorem 1.8(i) or the second part of Example 10.1, starting with Eq. (10.2), for details.

Theorem 1.8. (1) SN ∈ EeSs(1) (that is, SN satisfies the LLT in a superstable way) if and

only if it satisfies the SLLT.

(2) For arbitrary r ≥ 1 the following conditions are equivalent:

(a) {Xn} ∈ EeSs(r );

(b) For each j N
1 , j N

2 , . . . , j N
sN

and each nonzero resonant point t we have ΦN ; j N
1
, j N

2
,..., j N

sN
(t) =

o(σ 1−r
N );
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(c) For each j N
1 , j N

2 , . . . , j N
sN

, and each h ≤ 2K the distribution of SN ; j N
1
, j N

2
,..., j N

sN
mod h is

o(σ 1−r
N ) close to uniform.

To prove the above results we will show that for any order r , we can always approximate

P(SN = k) up to an error o(σ−r
N ) provided that instead of polynomials we use products

of regular and the trigonometric polynomials. Those products allow us to take into account

possible oscillatory behavior of P(SN = k) when k belongs to different residues mod h, where

h is denominator of a resonant frequency. When MN ≥ RVN for R large enough, the new

expansion coincides with the usual Edgeworth expansions. Thus the condition MN ≥ R ln VN

is in a certain sense optimal.

Finally, let us note that in Section 11 we obtain similar results for triangular arrays of

independent random variables. While this is a more general setup, in order not to overload

the notation we do not want to include these results and their proofs in the main body of the

paper, and we refer the interested readers to Section 11.

2. Main result

Let X1, X2, . . . be a sequence of independent integer-valued random variables. For each

N ∈ N we set SN =
N∑

n=1

Xn and VN = Var(SN ). We assume in this paper that lim
N→∞

VN = ∞

and that there is a constant K such that

sup
n

∥Xn∥L∞ ≤ K .

Denote σN =
√

VN . For each positive integer m, let qn(m) be the second largest among
∑

l≡ j mod m

P(Xn = l) = P(Xn ≡ j mod m), j = 1, 2, . . . ,m

and jn(m) be the corresponding residue class. Set

MN (m) =
N∑

n=1

qn(m) and MN = min
m

MN (m).

Theorem 2.1. There ∃J = J (K ) < ∞ and polynomials Pa,b,N , where a ∈ 0, . . . , J − 1,

b ∈ N, with degrees depending only on b but not on a, K or on any other characteristic of

{Xn}, such that the coefficients of Pa,b,N are uniformly bounded in N, and, for any r ≥ 1

uniformly in k ∈ Z we have

P(SN = k) −
J−1∑

a=0

r∑

b=1

Pa,b,N ((k − aN )/σN )

σ b
N

g((k − aN )/σN )e2π iak/J = o(σ−r
N )

where aN = E(SN ) and g(u) = 1√
2π

e−u2/2.

Moreover, P0,1,N ≡ 1, and given K , r , there exists R = R(K , r ) such that if MN ≥ R ln VN

then we can choose Pa,b,N = 0 for a ̸= 0.

We refer the readers to (6.1) for more details on these expansions in the case r = 1,

and to Section 6 for a discussion about the relations with local limit theorems. The resulting

expansions in the case r = 2 are given in (9.1). We note that the constants J (K ) and R(K , r )

can be recovered from the proof of Theorem 2.1.
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Remark 2.2. Since the coefficients of the polynomials Pa,b,N are uniformly bounded, the terms

corresponding to b = r + 1 are of order O(σ
−(r+1)
N ) uniformly in k. Therefore, in the r th order

expansion we actually get that the error term is O(σ
−(r+1)
N ).

Remark 2.3. In fact, the coefficients of the polynomials Pa,b,N for a > 0 are bounded by a

constant times (1 + M
q

N )e−c0 MN , where c0 > 0 depends only on K and q ≥ 0 depends only on

r and K . Therefore, these coefficient are small when MN is large. When MN ≥ R(r, K ) ln VN

these coefficients become of order o(σ−r
N ). Therefore, they only contribute to the error term,

and so we can replace them by 0, as stated in Theorem 2.1.

Remark 2.4. As in the derivation of the classical Edgeworth expansion, the main idea of the

proof of Theorem 2.1 is the stationary phase analysis of the characteristic function. However,

in contrast with the iid case there may be resonances other than 0 which contribute to the

oscillatory terms in the expansion. Another interesting case where the classical Edgeworth

analysis fails is the case of iid terms where the summands are non-arithmetic but take only

finitely many values. It is shown in [9] that in that case, the leading correction to the Edgeworth

expansion also comes from resonances. However, in the case studied in [9] the geometry

of resonances is more complicated, so in contrast to our Theorem 2.1, [9] does not get the

expansion of all orders.

3. Edgeworth expansions under quantitative Prokhorov condition

In this section we prove Theorem 1.4. In the course of the proof we obtain the estimates

of the characteristic function on intervals not containing resonant points which will also play

an important role in the proof of Theorem 2.1. The proof of Theorem 2.1 will be completed

in Section 4 where we analyze additional contribution coming from nonzero resonant points

which appear in the case MN ≤ R ln σN . Those contributions constitute the source of the

trigonometric polynomials in the generalized Edgeworth expansions.

3.1. Characteristic function near 0

Here we recall some facts about the behavior of the characteristic function near 0, which will

be useful in the proofs of Theorems 1.4 and 2.1. The first result holds for general uniformly

bounded sequences {Xn} (which are not necessarily integer-valued).

Proposition 3.1. Suppose that lim
N→∞

σN = ∞, where σN =
√

VN =
√

V (SN ). Then for

k = 1, 2, 3, . . . there exists a sequence of polynomials (Ak,N )N whose degree dk depends only

on k so that for any r ≥ 1 there are δr > 0 and Cr > 0 such that for all N ≥ 1 and

t ∈ [−δrσN , δrσN ],⏐⏐⏐⏐⏐E
(
ei t(SN −E(SN ))/σN

)
− e−t2/2

(
1 +

r∑

k=1

Ak,N (t)

σ k
N

)⏐⏐⏐⏐⏐ ≤ Cr

tr+1

σ r+1
N

e−t2/4. (3.1)

Moreover, the coefficients of Ak,N are of the form
Pk,N

σ
pk
N

where Pk,N are polynomial functions

of the moments of Xm’s and they are uniformly bounded in N. Furthermore

A1,N (t) = − i

6
γN t3 and A2,N (t) = Λ4(S̄N )σ−2

N

t4

4! − 1

36
γ 2

N t6 (3.2)

where S̄N = SN − E(SN ), γN = E[(S̄N )3]/σ 2
N and Λ4(S̄N ) is the fourth cumulant of S̄N .
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The proof is quite standard, so we just sketch the argument. The idea is to fix some

B2 > B1 > 0, and to partition {1, . . . , N } into intervals I1, . . . , Im N
so that B1 ≤ Var(SIl ) ≤ B2

where for each l we set SIl =
∑

j∈Il

X j . It is clear that m N/σ
2
N is bounded away from 0 and

∞ uniformly in N . Recall next that there are constants C p, p ≥ 2 so that for any n ≥ 1 and

m ≥ 0 we have

n+m∑

j=n

(
X j − E(X j )

)


L p

≤ C p

⎛
⎝1 +



n+m∑

j=n

(
X j − E(X j )

)


L2

⎞
⎠ . (3.3)

This is a consequence of the multinomial theorem and some elementary estimates, and we

refer the readers to either Lemma 2.7 in [11], or Theorem 6.17 in [22] for such a result in

a much more general settings. Using the latter estimates we get that the L p-norms of SIl are

uniformly bounded in l. This reduces the problem to the case when the variance of Xn is

uniformly bounded from below, and all the moments of Xn − E(Xn) are uniformly bounded.

In this case, the proposition follows by considering the Taylor expansion of the function

lnE
(
ei t(SN −E(SN ))/σN

)
+ 1

2
t2, see [13, § XVI.6].

Proposition 3.2. Given a square integrable random variable X, let X̄ = X −E(X ). Then for

each h ∈ R we have
⏐⏐⏐E(eih X̄ ) − 1

⏐⏐⏐ ≤ 1

2
h2V (X ).

Proof. Set ϕ(h) = E(eih X̄ ). Then by the integral form of the second order Taylor reminder we

have

|ϕ(h) − ϕ(0) − hϕ′(0)| = |ϕ(h) − ϕ(0)| =
⏐⏐⏐⏐
∫ h

0

(t − h)ϕ′′(t)dt

⏐⏐⏐⏐

≤ V (X )

∫ |h|

0

(|h| − t)dt = 1

2
h2V (X ). □

3.2. Non resonant intervals

As in almost all the proofs of the LLT, the starting point in the proof of Theorem 1.4 (and

Theorem 2.1) is that for k, N ∈ N we have

2πP(SN = k) =
∫ 2π

0

e−i tk
E(ei t SN )dt. (3.4)

Denote T = R/2πZ. Let

ΦN (t) = E(ei t SN ) =
N∏

n=1

φn(t) where φn(t) = E(ei t Xn ).

Divide T into intervals I j of small size δ such that each interval contains at most one

resonant point and this point is strictly inside I j . We call an interval resonant if it contains

a resonant point inside. Then

2πP(SN = k) =
∑

j

∫

I j

e−i tk
E(ei t SN )dt. (3.5)
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We will consider the integrals appearing in the above sum individually.

Lemma 3.3. There are constants C, c > 0 which depend only on δ and K so that for any

non-resonant interval I j and N ≥ 1 we have
∫

I j

|ΦN (t)|dt ≤ Ce−cVN .

Proof. Let

ĵn ∈ argmax{P(Xn = j) : j ∈ Z} and j̄n ∈ argmax{P(Xn = j) : j ̸= ĵn}.

Set q̂n = P(Xn = ĵn) and q̄n = P(Xn = j̄n). In other words,

q̂n, q̄n are the largest and the second largest values of P(Xn = j) and let ĵn, j̄n be the

corresponding values. Note that q̂n and q̄n might be equal. Then

φn(t) = q̂nei t ĵn + q̄nei t j̄n +
∑

l ̸= ĵn , j̄n

P(Xn = l)ei tl . (3.6)

Since I j is non resonant, the angle between ei t ĵn and ei t j̄n is uniformly bounded from below.

Indeed if this was not the case we would have t j̄n − t ĵn ≈ 2πln for some ln ∈ Z. This would

imply t ≈ 2πln
mn

where mn = j̄n − ĵn contradicting the assumption that I j is non-resonant.

Accordingly ∃c1 > 0 such that

⏐⏐⏐ei t ĵn + ei t j̄n

⏐⏐⏐ ≤ 2(1 − c1). Therefore

⏐⏐⏐q̂nei t ĵn + q̄nei t j̄n

⏐⏐⏐ ≤ (q̂n − q̄n) + q̄n

⏐⏐⏐ei t ĵn + ei t j̄n

⏐⏐⏐ ≤ q̂n + q̄n − 2c1q̄n.

Plugging this into (3.6), we conclude that |φn(t)| ≤ 1 − 2c1q̄n for t ∈ I j . Multiplying these

estimates over n and using that 1 − x ≤ e−x , x > 0, we get

|ΦN (t)| ≤ e−2c1
∑

n q̄n .

Since V (Xn) ≤ c2q̄n for a suitable constant c2 we can rewrite the preceding as

|ΦN (t)| ≤ e−c3VN , c3 > 0. (3.7)

Integrating over I j we obtain the result. □

3.3. Prokhorov estimates

Next we consider the case where I j contains a nonzero resonant point t j = 2πl
m

.

Lemma 3.4. There is a constant c0 which depends only on K so that for any nonzero resonant

point t j = 2πl/m we have

sup
t∈I j

|E(ei t SN )| ≤ e−c0 MN (m). (3.8)

Thus, for any r ≥ 1 there is a constant R = R(r, K ) such that if MN (m) ≥ R ln VN , then

the integral
∫

I j
e−i tk

E(ei t SN )dt is o(σ−r
N ) uniformly in k, and so it only contributes to the error

term.
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Proof. The estimate (3.8) follows from the arguments in [33], but for readers’ convenience

we recall its proof. Let X be an integer-valued random variable so that ∥X∥L∞ ≤ K . Let

t0 = 2πl/m be a nonzero resonant point, where gcd(l,m) = 1. Let t ∈ T be so that

|t − t0| ≤ δ, (3.9)

where δ is a small positive number. Let φX (·) denote the characteristic function of X . Since

x ≤ ex−1 for any real x we have

|φX (t)|2 ≤ e|φX (t)|2−1.

Next, we have

|φX (t)|2 − 1 = φX (t)φX (−t) − 1 =
2K∑

j=−2K

P̃j [cos(t j) − 1]

where

P̃j =
∑

s

P(X = s)P(X = j + s).

Fix some −2K ≤ j ≤ 2K . We claim that if δ in (3.9) is small enough and j ̸≡ 0 mod m then

for each integer w we have |t − 2πw/j | ≥ ε0 for some ε0 > 0 which depends only on K . This

follows from the fact that −2K ≤ j ≤ 2K and that 2πw/j ̸= t0 (and there is a finite number

of resonant points). Therefore,

cos(t j) − 1 ≤ −δ0

for some δ0 > 0. On the other hand, if j = km for some integer k then with w = lk we have

cos(t j) − 1 = −2 sin2(t j/2) = −2 sin2 ((t j − 2πw)/2)

= −2 sin2 ( j(t − t0)/2) ≤ −δ1(t − t0)2

for some δ1 > 0 (assuming that |t − t0| is small enough). We conclude that

|φX (t)|2 − 1 ≤ −δ0

∑

j∈A

P̃j − δ1(t − t0)2
∑

j∈B

P̃j

where A = A(X ) is the set of j’s between −2K and 2K such that j ̸≡ 0 mod m and B = B(X )

is its complement in Z∩ [−2K , 2K ]. Let s0 be the most likely residue of X mod m and s1 be

the second most likely residue class. Since

P(X ≡ s0 mod m) ≥ 1

m
and P(X ≡ s1 mod m) = qm(X )

it follows that
∑

j∈A

P̃j ≥ qm(X )

m
.

Combining this with the trivial bound
∑

j∈B

P̃j ≥ P
2(X ≡ s0) ≥ 1

m2
we obtain

|φX (t)| ≤ exp −
[

1

2

(
δ0qm(X )

m
+ δ1(t − t0)2

m2

)]
.

Applying the above with t0 = t j and X = Xn , 1 ≤ n ≤ N we get that

|ΦN (t)| ≤ e−c0 MN (m)−c̄0 N (t−t j )2 ≤ e−c0 MN (m) (3.10)

for some constant c0. □

494



D. Dolgopyat and Y. Hafouta Stochastic Processes and their Applications 152 (2022) 486±532

Remark 3.5. Using the first inequality in (3.10) and arguing as in [33, page 264], we can

deduce that there are positive constants C, c1, c2 such that

∫

I j

|E(ei t SN )|dt ≤ C

(
e−c1σN + e−c2 MN (m)

σN

)
. (3.11)

This estimate plays an important role in the proof of the SLLT in [33], but for our purposes a

weaker bound (3.8) is enough. Note also that in order to prove (3.8) we could have just used

the trivial inequality cos(t j ) − 1 ≤ 0 when j ≡ 0 mod m, but we have decided to present this

part from [33] in full.

Remark 3.6. Let dR be the minimal distance between two different resonant points. Then,

when δ < 2dR, we can take δ0 = 1 − cos(dR) in the proof of Lemma 3.4. Therefore, we can

take c0 = 1−cos(dR)

4K
in (3.8). Hence Lemma 3.4 holds with R(r, K ) = r+1

2c0
.

3.4. Proof of Theorem 1.4

Fix some r ≥ 1. Lemmas 3.3 and 3.4 show that if MN ≥ R(r, K ) ln VN , then all the integrals

in the right hand side of (3.5) are of order o(σ−r
N ), except for the one corresponding to the

resonant point t j = 0. That is, for any δ > 0 small enough, uniformly in k we have

2πP(SN = k) =
∫ δ

−δ
e−ihk

ΦN (h)dh + o(σ−r
N ).

In order to complete the proof of Theorem 1.4, we need to expand the above integral. Making

a change of variables h → h/σN and using Proposition 3.1, we conclude that if δ is small

enough then

∫ δ

−δ
e−ihk

ΦN (h)dh =

σ−1
N

∫ δσN

−δσN

e−ihkN e−h2/2

(
1 +

r∑

u=1

Au,N (h)

σ k
N

)
dh+

θσ−r−1
N

∫ δ

−δ
|hr+1|e−h2/4dh

where |θ | ≤ Cr and kN = (k − E(SN )) /σN . Since the coefficients of the polynomials Au,N

are uniformly bounded in N , we can just replace the above integral with the corresponding

integral over all R (i.e. replace ±δσN with ±∞). Now the Edgeworth expansions are achieved

using that for any nonnegative integer q we have that (i t)qe−t2/2 is the Fourier transform of

the qth derivative of n(t) = 1√
2π

e−t2/2 and that for any real a,

∫ ∞

−∞
e−iat n̂(q)(t)dt = n(q)(a) = 1√

2π
(−1)q Hq (a)e−a2/2 (3.12)

where Hq (a) is the qth Hermite polynomial.
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4. Generalized edgeworth expansions: Proof of Theorem 2.1

4.1. Contributions of resonant intervals

Let r ≥ 1. As in the proof of Theorem 1.4, our starting point is the equality

2πP(SN = k) =
∫ 2π

0

e−i tk
E(ei t SN )dt =

∑

j

∫

I j

e−i tk
E(ei t SN )dt (4.1)

which holds for any k ∈ Z. We will consider the integrals appearing in the above sum

individually. By Lemma 3.3 the integrals over non-resonant intervals are of order o(σ−r
N ), and

so they can be disregarded. Moreover, in Section 3.4 we have expanded the integral over the

resonant interval containing 0. Now we will see that in the case MN < R(r, K ) ln VN the

contribution of nonzero resonant points need not be negligible.

Let t j = 2πl
m

be a nonzero resonant point such that MN (m) < R(r, K ) ln VN and let I j be

the resonant interval containing it. Theorem 2.1 will follow from an appropriate expansion of

the integral
∫

I j

e−i tk
E(ei t SN )dt.

We need the following simple result, which for readers’ convenience is formulated as a lemma.

Lemma 4.1. There exists ε̄ > 0 so that for each n ≥ 1 with qn(m) ≤ ε̄ we have |φn(t j )| ≥ 1
2
.

In fact, we can take ε̄ = 1
4m

.

Proof. Recall that t j = 2πl/m. The lemma follows since for any random variable X we have

|E(ei t j X )| =
⏐⏐⏐⏐⏐⏐
ei t j s(m,X ) −

∑

u ̸≡s(m,X ) mod m

(
ei t j s(m,X ) − ei t j u

)
P(X ≡ u mod m)

⏐⏐⏐⏐⏐⏐

≥ 1 − 2mq(m, X )

where s(m, X ) is the most likely value of X mod m and q(m, X ) is the second largest value

among P(X ≡ u mod m), u = 0, 1, 2, . . . ,m − 1. Therefore, we can take ε̄ = 1
4m

. □

Next, set ε̄ = 1
8K

and let N0 = N0(N , t j , ε̄) be the number of all n’s between 1 to N so

that qn(m) ≥ ε̄. Then N0 ≤ R ln VN

ε̄
because MN (m) ≤ R ln VN . By permuting the indexes

n = 1, 2, . . . , N if necessary we can assume that qn(m) is non increasing. Then N0 is the

largest number such that qN0
≥ ε̄. Decompose

ΦN (t) = ΦN0
(t)ΦN0,N (t) (4.2)

where ΦN0,N (t) =
N∏

n=N0+1

φn(t).

Lemma 4.2. If the length δ of I j is small enough then for any

t = t j + h ∈ I j and N ≥ 1 we have

ΦN0,N (t) = ΦN0,N (t j )ΦN0,N (h)ΨN0,N (h)
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where

ΨN0,N (h) = exp

[
O(MN (m))

∞∑

u=1

(O(1))uhu

]
.

Proof. Denote

µn = E(Xn), X̄n = Xn − µn, φ̄n(t) = E(ei t X̄n ).

Let jn(m) be the most likely residue mod m for Xn . Decompose

X̄n = sn + Yn + Zn

where Zn ∈ mZ, sn = jn(m) − µn , so that P(Yn ̸= 0) ≤ mqn(m). Then for t = t j + h,

φ̄n(t) = ei t j snE

(
ei t j Yn eih X̄n

)
= φ̄n(t j )ψn(h) (4.3)

where

ψn(h) =
(

1 +
ihE(ei t j Yn X̄n) − h2

2
E(ei t j Yn (X̄n)2) + . . .

E(ei t j Yn )

)
.

Next, using that for any x ∈ (−1, 1) we have

1 + x = eln(1+x) = ex−x2/2+x3/3−···

we obtain that for h small enough

ψn(h) = exp

⎛
⎝

∞∑

k=1

(−1)k+1

k

⎛
⎝ 1

E(ei t j Yn )

∞∑

q=1

(ih)q

q! E(ei t j Yn (X̄n)q )

⎞
⎠

k⎞
⎠ (4.4)

= exp

⎛
⎝

∞∑

k=1

(−1)k+1

k

∑

1≤ j1,..., jk

1

(E(ei t j Yn ))k

k∏

r=1

(ih) jr

jr !
E(ei t j Yn (X̄n) jr )

⎞
⎠

= exp

⎛
⎝

∞∑

u=1

⎛
⎝

u∑

k=1

(−1)k+1

k

∑

j1+···+ jk=u

k∏

r=1

E(ei t j Yn (X̄n) jr )

E(ei t j Yn ) jr !

⎞
⎠ (ih)u

⎞
⎠ .

Observe next that

E[ei t j Yn (X̄n) jr ] = E
[
(ei t j Yn − 1)

(
(X̄n) jr − E[(X̄n) jr ]

)]
+ E[(X̄n) jr ]E(ei t j Yn ).

Thus letting with C = 2K , we have

E[ei t j Yn (X̄n) jr ]

E(ei t j Yn )
= O(qn(m))O(C jr ) + E[(X̄n) jr ].

Plugging this into (4.4) and using that for h small enough,

exp

⎡
⎣

∞∑

u=1

⎛
⎝

u∑

k=1

(−1)k+1

k

∑

j1+···+ jk=u

k∏

r=1

E(X̄
jr
n )

jr !

⎞
⎠ (ih)u

⎤
⎦ = E

(
eih X̄n

)

we conclude that

ψn(h) = E(eih X̄n ) exp

[ ∞∑

u=1

(O(1))u O(qn(m))hu

]
.
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Therefore,

ΦN0,N (t) = ΦN0,N (t j )ΦN0,N (h)ΨN0,N (h)

where

ΨN0,N (h) =
N∏

j=N0+1

(
ψn(h)eihE[Xn ]

)
= exp

[
O(MN (m))

∞∑

u=1

(O(1))uhu

]
. □

Remark 4.3. We will see in Section 4.2 that the coefficients of the polynomials appearing

in Theorem 2.1 depend on the coefficients of the power series ΨN0,N (h) (see, in particular,

(4.22)). The first term in this series is ih

N∑

n=N0+1

an, j , where

an, j = E[(ei t j Yn − 1)X̄n]

E(ei t j Yn )
= E(ei t j Xn X̄n)

E(ei t j Xn )
(4.5)

while the second term is
h2

2

N∑

n=N0+1

bn, j , where

bn, j = E[(ei t j Yn − 1)X̄n]2

E(ei t j Yn )2
− E[(ei t j Yn − 1)((X̄n)2 − V (Xn))]

E(ei t j Yn )
(4.6)

= a2
n, j −

E
(
ei t j Xn (X̄n)2

)

E(ei t j Xn )
.

In Section 9 we will use (4.5) to compute the coefficients of the polynomials from Theorem 2.1

in the case r = 2, and (4.6) is one of the main ingredients for the computation in the case r = 3

(which will not be explicitly discussed in this manuscript).

The next step in the proof of Theorem 2.1 is the following.

Lemma 4.4. For t = t j + h ∈ I j we can decompose

ΦN0
(t) = ΦN0

(t j + h) =
L∑

l=0

Φ
(l)
N0

(t j )

l! hl + O
(
(h ln VN )L+1

)
. (4.7)

Proof. The lemma follows from the observation that the derivatives of ΦN0
satisfy |Φ(k)

N0
(t)| ≤

O(N k
0 ) ≤ (C ln VN )k . □

4.2. Completing the proof

Recall (4.1) and consider a resonant interval I j which does not contain 0 such that MN (m) ≤
R(r, K ) ln σN . Set U j = [−u j , v j ] = I j − t j . Let N0 be as described below Lemma 4.1. Denote

SN0,N = SN − SN0
, S0 = 0, (4.8)

VN0,N = Var(SN − SN0
) = VN − VN0

and σN0,N =
√

VN0,N .
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Then

VN0,N = VN + O(ln VN ) = VN (1 + o(1)). (4.9)

Denote hN0,N = h/σN0,N . By (3.1), if |hN ,N0
| is small enough then

E(e
ihN0,N

SN0,N ) = (4.10)

e
ihN0,N

E(SN0,N
)
e−h2/2

(
1 +

r∑

k=1

Ak,N0,N (h)

σ k
N0,N

)
+ θ

hr+1

σ r+1
N0,N

e−h2/4

where |θ | ≤ Cr and Ak,N0,N are polynomials with bounded coefficients (the degree of Ak,N0,N

depends only on k). By Lemma 4.2,
∫

I j

e−i tk
ΦN (t)dt = (4.11)

e−i t j k
ΦN0,N (t j )

∫

U j

e−ihk
ΦN0

(t j + h)ΦN0,N (h)ΨN0,N (h) dh.

Therefore, it is enough to expand the integral on the RHS of (4.11). Fix a large positive

integer L and plug (4.7) into (4.11). Note that for N is large enough, h0 small enough and

|h| ≤ h0, Proposition 3.2 and (4.9) show that there exist positive constants c0, c such that

|ΦN0,N (h)| = |E(e
ihSN0,N )| ≤ e

−c0(VN −VN0
)h2 ≤ e−cVN h2

. (4.12)

Thus, using also Lemma 4.2 we see that the contribution coming from the term O
(
(h ln VN )L+1

)

in the right hand side of (4.7) is at most of order

V
Rδc1

N (ln Vn)L+1

∫ ∞

−∞
|h|L+1e−cVN h2

dh

where δ is the diameter of I j , R = R(r, K ) and c1 is some positive constant. Changing variables

x = σN h, where σN =
√

VN we get that the latter term is of order (ln Vn)L+1σ
−(L+2−2Rc1δ)

N

and so when L is large enough we get that this term is o(σ−r−1
N ) (alternatively, we can take

L = r and δ to be sufficiently small). This means that it is enough to expand each integral of

the form∫

U j

e−ihkhl
ΦN0,N (h)ΨN0,N (h)dh (4.13)

where l = 0, 1, . . . , L (after changing variables the above integral is divided by σ l+1
N0,N

). Next,

Lemma 4.2 shows that for any d ∈ Z we have

ΨN0,N (h) = 1 +
d∑

u=1

Cw,N hu + hd+1 O(1 + MN (m)d+1)|VN |O(|h|), (4.14)

where Cw,N = Cw,N ,t j
are O(Mu

N (m)) = O((ln VN )u). Note that, with an, j and bn, j defined in

Remark 4.3, we have

C1,N = i

N∑

n=N0+1

an, j (4.15)
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and

C2,N = 1

2

N∑

n=N0+1

bn, j − 1

2

⎛
⎝

N∑

n=N0+1

an, j

⎞
⎠

2

.

Take d large enough and plug (4.14) into (4.13). Using (4.12), we get again that the

contribution of the term

hd+1 O(1 + MN (m)d+1)|VN |O(|h|)hl
ΦN0,N (h)

to the above integral is o(σ−r
N ). Thus, it is enough to expand each term of the form

∫

U j

e−ihkhq
ΦN0,N (h)dh

where 0 ≤ q ≤ L + d . Using (4.10) and making the change of variables h → h/σN0,N it is

enough to expand

∫ ∞

−∞
e
−ih(k−E[SN0,N

])/σN0,N hqe−h2/2

(
1 +

r∑

w=1

Aw,N0,N (h)

σwN0,N

)
dh

σN0,N

. (4.16)

This is achieved by using that (i t)qe−t2/2 is the Fourier transform of the qth derivative of

n(t) = 1√
2π

e−t2/2 and that for any real a,

∫ ∞

−∞
e−iat n̂(q)(t)dt = n(q)(a) = 1√

2π
(−1)q Hq (a)e−a2/2 (4.17)

where Hq (a) is the qth Hermite polynomial.

Note that in the above expansion we get polynomials in the variable kN0,N =
k − E[SN − SN0

]

σN ,N0

, not in the variable kN = k−E(SN )

σN
. Since kN0,N = kNαN0,N + O(ln σN/σN ),

where αN0,N = σN/σN0,N = O(1), the binomial theorem shows that such polynomials can be

rewritten as polynomials in the variable kN whose coefficients are uniformly bounded in N .

We also remark that in the above expansions we get the exponential terms

e
−

(k−aN0,N
)2

2(VN −VN0
)

where aN0,N = E[SN − SN0
]

and not e−(k−aN )2/2VN (as claimed in Theorem 2.1). In order to address this fix some ε < 1/2.

Note that for |k − aN0,N | ≥ V
1
2
+ε

N we have

e
−

(k−aN0,N
)2

2(VN −VN0
) = o(e−cV 2ε

N ) and e
−

(k−aN0,N
)2

2VN = o(e−cV 2ε
N ) for some c > 0.

Since both terms are o(σ−s
N ) for any s, it is enough to explain how to replace e

−
(k−aN0,N

)2

2(VN −VN0
)

with

e
− (k−aN )2

2VN when |k − aN0,N | ≤ V
1
2
+ε

N (in which case |k − aN | = O(V
1
2
+ε

N )). For such k’s we

can write

exp

[
− (k − aN0,N )2

2(VN − VN0
)

]
= (4.18)

exp

[
− (k − aN0,N )2

2VN

]
exp

[
− (k − aN0,N )2VN0

2VN (VN − VN0
)

]
.
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Since
(k − aN0,N )2VN0

2VN (VN − VN0
)

= O
(

V
−(1−3ε)
N

)
, for any d1 we have

exp

[
− (k − aN0,N )2VN0

2VN (VN − VN0
)

]
= (4.19)

d1∑

j=0

V
j

N0

2 j (VN − VN0
) j j !

(
(k − aN0,N )2

σ 2
N

) j

+ O(V
−(d1+1)(1−3ε)

N ).

Note that (using the binomial formula) the first term on the above right hand side is a

polynomial of the variable (k − aN )/σN whose coefficients are uniformly bounded in N .

Next we analyze the first factor in the RHS of (4.18). As before, it is enough to consider

k’s such that |k − aN | ≤ V
1
2
+ε

N for a sufficiently small ε. We have

exp

[
− (k − aN ,N0

)2

2VN

]
= (4.20)

exp

[
− (k − aN )2

2VN

]
exp

[
−

2(k − aN )aN0
+ a2

N0

2VN

]
.

Note that
(k−aN )aN0

+a2
N0

2VN
= kNβN0,N + θN0,N , where

βN0,N = aN0

2σN

= O

(
ln σN

σN

)
and θN0,N =

a2
N0

2VN

= O

(
ln2 σN

VN

)
.

Approximating e
−

(k−aN )aN0
+a2

N0
2VN by a polynomial of a sufficiently large degree d2 in the

variable
(k−aN )aN0

+a2
N0

2VN
completes the proof of existence of polynomials Pa,b,N claimed in the

theorem (the Taylor reminder for the last approximation is of order O

(
V

−d2( 1
2
−ε)

N

)
, thus we

can take d2 = 4(r + 1) assuming that ε is small enough).

Finally, let us show that the coefficients of the polynomials Pa,b,N constructed above are

uniformly bounded in N . In fact, we will show that for each nonzero resonant point t j =
2πl/m, the coefficients of the polynomials coming from integration over I j are of order

O
(
(1 + M

q0
N (m))e−MN (m)

)
,

where q0 = q0(r ) depends only on r .

Observe that the additional contribution to the coefficients of the polynomials coming from

the transition between the variables kN and kN0,N is uniformly bounded in N . Hence we

only need to show that the coefficients of the (original) polynomials in the variable kN0,N

are uniformly bounded in N . The possible largeness of these coefficients can only come from

the terms Cu,N ,t j
, for u = 0, 1, 2, . . . , d which are of order Mu

N (m), respectively. However, the

corresponding terms are multiplied by terms of the form ΦN0,N (t j )Φ
(ℓ)
N0

(t j ) for certain ℓ’s which

are uniformly bounded in N (see also (4.22)). We conclude that there are constants W j ∈ N and

a j ∈ N which depend only on t j and r so that the coefficients of the resulting polynomials are

composed of a sum of at most W j terms of order (MN (m))a jΦN0,N (t j )Φ
(ℓ)
N0

(t j ), where ℓ ≤ E(r )

for some E(r ) ∈ N. Next, we have

Φ
(ℓ)
N0

(t j )ΦN0,N (t j ) = (4.21)
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∑

n1,...,nk≤N0;
ℓ1+···+ℓk=ℓ

γℓ1,...,ℓk

⎛
⎝

k∏

q=1

φ
(ℓq )
nq (t j )

⎞
⎠
⎡
⎣ ∏

n≤N , n ̸=nk

φn(t j )

⎤
⎦

where γℓ1,...,ℓk
are bounded coefficients of combinatorial nature. Using (3.8) we see that for each

n1, . . . , nk the product in the square brackets is at most Ce−c0 MN (m)+O(1) for some C, c0 > 0.

Hence

|Φ(ℓ)
N0

(t j )ΦN0,N (t j )| ≤ Ĉ N ℓ
0 e−c0 MN (m), Ĉ > 0.

Now, observe that the definition1 of N0 gives MN (m) ≥ ε0 N0, ε0 > 0. Therefore

|Φ(ℓ)
N0

(t j )ΦN0,N (t j )| ≤ C0 Mℓ
N (m)e−c0 MN (m), and so each one of the above coefficients is of order

Mℓ′
N (m)e−c0 MN (m) for some ℓ′ which does not depend on N . □

Remark 4.5. The transition between the variables kN0,N and kN changes the monomials of

the polynomials Pa,b,N , a ̸= 0 coming from integration over I j , for t j ̸= 0 into monomials of

the form
cN a

j1
N0
σ

j2
N0

k
j3
N

σ u
N

for some bounded sequence (cN ), j1, j2, j3 ≥ 0 and u ∈ N. As we have

explained, the coefficients of these monomials are uniformly bounded. Still, it seems more

natural to consider such monomials as part of the polynomial Pa,b+u,N . In this case we still get

polynomials with bounded coefficients since aN0
and σN0

are both O(N0), N0 = O(MN (m))

and cN contains a term of the form Φ
(ℓ)
N0

(t j )ΦN0,N (t j ).

Remark 4.6. As can be seen from the proof, the resulting expansions might contain terms

corresponding to σ−s
N for s > r . Such terms can be disregarded. For

|k−aN |
σN

≤ V ε
N this follows

because the coefficients of our expansions are O(1) and for
|k−aN |
σN

≥ V ε
N this follows from

(4.12). In practice, some of the polynomials Pa,b,N with b ≤ r might have coefficients which

are o(σ b−r
N ) (e.g. when b + u > r in the last remark) so they also can be disregarded. The

question when the terms Pa,b,N may be disregarded is in the heart of the proof of Theorem 1.5

given in the next section.

4.3. A summary

The proofs of Proposition 1.2, Theorem 1.3 and Theorem 1.5 will be based on careful

analysis of the formulas of the polynomials from Theorem 2.1. For this purpose, it will be

helpful to summarize the main conclusions from the proof of Theorem 2.1. Let r ≥ 1 and

t j = 2πl/m be a nonzero resonant point. Then the arguments in the proof of Theorem 2.1

yield that the contribution to the expansion coming from t j is

C j (k) := (4.22)

e−i t j k
ΦN0,N (t j )

∑

s≤r−1

(∑

u+l=s

Φ
(l)
N0

(t j )Cu,N

l!

)∫

U j

e−ihkhs
ΦN0,N (h)dh

where U j = I j − t j , Cu,N are given by (4.14) and C0,N = 1. When t j = 0 then it is sufficient

to consider only s = 0, N0 = 0 and the contribution is just the integral
∫ δ

−δ
e−ihk

ΦN (h)dh

1 Recall that N0 has been defined before Lemma 4.2.
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where δ is small enough. As in (4.16), changing variables we can replace the integral

corresponding to hs with2

∫ ∞

−∞

e
−ih(k−E[SN0,N

])/σN0,N hse−h2/2

σ−s−1
N0,N

(
1 +

r∑

w=1

Aw,N0,N (h)

σwN0,N

)
dh. (4.23)

After that was established, the proof was completed using (4.17) and some estimates whose

purpose was to make the transition between the variables kN0,N and kN .

5. Uniqueness of trigonometric expansions

In several proofs we will need the following result.

Lemma 5.1. Let r ≥ 1 and d ≥ 0. Set R0 = R∪ {0} where R is the set of nonzero resonant

points. For any t j ∈ R0, let A0,N (t j ), . . . , Ad,N (t j ) be sequences so that, uniformly in k such

that kN = k − E(SN )

σN

= O(1) we have

∑

t j ∈R0

e−i t j k

(
d∑

m=0

km
N Am,N (t j )

)
= o(σ−r

N ).

Then for all m and t j

Am,N (t j ) = o(σ−r
N ). (5.1)

In particular the polynomials from the definition of the (generalized) Edgeworth expansions

are unique up to terms of order o(σ−r
N ).

Proof. The proof is by induction on d. Let us first set d = 0. Then, for any k ∈ N we have
∑

t j ∈R0

e−i t j k A0,N (t j ) = o(σ−r
N ). (5.2)

Let T be the number of nonzero resonant points, and let us relabel them as {x1, . . . , xT }.
Consider the vector

AN = (A0,N (0), A0,N (x1), . . . , A0,N (xT )).

Let V be the transpose of the Vandermonde matrix of the distinct numbers α j = e−i x j , j =
0, 1, 2, . . . , T where x0 := 0. Then V is invertible and by considering k = 0, 1, 2, . . . , T in

(5.2) we see that (5.2) holds true if and only if

AN = V
−1o(σ−r

N ) = o(σ−r
N ).

Alternatively, let Q be the least common multiple of the denominators of t j ∈ R. Let aN (p) =
A0,N (2πp/Q) if 2πp/Q is a resonant point and 0 otherwise. Then for m = 0, 1, . . . , Q − 1

we have

âN (m) :=
Q−1∑

p=0

aN (p)e−2πpm/Q = o(σ−r
N ).

2 We should delete the red term now.
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Therefore, by the inversion formula of the discrete Fourier transform,

aN (p) = Q−1

Q−1∑

m=0

âN (m)e2π imp/Q = o(σ−r
N ).

Assume now that the theorem is true for some d ≥ 0 and any sequences functions

A0,N (t j ), . . . , Ad,N (t j ). Let A0,N (t j ), . . . , Ad+1,N (t j ) be sequences so that uniformly in k such

that kN := k − E(SN )

σN

= O(1) we have

∑

t j ∈R0

e−i t j k

(
d+1∑

m=0

km
N Am,N (t j )

)
= o(σ−r

N ). (5.3)

Let us replace k with k ′ = k + [σN ]Q, where Q is the least common multiply of all the

denominators of the nonzero t j ’s. Then e−i t j k = e−i t j k′
. Thus,

∑

t j ∈R0

e−i t j k

(
d+1∑

m=0

(k ′m
N − km

N )Am,N (t j )

)
= o(σ−r

N ).

Set L N = [σN ]Q/σN ≈ Q. Then the LHS above equals

L N

∑

t j ∈R0

e−i t j k

(
d∑

s=0

ks
NAs,N (t j )

)

where

As,N (t j ) =
d+1∑

m=s+1

Am,N (t j )Lm−s−1
N .

By the induction hypothesis we get that

As,N (t j ) = o(σ−r
N )

for any s = 0, 1, . . . , d . In particular

Ad,N (t j ) = Ad+1,N (t j ) = o(σ−r
N ).

Substituting this into (5.3) we can disregard the last term Ad+1,N (t j ). Using the induction

hypothesis with A0,N (t j ), A1,N (t j ), . . . , Ad,N (t j ) we obtain (5.1). □

6. First order expansions

In this section we will consider the case r = 1. By (4.22) and (4.23), we see that the

contribution coming from the integral over I j is

σ−1
N0,N

e−i t j k
ΦN (t j )

√
2πe

−k2
N0,N

/2 + o(σ−1
N )

where kN0,N = (k − E(SN0,N ))/σN0,N . Now, using the arguments at the end of the proof of

Theorem 2.1 when r = 1 we can just replace e
−k2

N0,N
/2

with e−(k−E(SN ))2/2VN (since it is enough

to consider the case when kN0,N and k0,N are of order V ε
N ). Therefore, taking into account that

σ−1
N0,N

− σ−1
N = O(σ−2

N N0) we get
√

2πP(SN = k) = (6.1)
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⎛
⎝1 +

∑

t j ∈R
e−i t j k

ΦN (t j )

⎞
⎠ σ−1

N e−(k−E[SN ])2/2VN + o(σ−1
N ).

Here R is the set of all nonzero resonant points t j = 2πl j/m j . Indeed the contribution of the

resonant points satisfying MN (m j ) ≤ R(r, K ) ln VN is analyzed in Section 4.2. The contribution

of the other nonzero resonant points t is o(σ−1
N ) due to (3.8) in Section 3. In particular, (3.8)

implies that ΦN (t) = o(σ−1
N ) so adding the points with MN (m j ) ≥ R(r, K ) ln VN only changes

the sum in the RHS of (6.1) by o(σ−1
N ).

Corollary 6.1. The local limit theorem holds if and only if max
t∈R

|ΦN (t)| = o(1).

Proof. It follows from (6.1) that the LLT holds true if and only if for any k we have
∑

t j ∈R
e−i t j k

ΦN (t j ) = o(1).

Now, the corollary follows from Lemma 5.1. □

Before proving Theorem 1.3 we recall a standard fact which will also be useful in the proofs

of Theorems 1.6 and 1.8.

Lemma 6.2. Let {µN } be a sequence of probability measures on Z/mZ and {γN } be a positive

sequence. Then µN (a) = 1
m

+ O(γN ) for all a ∈ Z/mZ if and only iff µ̂N (b) = O(γN ) for all

b ∈ (Z/mZ) \ {0} where µ̂ is the Fourier transform of µ.

Proof. If µN (a) = 1
m

+ O(γn) then

µ̂N (b) =
m−1∑

a=0

µN (a)e2π iab/m =
m−1∑

a=0

1

m
e2π iab/m + O(γN ) = O(γN ).

Next µ̂N (0) = 1 since µN are probabilities. Hence if µ̂N (b) = O(γN ) for all b ∈ (Z/mZ)\ {0}
then

µN (a) = 1

m

m−1∑

b=0

µ̂N (b)e−2π iba/m = 1

m

[
1 +

m−1∑

b=1

µ̂N (b)e−2π iba/m

]
= 1

m
+ O(γN )

as claimed. □

Proof of Theorem 1.3. The equivalence of conditions (b) and (c) comes from the fact that for

non-resonant points the characteristic function decays faster than any power of σN (see (3.7)).

The equivalence of (a) and (c) is due to Corollary 6.1. Finally, the equivalence between (c)

and (d) comes from Lemma 6.2. □

Remark 6.3. Theorem 1.3 can also be deduced from [8, Corollary 1.4]. Indeed the corollary

says that either the LLT holds or there is an integer h ∈ (0, 2K ) and a bounded sequence {aN }
such that the limit

p( j) = lim
N→∞

P(SN − aN = j mod h)
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exists and moreover if k − an ≡ j mod h then

σNP(SN = k) = p( j)hg

(
k − E(SN )

σN

)
+ o

(
σ−1

N

)
.

Thus in the second case the LLT holds iff p( j) = 1
h

for all j which is equivalent to SN

being asymptotically uniformly distributed mod h and also to the Fourier transform of p( j)

regarded as the measure on Z/(hZ) being the δ measure at 0. Thus the conditions (a), (c) and

(d) of the theorem are equivalent. Also by the results of [8, Section 2] (see also [§3.3.2][11])

if E
(
eiξ SN

)
does not converge to 0 for some non zero ξ then

(
2π

ξ

)
Z

⋂
2πZ is a lattice in

R which implies that ξ is resonant, so condition (b) of the theorem is also equivalent to the

other conditions.

Proof of Proposition 1.2. Let SN satisfy LLT. Fix m ∈ N and suppose that
∑

n

qn(m) < ∞.

Let sn be the most likely residue of Xn mod m. Then for t = 2πl
m

we have

φn(t) = ei tsn −
∑

j ̸≡sn mod m

P(Xn ≡ j mod m)
(
ei tsn − ei t j

)
,

so that 1 ≥ |φn(t)| ≥ 1 − 2 mqn(m). It follows that for each ε > 0 there is N (ε) such that⏐⏐⏐⏐⏐⏐

∞∏

n=N (ε)+1

φn(t)

⏐⏐⏐⏐⏐⏐
> 1 − ε. Applying this for ε = 1

2
we have

1

2
≤ lim inf

N→∞

⏐⏐ΦN (1/2),N (t)
⏐⏐ ̸= 0. (6.2)

On the other hand the LLT implies that

lim
N→∞

ΦN (t) = 0. (6.3)

Since ΦN = ΦN (1/2)ΦN (1/2),N , (6.2) and (6.3) imply that ΦN (1/2)(t) = 0. Since ΦN (1/2)

(
2πl

m

)
=

N (1/2)∏

n=1

φn

(
2πl

m

)
we conclude that there exists nl ≤ N (1/2) such that φnl

( 2πl
m

) = 0. Hence

Y = Xn1
+ Xn2

+ · · · Xnm−1
satisfies E

(
e2π i(k/m)Y

)
= 0 for k = 1, . . .m − 1. By Lemma 6.2

both Y and SN for N ≥ N (1/2) are uniformly distributed. This proves the proposition. □

7. Characterizations of Edgeworth expansions of all orders

7.1. Derivatives of the non-perturbative factor

Proposition 7.1. Fix r ≥ 1, and assume that MN ≤ R(r, K ) ln σN (possibly along a

subsequence). Then Edgeworth expansions of order r hold true (i.e. (1.2) holds for such N’s)

iff for each t j ∈ R and 0 ≤ ℓ < r (along the underlying subsequence) we have

σ r−ℓ−1
N ΦN0,N (t j )Φ

(ℓ)
N0

(t j ) = o(1). (7.1)

Proof. First, in view of (4.12) and (4.22), it is clear that the condition (7.1) is sufficient for

expansions of order r .
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Let us now prove that the condition (7.1) is necessary for the expansion of order r .

We will use induction on r . For r = 1 (see (6.1)) our expansions read

P(SN = k) = σ−1
N e−k2

N
/2

⎡
⎣1 +

∑

t j ∈R
e−i t j k

ΦN (t j )

⎤
⎦+ o(σ−1

N ).

Therefore if

P(SN = k) = σ−1
N e−k2

N
/2 PN (kN ) + o(σ−1

N )

for some polynomial PN then Lemma 5.1 tells us that, in particular ΦN (t j ) = o(1) for each

t j ∈ R.

Let us assume now that the necessity part in Proposition 7.1 holds for r ′ = r − 1 and prove

that it holds for r . We will use the following lemma.

Lemma 7.2. Assume that for some t j ∈ R,

σ r−2−l
N ΦN0,N (t j )Φ

(l)
N0

(t j ) = o(1), l = 0, 1, . . . , r − 2. (7.2)

Then, up to an o(σ−r
N ) error term, the contribution of t j to the generalized Edgeworth

expansions of order r is

e−i t j ke−k2
N
/2

⎛
⎝ΦN (t j )

σN

+
r∑

q=2

HN ,q (kN )

σ
q

N

⎞
⎠ (7.3)

with

HN ,q (x) = HN ,q (x; t j ) = (7.4)

HN ,q,1(x) + HN ,q,2(x) + HN ,q,3(x) + HN ,q,4(x)

where

HN ,q,1(x) =
(i)q−1 Hq−1(x)ΦN0,N (t j )Φ

(q−1)

N0
(t j )

(q − 1)! ,

HN ,q,2(x) =
(i)q−1 Hq−1(x)ΦN0,N (t j )Φ

(q−2)

N0
(t j )C1,N ,t j

(q − 2)! ,

HN ,q,3(x) =
aN0

(i)q−2 H ′
q−2(x)ΦN0,N (t j )Φ

(q−2)

N0
(t j )

(q − 2)! ,

HN ,q,4(x) = −
xaN0

(i)q−2 Hq−2(x)ΦN0,N (t j )Φ
(q−2)

N0
(t j )

(q − 2)! ,

and Hq are Hermite polynomials.

Here C1,N ,t j
is given by (4.15) when MN (m) ≤ R(K , r ) ln σN , and C1,N ,t j

= 0 when

MN (m) > R(K , r ) ln σN . (Note that in either case C1,N ,t j
= O(MN (m)) = O(ln σN )).

As a consequence, when the Edgeworth expansions of order r hold true and (7.2) holds,

then uniformly in k so that kN = O(1) we have

ΦN (t j )

σN

+
r∑

q=2

HN ,q (kN ; t j )

σ
q

N

= o(σ−r
N ). (7.5)
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The proof of the lemma will be given in Section 7.2 after we finish the proof of

Proposition 7.1.

By the induction hypothesis the condition (7.2) holds true. Let us prove now that for

ℓ = 0, 1, 2, . . . , r − 1 and t j ∈ R we have

ΦN0,N (t j )Φ
(ℓ)
N0

(t j ) = o(σ−r+1+ℓ
N ).

Let us write

ΦN (t j )

σN

+
r∑

q=2

HN ,q (kN )

σ
q

N

=
r−1∑

m=0

km
N Am,N (t j ).

Applying Lemmas 5.1 and 7.2 we get that

Am,N (t j ) = o(σ−r
N )

for each 0 ≤ m ≤ r − 1 and t j ∈ R.

Fix t j ∈ R. Using Lemma 7.2 and the fact that the Hermite polynomials Hu have the same

parity as u and that their leading coefficient is 1 we have

(r − 2)!Ar−1,N (t j ) = σ−r
N (i)r−2

(
iΦN0,N (t j )Φ

(r−1)
N0

(t j )/(r − 1) (7.6)

+ ΦN0,N (t j )Φ
(r−2)
N0

(t j )(iC1,N − aN0
)

)
= o(σ−r

N )

and

(r − 3)!Ar−2,N (t j ) = σ−r+1
N (i)r−3

(
iΦN0,N (t j )Φ

(r−2)
N0

(t j )/(r − 2) (7.7)

+ ΦN0,N (t j )Φ
(r−3)
N0

(t j )(iC1,N − aN0
)

)
= o(σ−r

N ).

Since ΦN0,N (t j )Φ
(r−3)
N0

(t j ) = o(σ−1
N ), (7.7) yields

ΦN0,N (t j )Φ
(r−2)
N0

(t j ) = o(σ−1
N ln σN ).

Plugging this into (7.6) we get

ΦN0,N (t j )Φ
(r−1)
N0

(t j ) = o(1).

Therefore we can just disregard Hr,N (kN ; t j ) since its coefficients are of order o(σ−r
N ). Since

the term Hr,N (kN ; t j ) no longer appears, repeating the above arguments with r − 1 in place of

r we have

Ar−3,N (t j ) = σ−r+2
N (i)r−4

(
iΦN0,N (t j )Φ

(r−3)
N0

(t j )/(r − 3)

+ΦN0,N (t j )Φ
(r−4)
N0

(t j )(iC1,N − aN0
)

)
= o(σ−r

N ).

Since ΦN0,N (t j )Φ
(r−4)
N0

(t j ) = o(σ−2
N ), the above asymptotic equality yields that

ΦN0,N (t j )Φ
(r−3)
N0

(t j ) = o(σ−2
N ln σN ).

Plugging this into (7.7) we get

ΦN0,N (t j )Φ
(r−2)
N0

(t j ) = o(σ−1
N ).
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Hence, we can disregard also the term Hr−1,N (kN ; t j ). Proceeding this way we get that

ΦN0,N (t j )Φ
(ℓ)
N0

(t j ) = o(σ ℓ+1−r
N ) for any 0 ≤ ℓ < r . □

Before proving Lemma 7.2, let us state the following result, which is a consequence of

Proposition 7.1 and (3.8).

Corollary 7.3. Suppose that for each nonzero resonant point t we have inf
n

|φn(t)| > 0.

Then for any r, the sequence SN obeys Edgeworth expansions of order r if and only if

ΦN (t) = o(σ 1−r
N ) for each nonzero resonant point t .

7.2. Proof of Lemma 7.2

Proof. First, because of (7.2), for each 0 ≤ s ≤ r − 1, the terms indexed by l < s − 1

in (4.22), are of order o(σ−r
N ) and so they can be disregarded. Therefore, we need only to

consider the terms indexed by l = s and l = s − 1. For such l, using again (7.2) we can

disregard all the terms in (4.23) indexed by w ≥ 1, since the resulting terms are of order

o(σ−w−r
N ln σN ) = o(σ−r

N ). Now, since σ−1
N0,N

− σ−1
N = O(VN0

/σ 3
N ) we can replace σN0,N with

σ−1
N in (4.22), as the remaining terms are of order o(σ−r−1

N ). Therefore, using (4.17) we get

the following contributions from t j ∈ R,

e−i t j k e
−k2

N0,N
/2

⎛
⎝ΦN (t j )

σN

+
r∑

q=2

HN ,q (kN0,N )

σ
q

N

⎞
⎠

where HN ,q (x) = HN ,q,1(x) +HN ,q,2(x) and HN ,q, j , j = 1, 2 are defined after (7.4). Note that

when x = O(1) and q < r ,

HN ,q,1(x)

σ
q

N

= o(σ−r+1
N ) and

HN ,q,2(x)

σ
q

N

= o(σ−r
N ln σN ). (7.8)

while when q = r ,

HN ,r,1(x)

σ r
N

= O(σ−r
N ln σN ) and

HN ,r,2(x)

σ r
N

= o(σ−r
N ln σN ). (7.9)

Next

kN0,N = (1 + ρN0,N )kN + aN0

σN

+ θN0,N

where ρN0,N = σN/σN0,N − 1 = O(ln σN/σ
2
N ) and

θN0,N = aN0

(
1

σN0,N

− 1

σN

)
= O(ln2 σN/σ

3
N ).

Hence, when |kN0,N | ≤ σ εN (and so kN = O(σ εN )) for some ε > 0 small enough then for each

m ≥ 1 we have

km
N0,N

= km
N + mkm−1

N aN0
/σN + o(σ−1

N ).

Therefore, (7.8) and (7.9) show that upon replacing Hq−1(kN0,N ) with Hq−1(kN ) the only

additional term is

aN0
(i)q−1 H ′

q−1(kN )ΦN0,N (t j )Φ
(q−1)

N0
(t j )

(q − 1)!σ q+1

N
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for q = 2, 3, . . . , r − 1. We thus get that the contribution of t j is

e−i t j k e
−k2

N0,N
/2

⎛
⎝ΦN (t j )

σN

+
r∑

q=2

CN ,q (kN )

σ
q

N

⎞
⎠

where

CN ,q (x) = HN ,q (x) +
aN0

(i)q−2 H ′
q−2(x)ΦN0,N (t j )Φ

(q−2)

N0
(t j )

(q − 2)! .

Note that CN ,2(·) = HN ,2(·). Finally, we can replace e
−k2

N0,N
/2

with

(1 − kN aN0
/σN )e−k2

N
/2

since all other terms in the transition between e
−k2

N0,N
/2

to e−k2
N
/2 are of order o(σ−1

N ) (see

(4.18) and (4.19)). The term −kN aN0
/σN shifts the uth order term to the u + 1-th term,

u = 1, 2, . . . , r − 1 multiplied by −kN aN0
. Next, relying on (7.8) and (7.9) we see that

after multiplied by kN aN0
/σN , the second term HN ,q,2(kN ) from the definition of HN ,q (kN )

is of order o(σ−r−1
N ln2 σN )σ

q

N and so this product can be disregarded. Similarly, we can ignore

the additional contribution coming from multiplying the second term from the definition of

CN ,q (kN ) by −kN aN0
/σN (since this term is of order o(σ−r

N ln σN )σ
q

N ). We conclude that, up to

a term of order o(σ−r
N ), the total contribution of t j is

e−i t j k e−k2
N
/2

⎛
⎝ΦN (t j )

σN

+
r∑

q=2

HN ,q (kN ; t j )

σ
q

N

⎞
⎠

where HN ,q (x; t j ) = CN ,q (x) −
xaN0

(i)q−2 Hq−2(x)ΦN0,N (t j )Φ
(q−2)

N0
(t j )

(q − 2)! which completes the

proof of (7.3).

Next we prove (7.5). On the one hand, by assumption we have Edgeworth expansions or

order r , and, on the other hand, we have the expansions from Theorem 2.1. Therefore, the

difference between the two must be o(σ−r
N ). Since the usual Edgeworth expansions contain

no terms corresponding to nonzero resonant points, applying Lemma 5.1 and (7.3) we obtain

(7.5). □

Note that the formulas of Lemma 7.2 together with already proven Proposition 7.1 give the

following result.

Corollary 7.4. Suppose that E(SN ) is bounded, SN admits the Edgeworth expansion of order

r − 1, and, either

(a) for some ε̄ ≤ 1/(8K ) we have N0 = N0(N , t j , ε̄) = 0 for each nonzero resonant point

t j ,

or (b) ϕ := min
t∈R

inf
n

|φn(t)| > 0.

Then
√

2πP(SN = k)

= e−k2
N
/2

⎡
⎣Er (kN ) +

∑

t j ∈R

(
ΦN (t j )

σN

+
ikN C1,N ,t j

ΦN (t j )

σ 2
N

)
e−i t j k

⎤
⎦+ o(σ−r

N )
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where Er (·) is the Edgeworth polynomial of order r (i.e. the contribution of t = 0), and we

recall that

iC1,N ,t j
= −

N∑

n=1

E(ei t j Xn X̄n)

E(ei t j Xn )
.

Proof. Part (a) holds since under the assumption that N0 = 0 all terms HN ,q, j in (7.4) except

HN ,2,2 vanish. Part (b) holds since in this case the argument proceeds similarly to the proof of

Theorem 2.1 if we set N0 = 0 for any t j (since we only needed N0 to obtain a positive lower

bound on |φn(t j )| for t j ∈ R and N0 < n ≤ N ). □

Remark 7.5. Observe that σ−1
N ≫ |C1,N ,t j

|σ−2
N , so if the conditions of the corollary are

satisfied but |ΦN (t j )| ≤ cσ 1−r
N (possibly along a subsequence), then the leading correction

to the Edgeworth expansion comes from

e−k2
N
/2
∑

t j ∈R

(
ΦN (t j )

σN

)
.

Thus Corollary 7.4 strengthens Corollary 7.3 by computing the leading correction to the

Edgeworth expansion when the expansion does not hold.

7.3. Proof of Theorem 1.5

We will use the following.

Lemma 7.6. Let t j be a nonzero resonant point, r > 1 and suppose that MN ≤ R ln σN ,

R = R(r, K ) and that |E(SN )| = O(ln σN ). Then (7.1) holds for all 0 ≤ ℓ < r if and only if

|Φ(ℓ)
N (t j )| = o

(
σ−r+ℓ+1

N

)
(7.10)

for all 0 ≤ ℓ < r .

Proof. Let us first assume that (7.1) holds. Because the summands are independent we have

ΦN (t) = ΦN0
(t)ΦN0,N (t). (7.11)

Recall that by Lemma 4.2 we have

ΦN0,N (t) = ΦN0,N (t j )ΦN0,N (h)ΨN0,N (h) (7.12)

where t = t j + h and

ΨN0,N (h) = exp

[
O(MN (m))

∞∑

u=1

(O(1))uhu

]
. (7.13)

For ℓ = 0 the result reduces to (7.11). For larger ℓ’s we have

Φ
(ℓ)
N (t j ) = ΦN0,N (t j )Φ

(ℓ)
N0

(t j ) +
ℓ−1∑

k=0

(
ℓ

k

)
Φ

(ℓ−k)
N0,N

(t j )Φ
(k)
N0

(t j ). (7.14)

Fix some k < ℓ. Notice that S̄N0,N = SN0,N − E(SN0,N ) satisfies |E[(S̄N0,N )q ]| ≤ C ′
qσ

q

N0,N
, for

some constant C ′
q > 0. Indeed, by (3.3) we have

S̄N0,N


q

≤ Cq

(
1 +

SN0,N


2

)
.
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However, since σ 2
N = σ 2

N0
+ σ 2

N0,N
, and N0 is of logarithmic order in σN we get that

σN ≤ CσN0,N for some constant C > 0. Now the desired upper bound follows since σN → ∞
(which implies that for N large enough we have 1 +

SN0,N


2

≤ 2
SN0,N


2
). Combing this

with (7.12), we see that

Φ
(ℓ−k)
N0,N

(t j ) = ΦN0,N (t j )

ℓ−k∑

u=0

(
ℓ− k

u

)
Φ

(u)
N0,N

(0)Ψ
(ℓ−k−u)
N0,N

(0) (7.15)

= O(lnℓ−k σN )ΦN0,N (t j ).

Therefore

Φ
(ℓ−k)
N0,N

(t j )Φ
(k)
N0

(t j ) = O(lnℓ−k σN )ΦN0,N (t j )Φ
(k)
N0

(t j ). (7.16)

Finally, by (7.1) we have

ΦN0,N (t j )Φ
(k)
N0

(t j ) = o(σ k+1−r
N )

and so, since k < ℓ,

Φ
(ℓ−k)
N0

(t j )Φ
(k)
N0

(t j ) = o(σ ℓ+1−r
N ).

This completes the proof that (7.10) holds.

Next, suppose that (7.10) holds for each 0 ≤ ℓ < r . Let use prove by induction on ℓ that

|ΦN0,NΦ
(ℓ)
N0

(t j )| = o
(
σ−r+ℓ+1

N

)
. (7.17)

For ℓ = 0 we notice that (7.1) and (7.10) coincide. For the sake of clarity, let us also prove

the case ℓ = 1 directly, relying on the case ℓ = 0. For ℓ = 1, by (7.15) applied with k − ℓ = 1

we have

Φ
′
N0,N

(t j ) = O(ln σN )ΦN0,N (t j )

and so

Φ
′
N (t j ) = ΦN0

(t j )Φ
′
N0,N

(t j ) + Φ
′
N0

(t j )ΦN0,N (t j )

= O(ln σN )ΦN (t j ) + Φ
′
N0

(t j )ΦN0,N (t j ).

By assumption we have Φ ′
N (t j ) = o(σ−r+2

n ) and by the induction base we have ΦN (t j ) =
o(σ−r+1

N ). Thus

Φ
′
N0

(t j )ΦN0,N (t j ) = Φ
′
N (t j ) − O(ln σN )ΦN (t j ) = o(σ−r+2

n ).

Now take ℓ > 1 and assume that (7.17) holds with k in place of ℓ for each k < ℓ. By (7.14),

(7.16) and the induction hypothesis we get

Φ
(ℓ)
N (t j ) = ΦN0,N (t j )Φ

(ℓ)
N0

(t j ) + o(σ ℓ+1−r
N ).

By assumption we have Φ
(ℓ)
N (t j ) = o(σ ℓ+1−r

N ) and hence

ΦN0,N (t j )Φ
(ℓ)
N0

(t j ) = o(σ ℓ+1−r
N )

as claimed. □
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Theorem 1.5 in the case MN ≤ R ln σN follows now by first replacing Xn with Xn − cn ,

where (cn) is a bounded sequence of integers so that E[SN − CN ] = O(1), where

CN =
n∑

j=1

c j (7.18)

(see Lemma 3.4 in [11]), and then applying Lemma 7.6 and Proposition 7.1.

It remains to consider the case when MN (m) ≥ R̄ ln σN where R̄ is large enough. In that

case, by Theorem 1.4, the Edgeworth expansion of order r holds true, and so, after the reduction

to the case when E(SN ) is bounded, it is enough to show that Φ
(ℓ)
N (t j ) = o

(
σ−r+ℓ+1

N

)
for all

0 ≤ ℓ < r . By the arguments of Lemma 7.6 (starting from (7.15)) it suffices to show that for

each 0 ≤ ℓ < r we have

Mℓ
N (m)Φ

(ℓ)
N0

(t j )ΦN0,N (t j ) = o(σ−r
N ).

To this end we write

Φ
(ℓ)
N0

(t j )ΦN0,N (t j ) =
∑

n1,...,nk≤N0;
ℓ1+···+ℓk=ℓ

γℓ1,...,ℓk

⎛
⎝

k∏

q=1

φ
(ℓq )
nq (t j )

⎞
⎠
⎡
⎣ ∏

n≤N , n ̸=nk

φn(t j )

⎤
⎦

where γℓ1,...,ℓk
are bounded coefficients of combinatorial nature. Using (3.8) we see that for each

n1, . . . , nk the product in the square brackets is at most Ce−c0 MN (m)+O(1) for some C, c0 > 0.

Hence

|Φ(ℓ)
N0

(t j )ΦN0,N (t j )| ≤ Ĉ N ℓ
0 e−cMN (m).

It remains to note that the definition of N0 gives MN (m) ≥ ε̂N0. Thus

Mℓ
N (m)|Φ(ℓ)

N0
(t j )ΦN0,N (t j )| ≤ C∗M2ℓ

N (m) e−cMN (m) = o(σ−r
N )

provided that MN ≥ R̄ ln σN for R̄ large enough. □

8. Edgeworth expansions and uniform distribution

8.1. Proof of Theorem 1.6

In view of Proposition 7.1 with r = 2, it is enough to show that if ΦN (t j ) = o(σ−1
N ) then

the SLLT implies that

|ΦN0,N (t j )Φ
′
N0

(t j )| = o(1) (8.1)

for any non-zero resonant point t j (note that the equivalence of conditions (b) and (c) of the

theorem follows from Lemma 6.2).

Denote ΦN ;k(t) =
∏

l ̸=k,l≤N

φl(t).

Let us first assume that φk(t j ) ̸= 0 for all 1 ≤ k ≤ N . Then φ′
k(t j )ΦN ;k(t j ) =

φ′
k(t j )ΦN (t j )/φk(t j ). Let εN = ln σN

σN
. If for all 1 ≤ k ≤ N0 we have |φk(t j )| ≥ εN then

⏐⏐⏐ΦN0,N (t j )Φ
′
N0

(t j )

⏐⏐⏐ =
⏐⏐⏐⏐⏐

N0∑

k=1

φ′
k(t j )ΦN ;k(t j )

⏐⏐⏐⏐⏐ ≤ |ΦN (t j )|
N0∑

k=1

|φ′
k(t j )/φk(t j )|

≤ Cε−1
N N0|ΦN (t j )| ≤ C ′σN |ΦN (t j )| → 0 as N → ∞
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where we have used that N0 = O(ln VN ). Next suppose there is at least one 1 ≤ k ≤ N0 such

that |φk(t j )| < εN . Let us pick some k = kN with the latter property. Then for any k ̸= kN ,

1 ≤ k ≤ N0 we have

|φ′
k(t j )ΦN ;k(t j )| ≤ C |φkN

(t j )| < CεN .

Therefore,
⏐⏐⏐⏐⏐⏐

∑

k ̸=kN , 1≤k≤N0

φ′
k(t j )ΦN ;k(t j )

⏐⏐⏐⏐⏐⏐
≤ C ′ ln2 σN

σN

= o(1).

It follows that

ΦN0,N (t j )Φ
′
N0

(t j ) = ΦN ;kN
(t j )φ

′
kN

(t j ) + o(1). (8.2)

Next, in the case when φk0
(t j ) = 0 for some 1 ≤ k0 ≤ N0, then (8.2) clearly holds true with

kN = k0 since all the other terms vanish.

In summary, either (8.1) holds or we have (8.2). In the later case, using (3.8) we obtain
⏐⏐⏐E
(

e
i t j SN ;kN

)⏐⏐⏐ ≤ e
−c2

∑
s ̸=kN ,1≤s≤N qs (m) = e

−c2 MN (m)−qkN
(m) (8.3)

where SN ;k = SN − Xk , and c2 > 0 depends only on K . Since the SLLT holds true, MN

converges to ∞ as N → ∞. Taking into account that 0 ≤ qkN
(m) ≤ 1 we get that the left

hand side of (9.6) converges to 0, proving (8.1). □

8.2. Proof of Theorem 1.8

We start with the proof of part (1). Assume that the LLT holds in a superstable way. Let

X ′
1, X ′

2, . . . be a square integrable integer-valued independent sequence which differs from

X1, X2, . . . by a finite number of elements. Then there is n0 ∈ N so that Xn = X ′
n for any

n > n0. Set S′
N =

N∑

n=1

X ′
n , Y = S′

n0
and YN = Y I(|Y | < σ

1/2+ε
N ), where ε > 0 is a small

constant. By the Markov inequality we have

P(|Y | ≥ σ
1/2+ε
N ) = P(|Y |2 ≥ σ 1+2ε

N ) ≤ ∥Y∥2

L2σ
−1−2ε
N = o(σ−1

N ).

Therefore, for any k ∈ N and N > n0 we have

P(S′
N = k) = P(SN ;1,2,...,n0

+ YN = k) + o(σ−1
N )

= E[P(SN ;1,2,...,n0
= k − YN |X ′

1, . . . , X ′
n0

)] + o(σ−1
N )

= E[PN :1,2,...,n0
(k − YN )] + o(σ−1

N )

where PN :1,2,...,n0
(s) = P(SN ;1,2,...,n0

= s) for any s ∈ Z. Since the LLT holds in a superstable

way, we have, uniformly in k and the realizations of X ′
1, . . . , X ′

n0
that

PN :1,2,...,n0
(k − YN ) = e−(k−YN −E(SN ))2/(2VN )

√
2πσN

+ o(σ−1
N ).

Therefore,

P(S′
N = k) = (8.4)
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e−(k−E(SN ))2/2VN

√
2πσN

E
(
e−(k−E(SN ))YN /VN +Y 2

N
/(2VN )

)
+ o(σ−1

N ).

Next, since |YN | ≤ σ
1/2+ε
N we have that ∥Y 2

N/(2VN )∥L∞ ≤ σ 2ε−1
N , and so when ε < 1/2 we

have ∥Y 2
N/2VN ∥L∞ = o(1). Recall that kN = (k − E(SN ))/σN . Suppose first that |kN | ≥ σ εN

with ε < 1/4.

Since

⏐⏐(k − E(SN ))YN/VN

⏐⏐ ≤ |kN |σ ε−
1
2

N ,

we get that the RHS of (8.4) is o(σ−1
N ) (uniformly in such k’s).

On the other hand, if |kN | < σ εN then

E
(
e−(k−E(SN ))YN /VN +Y 2

N
/2VN

)
= 1 + o(1)

(uniformly in that range of k’s).

We conclude that, uniformly in k, we have

P(S′
N = k) = e−(k−E(SN ))2/(2VN )

√
2πσN

+ o(σ−1
N ).

Lastly, since sup
N

|E(SN ) − E(S′
N )|<∞ and sup

N

|Var(SN ) − Var(S′
N )|<∞,

P(S′
N = k) = e−(k−E(S′

N
))2/(2V ′

N
)

√
2πσ ′

N

+ o(1/σ ′
N )

where V ′
N = Var(S′

N ) and σ ′
N =

√
V ′

N .

Conversely, if the SLLT holds then by Eq. (1.1) we have that MN (h) → ∞ for each h ≥ 2.

Now if t is a nonzero resonant point with denominator h then (3.8) gives

|ΦN ; j N
1
, j N

2
,..., j N

sN
(t)| ≤ Ce−cMN (h)+C̄ s̄, C, C̄ > 0

for any choice of j N
1 , . . . , j N

sN
and s̄ with sN ≤ s̄. Since the RHS tends to 0 as N → ∞,

{Xn} ∈ EeSS(1) completing the proof of part (1).

For part (2) we only need to show that (a) is equivalent to (b) as the equivalence of (b)

and (c) comes from Lemma 6.2. By replacing again Xn with Xn − cn it is enough to prove

the equivalency in the case when E(SN ) = O(1). The proof that (a) and (b) are equivalent

consists of two parts. The first part is the following statement whose proof is a straightforward

adaptation of the proof of Theorem 1.5 and is therefore omitted.

Proposition 8.1. {Xn} ∈ Ss Ee(r ) if and only if for each s̄, each sequence j N
1 , j N

2 , . . . , j N
sN

with sN ≤ s̄, each ℓ < r and each t ∈ R we have

Φ
(ℓ)

N ; j N
1
, j N

2
,..., j N

sN

(t) = o(σ ℓ+1−r
N ). (8.5)

Note that the above proposition shows that the condition ΦN ; j N
1
, j N

2
,..., j N

sN
(t) = o(σ 1−r

N ) is

necessary.

The second part of the argument is to show that if

ΦN ; j N
1
, j N

2
,..., j N

sN
(t) = o(σ 1−r

N )
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holds for every finite modification of SN with sN ≤ s̄ +ℓ (uniformly) then (8.5) holds for every

modifications with sN ≤ s̄ so that the condition ΦN ; j N
1
, j N

2
,..., j N

sN
(t) = o(σ 1−r

N ) is also sufficient.

To this end we introduce some notation. Fix a nonzero resonant point t = 2πl
m

. Let Φ̌N be the

characteristic function of the sum ŠN of all Xn’s such that 1 ≤ n ≤ N , n ̸∈ { j N
1 , j N

2 , . . . , j N
sN

}
and qn(m) ≥ ϵ̄. Let Ň be the number of terms in ŠN . Denote S̃N = SN ; j N

1
, j N

2
,..., j N

sN
− ŠN and

let Φ̃N (t) be the characteristic function of S̃N . Similarly to the proof of Theorem 1.5 it suffices

to show that for each ℓ < r⏐⏐⏐Φ̌(ℓ)
N Φ̃N (t)

⏐⏐⏐ = o(σ 1+ℓ−r
N )

and, moreover, we can assume that MN (m) ≤ R̄ ln σN and therefore Ň = O(ln σN ). We have

(cf. (4.21)),

Φ̌
(ℓ)
N Φ̃N (t) =

∑

n1,...,nk ;
ℓ1+···+ℓk=ℓ

k∏

w=1

γℓ1,...,ℓk
φ(ℓw)

nw
(t j )

∏

n ̸∈{n1,n2...,nk , j N
1
, j N

2
..., j N

sN
}

φn(t j )

where the summation is over all tuples n1, n2, . . . , nk such that qnw (m) ≥ ϵ̄. Note that the

absolute value of each term in the above sum is bounded by C |ΦN ;n1,...,nk , j1..., j N
sN

(t j )| = o(σ 1−r
N ).

It follows that the whole sum is

o
(
σ 1−r

N Ň ℓ
)

= o
(
σ 1−r

N lnℓ σN

)

completing the proof. □

Remark 8.2. Lemma 6.2 and Theorem 1.5 show that the convergence to uniform distribution

on any factor Z/hZ with the speed o(σ 1−r
N ) is necessary for Edgeworth expansion of order r .

This is quite intuitive. Indeed calling Er the Edgeworth function of order r , (i.e. the contribution

from zero), then it is a standard result from numerical integration (see, for instance, [10, Lemma

A.2]) that for each s ∈ N and each j ∈ Z

∑

k∈Z
hEr

(
j + hk
√
σN

)
=
∫ ∞

−∞
Er (x)dx + o

(
σ−s

N

)
= 1 + o

(
σ−s

N

)

where in the last inequality we have used that the non-constant Hermite polynomials have

zero mean with respect to the standard normal law (since they are orthogonal to the constant

functions). However, using this result to show that

∑

k∈Z
P(SN = j + kh) = 1

h
+ o

(
σ 1−r

N

)

requires a good control on large values of k. While it appears possible to obtain such control

using the large deviations theory it seems simpler to estimate the convergence rate towards

uniform distribution from our generalized Edgeworth expansion.

9. Second order expansions

In this section we will compute the polynomials in the general expansions in the case r = 2.

First, let us introduce some notations which depend on a resonant point t j . Let t j = 2πl j/m j

be a nonzero resonant point such that MN (m j ) ≤ R(2, K ) ln VN where R(2, K ) is specified

in Remark 3.6. Let Φ̌ j,N be the characteristic function of the sum Š j,N of all Xn’s such
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that 1 ≤ n ≤ N and qn(m j ) ≥ ϵ̄ = 1
8K

. Note that Š j,N was previously denoted by SN0
.

Let S̃ j,N = SN − Š j,N and denote by Φ̃ j,N its characteristic function. (In previous sections

we denoted the same expression by SN0,N , but here we want to emphasize the dependence

on t j .) Let γ j,N be the ratio between the third moment of S̃ j,N − E(S̃ j,N ) and its variance.

Recall that by (3.3) |γ j,N | ≤ C for some C . Also, let C1,N ,t j
be given by (4.15), with

the indexes rearranged so that the n’s with qn(m) ≥ ε̄ are the first N0 ones (C1,N ,t j
is at

most of order MN (m) = O(ln VN )). For the sake of convenience, when either t j = 0 or

MN (m j ) ≥ R(2, K ) ln VN we set C1,N ,t j
= 0, S̃ j,N = SN and ŠN , j = 0. In this case Φ̃ j,N = Φ̃N

and Φ̌ j,N ≡ 1. Also denote kN = (k − E(SN ))/σN , S̄N = SN − E(SN ), and γN = E(S̄3
N )/VN ,

(γN is bounded).

Proposition 9.1. Uniformly in k, we have
√

2πP(SN = k) =
(

1 +
∑

t j ∈R
e−i t j k

ΦN (t j )
)
σ−1

N e−k2
N
/2− (9.1)

σ−2
N e−k2

N
/2

⎛
⎝γN k3

N/6 +
∑

t j ∈R
e−i t j k

Φ̃N , j (t j )PN , j (kN )

⎞
⎠+ o(σ−2

N )

where

PN , j (x) =
(
Φ̌N , j (t j )(iC1,N ,t j

− E(ŠN , j )) + iΦ̌ ′
N , j (t j )

)
x + Φ̌N , j (t j )γN , j x

3/6.

Proof. The starting point of the proof is the equality (4.1). In Section 4.3 we have proven that

the contribution to P(Sn = k) of the integrals over the non-resonant intervals I j is negligible,

while the contribution of the integral over resonant intervals I j is given by the quantify C j (k)

defined by (4.22). Let t j = 2πl
m

be a resonant point with MN (m)≤ R(2, K ) ln VN . First, in order

to compute the term corresponding to σ−2
N0,N

we need only to consider the case s ≤ 1 in (4.23).

Using (3.2) we end up with the following contribution of the interval containing t j ,

√
(2π )−1e−i t j k

Φ̃N , j (t j )σ
−1
N0,N

( ∫ ∞

−∞
e−ih(k−E[S̃N , j ])/σN , j e−h2/2dh

+σ−1
N , j

∫ ∞

−∞
e−ih(k−E[S̃N , j ])/σN , j

(
ih3

6
E

[(
S̃N , j − E(S̃N , j )

)3
]
σ−3

N , j

)
dh

+σ−1
N , j (C1,N Φ̌N , j (t j ) + Φ̌

′
N , j (t j ))

∫ ∞

−∞
e−ih(k−E(S̃N , j ))/σN , j he−h2/2dh

)

= e−i t j k
Φ̃N , j (t j )

√
(2π )−1e

−k2
N , j

/2
σ−1

N , j

(
Φ̌N , j (t j ) + i

(
C1,N ,t j

Φ̌N , j (t j ) + Φ̌
′
N , j (t j )

)

×kN , jσ
−1
N , j + Φ̌N , j (t j )(k

3
N , j − 3kN , j )γN , jσ

−1
N , j/6

)

where σN , j =
√

V (S̃N , j ), kN , j = k−E(S̃N , j )

σN , j
and γN , j = E[(S̃N , j −E(S̃N , j ))3]

σ 2
N , j

(which is uniformly

bounded).

As before we shall only consider the case where |kN | ≤ V ε
N with ε = 0.01 since otherwise

both the LHS and the RHS (9.1) are O(σ−r
N ) for all r . Then, the last display can be rewritten

as I + II where

I = e−i t j k

√
2πσN , j

e
−k2

N , j
/2

ΦN (t j ); (9.2)
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II = e−i t j k

√
2πσ 2

N , j

e
−k2

N , j
/2×

[
ΦN (t j )

(
iC1,N ,t j

kN , j + γN , j

6

(
k3

N , j − 3kN , j

))
+ iΦ̌ ′

N , j (t j )Φ̃N , j (t j )kN , j

]
.

In the region |kN | ≤ V ε
N we have

I = e−i t j k

√
2πσN

e−k2
N
/2
[
1 − qN , j kN

]
ΦN (t j ) + o

(
σ−2

N

)

where

qN , j = E(ŠN , j )/σN , j = E(ŠN , j )/σN + O(ln σN/σ
3
N ) = O(ln σN/σN )

while

II = e−i t j k

√
2πσ 2

N

e−k2
N
/2×

[
ΦN (t j )

(
iC1,N ,t j

kN +
γN , j

(
k3

N − 3kN

)

6

)
+ iΦ̌ ′

N , j (t j )Φ̃N , j (t j )kN

]

+o
(
σ−2

N

)
.

This yields (9.1) with RN in place of R, where RN is the set of nonzero resonant points t j =
2πl/m such that MN (m) ≤ R(2, K ) ln VN . Next, (3.8) shows that if MN (m) ≥ R(2, k) ln VN

then

sup
t∈I j

|ΦN (t)| ≤ e−c0 MN (m) = o(σ−2
N )

and so the contribution of I j to the right hand side of (9.1) is o(σ−2
N ). Finally, the contribution

coming from t j = 0 is

e−k2
N
/2
(
σ−1

N + σ−2
N γ 3

N k3
N/6

)

and the proof of the proposition is complete. □

Remark 9.2. Suppose that MN (m) ≥ R(2, K ) ln VN and let N0 is the number of n’s between

1 to N so that qn(m) ≥ 1
8K

. Then using (3.8) we also have

|Φ̌ ′
N , j (t j )Φ̃N , j (t j )| ≤

∑

n∈Bε̄(m)

|E[Xnei t j Xn ]| · |ΦN ;n(t j )|

≤ C N0(N , t j , ε̄)e
−c0 MN (m) ≤ C ′MN (m)e−c0 MN (m),

where

BN ,ε̄(m) = {1 ≤ n ≤ N : qn(m) > ε̄}.
Since MN (m) ≥ R(2, K ) ln VN , for any 0 < c1 < c0, when N is large enough we have

MN (m)e−c0 MN (m) ≤ C1e−c1 MN (m) = o(σ−2
N ).

Similarly, |E(ŠN , j )ΦN (t j )| = o(σ−2
N ) and

C1,N ,t j
ΦN (t j ) = O(MN (m))ΦN (t j ) = o(σ−2

N ).

Therefore we get (9.1) when S̃N , j and ŠN , j are defined in the same way as in the case

MN (m) ≤ R(2, K ) ln VN .
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Under additional assumptions the order 2 expansion can be simplified.

Corollary 9.3. If SN satisfies SLLT then

√
2πP(SN = k) = e−k2

N
/2

σN

⎛
⎝1 +

∑

t j ∈R
e−i t j k

ΦN (t j ) − γN k3
N

6σN

⎞
⎠+ o(σ−2

N ).

Proof. It is enough to show that all terms in the second line of (9.1) except the first one make

a negligible contribution, namely that

(1 + MN (m))Φ̃N , j (t j )Φ̌N , j (t j ) = o(1) (9.3)

and

Φ̃N , j (t j )Φ̌
′
N , j (t j ) = o(1). (9.4)

Since SN = S̃ j,N + Š j,N we have

Φ̃N , j (t j )Φ̌N , j (t j ) = ΦN (t j ) = O(e−c0 MN (m))

where the last equality follows from (3.8). Since by Eq. (1.1) the SLLT implies that MN (m) →
∞, (9.3) follows.

Next we prove (9.4). Similarly to Remark 9.2, if MN (m) ≥ R(2, K ) ln VN then

|Φ̃N , j (t j )Φ̌
′
N , j (t j )| ≤ C ′MN (m)e−c0 MN (m) = o(1).

Hence it is enough to consider the case when MN (m) = O(ln VN ). The proof in this case

proceeds very similarly to the beginning of Section 8.1, but for readers’ convenience we will

provide all the details.

Let A j = A j (N ) denote the set of all 1 ≤ k ≤ N so that qk(m) ≥ 1
8K

. Then the size |A j |
of A j , which was previously denoted by N0, is at most of order MN (m). Let us first suppose

that φk(t j ) ̸= 0 for all k ∈ A j . Now, if for all k ∈ A j we have |φk(t j )| ≥ εN := c0|A j |
M3

N
(m)

, where

c0 > 0 is some constant, then similarly to the beginning of Section 8.1 we have

⏐⏐⏐Φ̃N , j (t j )Φ̌
′
N , j (t j )

⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐
∑

k∈A j

φ′
k(t j )ΦN ;k(t j )

⏐⏐⏐⏐⏐⏐
≤ |ΦN (t j )|

∑

k∈A j

|φ′
k(t j )/φk(t j )|

≤ Cε−1
N |A j ∥ ΦN (t j )| ≤ C ′M3

N (m)|ΦN (t j )| → 0 as N → ∞
where the last limit is indeed 0 because of (3.8) and taking into account that MN (m) → ∞
(by Eq. (1.1)).

Next suppose there is at least one k ∈ A j so that |φk(t j )| < εN . Pick some k = kN with the

latter property. Then for any k ̸= kN , k ∈ A j we have

|φ′
k(t j )ΦN ;k(t j )| ≤ C |φkN

(t j )| < CεN .

Therefore,⏐⏐⏐⏐⏐⏐
∑

k∈A j \{kN }
φ′

k(t j )ΦN ;k(t j )

⏐⏐⏐⏐⏐⏐
≤ C ′εN |A j |

= O
(
|A j |2(MN (m))−3

)
= o(1/MN (m)) = o(1).
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It follows that

Φ̃ j,N (t j )Φ̌
′
j,N (t j ) = ΦN ;kN

(t j )φ
′
kN

(t j ) + o(1). (9.5)

Next, in the case when φk0
(t j ) = 0 for some k0 ∈ A j , then (9.5) clearly holds true with

kN = k0 since all the other terms vanish.

Using (3.8) we obtain
⏐⏐ΦN ;kN

(t j )
⏐⏐ =

⏐⏐⏐E
(

e
i t j SN ;kN

)⏐⏐⏐ ≤ e
−c2

∑
s ̸=kN ,1≤s≤N qs (m) = e

−c2 MN (m)−qkN
(m) (9.6)

where SN ;k = SN − Xk , and c2 > 0 depends only on K . Since the SLLT holds, MN (m)

converges to ∞ as N → ∞. Taking into account that 0 ≤ qkN
(m) ≤ 1 we get that also the

first term on the right hand side of (9.5) is o(1), and the proof of the corollary is complete.

□

Next, assume that SN satisfies the LLT but not SLLT. According to Proposition 1.2, in

this case there exists m such that MN (m) is bounded and for k = 1, . . . ,m − 1 there exists

n = n(k) such that φn(k/m) = 0. Let Rs denote the set of nonzero resonant points t j = 2πk
m

so that MN (m) is bounded and φℓ j
(t j ) = 0 for unique ℓ j .

Corollary 9.4. Uniformly in k, we have
√

2πP(SN = k) =
(

1 +
∑

t j ∈R
e−i t j k

ΦN (t j )
)
σ−1

N e−k2
N
/2

−σ−2
N e−k2

N
/2

⎛
⎝γN k3

N/6 +
∑

t j ∈Rs

ie−i t j k
ΦN ;ℓ j

(t j )φ
′
ℓ j

(t j )kN

⎞
⎠+ o(σ−2

N ).

Proof. As in the proof of Corollary 9.3 we see that the contribution of the terms with k/m

with MN (m) → ∞ is negligible. Next, for terms in Rs the only non-zero term in the second

line in (9.1) corresponds to ΦN ;ℓ j
(t j )φ

′
ℓ j

(t j ) while for the resonant points such that φℓ(t j ) = 0

for two different ℓs all terms vanish. □

10. Examples

Example 10.1. Suppose Xn are iid integer valued with step h > 1. That is there is s ∈ Z

such that P(Xn ∈ s +hZ) = 1 and h is the smallest number with this property. In this case [18,

Theorem 4.5.4] (see also [12, Theorem 5]) shows that there are polynomials Pb such that

P(SN = k) =
r∑

b=1

Pb((k − E[SN ])/σN )

σ b
N

g

(
k − E(SN )

σN

)
+ o(σ−r

N ) (10.1)

for all k ∈ s N + hZ. Then

h−1∑

a=0

r∑

b=1

e2π ia(k−s N )/h Pb((k − E[SN ])/σN )

σ b
N

g((k − E(SN ))/σN )

provides o(σ−r
N ) approximation to P(SN = k) which is valid for all k ∈ Z.

Next let S̄N = X0 + SN where X0 is bounded and arithmetic with step 1. Then using the

identity

P(S̄N = k) =
∑

u≡k−s N mod h

P(X0 = u)P(SN = k − u), (10.2)
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invoking (10.1) and expanding g

(
k − u − E(SN )

σN

)
in the Taylor series about

k−E(SN )

σN
we

conclude that there are polynomials Pb, j such that we have for k ∈ j + hZ,

P(S̄N = k) =
r∑

b=1

Pb, j ((k − E[SN ])/σN )

σ b
N

g

(
k − E(SN )

σN

)
+ o(σ−r

N ).

Again

h−1∑

a=0

h−1∑

j=0

e2π ia(k− j)/h

r∑

b=1

Pb, j ((k − E[SN ])/σN )

σ b
N

g

(
k − E(SN )

σN

)

provides the oscillatory expansion valid for all integers.

Example 10.2. Our next example is a small variation of the previous one. Fix a positive

integer m. Let X ′ be a random variable such that X ′ mod m is uniformly distributed. Then

its characteristic function satisfies φX ′ ( 2πa
m

) = 0 for a = 1, . . . ,m − 1. We also assume that

φ′
X ′ (

2πa
m

) ̸= 0 for a as above (for example one can suppose that X ′ takes the values Lm,

1, 2, . . . ,m − 1 with equal probabilities where L is a large integer). Let X ′′ take values in mZ

and have zero mean. We also assume that X ′′ does not take values at m0Z for a larger m0.

Then q(X ′′,m0) > 0 for any m0 ̸= m. Fix r ∈ N and let

Xn =
{

X ′ n ≤ r,

X ′′ n > r.

Then MN (m0) grows linearly fast in N if m0 ̸= m and MN (m) is bounded in N . We claim that

SN admits the Edgeworth expansion of order r but does not admit Edgeworth expansion of

order r + 1. The first statement holds due to Theorem 1.5, since Φ
(ℓ)
N ( 2πa

m
) = 0 for each a ∈ Z

and each ℓ < r . On the other hand, since Φ
(ℓ)
N ( 2πa

m
) = 0 for any ℓ < r , using Lemma 7.6 we

see that the conditions of Lemma 7.2 are satisfied with r + 1 in place of r . Moreover, with

t j = 2πa/m, a ̸= 0 we have HN ,r+1,s(x, t j ) ≡ 0 for any q ≤ r + 1 and s = 2, 3, 4 while

HN ,q,w(x, t j ) ≡ 0 for any q ≤ r and w = 1, 2, 3, 4. Furthermore, when N ≥ r we have

HN ,r+1,1(x; t j ) =
i r Hr (x)

(
φX ′′ (2πa/m)

)N−r
Φ(r )

r (2πa/m)

r !
= (i)r Hr (x)

(
Φ

′
X ′ (2πa/m)

)r
.

We conclude that

P(SN = k)

= e−k2
N
/2

√
2π

[
Er+1(kN ) + i r

σ r+1
N

m−1∑

a=1

e−2π iak/m

(
φ′

X ′

(
2πa

m

))r

Hr (kN )

]

+o(σ−r−1
N )

where Er+1 the Edgeworth polynomial (i.e. the contribution of 0) and Hr (x) is the Hermite

polynomial.

Observe that since the uniform distribution on Z/mZ is shift invariant, SN are uniformly

distributed mod m for all N ∈ N. This shows that for r ≥ 1, one cannot characterize Edgeworth
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expansions just in term of the distributions of SN mod m, so the additional assumptions in

Theorems 1.6 and 1.8 are necessary.

Next, consider a more general case where for each n, Xn equals in law to either X ′ or X ′′,

however, now we assume that X ′ appears infinitely often. In this case SN obeys Edgeworth

expansions of all orders since for large N , ΦN (t) has zeroes of order greater N at all points

of the form 2πa
m

, a = 1, . . . ,m − 1. In fact, the Edgeworth expansions hold in the superstable

way since removing a finite number of terms does not make the order of zero to fall below r .

Example 10.3. Let pn = min(1, θ
n

) and let Xn take value 0 with probability pn and values

±1 with probability 1−pn

2
. In this example the only non-zero resonant point is π = 2π × 1

2
.

Then for small θ the contributions of P1,b,N (the only non-zero a is 1) are significant and as

a result SN does not admit the ordinary Edgeworth expansion. Increasing θ we can make SN

to admit Edgeworth expansions of higher and higher orders. Namely we get that for large n,

φn(π ) = 2θ

n
− 1. Accordingly

ln(−φn(π )) = −2θ

n
+ O

(
1

n2

)
.

Now the asymptotic relation

N∑

n=1

1

n
= ln N + c + O

(
1

N

)
,

where c is the Euler±Mascheroni constant, implies that there is a constant Γ (θ ) such that

ΦN (π ) = (−1)N eΓ (θ )

N 2θ
(1 + O(1/N )) .

Therefore SN admits the Edgeworth expansions of order r iff θ >
r − 1

4
. Moreover, if

θ ∈
(

r − 2

4
,

r − 1

4

]
, then Corollary 7.4 shows that

P(SN = k) = e−k2
N
/2

√
2π

[
Er (kN ) + (−1)N+keΓ (θ )

N 2θ+(1/2)
+ O

(
1

N 2θ+1

)]

where Er is the Edgeworth polynomial of order r . In particular if θ ∈ (0, 1/4) then using that

VN = N + O(ln N ) = N

(
1 + O

(
ln N

N

))
(10.3)

and hence

σN =
√

N

(
1 + O

(
ln N

N

))
(10.4)

we conclude that

P(SN = k) = e−k2/(2N )

√
2π

[
1√
N

+ (−1)N+keΓ (θ )

N 2θ+(1/2)
+ O

(
1

N 2θ+1

)]
.
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Next, take pn = min
(

1, θ

n2

)
. Then the SLLT does not hold, since the Prokhorov condition

fails. Instead we have (6.1) with R = {π}. Namely, uniformly in k we have

√
2πP(SN = k) =

(
1 + (−1)k

N∏

u=1

(2pu − 1)

)
σ−1

N e−k2/2VN + o(σ−1
N ).

Next, pu is summable and moreover

N∏

u=1

(2pu − 1) = (−1)N U (1 + O(1/N ))

where U =
∞∏

n=1

(1 − 2pu). We conclude that

√
2πP(SN = k) =

(
1 + (−1)k+N U

)
σ−1

N e−k2/2VN + O
(
σ−2

N

)
(10.5)

uniformly in k. In this case the usual LLT holds true if and only if U = 0 in agreement with

Proposition 1.2.

In fact, in this case we have a faster rate of convergence. To see this we consider expansions

of order 2 for pn as above. We observe that qm(2) = pn for large n. Thus

|E(eπ i Xn )| = 1 − 2pn

and so |E(eπ i Xn )| ≥ 1
2

when n ≥ Nθ for some minimal Nθ . Therefore, we can take N0 = Nθ .

Note also that we have Yn = Xn mod 2 − 1. We conclude that for n > N0 we have

an = an, j = E[((−1)Yn − 1)Xn]

E[(−1)Yn ]
= 0

and so the term C1,N vanishes. Next, we observe that

γN , j =
∑N

n=N0+1 E(X3
n)

∑N
n=N0+1(1 − pn)

= 0.

Finally, we note that E[(−1)Xn Xn] = 0, and hence Φ ′
N0

(π ) = 0. Therefore, the second term in

(9.1) vanishes and we have
√

2πP(SN = k) =
(
1 + (−1)k+N U

)
σ−1

N e−k2/(2VN ) + O
(
σ−3

N

)
.

Taking into account (10.3) and (10.4) we obtain

√
2πP(SN = k) = 1 + (−1)k+N U√

N
e−k2/(2N ) + O

(
N−3/2

)
.

In particular, (10.5) holds with the stronger rate O
(
σ−3

N

)
.

Example 10.4. The last example exhibited significant simplifications. Namely, there was only

one resonant point, and, in addition, the second term vanished due to the symmetry. We now

show how a similar analysis could be performed when the above simplifications are not present.

Let us assume that Xn takes the values −1, 0 and 3 with probabilities an, bn and cn so that

an + bn + cn = 1. Let us also assume that bn <
1
8

and that an, cn ≥ ρ > 0 for some constant

ρ. Then

V (Xn) = 9(cn − c2
n) + 6ancn + (an − a2

n) ≥ 6ρ2

and so VN grows linearly fast in N .
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Next, since we can take K = 3, the denominators m of the nonzero resonant points can

only be 2, 3, 4, 5 or 6. An easy check shows that for m = 3, 5, 6 we have qn(m) ≥ ρ, and that

for m = 2, 4 we have qn(m) = bn . Therefore, for m = 3, 5, 6 we have MN (m) ≥ ρN , and so

we can disregard all the nonzero resonant points except for π/2, π and 3π/2. For the latter

points we have

φn

(π
2

)
= bn − i(1 − bn), (10.6)

φn(π ) = 2bn − 1, φn

(
3π

2

)
= bn + i(1 − bn). (10.7)

Hence, denoting ηn = bn(1 − bn), we have

⏐⏐⏐φn

(π
2

)⏐⏐⏐
2

=
⏐⏐⏐⏐φn

(
3π

2

)⏐⏐⏐⏐
2

= 1 − 2ηn,
⏐⏐φn(π )

⏐⏐2 = 1 − 4ηn.

Since we suppose that ηn ≤ bn <
1
8

it follows that 1 − 4ηn ≥ 1
2
. Then for the above three

resonant points we can take N0 = 0. Now Proposition 7.1 and a simple calculation show that

for any r we get the Edgeworth expansions of order r if and only if

N∏

n=1

(1 − 2ηn) = o
(
N 1−r

)
.

Let us focus for the moment on the case when bn = γ /n for n large enough where γ > 0 is

a constant. Rewriting (10.6), (10.7) as

φn

(
π
2

)

−i
= (1 − bn) + ibn,

φn

(
3π
2

)

i
= (1 − bn) − ibn, (10.8)

−φn(π ) = 1 − 2bn

and, using that the condition bn <
1
8

implies that φn(t) ̸= 0 for all n ∈ N and all t ∈
{
π
2
, π, 3π

2

}
,

we conclude similarly to Example 10.3 that there are non-zero complex numbers κ1, κ3 and a

non-zero real number κ2 such that

ΦN

(π
2

)
= (−i)Nκ1

N γ
eiγ ln N

(
1 + O

(
1

N

))
,

ΦN

(
3π

2

)
= i Nκ3

N γ
e−iγ ln N

(
1 + O

(
1

N

))
,

ΦN (π ) = (−1)N κ2e2γwN

N 2γ

(
1 + O

(
1

N

))
.

It follows that SN admits Edgeworth expansion of order r iff γ > r−1
2

. In fact if r−1
2
< γ ≤ r

2

then Corollary 7.4 shows that

P(SN = k) = e−k2
N
/2

√
2π

[
Er (kN ) + κ1eiγ ln N

N γ σN

+ κ3e−iγ ln N

N γ σN

+ O
(
N−η)

]

where Er is the Edgeworth polynomial of order r and η=min
(
2γ, r

2

)
+ 1

2
.

To give a specific example, let us suppose that 1
2

≤ γ < 1 and that E(Xn) = 0 which means

that

an = 3(1 − bn)

4
, cn = 1 − bn

4
. (10.9)

524



D. Dolgopyat and Y. Hafouta Stochastic Processes and their Applications 152 (2022) 486±532

Then

VN = 3N − 3γ ln N + O(1), E(S3
N ) = 6N − 6γ ln N + O(1), (10.10)

so Proposition 9.1 gives
√

2πP(SN = k) =

e−k2/6N

[
1√
3N

(
1 + κ1i k−N eiγ ln N + κ3i N−ke−iγ ln N

N γ

)
− k3

81
√

3N 5

]

+O
(
N−3/2

)

Next, we return to the general case and stop assuming (10.9). Instead, let us provide the

second order trigonometric expansions under the sole assumption that 1 − 4ηn ≥ 1
2

and

an, cn ≥ ρ. As we have mentioned, we only need to consider the nonzero resonant points

π/2, π, 3π/2 and for these points we have N0 = 0. Therefore, the term involving the derivative

in the right hand side of (9.1) vanishes. Now, a direct calculation shows that

C1,N ,π =
N∑

n=1

E(eiπXn X̄n)

E(eiπXn )
= 2

N∑

n=1

(an − 3cn)bn

2bn − 1

and

C1,N ,π/2 =
N∑

n=1

(an − 3cn)(1 + i)bn

bn − i(1 − bn)
, C1,N ,3π/2 =

N∑

n=1

(an − 3cn)(1 − i)bn

bn + i(1 − bn)
.

Note that 3cn − an = E(Xn). Set

Γ1,N =
N∏

n=1

(bn − i(1 − bn)), Γ2,N =
N∏

n=1

(2bn − 1), Γ3,N =
N∏

n=1

(bn + i(1 − bn)).

Then Γs,N = E(e
sπ i

2
SN ). We also set

Θs,N = C1,N ,sπ/2Γs,N , s = 1, 2, 3

and

ΓN (k) =
3∑

j=1

e− jπ ik/2
Γ j,N , ΘN (k) =

3∑

j=1

e− jπ ik/2
Θ j,N .

Then by Proposition 9.1 and Remark 9.2, uniformly in k we have

√
2π P(SN = k) = σ−1

N (1 + ΓN (k)) e−k2
N
/2 (10.11)

−σ−2
N

(
k3

N TN

(
1 + ΓN (k)

)
+ ikNΘN (k)

)
e−k2

N
/2 + o(σ−2

N )

where TN =

N∑

n=1

E(X̄3
n)

6VN

, X̄n = Xn − E(Xn).
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Finally let us return to a more specific situation. Namely we suppose that bn = γ

n3/2 for

large n and that E(Xn) = 0. Then (10.9) shows that C1,N ,sπ/2 = 0. Next (10.8) gives

ΦN

(
π
2

)

(−i)N
=

N∏

n=1

[(1 − bn) + ibn] = κ̄1

∞∏

n=N+1

[(1 − bn) + ibn]

= κ̄1

(
1 + 2γ (1 − i)√

N
+ O

(
1

N

))

where κ̄1 =
∞∏

n=1

[(1 − bn) + ibn]. Likewise

ΦN

(
3π
2

)

i N
= κ̄3

(
1 + 2γ (1 + i)√

N
+ O

(
1

N

))

and

ΦN (π)

(−1)N
= κ̄2

(
1 + 4γ√

N
+ O

(
1

N

))
.

Taking into account (10.10) we can reduce (10.11) to the following expansion

√
2πP(SN = k) = e−k2/6N

[
1√
3N

(
1 +

3∑

s=1

κ̄s i s(k−N )

)

+ 1

N

(
− k̃3

N

3
+

3∑

s=1

κ̄s i s(k−N )

(
2γ (1 − i−s)√

3
− k̃3

N

3

))]
+ O

(
1

N 3/2

)

where k̃N = k/
√

3N .

Example 10.5. Let X ′ take value ±1 with probability 1
2
, X ′′ take values 0 and 1 with

probability 1
2
, and X δ , δ ∈ [0, 1] be the mixture of X ′ and X ′′ with weights δ and 1 − δ.

Thus X δ take value −1 with probability δ
2
, the value 0 with probability 1−δ

2
and value 1 with

probability 1
2
. Therefore, E(eπ i Xδ ) = −δ. We suppose that X2m and X2m−1 have the same law

which we call Ym . The distribution of Ym is defined as follows. Set k j = 33 j
, and let Yk j

have

the same distribution as X δ j where δ j = 1√
k j+1

. When m ̸∈ {k j } we let Ym have the distribution

of X ′. It is clear that VN grows linearly fast in N . Note also that E(eπ iYm ) = −δ j when m = k j

for some j , and otherwise E(eπ iYm ) = −1. Now, take N ∈ N such that N > 2k2, and let JN

be so that 2kJN
≤ N < 2kJN +1. Then

|ΦN (π )| ≤
JN∏

j=1

(k j+1)−1.

Since kJN
≤ N

2
< kJN +1 and k j = (k j+1)1/3 we have k−1

JN +1 ≤ 2N−1 and kJN +1−m ≤ 23−m
N−3−m

for any 0 < m ≤ JN . Denote αN =
JN −1∑

j=1

3− j . Since αN > 1/3 we get that

|ΦN (π )| ≤ 23/2 N−αN = o(N−1−1/3).
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Similarly, for each j1, j2 ≤ N ,

|ΦN : j1 (π )| ≤ 23/2 N−1/2−αN = o(N−1/2−1/3) (10.12)

and

|ΦN : j1, j2 (π )| ≤ 23/2 N−αN = o(N−1/3). (10.13)

Indeed, the largest possible values are obtained for j1 = 2kJN
(or j1 = 2kJN+1

− 1 if it is

smaller than N + 1) and j2 = 2kJN
− 1 (or j2 = 2kJN

). Using the same estimates as in the

proof of Theorem 1.8 we conclude from (10.12) that Φ ′
N (π ) = o

(
1/

√
N
)

and we conclude

from (10.13) that Φ
′′
N (π ) = o(1). It follows from Lemma 7.6 and Proposition 7.1 that SN

satisfies an Edgeworth expansion of order 3. The same conclusion holds if we remove a finite

number of terms from the beginning of the sequence {Xn} because the smallness of ΦN (π )

comes from the terms X2k j −1 and X2k j
for arbitrary large j’s.

On the other hand

⏐⏐⏐Φ2k j ;2k j ,2k j −1,2k j−1,2k j−1−1(π )

⏐⏐⏐ =
j−1∏

s=2

(
3−3s

)

= 3−(3 j −9)/2 = 39/2

√
k j

≫ 1

k j

= 3−3 j
.

It follows that S2k j ;2k j ,2k j −1,2k j−1,2k j−1−1 does not obey the Edgeworth expansion of order 3.

Accordingly, stable Edgeworth expansions need not be superstable if r = 3. A similar argument

allows to construct examples showing that those notions are different for all r > 2.

11. Extension for uniformly bounded integer-valued triangular arrays

In this section we will describe our results for arrays of independent random variables. We

refer to [7,13,26,27,29,35] and [11] for results for triangular arrays of inhomogeneous Markov

chains. Example where Markov arrays appear naturally include the theory of large deviations

for inhomogeneous systems (see [14,31,34] and references wherein), random walks in random

scenery [4,16], and statistical mechanics [19].

Let X (N )
n , 1 ≤ n ≤ L N be a triangular array such that for each fixed N , the random variables

X (N )
n are independent and integer valued. Moreover, we assume that

K := sup
N

sup
n

∥X (N )
n ∥L∞ < ∞.

For each N we set SN =
L N∑

n=1

X (N )
n . Let VN = Var(SN ). We assume that VN → ∞, so that, by

Lindeberg±Feller Theorem, the sequence (SN −E(SN ))/σN obeys the CLT, where σN =
√

VN .

We say that the array X (N )
n obeys the SLLT if for any k the LLT holds true for any uniformly

square integrable array Y (N )
n , 1 ≤ n ≤ L N , so that Y (N )

n = X (N )
n for all but k indexes n. Set

MN := min
2≤h≤2K

L N∑

n=1

P(Xn ̸= m(N )
n (h) mod h) ≥ R ln VN

where m(N )
n (h) is the most likely value of X (N )

n modulo h. Observe now that the proofs

of Proposition 3.1 and Lemmas 3.3, 3.4, 4.2 and 4.4 proceed exactly the same for arrays.

Therefore, all the arguments in the proof of Theorem 2.1 proceed the same for arrays instead

of a fixed sequence Xn . That is, we have
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Theorem 11.1. There ∃J = J (K ) < ∞ and polynomials Pa,b,N with degrees depending only

on a and b, whose coefficients are uniformly bounded in N such that, for any r ≥ 1 uniformly

in k ∈ Z we have

P(SN = k) −
J−1∑

a=0

r∑

b=1

Pa,b,N ((k − aN )/σN )

σ b
N

g((k − aN )/σN )e2π iak/J = o(σ−r
N )

where aN = E(SN ) and g(u) = 1√
2π

e−u2/2.

Moreover, P0,1,N ≡ 1 and given K , r , there exists R = R(K , r ) such that if MN ≥ R ln VN

then we can choose Pa,b,N = 0 for a ̸= 0.

All the formulas for the coefficients of the polynomials Pa,b,N remain the same in the arrays

setup. In particular, we get that, uniformly in k we have

√
2πP(SN = k) =

(
1 +

∑

t∈R
e−i tk

ΦN (t)

)
e−k2

N
/2σ−1

N + o(σ−1
N ) (11.1)

where ΦN (t) = E(ei t SN ). This formula is a generalization of (6.1).

Next, our version for Proposition 1.2 for arrays is as follows.

Proposition 11.2. Suppose SN obeys LLT. Then for each integer h ≥ 2, at least one of the

following conditions occur: either (a) lim
N→∞

L N∑

n=1

P(Xn ̸= m(N )
n (h) mod h) = ∞. or (b) there

exists a subsequence Nk , numbers s ∈ N and ε0 > 0 and indexes 1 ≤ j k
1 , . . . , j k

sk
≤ L Nk

,

sk ≤ s so that the distribution of

sk∑

u=1

X
(Nk )

ju
converges to uniform mod h, and the distance

between the distribution of SNk
−

sk∑

q=1

X
(Nk )

jq
and the uniform distribution mod h is at least ε0.

Proof. First, by (11.1) and Lemma 5.1 if the LLT holds then for any nonzero resonant point

t we have lim
N→∞

|ΦN (t)| = 0. Now, if (a) does not hold true then there is a subsequence Nk so

that

L Nk∑

n=1

q(X (Nk )
n , h) ≤ C , where C is some constant. Set q (Nk )

n (h) = q
(
X (Nk )

n , h
)
. Then there

are at most 8hC n’s between 1 and L Nk
so that q

(Nk )
n (h) > 1

8h
. Let us denote these n’s by

n1,k, . . . , nsk ,k , sk ≤ 8hC . Next, for any n and a nonzero resonant point t = 2πl/h we have

|φ(Nk )
n (t)| ≥ 1 − 2hq (Nk )

n (h) ≥ e−2γ hq
(Nk )
n (11.2)

where φ
(Nk )
n is the characteristic function of X

(Nk )
n and γ is such that for θ ∈ [0, 1/4] we have

1 − θ ≥ e−γ θ . We thus get that
∏

n ̸∈{nu,k }
|φ(Nk )

n (t)| ≥
∏

n ̸∈{nu,k }
(1 − 2hq (Nk )

n (h)) ≥ C0 (11.3)

where C0 > 0 is some constant. Therefore,

|ΦNk
(t)| ≥

sk∏

u=1

|φ(Nk )
nu,k

(t)| · C0

528



D. Dolgopyat and Y. Hafouta Stochastic Processes and their Applications 152 (2022) 486±532

and so we must have

lim
k→∞

sk∏

u=1

|φ(Nk )
nu,k

(t)| = 0. (11.4)

Now (b) follows from (11.3), (11.4) and Lemma 6.2. □

Using (11.1) we can now prove a version of Theorem 1.1 for arrays.

Theorem 11.3. The SLLT holds iff for each integer h > 1,

lim
N→∞

L N∑

n=1

P(X (N )
n ̸= mn mod h) = ∞ (11.5)

where mn = m(N )
n (h) is the most likely residue of X (N )

n modulo h.

Proof. First, the arguments in the proof of (3.8) show that there are constants c0,C > 0 so

that for any nonzero resonant point t = 2πl/h we have

|ΦN (t)| ≤ Ce−c0 MN (h), where MN (h) :=
L N∑

n=1

q(X (N )
n , h). (11.6)

Let us assume that (11.5) holds for all integers h > 1. Consider sN ±tuples 1 ≤ j N
1 , . . . , j N

sN
≤

L N , where sN ≤ s̄ is bounded in N . Then by applying (11.6) with S̃N = SN −
sN∑

l=1

X
(N )

j N
l

we

have

lim
N→∞

|E(ei t S̃N )| = 0. (11.7)

Now, arguing as in the proof of Theorem 1.8(1), given a uniformly square integrable array

Y (N )
n as in the definition of the SLLT, we still have (11.1), even though the new array is not

necessarily uniformly bounded. Applying (11.7) we see that for any nonzero resonant point t

we have

lim
N→∞

⏐⏐⏐⏐⏐E
(

exp

[
i t

L N∑

n=1

Y (N )
n

])⏐⏐⏐⏐⏐ = 0

and so SN Y :=
L N∑

n=1

Y (N )
n satisfies the LLT.

Now let us assume that MN (h) ̸→ ∞ for some 2 ≤ h ≤ 2K (it not difficult to see that

(11.5) holds for any h > 2K ).

In other words after taking a subsequence we have that MNk
(h) ≤ L for some L < ∞.

The proof of Proposition 11.2 shows that there exists s < ∞ such that after possibly removing

terms n1,k, n2,k, . . . , nsk ,k with sk ≤ s we can obtain that q
(Nk )
n (h) ≤ 1

8h
, n ̸∈ {n j,k}. In this case

(11.2) shows that for each ℓ

|ΦNk ;n1,k ,...,nsk ,k
(2πℓ/h)| ≥ e−2γ L .

By Proposition 11.2, SNk ;n1,k ,...,nsk ,k
does not satisfy the LLT. □
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Next, all the other arguments in our paper proceed similarly for arrays since they essentially

rely only on the specific structure of the polynomials from Theorem 2.1. For the sake of

completeness, let us formulate the main (remaining) results here.

Theorem 11.4. The following conditions are equivalent:

(a) SN satisfies LLT;

(b) For each ξ ∈ R \ Z, lim
N→∞

E
(
e2π iξ SN

)
= 0;

(c) For each non-zero resonant point ξ , lim
N→∞

E
(
e2π iξ SN

)
= 0;

(d) For each integer h the distribution of SN mod h converges to uniform.

Theorem 11.5. For each r there is R = R(r, K ) such that the Edgeworth expansion of order

r holds true if MN ≥ R ln VN . In particular, SN obeys Edgeworth expansions of all orders if

lim
N→∞

MN

ln VN

= ∞.

Theorem 11.6. For any r ≥ 1, the Edgeworth expansion of order r holds if and only if for

any nonzero resonant point t and 0 ≤ ℓ < r we have

Φ̄
(ℓ)
N (t) = o

(
σ ℓ+1−r

N

)

where Φ̄N (x) = E[ei x(SN −E(SN ))].

Theorem 11.7. Suppose SN obeys the SLLT. Then the following are equivalent:

(a) Edgeworth expansion of order 2 holds;

(b) |ΦN (t)| = o(σ−1
N ) for each nonzero resonant point t;

(c) For each h ≤ 2K the distribution of SN mod h is o(σ−1
N ) close to uniform.

Next, we say that an array {X (N )
n } admits an Edgeworth expansion of order r in a superstable

way (denoted by {X (N )
n } ∈ EeSs(r )) if for each s̄ and each sequence j N

1 , j N
2 , . . . , j N

sN
with

sN ≤ s̄ and j N
i ≤ L N there are polynomials Pb,N whose coefficients are O(1) in N and their

degrees do not depend on N so that uniformly in k ∈ Z we have that

P(SN ; j N
1
, j N

2
,..., j

sN
N

= k) =
r∑

b=1

Pb,N (kN )

σ b
N

g(kN ) + o(σ−r
N ) (11.8)

and the estimates in O(1) and o(σ−r
N ) are uniform in the choice of the tuples j N

1 , . . . , j N
sN

.

Let ΦN ; j1, j2,..., js (t) be the characteristic function of SN ; j1, j2,..., js .

Theorem 11.8. (1) SN ∈ EeSs(1) (that is, SN satisfies the LLT in a superstable way) if and

only if it satisfies the SLLT.

(2) For arbitrary r ≥ 1 the following conditions are equivalent:

(a) {X (N )
n } ∈ EeSs(r );

(b) For each j N
1 , j N

2 , . . . , j N
sN

and each nonzero resonant point t we have ΦN ; j N
1
, j N

2
,..., j N

sN
(t) =

o(σ 1−r
N );
(c) For each j N

1 , j N
2 , . . . , j N

sN
, and each h ≤ 2K the distribution of SN ; j N

1
, j N

2
,..., j N

sN
mod h is

o(σ 1−r
N ) close to uniform.
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