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Abstract
We prove a Berry—Esseen theorem and Edgeworth expansions for partial sums of the

form Sy = ZN_ Su(Xy, Xn41), where {X,,} is a uniformly elliptic inhomogeneous
Markov chain and {fn} is a sequence of uniformly bounded functions. The Berry—
Esseen theorem holds without additional assumptions, while expansions of order 1
hold when { f,,} is irreducible, which is an optimal condition. For higher order expan-
sions, we then focus on two situations. The first is when the essential supremum of
fy is of order O (n~#) for some B € (0, 1/2). In this case it turns out that expansions
of any order r < ﬁ hold, and this condition is optimal. The second case is uni-
formly elliptic chains on a compact Riemannian manifold. When f, are uniformly
Lipschitz continuous we show that Sy admits expansions of all orders. When f,, are
uniformly Holder continuous with some exponent @ € (0, 1), we show that Sy admits
expansions of all orders r < %%g For Holder continues functions with @ < 1 our
results are new also for uniformly elliptic homogeneous Markov chains and a single
functional f = f;. In fact, we show that the condition r < }f—g is optimal even in the
homogeneous case.

Mathematics Subject Classification 60F05

1 Introduction

Let Y1, Y2, Y3, ... be a sequences of independent square integrable random variables.
_ N
Set Sy = E 1(Y" —E(Y,)), Vv = Var(Sy) and oy = +/ V. The classical central
n=
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11m1t theorem (CLT) states that if oy — o0 then, as N — o0, the distribution of
SN =Sy /o converges to the standard normal distribution. A related classical result
is the Berry—Esseen theorem [27] which is a quantification of the CLT stating that
there is an absolute constant Cy > 0 so that for every N > 1,

sup [Py = 1) — @) = Cooy® ZE —Elv;1°] (1.1
teR j=1

where @ is the standard normal distribution function (we refer to [5] for similar
result obtained simultaneously). In [28], Esseen proved, in particular, that the optimal
constant Cy in the RHS of (1.1) is greater than 0.4. Since then there were many efforts
to provide close to tight upper bounds on C, and currently the smallest possible known
choice for Cg is Cyp = 0.56, see [63] and references therein. Note that when Y; are
centered and identically distributed with ¥; € L3 then (1.1) yields the well known

CLT rate Co E“y = O(Un_] ), where 02 = E[Yf]. However, the non iid case is more

complicated, and to get the rates O (o, !) it is natural to assume that Y,, are uniformly
bounded, and then with || Y ||oc = sup,, [|Yx|lco We have

sup [P(Sy < 1) — @(1)| < CollY [0y " (1.2)
teR

However, in general the RHS of (1.1) can be much larger than oy, I

The rate of o ;1 in (1.2) is optimal, see below. By now the optimal convergence rate
in the CLT was obtained for wide classes of stationary Markov chains [42, 53, 54] and
other weakly dependent random processes including chaotic dynamical systems [35,
37,42,45, 46, 58], uniformly bounded stationary sufficiently fast ¢-mixing sequences
[56], U-statistics [9, 34] and locally dependent random variables [3, 8, 11] (the last
three papers use Stein’s method).

The rate o Lis optimal for two reasons. First, for the lattice random variables
the distribution function ¢t IP’(S’N < t) has jumps of order oy, I Secondly even if
the distributions of the summands have smooth densities the rate of convergence is

still O (o& 1) if the third moment of the sum is different from Gaussian. To address

the moment obstacle one could introduce appropriate corrections.! Namely, fix r >
1. We say that the Edgeworth expansions of order r hold if there are polynomials

Pi.n, ..., P- y with degrees not depending on N and coefficients uniformly bounded
in N so that
sup [P(Sy < 1) — (1) — ZO’N/PJ N(t)qﬁ(t)‘ =o(oy") (1.3)
teR

Jj=1

I In the case the arithmeticity obstacle is present, that is, the distribution is lattice, one can consider
asymptotic expansions of P(Sy = k) see [18, 29, 33, 44] and references wherein.
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2 . . . .
where ¢ (f) = \/;2716_[ /2 is the standard normal density function. These expansions

provide a more accurate approximations of the distribution function of Sy in compar-
ison with the Berry—Esseen theorem.

For independent random variables it was proven by Esseen in [27], that the expan-
sion of order 1 holds iff the distribution of Sy is non-lattice. The conditions for
higher order expansions are not yet completely understood. Sufficient conditions for
the Edgeworth expansions of an arbitrary order were first obtained in [13] under the
assumption that the characteristic function of the sum E(e/"5V) decays exponentially
in N uniformly for large 7. Later the same expansions were obtained in [1, 6, 8, 27,
29] under weaker decay conditions,” where the second paper considered non iden-
tically distributed variables and the fourth and fifth considered random iid vectors.
Later Edgeworth expansions were proven for several classes of weakly dependent
random variables including stationary Markov chains [30, 53, 54], chaotic dynamical
systems [12, 30, 31] and certain classes of local statistics [4, 7, 10, 41]. In particular,
Hervé—Pene proved in [43] that for several classes of stationary processes the first
order Edgeworth expansion holds if the system is irreducible, in the sense that S can
not be represented as S;V + Hpy where S//v is lattice valued and Hy is bounded. We
would also like to mention a recent result [47], in which precise conditions are given
to pass from a Berry—Esseen theorem to first order Edgeworth expansions for certain
classes of stationary functionals of a Bernoulli shift. Finally, [2, 57] study so called
weak expansions, i.e. expansions of the form E (¢ (Sy/on)) where ¢ is a smooth test
function.

Both Berry—Esseen Theorem and Edgeworth expansions require a detailed control
of the characteristic function. For dependent variables, the most powerful method for
analyzing the characteristic function is the spectral approach developed by Nagaev
[53, 54] (see [36, 42] for the detailed exposition of the spectral method). Since the
spectral method relies on perturbation theory for the spectrum of linear operators,
extending it to a non stationary setting turned out to be a non trivial task. Recently a
significant progress on this problem was achieved by using a contraction properties
of the projective metric which allows to prove spectral gap type estimates for the non-
stationary compositions of linear operators [25, 26, 49, 60]. In particular, complex
sequential Perron—-Frobenius Theorem, proven in [40] provides a powerful tool for
proving the Central Limit Theorem and its extensions in the non stationary case. This
theorem replaces the spectral methods in the stationary case discussed above, and it
allows to obtain both Berry—Esseen theorem [39, 40] and Edgeworth expansions [24,
38] in the non stationary setting for both Markov chains and dynamical systems.

However, the results of [24, 38—40] are in a certain sense perturbative. Namely,
those papers study either a small perturbation of a fixed stationary system, or they deal
with random systems assuming that a system comes to a small neighborhood of a fixed
system with a positive frequency. One difficulty in studying the non-stationary case is
that there could be large cancellations of the consecutive terms, so that the variance of
the sum, can be much smaller then either the number of summands or the the sum of the
variances of the summands. This makes it difficult to control the rates of convergence

2 The decay conditions used in the above papers are optimal, since one can provide examples where the
decay is slightly weaker and there are oscillatory corrections to Edgeworth expansion, see [17, 18].
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in terms of powers of the variance, since there is no simple way of computing the
variance from the marginal distribution of the summands. Recently [20] developed a
structure theory for Markov chains which allows to find, for each additive functional,
a representative in the same homology class (the homologous functionals satisfy the
same limit theorems) with the smallest L? distance from either zero or from a given
lattice in R. This structure theory was used in [20] to prove the local limit theorem for
non-stationary Markov chains in both diffusive and large deviations regimes.

In the present paper we combine the methods of [40] and [20] to obtain several
optimal results concerning the convergence rate in the CLT for bounded additive
functionals of uniformly elliptic non-stationary Markov chains. Our results include

e Berry—Esseen bound, which holds without any additional assumptions;

o first order Edgeworth expansion in the irreducible case, extending theorems of
Esseen and of Hervé—Péne;

e higher order expansions for the chains with either decaying L° norm or with
bounded Holder norm.

We emphasize that our assumptions concern only regularity of the observables. No
additional assumptions dealing with either the growth of variance or with the decay
of characteristic function away from zero are made.

Our approach is the following. We will introduce a block decomposition of Sy,
so that the number of blocks is proportional to the variance of the underlying partial
sum. Then the results of [20] allow to control the moments of the sum in each block,
while the results of [40] make it possible to related those moments to the sequential
pressure® inside the block. The asymptotic expansion of the characteristic function
near zero then follows from the additivity of the sequential pressure. This is sufficient
for proving Berry Esseen bound. In order to obtain the Edgeworth expansions we
need to control characteirstic function far from the origin. To this end we combine the
structure theory of [20] with the ideas of [15].

Let us describe the structure of the paper. Section2 contains the precise statements
of our results. The necessary background from [20, 40] is given in Sect. 3. In Sect. 4
we discuss the Edgeworth expansions. In general, those expansions follow from the
asymptotics of the characteristic function around 0, together with decay of the char-
acteristic functions over appropriate domains. In Sect.4 we will show that the desired
expansions around the origin hold under certain logarithmic growth conditions. We
demonstrate that under the above growth conditions the asymptotics of the character-
istic function near zero always comes from the Edgeworth polynomials (regardless of
whether the Edgeworth expansions hold or not). Those polynomials are defined canon-
ically, and we show that under our logarithmic growth conditions the polynomials have
bounded coefficients. The main step in our proofs is a verification of the latter growth
conditions for the uniformly elliptic Markov chains considered in this paper. This is
accomplished in Sect.5. Using the sequential complex Perron—Frobenius Theorem
from [40], the required estimates are obtained by studying the behavior around the
origin of a resulting sequential complex pressure functions. For independent variables
the n-th pressure function coincides with the logarithm of the characteristic function

3 See Sect. 5.2 for the definition of the sequential pressure.

@ Springer



A Berry—Esseen theorem and Edgeworth expansions for... 443

of the n-th summand, and our arguments essentially reduce to the ones in [27, 29]. In
comparison with [40], where the Markov chains in random environment were stud-
ied, the main difficulty is that the variance does not grow linearly fast in the number
of summands N. The Berry—Essen theorem is a direct consequence of the detailed
asymptotics of the characteristic function near zero established in Sect.5. The first
order expansion also follows by combining the same estimates with the results of
[20].

In order to achieve the desired rate of decay away from 0, an additional structure is
needed. Thus we consider two special classes of additive functionals. The first is when
the essential supremum of the n-th summand converges to 0 as n — co. We show in
Sect. 6 that if || f;1]lco = O (n_‘g) for some B € (0, 1/2) then the partial sums admit
expansions of any order r < ﬁ, and that this condition is optimal. The second
type of additive functionals we consider are Holder continuous functions. If {X,,} is a
Markov chain evolving on a compact Riemannian Inanifold with uniformly bounded

and bounded away from 0 densities and Sy = Z Su (X, Xpq1), then we show
in Sect. 7 that when f;,’s are uniformly bounded LlpSChltZ functions then Sy admits
Edgeworth expansions of all orders, while when f,’s are uniformly bounded Holder
continuous functions with exponent @ € (0, 1), then Sy admits expansions of every

order r < ]# and that the latter condition is optimal. In fact, we will show that the

condition r > %""" is optimal even in the stationary case when {X,} is homogeneous

Markov chain and f,, = f does not depend on n.

2 Main results

2.1 A Berry-Esseen theorem and expansions of order 1

Let (&}, F;), i > 1beasequence of measurable spaces. Foreach i, let R; (x,dy), x €
X; be a measurable family of (transition) probability measures on X; 1. Let 11 be any

probability measure on A, and let X| be an Xj-valued random variable with distri-
bution 1. Let {X;} be the Markov started from X with the transition probabilities

P(Xj.H € A|Xj =x) = Rj(-x5 A),

where x € Xjand A C X1 is ameasurable set. Each R; also gives rise to a transition
operator given by

Rjg(x) =E[g(X+1)|X; =x]= /g(y)Rj(x,dy)

which maps an integrable function g on Xj1 to an integrable function on X; (the
integrability is with respect to the laws of X ;4| and X, respectively). We assume
here that there are probability measures m;, j > 1 on X; and families of transition
probabilities p;(x, y) so that
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Rjg(x) =/g(y)pj(x,y)dmj+1(y)~
Moreover, there exists &g > 0 so that for any j we have

sup pj(x, y) < 1/eo, 2.1
)C,y

and the transition probabilities of the second step transition operators R; o R of
X j42 given X ; are bounded from below by &g (this is the uniform ellipticity condition

inf inf [ (v 2)p 10 D11 0) = e 22)
j21 %2

Remark 1 The assumptions that we have uniform lower bound on the two step density
and that the summands f, introduced below depend only on two variables are taken
form [20]. In fact, the arguments of [20] also work in the case we have uniform
ellipticity after k steps where k is an arbitrary fixed number, and f;, depend on finitely
many variables (X, ..., X,4x—1). The main change in the argument is that when
we define the structure constants (see Sect.3.2) the hexagons need to be replaced by
(2k + 2)-gons describing two different ways of getting from X,, to X, (see §1.3.3
of [20] for additional discussion). On the other hand there are some new effects in the
case f depends on two variables which could not be seen in the case (considered in
[14]) where f;, depend on a single variable, cf. Remark 3 below. In this paper we keep
the convention from [20] and assume two step ellipticity and two step dependence for
additive functionals. Treating larger k£ would not require any new ideas but it would
significantly complicate the notation. We refer to the Appendix for an example of a
Markov chains satisfying (2.1) and (2.2), but with densities p, (x, y) which vanish on
a large set.

By [20, Proposition 1.22] Markov chains satisfying (2.2) are exponentially fast
Y¥-mixing. That is, if we denote by F the o-algebra generated by {X1, ..., X} and
Fm) the o-algebra generated by {X j © J = m} then there are constants C > 0 and
6 € (0, 1) which depend only on &g such that for every n € N,

P(A N B)

77 . k+n n
P(A)P(B) 1' :AeFy, Be F P(A)P(B) > 0} < Cé".

Y (n) := sup sup ”
k

Next, for auniformly bounded sequence of measurable functions f;, : X, x X,+1 —
RwesetY, = f,(X,, X,+1) and

N
Sy =) _(Yp — E(¥y). (23)
n=1

Set Vy = Var(Sy) and oy = /Vy.
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Remark 2 The above assumptions were considered recently in [20] in the context of
local limit theorems. The proofs in [20] involved certain type of decay rates of the
characteristic functions on compact sets. Two other related results are [51, 52], where
local limit theorems where obtained under conditions similar to (2.1) and (2.2), where
in [51] a condition g9 < pp(x,y) < g, U was assumed, while in [52] only the lower
bounds &g < p,(x,y) where assumed [we refer to the appendix for an example in
which p, (x, y) might vanish but (2.1) and (2.2) hold]. The proof of these results also
involved decay rates of the characteristic functions on appropriate compact sets.

The main difference in our setting is that our results also require certain expansions
of the characteristic functions around the origin (and not only bounds), as well as
precise estimates on the characteristic functions on intervals of length O (||Sy ||’Lz).

Remark 3 Note that when f;,(X,,, X,,+1) depends only on X, and (2.2) is replaced by
the stronger condition

infinf p; (x, y) > &g (2.4)
i X,y

then by [14] (see also [62]) we have

N N
Cy ZVar(Yn) <Vy<C ZVar(Y,,) (2.5)

n=1 n=1
for some constants C, C> which depend only on the first correlation coefficient of the
chain. However, even if (2.4) holds, the lower bound might fail when f;, truly depends

on two variables.* In our setup by [20, Theorem 2.2] we have limy_, o Vy = oo if
and only if one can not decompose Y,, as

Y, =E(,) + apt1(Xng1) — an(Xp) + g (X, Xng1)

where a,, are uniformly bounded functions and Z &n( Xy, Xp+1) converges almost
n
surely.

2.2 Optimal CLT rates and first order Edgeworth expansions

The CLT in the case Vy — oo is due to [14], see [62] for a modern proof. Our first
result is a version of the Berry—Esseen theorem. Denote

Sy = (Sy — E[Sy]) Jow. (2.6)

4 For instance, let (Xn) be a sequence of independent uniformly random variable so that E[X;] = 0,
N
E[X?] = 1. Let Y, = &4 Xn + (Xp — X,41). Then Var(Sy) = anl &2 4+ 0(1) can grow arbitrarily

N N
slow (or be bounded) but )7 Var(Y,) =Y (2+2e, +23) = 2N.
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Theorem 4 Suppose that limy_, ~ Vy = oo. Then there is a constant C > O which
depends only on sup,, | Yy, ||~ and &g so that for any N > 1,

sup [P(Sy < 1) — ®(1)| < Coy’ 2.7)
teR

where ® is the standard normal distribution function.

Next we introduce some terminology from [20]. We say that a sequence Zy of
random variables is center tight if there are constants ¢y such that {Zy — cy} is

~ N
tight. Two additive functionals f,, and £, are homologous if anl Xy Xng1) —

fn (Xn, Xyn41)) is center tight. We say that { f;,} is reducible if it is homologous to an
additive functional taking values in hZ for some h > 0. If { f,,} is not reducible, it is
called irreducible.

Theorem 5 If Vi diverges and {f,} is irreducible then Sy satisfies the Edgeworth
expansion of order 1, where

E[(Sy — E[Sn]?]

3
7 —31).
A ( )

P n(@) =

Remark6 When Sy = & + - - - + &y is a sum of iid non-constant random variable &
then Vy = NE[£?] and E[(Sy — E[Sy])?] = E[S3] = NE[£]] and thus

E[£7]

3 =3¢
6E[$12]( )

Py n(t) =

which is the classical first order correction term (see [29]). To see why in the setup of
this paper the coefficients of P; x are bounded, note that by [20, Lemma 2.6] we have
E[(Sy — E[Sn])*] = O(Vy).

Next, we say that f,, stably’ obeys Edgeworth expansion of order r if any additive
functional homologous to f;, satisfies Edgeworth expansions of order r.

Corollary 7 f,, stably obeys Edgeworth expansion of order 1 iff it is irreducible.

Proof If f, is irreducible then any homologous additive functional f, is also irre-
ducible, so by Theorem 5, ﬁ, obeys Edgeworth expansion of order 1.

If f, is reducible then its homology class contains an 4Z valued functional fn, for
some & > 0. By the LLT of [20, Section 5], Sy has jumps of order 1/5/Vy, so Sy
does not obey expansion of order 1. O

5 The notion of stable Edgeworth expansion is motivated by the notion of stable local limit theorem
studied in [55, 59]. We note that [18] obtains conditions for the stability of Edgeworth expansions for the
sums of independent integer valued random variables (in the integer case one studies the expansions for
P(Sy = kp)), see also an extension to Markov chains [19].
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2.3 Higher order expansions
2.3.1 Summands with small essential supremum

We obtain the following extension of the Edgeworth expansions for function f,, which

converge to 0 as n — 00.

Theorem 8 Suppose that limy_.o, Vy = o0, and that there are C > 0 and B €
C

(0, 1/2) so that for all n € N we have | fulloo < —. Let r > 1 be an integer

nb
satisfying
1

1-28"
Then Sy admits an Edgeworth expansion of order r. In particular, if || fullco =
O(n='?) then Sy admits Edgeworth expansions of all orders.

2.8)

r <

The following result shows that the conditions of Theorem 8 are optimal.
Theorem 9 For every B € (0, %) there exists a sequence of centered independent®
random variables X, so that Cin™P < || X, |1 < Can=P for some Ci, C» > 0 and

N
all n large enough, V (Sy) is of order N'=2F but Sy = Z : X, fails to satisfy
n=

Edgeworth expansions of any order s such that s > ﬁ

Taking 8 € (0, 1/4) we have ﬁ < 2, and we get from Theorem 9 that Sy might

not admit Edgeworth expansions of order larger than 1 if || f;,||oo < n 7.

Remark 10 The main purpose of Theorem 9 is to consider the case when || f;, || L~ — 0,
but it is also true when 8 = 0. In this case we arrive to the conclusion that the first
order expansions fails, which is consistent with Corollary 7 since our examples for
X, will have a certain lattice structure (in fact, for 8 = 0 we can just take X,, = Y;,).

2.3.2 Markov chains on compact Riemannian manifolds

Let us assume that {X,,} is a Markov chain on a compact Riemannian manifold M
with transition densities p,(x, y) bounded and bounded away from 0, uniformly in
n.Leta € (0,1] and let f;, : M x M — R be observables satisfying || f;|lo =
max(sup | ful, va (fn)) < 1, where vy (fy,) is the Holder constant of f; corresponding
to the exponent . Consider the sum

N
SN =) fuXn, Xns1)

n=1

Theorem 11 Suppose that Vy = V(Sy) — oo.

6 Note that the proof of Theorem 9 proceeds similarly when X, is has the form X, = f,,(Z,) for a one
step elliptic Markov chains Z; (s.t. P(Z,, = £1) = %). The present formulation of Theorem 9 shows that
the condition (2.8) is already optimal for independent random variables.
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448 D. Dolgopyat, Y. Hafouta

(1) Ifa = 1 then Sy satisfies the Edgeworth expansion of all orders.
I+

(i) If a < 1then Sy satisfies the Edgeworth expansion of any order r < 1=,

For smooth functions, expansions of all orders were obtained in [30] for stationary
Markov chains and functions f, = f which do not depend on n. Here we have to
overcome the difficulty that the variance of f, (X, X,+1) might be small, and hence
the proof differs from the one in [30] even for smooth functions. Note that it was
assumed in [30] that the transition densities p(x, y) of the chain are smooth, while our
results only involves additional assumptions on the functions, and hence Theorem 11
(i) is also new in the stationary case (even for smooth functions). In addition, we are not
aware of any kind of results for @ < 1 in the stationary case (even for smooth functions
p(x,y)), and so Theorem 11 (ii) seems to be a new result also in the stationary case.

The proof of Theorem 11 follows the approach of [15]. We note that similar esti-
mates are used in [15, 16] to prove polynomial bounds for the decay of correlations for
hyperbolic suspension flows with Holder roof functions. However, the bound of [15,
16] are not explicit whereas here we get an explicit (and optimal, see below) control
on the possible location of resonances.

We see thatas o — 1, the largest order of the expansions ensured by Theorem 11(ii)
diverges to oo. The following theorem shows that the conditions of Theorem 11(ii)
are optimal.

Theorem 12 Let {x,} be iid random variables uniformly distributed on [—1, 1]. For
every 0 < o < 1 there exists an increasing odd function f : [—1, 1] — [—1, 1] which

is Holder continuous with exponent o and is onto [—1, 1], so that S, = Zn : fxp)
]:

does not admit Edgeworth expansion of any order r > }“_L—g

Theorem 12 show that the conditions of Theorem 11(ii) are optimal even in the
stationary case. The idea in the proof of Theorem 12 is to first approximate o by
numbers of the form g, = In(p)/In(p + q), for some p, g > 2 so that g|(p — 1).
Then, the restriction of the function f to [0, 1] will be the, so called, Cantor function
(see [32]) corresponding to a certain Cantor set with Hausdorff dimension g p.

2.4 The canonical form of the Edgeworth polynomials

We note that in the non-stationary setting, (1.3) does not define the Edgeworth poly-
nomials uniquely since we could always modify the coefficients by terms of order
o(oy "). However, it turns out that one could make a canonical choice which a simple
computation of its coefficient in a quite general setting including additive functionals
of uniformly elliptic Markov chains considered here.

Given a nonconstant random variable S with finite moments of all orders, let a; (S)
denote the normalized cumulant

1 4/

4 ) = Gors)i7 dis

in[E (e5-50Y].
t=0
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Theorem 13 There exist polynomials ‘Y3 ;(z; a3, aa, . . ., aj12) such that for each inte-
gerr > 1 there is a positive constant 8, = 8, (g0, K), K = sup,, || fn(Xn, Xn+1) Lo,
such that if Sy and Sy are given by (2.3) and (2.6), respectively, then denoting

Pj n(z) = Bj(z,a3(SN), ..., aj+2(SN)), (2.9)

ENG@) =D@)+d(2) Zr . o];j P; n(z) and letting é'\,,N denote the Fourier trans-
]:
Sform of & n(2) we have

/a,gN E (ei’§N> &N

— —(1+7)
s t dt = 0 (aN ) . (2.10)

We note that our proofs of Theorems 5, 8 and 11 provide the Edgeworth expansions
with the above polynomials P; .

The polynomials 3 ; are given in Definition 21. In Sect. 5.4 we show that for additive
functionals of the Markov chains considered in this paper the Edgeworth polynomials
have bounded coefficients. This is done by verifying Assumption 23 which ensures
the boundness for an abstract sequence of random variables.

We note that (2.10) holds without any additional assumptions. However, to ensure
that the term &,y (z) provides a good approximation to P(Sy < z) we need to control
the LHS of (2.10) on longer intervals of size BO’X, for an arbitrary B. Inthe caser = 1
the contribution of [-Boy, Boy]\[—§10n, 810n]1s analyzed in [20]. The caser > 1
is addressed in Sects. 6 and 7 where we control the characteristic function of $ v under
the assumptions of Theorems 8§ and 11, respectively.

3 Background

3.1 A sequential Perron-Frobenius theorem
Forall j e Nand z € C, let R;j ) the operator given by
RY g(x) = Elg(Xj11)e1 XX X = x] = R; (/4 g) (x)

where g : Xj11 — R is a bounded function. Denote by B; the space of bounded
functions on X;, equipped with the supremum norm || - || «. For every integer j > 1,

n € Nand z € C consider the n-th order iterates Rg "B i+n — Bj given by
R =RV o RV oo RUF"Y, 3.1

Let B;‘ be the dual space to the Banach space B; and (jo))* : B;’.‘ — B¥

T be the

dual operator of R;.Z).
We have the following.
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450 D. Dolgopyat, Y. Hafouta

Theorem 14 There exists a complex neighborhood U of 0 which depends only on
Il flloo := sup; sup | f;| and &y (from the definition of the uniform ellipticity) so that

forany z € U and an integer j > 1 there exists a triplet A j(2), h(Z) and UEZ)

consisting
of a nonzero complex number X j(z), a complex function hﬁ-Z) € B and a continuous
linear functional v](.Z) € B satisfying that UE-Z)(I) =1, v](.Z)(h;Z)) =1and

R(j)h@1 =A; (z)h(Z), and (R;j))*v;m A (Z)vﬁzll

Whenz =t € Rthen b is strictly positive, v](.t) is a probability measure and there
exist constants a, b > 0, which depend only on || f ||cc and &g so that 1;(t) € [a, b]
and hy) > a. Whent = 0 we have A;(0) = 1 and h;o) =1

Moreover, this triplet is analytic and uniformly bounded. Namely, the maps

Aj():U—C, hi-'):U—>Bj and v](f):U—>B;‘

are analytic, and there exists a constant C > 0 so that

max (sup A1, sup 175 1o, sup ||v(“||oo> <C (3.2)
zeU

where ||| oo is the operator norm of a linear functional v : B; — C.
Furthermore, there exist constants C > 0 and § € (0, 1) such that for alln > 1,
JeEN zeUandqg € Bjy,

jn

R:"q (@) L@ n
(@) <Cliglloo -8 (3.3)
Ajn(2) (]+n ) . qllco
and '
(RI™)*
= (W < Clllee -8 (3.4)
)‘j,n(Z) 00

where X ,(z2) = l_[ Ajrk(2).

Remark 15 In the homogeneous case (i.e. when R; = R and f; = f do not depend
on j), Theorem 14 follows from the spectral gap of R, together with an appropriate
analytic perturbation theorem. This approach to proving limit theorems based on the
spectral theory of twisted Markov operators is called the Nagaev-Guivarch method,
and it dates back to [54].

The proof of Theorem 14 was given in [40, Ch.4&6] by a successive application

of the complex projective contraction. We remark that the arguments in [40, Ch.4&6]
formally require us to have a two sided sequence of operators, which can be achieved
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by setting X; = X7 and jo)g(x) = E[g(X1)] for j < 0. This amounts to taking
independent copies {Z; : j < 0} of Xy, setting X; = Z; and f; = 0for j < 0.

In fact, in [40, Ch.4&6] the setup included random operators RZ(] ) = Rfj‘”, when
w € Q and (2, F, P, 0) is some invertible measure preserving system, which is
not necessarily ergodic. The main reason for considering random operators in [40],
and not just a sequence of operators, is that the random Perron—Frobenius theorem
was needed in the proof of the local CLT from [40, Ch. 2], where random operators
arise after a certain conditioning argument. The measurability of the resulting Perron—
Frobenius triplets A,(z), h((,f), vif) as functions of @ played an important rule in that
proof, which lead to a more general setup of random operators in [40, Ch. 4], for which
there is meaning to such measurability. However, in our purely sequential setup such
measurability issues do not arises, and thus we can just repeat the arguments from [40,
Ch. 4] pertaining to a fixed w and ignore the ones addressing measurability. Finally, let
us note that Theorem 14 is also true when f,(x, y) = f,(x) depends only on the first
variable x and sup,, || f,(X,)|l;2 < oo (see, for instance, the proof of [19, Theorem
10]).

Remark 16 In the proof of the Berry—Esseen theorem and the Edgeworth expansions
it will be convenient to assume that a, = E[ f,(X,, _Xn+1)] = 0. "_Fhis amount to

replacing f, with f, — a,, and hence to replacing R! with e=%/*R/ and replacing
Aj(z) with e™*4 1 (2).

3.2 The structure constants

As it was mentioned in the introduction a new feature of our work is that we do not
make any assumptions on how slow variance of Sy grows. In this section we recall a
few results from [20] which provide some geometric control on the variance.

By a random hexagon based at n we mean a tuple

P}’l = (%727 %715 %la %715 %7 %44)

where (2,2, Zn—1) and (%, %, +1) are independent, (£, 2, Z,—1) and (X, 2,
X,—1) are equality distributed, (%}, %;,+1) and (X,,, X,+1) are equality distributed
and 2, and %},_ are conditionally independent given the previous choices and are
sampled according to the bridge distributions

P(Zn € E|Zn—1 = Xn—1, Znt1 = Yut1) = P(X;y € E[Xy—1 = Xn—1, Xnt+1 = Ynt1)
and

P& € E|Zn2=%X—2,% =yu) =P(Xy_1 € E|Xp2 = X2, Xy = yn).
The balance I'(P,) of the hexagon is given by

C(Py) = fu—2(Zn—2, Zn-1) + fum1(Zn-1, Zn) + [u(Zn, Dhs1)
—fa2(Zn—2, %h-1) — a1 (&1, %) — [u( & Zhg).
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Next, let
uy = E[T(P)?]. (3.5)

Theorem 17 ([20], Theorem 2.1) There exist positive constants C1, C, C3, C4 so that
foranym > 0 and N > 3,

m+N m+N
Ci Y ui—Cr<Vy=Var(Sy —Sw) <C3 > up+Cs  (3.6)
n=m+3 n=m+3

It turns out that the hexagon process also allows to control the characteristic function
of Sy . Denote

N
d,(§)" = E[e*T — 1] = 4E[sin® T (P,)/2)], D) = ) _dy(€). (3.7)

n=1

Lemma 18 ([20], eq. (4.2.6)) There are constants C, ¢ > 0 so that for each N and
& € R, the characteristic function (&) = E (e’gSN ) satisfies

|DN ()] < Ce™ePNE), (3.8)

3.3 Mixing and moment estimates

Next we discuss the mixing properties of {X,}.

Lemma 19 (Proposition 1.11 (2), [20]) There exist 5 € (0,1) and C > 0 which
depends only on &g [from (2.1) and (2.2)] such that for all n, k € N we have

|CoV( fu (X Xnt1)s Faik Xnskr Xnsar))| < AS*.

where A = Csup,, || fu(Xn, Xns D)7,

Next, for each j and n consider the random variable S; ,, given by

j+n—1

Sin=Y_ flXe. Xi1). (3.9)

k=j
Then S1, = Sy.

Lemma 20 (Lemma 2.16, [20]) For every integer p > 1 there are constants Cp, R, >
0 which depend only on p, gy and sup,, || Y| Lo so that for all j and n,

(p/2]
[E[(Sjn —ES;))"]| < Ry + Cp("af(sj,n)) !

We note that Lemma 20 is also a consequence of [50, Theorem 6.17] together with
[20, Proposition 1.22].
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4 Edgewoth expansions under logarithmic growth assumptions
4.1 The Edgewoth polynomials

Let S be a random variable with finite moments of all orders. We recall that the k-th
cumulant of § is given by

1 d* itS
Te($) = 7~z (InEfe Dl —o

Note that Ty (aS) = a*¥T4(S) for every a € R. Moreover, ['1(S) = E[S], ['2(S) =
Var(S) and for k£ > 3 by (1.34) in [61], we have

T (S) = - (D! i 4.1
k( )—ZT Z maklakz...akv ( . )

v=1 i+, =k

where «,;, = o, (S) = E[S™] (this formula is a consequence of the Taylor expansion
of the function In(1 + z)).

The cumulants of order k& > 3 measure the distance of the distribution of S =
(S - ]E[S]) /o, from the standard normal distribution, where o = /Var(S), assuming
of course that ¢ > 0. We have I'x(S) = 0 for all k¥ > 3 if and only if § is standard
normal, and we refer to [61] for conditions on I'y (3' ) which insure that the distribution
function of § is close to the standard normal distribution function in the uniform
metric. We also refer to [2, 57] for expansions of expectations of smooth functions of
S which involve growth properties of cumulants.

Next, let us assume that E[S] = 0 and 0% = E[S?] > 0. Consider the function

A(t; S) = InE[e'5/7] + 122,

Then A(0; ) =0, A, (0; S) = E[S] =0, A”(0; S) = E[S?]/0? — 1 = 0, and for
k > 3 we have

A®0) := dA(t $)|,_o = i*Te(S)o ™"

Thus, the k-th Taylor polynomial of A(¢; S) is given by

G S)=Zl VION —Zz aj(S)o V=Pt

ilod
/3J Jj=3
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T;(S . .
¢ 2) . Consider the formal power series

7
where’ a;(S) = i

iIT(S) . : o
;S = E %ﬂ — E l'jaj(S)U—(j—Z)t]7
= I i=3

where a;(S) is viewed as a variable independent of o. This leads to the following
formal series

i'T(t; S)/ ;
Xp(T (1 5) = 14+ 30 2 = 14+ YT A3 )
izl ' izl

where A (t; §) is the polynomial given by

j m
Ajt: )=y % o [Tkt
m=1

Tkienkm€A y u=1

and A; ,, is the set of all m-tuples (kq, ..., k) of integers such that

ki >3 and Y ki =2m+ .
i
Definition 21 The j-th Edgewoth polynomial S is the unique polynomial P;(¢; S) so
that the Fourier transform of ¢ (¢) P; (¢; ) is e! 124 j(t; §), where ¢ (¢) is the standard

normal density.

Notice that the polynomials A ;(¢; S) and P;(¢; S) depend on S only through the
first 3 j moments. Note also that A;(0; §) = 0 for all j.

Remark 22 In order to compute A (¢; S) for j < k itis enough to expand ePr2:9) o
a power series and represent it in the form 1+ Z - o, A j(t; S). Indeed, it follows
iz

that fij(t; §)=A;(t;S) forall j < k since

oo
L(t,8) = Piega(t: §) =0~ *HD 3" ida;($)o~ U+,
j=k+3

Thus, to compute A;(¢; S), j < k we first write

o .
P9 = 4 30 Pisa(t: )

j=1 J!

7 The reason we divide I';(S) by o2 is that under suitable restrictions on S, the quantities |I"; (S)a_zl
will be bounded by a constant independent of S (see next section). This will be the case when S = S, for

which the latter quantities will be bounded in n. Here S, are the sums considered in Sect. 2.

@ Springer



A Berry—Esseen theorem and Edgeworth expansions for... 455

Now, since P (t; S) has a factor® o1

sidering only the first k summands

, we can compute A;(t; ), j < k by con-

1+Zpk+2(t S)/ .

After writing the above expression in the form 1 + ZOO ) c/A jk(t;S) (thisis a
]:

finite sum) we have A;(t; §) = Aj,k(t; S) for all j < k.
Baz($)r A1t S)

In particular P3(¢; S) = o = e whence
S E[(S — E[S
Pt 8) = 03()( —3)—w( — 30

1
where we have used that the transform Fourier of (13 — 31)¢ (¢) is i3e_752§‘3.

4.2 A Berry-Esseen theorem and Edgeworth expansions via decay of
characteristic functions

Let W, be a sequence of centered random variables so that lim,,_, o, Var(W,)) = oo.
Let us set

Ca@) =T Wn), An(t) = A@t; Wy/on), Aj,n(t) = Aj(t; W), Pj,n(t) = Pj(t§ Whn),

where o, = 4/ Var(W,,). We will prove here Edgeworth expansions under the following
logarithmic growth assumptions.

Assumption 23 For some k > 3, for all j < k there exist constants C;, ¢; > 0 so that

‘ s
sup AL @) < Cjoy VTP, 4.2)

lE[*&j(fn,EjUn]

Note that under Assumption 23 the polynomials A , and P; ;,, j < k have bounded
coefficients (for that it is enough to only consider t = 0). For t = 0 conditions of the
form |A,(/)(O)| = Tj(W,/o)| < (j!)””crn_(j_z), y > 0 appear in literature [21,
23, 61] in the context of moderate deviations and related results (see also references
therein).

The relevance of Assumption 23 stems from the following facts proven in Sect. 4.4.

Proposition 24 Let Assumption 23 hold with k = 3. Then there exists a constant C > 0

so that for every n > 1 we have

sup |P(W, /o, < 1) — ®(1)| < Co, !
teR

8 Recall thata j(S) are viewed as constants.
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where ® is the standard normal distribution and density function.

Proposition 25 Let r > 1 be an integer. Let Assumption 23 hold with k = r + 3.
Suppose also that for every B > 0 and all § > 0

/5 o IE(e™*"")/x|dx = o(0,"). (4.3)

Then
Sup P(W,/on < 1) — @(1) — Zan /P; WP (1) = 0(0,7) 4.4
j=1

where © and ¢ are the standard normal distribution and density function, respectively.

4.3 Auxillary estimates
Here we present several technical estimates needed in the proofs of Propositions 24
and 25.

We need two lemmata.

Lemma26 Let k > 3 be an integer and let Assumption 23 hold with this k. Set
Ap = max3<j<x C;j and By = kAy. Then for every t € [—0y, 0y],

-1 2
|Pen(®)| < Beoy [t = Bt |t /oy.
Therefore, for every t € [—8r0y, 8r0,], Sk = ﬁ, we have
|e/Pk,n(t)| S €t2/4.

Lemma 27 Let Assumption 23 hold with k = 3 and set §y = min(%, &3). Then for

2
every real t such that |t /o,| < 8y we have || < !°/3,

Proof of Lemmas 26 and 27 Let us first prove Lemma 26. By taking 7 = 0 in (4.2) and
using that I'j (aW) = a/ W we have |I";(W,)| < Cjonz. Thus, if | /0, < 1 then

T (W)
|7>k,n(z>|<Z L |z|f<AerZ|r/o - 2/1'<Akt22|r/an|<8k|t|o

j=3 ]'Gn j=3 j=3

Hence, if |t /0, | < ﬁ = & then [Py, (t)| < t?/4 and so

2
Et /4.
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Next, since the second Taylor polynomial P, ,, () of A, around the origin vanishes,
we can write write A, (1) = P2 (1) +R2,,(t) = Ra.n(t), where R, (¢) is the Taylor
remainder of order 2 around the origin. Then by the Lagrange form of the Taylor

. . 3A///
remainder we can write R ,(f) = % for some #; such that |¢{| < |¢|. Therefore,
by Assumption 23 we have

3 _—1 2 .
Ron ()] < Ciltl°0, " = C3t” - [t/ou], if 7] < e3.

Thus when also |t/0,| < 3% we have |A,(?)] = |Ran(®)] < t2/3, and Lemma
27 follows. ) O

Corollary 28 Under assumption 23 with k = 3 there exist constants ¢ > 0 and § > 0
so that for every natural n and t € [—38, §] we have

|E[eiIW,1]| S e—CtzUnz .

In fact, we can take ¢ = % and § = &g, but we will not be using the specific form of
¢ and § in this paper.

The key step in estimating the rate of convergence for the CLT is the following.

Proposition 29 Let r > 0 be an integer and let Assumption 23 hold with k = r + 3.
Then there is a constant §, > 0 such that

Sron | [ it Wnlon] _ —12)2 1 P
/ [e ]—e I+ Qrn(®) dt = 0"
—8y0p |t|
where forr = 0 we set Qo.,(t) = 0 and forr > 1
r .
Qrn(®) = "0, Ajult).
j=1

Proof Write

B[/ Wi/on] = ¢~ /280 = (=17/2Pro2n+Ry2,0 (1) (4.5)

where R, 42 , () is the Taylor remainder of order r 4- 2 around 0. Using the Lagrange
form of Taylor remainders together with Assumption 23 we get that

Rrson(t) = O (t’+3an_(’+l)) . (4.6)

Next, by the mean value theorem and Lemmas 26 and 27 there are constants §, > 0,
Co > 0and by € (0, 1/2) so thatif |t/0,| < §, then

2
et — Prizn®| < Coeh 1R, 10 (1)) (4.7)
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Moreover, by Lemma 26 and the Lagrange form of Taylor remainders,

P _ [ n Z Pj+2 n(f)/ < DrebOIZO,l_(r+l)|t|3(r+2) (4.8)

where D, > 0 is some constant (when » = 0 then the left hand side vanishes since
P2.,(t) = 0). Combining (4.5), (4.6), (4.7) and (4.8), forevery real t so that |t /o, | < &,
we have

; " P; 1)/
E[itWa/on] _ o—1*/2 (1 =S J+21:'ﬂ( ) < Ce= 5D oy <|t|’ |t|(r+3)(r+2))
=

where ¢ = 1/2 — by > 0. Next, by Remark 22, we have

S P2 ® oy e, 1720 (o71)

j=1 J!

where the term max(|¢], |t|’<’+2))0(an’ =1y comes from the terms which include
powers of o, 1 larger than r (when » = 0 both the left hand side and Q. , (¢) equal 0).
We conclude that

E[¢itWn/on] — 6_12/2(] n Qr,n([))‘ < Ce—czzan—(r+l) max (Ifl, |t|(r+3)(r+2)> .
Therefore,

E[eith/Un] — e7t2/2(1 + Qr,n(t)) d
1]

/3,(7,,
—8,0p

o0
SCG,;(’“)/ et (1+|t|(’+3)"+2> 1)dt<C/ —(r+D)
—00

completing the proof of the proposition. O

4.4 Proofs of Propositions 24 and 25

Proof of Proposition 24 The first step in the proof is quite standard. We use generalized
Esseen inequality [29, §XVI.3]. Let F : R — R be a probability distribution function
and G : R — R be a differential function with bounded derivative so that G(—o0) =
0. Let f(t) = [e™dF(x) and g(t) = [¢"*dG(x) be the corresponding Fourier
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transforms. Then for every 7 > 0 we have

241G oo
+ QT

dt

f(l)t—g(t) 4.9)

T
sup |F(x) — G(x)] < 2/
-7

xeR

Taking F' to be the distribution of W,,/oy,, G to be the standard normal distribution
and 7,, = §10, where §; comes from Lemma 26 we conclude that Proposition 24 will
follow if we prove that

/Slgn
—810,

for some constant C. Finally, (4.10) follows from Proposition 29 with r = 0. O

E[eitWn/on] — 6712/2

. dt < Co;! (4.10)

Proof of Proposition 25 Relying on Proposition 29, the proof proceeds essentially in
the same way as [27, 29]. We provide the details for readers’ convenience.
Let F = F), be the distribution function of W, /o,,, and G = G, , be the function

whose Fourier transform is e~/ 214 QOn.r(t)), where Q, , comes from Proposition
29. Then G, has the form

Gur (1) = @) + Y 04/ P a0 (1)
j=1
where P; ,,’s are the Edgeworth polynomials of W,,.

Lete > 0and B = 1/¢. Applying (4.9) with F = F,, G = G, and T = Bo, we
obtain

,
sup |P(Wy /oy <1) = @(t) = Y 0y Pja(p(t)| < 11 + b+ I3+ O()o, "
t .
j=1

where for § small enough
doy
I :f
—don

E[eith/Un] )
12:/ Ble ™, 13=/ P
don <|t|<Bo, [t|>0n8

t
By Proposition 29 we have I} = o(o, "), (4.3) gives that I, = o(o, "), while

E[eith/Un] — e—[2/2(1 + Qr,n(t))
t

dt

1 rn(t
—i—Qt,n() .

I; = O(e’c"n2 ) for some ¢ > 0 since Q, , is a polynomial with bounded coefficients
and degree depending only on r. O
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5 Application to uniformly ellipticinhomogeneous Markov chains
5.1 Verification of Assumption 23

In this section we consider uniformly bounded additive functional Sy of a Markov
chain X, which satisfies (2.1) and (2.2). We prove the following.

Proposition 30 The sequence of random variables S, verifies Assumption 23 for every
k, namely, if A, (t) = InE[e!'S2/on] 4 2 /2 then for every k > 3 there exist constants
Ok, Cr > 0 so that for all n,

sup IAD 1) < Cro*2),

t€[—0, 8k, 0n k]

The proof of Proposition 30 is based on the construction of sequential pressure
functions described in Sect.5.2.

Remark 31 In [61, Theorem 4.26] the authors show that if S, = Z"_ Y;/on, and

{Y;} is an exponentially fast ¢-mixing uniformly bounded centered Markov chain,
such that Var(Y ;) is bounded away from O then there is a constant C such that for all
m € N |[';(S,/0on)| < C'"m!o'n_(m_z). It follows that the function A, is real analytic
and, hence, Assumption 23 holds for every k. By [20, Proposition 1.22], the Markov
chains {X,} considered in this paper are also exponentially fast ¢-mixing, however,
we consider functionals Y, = f,(X,, X,+1) whose variance can be small, and so
Proposition 30 cannot be derived from [61, Theorem 4.26] despite the related setup.

5.2 The sequential pressure function. Definition and basic properties

Recall Theorem 14. For every j > 1, denote by wu; the distribution of X ; (which
is a probability measure on &;). Recall that A;(z) is uniformly bounded in j and
A;j(0) = 1. Let IT; (z) denote the analytic branch of the logarithms of A ;(z), such that
IT;(0) = 0. We call I (z) the sequential pressure functions. Then

sup sup |T1(z)| < co (5.1)

J lzl=so

where 5o and cq are some positive constants. We note that all the derivatives of IT; at
z = 0 are real numbers, since the function A (z) is positive for real z’s.

Remark 32 By Remark 16, uponreplacing f, with f,, —E[ f,, (X, X;,+1)], the resulting
pressure function becomes I (z) — E[ f, (X, X;,+1)]z. This has no affect on the value
of the pressure function at z = 0 and on the derivatives of it of any order larger than
1. Thus, it will essentially make no difference in the following arguments if we have
already centralized f;, or not.
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Let j, n be positive integers. Set

j+n—1
Fjn(2) =E[S], T, = Y M)
s=j

where S , is defined in (3.9).

Lemma 33 There is a constant a > 0 with the following property: for every integer
k > 0 there exists cy > 0 such that for each j, n for all complex z so that |z| < a we
have . .

N @ -00@| <« (5.2)

where g(k) (z) denotes the k-th derivative of a function g(z).

Note that for k = 0,1,2 and z = 0 we have F/j,n(O) = E[S; ], F;’n(O) =

Var(S; ,) while for larger k’s ijr)z (0) is just the k-th cumulant of S; ,,. In particular,

I ,0) = E(S,) + 0(1) and T} ,(0) = 02 + O(1).

Proof Since h;(0) = 1 and the norms ||h§.z’) lloo are uniformly bounded in j around 0,

it follows from the Cauchy integral formula that %j is uniformly bounded around the
origin. Hence, if §¢ is small enough then for any complex z with |z| < §o we have

|
5 <inf | ()] (5.3)

Recall that E[ezsf"”] = Wj (Rg’n 1). By (3.3), if |z] is sufficiently small then for all
j and n we have

j+n—1
E[e?Sin] = ngI, M; @) (Mj (hg-Z)) +3djn (Z)) (5.4)

where §; , is an analytic functionso that|§; ,(z)| < Cé§" forsome C > Oands € (0, 1)

which do not depend on j and n. In fact, since 7Y = 1 we have § j.n(0) = 0and so
Cauchy integral formula also implies |§; ,(z)| < C|z|8". Using (5.3), we can take the
logarithms of both sides of (5.4) and derive that when |z]| is sufficiently small, there is
a constant cg so that

ITjn(@ = ()| < co (5.5)

Applying the Cauchy integral formula once more we conclude that for each & there
exists a constant ¢ > 0 so that for every j and n we have

r@-n® | <a (5.6)

and the lemma follows. O
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5.3 The derivatives of the pressure function around the origin

Here we prove several useful auxiliary estimates.

Lemma 34 Let k > 2 be an integer, and let S be a real-valued random variable with
finite first k moments. Let us define ¢(t) = E (e”s) and A(t) = In(t). Then there

exists a constant Dy which depends only on k so that with ro = ——— we have

2/E(S?)

sup  |A® (1) < DEE[ISIF.

te[—ro,rol

Proof We first recall that for the characteristic function ¢ () = E (e” S ) of a random
variable S with finite first K moments and any real  we have

lp@) — 1] < [t|E[|S]] < [£]1IS]l .2
and that for j =0, 1,2, ..., k we have

I (1) < E[IS)V]. (5.7)

1
Next, let A(t) = In¢@(t) and ro = ———. Then |p(?)| > %for allt € [—ro, ro].
2/ E(S?)

By Fai di Bruno’s formula (see [48, Section 1.3]), for every ¢ € [—rg, ro] we have

k
k! o\
A® @) = — (@) /ELsTe51)
ml,-Z;Mk Hl;=1(mj!(ﬂ)m]) (t)z’ 17 JI:[1
where (my, ..., my) range over all the k-tuples of nonnegative integers such that

Z _jmj = k. Now the lemma follows from (5.7) and the Holder inequality. O
J

Lemma 35 Fix some integer k > 2 and let By < By be constants. Then if B is
sufficiently large there are constants D and ro depending only on By, B> and k so that
foreveryt € [—ry, rol and each j,n € N such that By < Var(S; ) < Ba, we have

' an| < b.
Proof Let A (1) = In E[e/*Sin]. Then, in the notation of Lemma 33, Aja(t) =

I'j »(@it). Applying Lemma 34 with § = §; , and using (5.6) and Lemma 20 we
obtain that for every ¢ € [—rg, rg] we have

k k k/2
Inan| < e+ A 0] < e+ DAE[1Sj.0l] < e + C(Var(S;.0))"
<cr+ C'Bk/2
competing the proof of the lemma. O
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Corollary 36 For every k > 2 there exist constants e > 0 and Cy > 0 so that for
eachn € Nandt € [—eg, €],

n{) (0| < Cro.
Hence, with 1:[,1(t) = Iy ,(it/on) we have

sup |l:I£lk) (t)| < Ckan_(k_z).

te[—exon,ex0n]

Proof Fix some k > 2. Let By and B; be large constants so that Lemma 35 holds.
Let ro be the constant specified in Lemma 35. Let Iy, I2, ..., I, be disjoint intervals
whose union cover {1, ..., n} so that

By < Var(S;) < B

where for each [ we set S;, = Z - fi(Xj, Xj11). Note that it is indeed possible
j€h

to find such intervals if By and 32/31 are sufficiently large because of Theorem 17.
Indeed, with u% denoting the structural constants appearing there, there are constants
C1, C > 0 so that for any n > 3 and j,

jt+n—1 jt+n—1
Ci' Y up —Ca=Var(S;) <C1 Y up +Co (5.8)
m=j m=j

It is also clear that m,, /Gn2 is uniformly bounded away from 0O and oo (if 7 is large
enough). Now, by Lemma 35 there are ey > 0 and Ay > Osothatforeach 1 <[ < m,
and t € [—&g, &k,

> Hi.k)(iz) < Ag.

JEL
. k).
Hence, [T}, (i1)] < Zl > nj. (in| < Agmy, < Cro. O
JEL
5.4 Verification of Assumption 23
Proof of Proposition 30 Since both sides of (5.4) with j = 1 are analytic, |81 ,(z)| <
C|z|6" for some § € (0, 1) and C > 0. Moreover (1 (hgo)) = 1. Hence, if |z| is small
enough then

InE[e*"] = Ty, (2) + Gu(2)
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where G, (z) = In (| (hiZ) ) + 81,1(2)), which is an analytic and uniformly bounded
function around the origin (uniformly in n). Thus Proposition 30 follows from Corol-
lary 36. O

Corollary 37 Let r > 1. Suppose that for any B > 0 and § > 0 small enough,
/ IE(e™**") /x|dx = o(0,"). (5.9)
s=<lx|<Boy "

Then
sup |P((S, — E[Su])/on <1t) — @(t) — Zan_jpj,n(t)‘p(t) =o0(o;,") (5.10)
' o

where ® and ¢ are the standard normal distribution and density function, respectively,
and P;j ,(t) = Pj(t, Sy) are the Edgeworth polynomials of S, = S, — E[S,].

Corollary 37 follows from Proposition 25 since S, verifies Assumption 23.
5.5 A Berry-Esseen theorem and Expansions of order 1
Proof of Theorems 4and 5 First, Theorem 4 follows from Propositions 30 and 24.

Next, applying [20, Theorem 3.5] and [20, (4.2.7)] we see that if { f;,} is irreducible
then condition (5.9) with r = 1 is satisfied. This proves Theorem 5. O

6 High order expansions for summands with small essential
supremum, proof of Theorems 8 and 9

6.1 Existence of expansions

Recall (3.7). In order to prove Theorem 8, we need the following:

2.2
Lemma 38 [20, eq. (3.3.7)] 38 > O s.t. if || fullool&] < & then d2(&) > St 2un'

Proof of Theorem 8 Let us fix some r < ﬁ, and take some r < rg < ﬁ We
claim that there are constants ¢, C > 0 so that for all N large enough we have

[N ()] < exp <—c§2VN) for |&] < Co? .

This is enough for the Edgeworth expansion of order r to hold by Corollary 37.
In order to prove the claim, let No = No(V) be the smallest positive integer such

that alf})_l I fulloo < & forall n > Ny where § is the number from Lemma 38. Then,
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since || full = O(n=P)

_ roﬁ—l _ r%/;l
No=0(ay" J=0(V,” ). 6.1)

Let us show now that Nog = o(N), which in particular yields that No < N /2 if N is
large enough. The assumption that || f;; |l co = O (n—Pyalso implies that u% = 0(n2P)
and so by (3.6),

Vn = O(N'728). 6.2)
ro—1
Combining this with rg < ﬁ we see that O’N’S = O(N¥*), where
-1 1—ro(1 =2
oo o= )(1_2,3)=1_—r°( P (6.3)
2p 2p

Therefore, No = O(N*).
Next, let us write

Let ky be so that Uy, vy = max{Upy, n .k : 0 < k < 3}. Then by (3.6) there are
constants C, D > 0 so that

V(SN — Sny) = CUny, N ky + D. (6.4)

Combining (3.8), Lemma 38, and (6.4) we see that the characteristic function of
Sy satisfies

(@ (&)l = exp (—c&?V(Sy = Sx,)) for [¢] = Cofy™! ©.5)

where C > 0 is some constant which depends on 8, ry, and ¢g but not on & or N. Note
that by Lemma 19 we have

Vv = Vn, + V(Snv — Sny) +2Cov(Sny, Sv — Sng) = Vg + V(Sv — Sn,y) + O(1).
It follows that
V(SN — Sng) = Vv — VN, + O(D).
On the other hand, by (6.2),
Vg < Ny 2P < C'V
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where « is given by (6.3). Therefore V (Sy — Sy,) = Vy + O (Vy) . Combining this
with (6.5) gives

N @) < exp (e (Vi + 0(V§)) for [¢] = Cofp™

and the claim follows since ¥ < 1. O
6.2 Optimality

Proof of Theorem 9 Fix some 0 < 8 < 1/2, and take an integer s > ﬁ Then

1
sﬁ::(s—1)<§—ﬁ>>,3.

Take c € (B, sg). Set g, = 2leloganl and p, = [nPq,]. Let

o
CIn'

dn

Since ¢ > B we have
n*ﬂ(l +0(1)) — n*ﬁ _ 2*[c10g2n] <a, < I’liﬂ.
Let Y, be an iid sequence of random variables so that P(Y,, = 1) = % Set

X, =a,¥, ="y,

4n

Then, E[X,] = 0, [X,| = a, < n~F and V(X,) = a2 = n~?$. Next, since g,
divides gy if n < N we have

gnSy = Sy2lcleaNl ¢ 7

and so the minimal jump of Sy is at least qLN. Therefore, if oy is a possible value of
Sy then

1
P(Sy € (an. oy + 52*[6logz M) =o.
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On the other hand, if Sy obeyed an expansion of order s then, choosing ay =
O (o) and denoting ey = 2~ l¢loz N]olgl, we would get

1
0 =P(Sy € (an,an + 52_[Clog2 M) =P(Sy/on € (an/on, an/on +enl)
=P(Sn/on < an/on +en) —P(Sn/on < an/on)

= <I>(01N/0N +éen) — ®(any/on)

12 -2 :
f Z( jn(an/oN +en)e” s@nfonten)’ — Pj n(an/on)e 25NN )UNJ
+o(oy*) = Cey +o(oy*) = C27laNg b4 o0 ).
N
Since 01%, if of order Z . n=2 = N'=2F we must have
n=

(s =D =28)
> — =
2

which contradicts that ¢ € (B, sg). Taking s = s(8) to be the smallest integer such

that s > ﬁ we see that the expansions of orders r > ﬁ do not hold. O

7 High order expansions for Holder continuous functions on
Riemannian manifolds

7.1 Distribution of Holder functions

The following estimate plays an important role in the proof of Theorem 11.

Lemma 39 For every Riemanian manifold X there is a constant ¢ such that for each
real-valued function ¢ on X with ||¢|lq < 1 and each t, &

V(g € [t t+¢]) > ce'/* min(v(p > 1 + &), u(p < 1))

where v is the normalized Riemannian volume on X .

Proof Since X is compact, it can be covered by a finite number of coordinate charts.
Hence for any given ¢’ we can cover X by the C” images of coordinate cubes of size &’
so that the multiplicity of the cover is bounded by a constant £ which is independent
of .

Now, let ¢’ = §&'/* where § is so small that the diameter of each partition element
is smaller than £!/% /2. Consider the cover of X described above and let A be the union
of all cover elements Q such that p(x) > ¢ + for each x € Q and S be the union of
all partition elements which intersect d A. By the Isoperimetric Inequality,

1/

Area(dA) > %min(v(A), V(A9)) > %min(u(go >t+8),v(p <1))
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where h is the Cheeger constant of X'. On the other hand, there exists a constant «
which does not depend on ¢ or « so that

Area(dA) < Area(dS) < Rke'/*v(S)
since for each cover element Q C S we have
Area(9S()0Q) < ke'*v(Q).
Since ¢ € [t,t + ] on S the result follows. O

7.2 Proof of Theorem 11

For the rest of Sect.7 we consider the following setting. Let {X,} evolve on a
compact Riemannian manifold M with transition densities p,(x, y) bounded and
bounded away from 0. Let us assume that f,, : M x M — R satisfy || fylla =
max(sup | f, |, v (f)) < 1 for some 0 < a < 1. Denote @y (£) = E(ef5V).

Proposition 40 Forall 0 <« < 1 and § > 0 there exists C1(a, 8), c1 = c1(a,8) > 0
so that for every n € N and & € R with |£] > § we have

ON )] = Crexp (—eVulgl' 7).

Theorem 11 follows by Proposition 40 together with Corollary 37.
The main step in the proof of Proposition 40 is the following.

Lemma 41 For every Riemanian manifold X for every 8§ > 0 there is a constant ¢
such that for each real-valued function ¢ on X with ||¢|le < 1 and each & such that
€] =8,

// sin ( W(Xl)z_ <P(x2)]> v(x)dv(x) < &g/

f [p(x1) — @(x2) 1> v(x1)dv(x2).

where v is the normalized Riemannian volume on X .

The lemma will be proven in Sect. 7.3. Here we complete the proof of the proposition
based on the lemma.

Let 1 denote the normalized Riemannian volume on M. Fix some n € N and
consider a random hexagon P, = (X,—2, Xn—1, Xn; Yn—1, Yn» Yn+1) based at n.

Recall (3.5) and (3.7). By uniform ellipticity we have

= / T2(P)dps(Py), da(E) =< / <é (”)>du6(Pn>. (7.1)
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where

C(Py) = fu—2@n—2,Xn-1) + fu—1Gn—1,X0) + fu(Xn, Ynt1)
— fo2Gn—2, Yn=1) = fum1n=1- Yn) — fun> Yns1)

is the balance of P,.
Applying Lemma 41 with ¥ = M x M and

¢x,,_2,y,,+1 (X1, %) = fu—2(n—2, Xn—1) + fu—1Cn—1, Xn) + fu(Xn, Yns1)

and integrating with respect to x,_» and y,4; we obtain d,% &) > CSl_(l/o‘)u%.
Now Proposition 40 follows from (3.8).

7.3 The proof of Lemma 41

Set

Alxi, x2) =lp(x) —ga(x2)l, e=§"" W= // A2 (x1, x2)v(x1)dv(x2),

%) = // ( (x1, xz))v(xl)du(xz).

€
Decompose X’ x X = Ay U Ay where A; = {(xl, x) A< g} and Aj is its
complement. We split the proof of Lemma 41 into two cases.

Case 1 If the integral of A? over Ay is larger than the integral over A, then using that
|S‘IL’| > ¢ for |t] < 1/8 we get

252
02(€) z// sin? 2012 v > S,
A 2¢ 4

Case 2 Now we assume that the integral over Aj is larger. Let
I = 2%, k* = argmax [[x (v x V)(A € [It, 2L)], [ = [
and
=Il(v x vV)(A €[, 2D).

Note that under the assumptions of Case 2 we have

log, (1/¢) log, (1/¢)
wW<Co Y D Lwxv(Aelh2k)<Co Y k<Co (12
k=-3 k k=-3
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Next, let m denote a median of ¢ with respect to v, ¢ = ¢ — m and
Q={p =1/2}, ={pe(=1/2,1/2)}, Qu={p=1/2}.

Let us assume that 1 (£23) > ©(€21), the case where the opposite inequality holds
being similar. Since A(x1, x2) < [for (x1, x2) € Q22 x Q7 we have

(W xV)(A =D <2[v(Q) +v(R3)] < 4v(Q23).
Let

Q/] ={p el(j+0.1e, (j+0.2)¢l} Q/]/ ={p e [(j +0.3)s, (j +04)e]}.

1
Since m is a median, v(2; URy) > > Hence Lemma 39 shows that that for j < %

we have
V(@) = e/ v(Q3), Q) = ce'/*v(Qa). (7.3)

On the other hand there is a constant 59 > 0 such that for each x; € X we have that

A(xy, .
sin’ ¥> > § either for all j and all x; € Q’] or for all j forall x; € Q’j/ Jt
&

follows that if A, dominates then

[/4¢ 1/4¢
0%(&) = somin [ Y w()), > v(@))
j=1 j=1
> Sl (Q3) = ce'* H(w x v)(A € [1,20) = é&!/* .

Combining this with (7.2) we obtain that if A dominates then 02(5 ) > celle=1y2,
Combining the estimates of cases 1 and 2 we obtain the result. O

7.4 Cantor functions

In order to show the optimality of Theorem 11 we need to consider a function f for
which the estimate of Lemma 41 is optimal. Moreover, we want f to grow on a set
of small Hausdorff dimension and we want the distribution of f to have atoms at
values which are commensurable with each other. It turns out that Cantor functions
studied in [22, 32] satisfy these conditions. So in this subsection we describe briefly
the construction and properties of Cantor functions.

Let us fix some integers p > 3,k > 1 and letg = (p — 1)k. Set

1 _ Inp
log,(g+p) In(p+q)

Up,ptq =

On [0, 1], et Cp pyq (Where g = (p — 1)k) be the Cantor set of all numbers of the

k+ Da;
form x = ZOO M,aj =0,1,..., p— 1. In other words C, 1, consists
=1 (p+q) ’
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of all numbers in [0, 1] which can be written in base p + ¢ so that all its digits are
divisible by k + 1.

Let f be the corresponding Cantor function ( [32]). Namely, for x € C) 14 we
have

aj . k+ Da;
f(x)ZZp—jj, if XZZ(p_’_—q)j],

J J

while outside C), 4+, we have

" b; X Y
fx) = sup fly) = 2L where x = J -, b= [7]} +1
VECp, ptq- y=X ; pJ ; (p+q)/ / k+1

and n is the first index so that x, is not divisible by k + 1. By [32, Theorem 2]
(see also [22]), f is Holder continuous with exponent & 4, which is also the the
Hausdorff dimension of C), 4. Note that f is increasing (see [32, Theorem 1]) and
that f£(0) = Oand f(1) = 1.

Lemmad42 Foreachn e N

Leblx € [0,1]: p" f(x) ¢ Z) = (L) . (1.4)
p+gq

Proof To prove the lemma we explain the inductive construction of f by following
the recursive construction of the set Cp, 4. First, we split [0, 1] into p + ¢ closed
intervals Iy, I, ..., Ip14 of the same length p+rq so that I is to the left of ;4 for
each s. Next, define intervals Ji, J2, ..., J2pt1 as follows: we define J; = I, and
then inductively Joj11 = Ig4k+1,1f Joy—1 = I;. For 1 <1 < p we define and Jo; to
be the union of the intervals /; between Jo;—1 and Jy;+1. On Jy; we define f|;, = %

The reconstruction of the function f now proceeds by induction. Suppose that at
the n-th step of the construction f was additionally defined on a union of closed inter-
vals Uy, ..., U}, ju = (p — 1)p"~! of length k(p + ¢)™" so that flu;, = jp™",
Uj is to the left of U;1, and the gap between U; and U, is (p + q)™", where
Uy = {0} and Uj,+1 = {1}. Split the interval between U; and U, into equal
p + q intervals It j ut1, 12 j nt1s -+ Ipyq, jnt1 of length (p + ¢)™""! so that
Is jnt1 is to the left of Iyyq 41 for each s. In the (n + 1)-th step the inter-
vals J1j nt1, J2,j,n+15 - - » J2p+1,j,n+1 are defined as follows: we define Jy j 541 =
I1,j n+1, and then inductively Jojy1,j n+1 = Iytk+1,j,n+1, 3 J2i—1 jnv1 = I jnt1
For1 <! < p wedefine and Jo; j 41 to be the union of the intervals I ; ,41 between
Doi—1,jn+1 and Jop1,j 1. On Jop j ni1 we define

_jp+l ] l
g jun = e ﬁjLW'

In view of the above recursive construction of f, we obtain (7.4) since in the (n+1)-
th step there are p” intervals of length (p 4+ ¢)~" on which f has not been defined
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yet, and the values of f in all the steps following the n-th step do not have the form
s/p" fors € Z. O

7.5 Optimality

Proof of Theorem 12 We first observe that it is enough to prove Theorem 12 for a dense
set of numbers « in (0, 1). Indeed, if the theorem holds for & belonging to a dense set
A, given g € (0, 1) and r > ?"_Z(l), we can find @ € A sothato > g and r > %
Now, the o-Holder continuous function we get from Theorem 12 with this « is also
op-Holder continuous so the result follows.

Next, let us consider the set

Inp
A=1————:p,qeN,p=>3, ql( —1)}~
{ln(p—i—q) D, q p ql(p

This set is dense in (0, 1). Indeed, let 0 < a < b < 1. Then, using that ln(lg—fp) =
1

— i _ _4q
Tog, (g+p)” for all p > 3 and denoting k = (L k € N we have

1/b—1 1/a—1

1
€(a,b) < p <k+1——<p
p

log,(q + p)

Since lim ), oo pl/a_l — Pl/b_l = 00, we can find a number k satisfying the above
inequality provided that p is large enough.

Thus we fix some integers p > 3,k > 1 and letg = (p — 1)k. Set

1 ~ Inp
log,(¢ +p) In(p+q)

®=Cpptqg =

Let f : [—1,1] — [—1, 1] be the odd function whose restriction to [0, 1] is the

Cantor function from Sect.7.4. We will now show that S, f does not obey Edgworth

expansions of any orderr > % Letr = r(«) be the smallest integer so thatr > ‘;‘—f} ,
r 1

where @ = 4. Let us take 1% < ¢ < 5 — L and set ky = p!“'°% M. Then

[clogp N]
PlkySy ¢ Z) < NPlky f ¢ Z) = N (L) = 0 (NTO/71) = oy (1)
p+q

where the second step follows from Lemma 42 and the last step follows since

c<1_1>=M>1‘
o o

Let py = pl1°% VMg = kyon which is of order N¢+1/2. Then

lim P(Sy/on € (pn)~'Z) = 1.
N—o0
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Thus, by considering points in (py)~'Z which are of order 1, we find that if C is
large enough then denoting

my = argmax{P(Sy /oy =k/py) : 1k/py| < C}

and recalling that ¢ + % > r we have
P(Sn/on =my/py) = Cipy' = CN~12 = Cyoy” (7.5)

where C, C> and C3 are positive constants. On the other hand, if Sy obeyed expan-
sions of order r then

S S S

[pJ(_N _ m_N> < lim sup |:]P>(_N - '"_N> _P(_N oM _3>] s
ON PN 5—0t ON PN ON PN

which is inconsistent with (7.5). O
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Appendix A. A dynamically defined example of a two step uniformly
elliptic Markov chain on the unit interval

Let X = [0, 1) and for each n € N consider a map f,, : X — X such that there
is a partition of [0, 1) into finitely many intervals I;(n) = [a;(n), b;(n)) so that on
each /;(n) the function g; , := f,|l;(n) is differentiable, monotone and is onto X'.
Moreover, we suppose that there is a bounded sequence or positive numbers (m,,) and
constants K > 0 such that

my < 18;.,(x)| < Km,, forevery x € I;(n). (A.1)

Since g (Ii(n)) = X, it follows that the length of ; (n) is between z— and ;L.
A simple example is the case when f,(x) = (m,x) mod 1 for some integer m, > 2
and in this case [; , = [%, an) fori =1,2,...,myand g; ,(x) =mux — (i —1).
Next, take a sequence (g,) of positive numbers in (0, 1/2) and a sequence (U,) of
independent random variables which are uniformly distributed on [—¢,,, &,] (mod 1).

Let X( be a random variable independent of (U,) and let us define recursively
Xn+1 = fu(Xn) + Upq1 (mod 1). (A.2)

Then (X,,) is a Markov chain.

Lemma43 Ifmye, > 1 for all n then there exists e > 0 such that the Markov chain
(Xy) satisfies (2.1) and (2.2) with u; = Lebesgue measure.
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Note that one step ellipticity condition fails in this case since X, conditioned on
X, is uniformly distributed on a segment of length 2¢, < 1.

Proof We regard X’ as the circle by identifying its endpoints. First, (2.1) holds because
m,, is bounded above. Let us now show that (2.2) is satisfied. Fix x and consider our
Markov chain conditioned on X,, = x. Then X4 is uniformly distributed on an
interval J,,+1 = Ju+1(x) of length 2¢,,1 1. Note that J,, 1 contains some interval [,
where f,,4+1 is continuous. Otherwise J,4+1 would intersect at most two continuity
intervals of f,,+; which is impossible since €,4+1 > 1/m, 1. Next for each interval
L € X we have

IL]
Py(fur1(Xng1) € L) = Py (fur1(Xpt1) € L, Xpq1 € 1)) > -——5——
2en 1 Kmy
since the conditional density of X4 equals to 1/(2¢,+1) and |f,;+1(x)| < Kmy41.
Thus the density of f,,+1(X,+1) is at least (28n+1Kmn+1)’1. Since rotations of
the circle preserve the Lebesgue measure, the density of X, 1, has the same lower
bound. m|

Suppose now that f;, are fixed but we start decreasing (&, ). We saw above that one
step ellipticity condition fails if ¢;, < 1/2. Decreasing (¢,,) even further we may cause
the failure of the two step ellipticity as well. On the other hand, suppose that there is
A > 1 such that f,(x) > A for all n and all continuity points of f, (in particular, f,
preserves the orientation and so they induce a continuous map of the circle). Assume
moreover that there is € > 0 such that ¢, > ¢ for all n. We claim that k step ellipticity
condition holds provided that 26A~! > 1. Indeed as before it suffices to fix X, as well
as ¢; for j > n+ 1 and obtain a uniform lower bound on X, after the conditioning.
As before X4 is unlformly distributed on a segment J,, | whose length is at least
2&. Next, denote f; 1(z) = fj(2) + €j41. Then for each interval L with fi (L) covers
the circle or it is an interval whose length is at least A|L|. Thus the image of J,,+1 will
grow after each application of ﬂ until it would cover the whole circle giving required
ellipticity.

Therefore Theorems 4, 5 and 11 hold for our chain. This provides an illustration of
the usefullness of relaxing one step elllipticity.
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