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Abstract
We prove a Berry–Esseen theorem and Edgeworth expansions for partial sums of the

form SN =
∑N

n=1
fn(Xn, Xn+1), where {Xn} is a uniformly elliptic inhomogeneous

Markov chain and { fn} is a sequence of uniformly bounded functions. The Berry–
Esseen theorem holds without additional assumptions, while expansions of order 1
hold when { fn} is irreducible, which is an optimal condition. For higher order expan-
sions, we then focus on two situations. The first is when the essential supremum of
fn is of order O(n−β) for some β ∈ (0, 1/2). In this case it turns out that expansions
of any order r < 1

1−2β hold, and this condition is optimal. The second case is uni-
formly elliptic chains on a compact Riemannian manifold. When fn are uniformly
Lipschitz continuous we show that SN admits expansions of all orders. When fn are
uniformly Hölder continuous with some exponent α ∈ (0, 1), we show that SN admits
expansions of all orders r < 1+α

1−α
. For Hölder continues functions with α < 1 our

results are new also for uniformly elliptic homogeneous Markov chains and a single
functional f = fn . In fact, we show that the condition r < 1+α

1−α
is optimal even in the

homogeneous case.

Mathematics Subject Classification 60F05

1 Introduction

Let Y1,Y2,Y3, . . . be a sequences of independent square integrable random variables.

Set S̄N =
∑N

n=1
(Yn −E(Yn)), VN = Var(SN ) and σN = √

VN . The classical central
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limit theorem (CLT) states that if σN → ∞ then, as N → ∞, the distribution of
ŜN = S̄N/σN converges to the standard normal distribution. A related classical result
is the Berry–Esseen theorem [27] which is a quantification of the CLT stating that
there is an absolute constant C0 > 0 so that for every N ≥ 1,

sup
t∈R

∣∣∣P(ŜN ≤ t) − �(t)
∣∣∣ ≤ C0σ

−3
N

N∑

j=1

E
[∣∣Y j − E[Y j ]

∣∣3] (1.1)

where � is the standard normal distribution function (we refer to [5] for similar
result obtained simultaneously). In [28], Esseen proved, in particular, that the optimal
constant C0 in the RHS of (1.1) is greater than 0.4. Since then there were many efforts
to provide close to tight upper bounds onC0, and currently the smallest possible known
choice for C0 is C0 = 0.56, see [63] and references therein. Note that when Yi are
centered and identically distributed with Y1 ∈ L3 then (1.1) yields the well known

CLT rate C0
E|Y1|3
σ 3√n

= O(σ−1
n ), where σ 2 = E[Y 2

1 ]. However, the non iid case is more

complicated, and to get the rates O(σ−1
n ) it is natural to assume that Yn are uniformly

bounded, and then with ‖Y‖∞ = supn ‖Yn‖∞ we have

sup
t∈R

∣∣∣P(ŜN ≤ t) − �(t)
∣∣∣ ≤ C0‖Y‖∞σ−1

N . (1.2)

However, in general the RHS of (1.1) can be much larger than σ−1
N .

The rate of σ−1
N in (1.2) is optimal, see below. By now the optimal convergence rate

in the CLT was obtained for wide classes of stationary Markov chains [42, 53, 54] and
other weakly dependent random processes including chaotic dynamical systems [35,
37, 42, 45, 46, 58], uniformly bounded stationary sufficiently fast φ-mixing sequences
[56], U -statistics [9, 34] and locally dependent random variables [3, 8, 11] (the last
three papers use Stein’s method).

The rate σ−1
N is optimal for two reasons. First, for the lattice random variables

the distribution function t 	→ P(ŜN ≤ t) has jumps of order σ−1
N . Secondly even if

the distributions of the summands have smooth densities the rate of convergence is

still O
(
σ−1
N

)
if the third moment of the sum is different from Gaussian. To address

the moment obstacle one could introduce appropriate corrections.1 Namely, fix r ≥
1. We say that the Edgeworth expansions of order r hold if there are polynomials
P1,N , . . . , Pr ,N with degrees not depending on N and coefficients uniformly bounded
in N so that

sup
t∈R

∣∣∣P(ŜN ≤ t) − �(t) −
r∑

j=1

σ
− j
N Pj,N (t)φ(t)

∣∣∣ = o
(
σ−r
N

)
(1.3)

1 In the case the arithmeticity obstacle is present, that is, the distribution is lattice, one can consider
asymptotic expansions of P(SN = k) see [18, 29, 33, 44] and references wherein.
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A Berry–Esseen theorem and Edgeworth expansions for… 441

where φ(t) = 1√
2π

e−t2/2 is the standard normal density function. These expansions

provide a more accurate approximations of the distribution function of ŜN in compar-
ison with the Berry–Esseen theorem.

For independent random variables it was proven by Esseen in [27], that the expan-
sion of order 1 holds iff the distribution of SN is non-lattice. The conditions for
higher order expansions are not yet completely understood. Sufficient conditions for
the Edgeworth expansions of an arbitrary order were first obtained in [13] under the
assumption that the characteristic function of the sum E(eit SN ) decays exponentially
in N uniformly for large t . Later the same expansions were obtained in [1, 6, 8, 27,
29] under weaker decay conditions,2 where the second paper considered non iden-
tically distributed variables and the fourth and fifth considered random iid vectors.
Later Edgeworth expansions were proven for several classes of weakly dependent
random variables including stationary Markov chains [30, 53, 54], chaotic dynamical
systems [12, 30, 31] and certain classes of local statistics [4, 7, 10, 41]. In particular,
Hervé–Pène proved in [43] that for several classes of stationary processes the first
order Edgeworth expansion holds if the system is irreducible, in the sense that SN can
not be represented as S′

N + HN where S′
N is lattice valued and HN is bounded. We

would also like to mention a recent result [47], in which precise conditions are given
to pass from a Berry–Esseen theorem to first order Edgeworth expansions for certain
classes of stationary functionals of a Bernoulli shift. Finally, [2, 57] study so called
weak expansions, i.e. expansions of the form E (φ (SN/σN )) where φ is a smooth test
function.

Both Berry–Esseen Theorem and Edgeworth expansions require a detailed control
of the characteristic function. For dependent variables, the most powerful method for
analyzing the characteristic function is the spectral approach developed by Nagaev
[53, 54] (see [36, 42] for the detailed exposition of the spectral method). Since the
spectral method relies on perturbation theory for the spectrum of linear operators,
extending it to a non stationary setting turned out to be a non trivial task. Recently a
significant progress on this problem was achieved by using a contraction properties
of the projective metric which allows to prove spectral gap type estimates for the non-
stationary compositions of linear operators [25, 26, 49, 60]. In particular, complex
sequential Perron–Frobenius Theorem, proven in [40] provides a powerful tool for
proving the Central Limit Theorem and its extensions in the non stationary case. This
theorem replaces the spectral methods in the stationary case discussed above, and it
allows to obtain both Berry–Esseen theorem [39, 40] and Edgeworth expansions [24,
38] in the non stationary setting for both Markov chains and dynamical systems.

However, the results of [24, 38–40] are in a certain sense perturbative. Namely,
those papers study either a small perturbation of a fixed stationary system, or they deal
with random systems assuming that a system comes to a small neighborhood of a fixed
system with a positive frequency. One difficulty in studying the non-stationary case is
that there could be large cancellations of the consecutive terms, so that the variance of
the sum, can bemuch smaller then either the number of summands or the the sumof the
variances of the summands. This makes it difficult to control the rates of convergence

2 The decay conditions used in the above papers are optimal, since one can provide examples where the
decay is slightly weaker and there are oscillatory corrections to Edgeworth expansion, see [17, 18].
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in terms of powers of the variance, since there is no simple way of computing the
variance from the marginal distribution of the summands. Recently [20] developed a
structure theory for Markov chains which allows to find, for each additive functional,
a representative in the same homology class (the homologous functionals satisfy the
same limit theorems) with the smallest L2 distance from either zero or from a given
lattice in R. This structure theory was used in [20] to prove the local limit theorem for
non-stationary Markov chains in both diffusive and large deviations regimes.

In the present paper we combine the methods of [40] and [20] to obtain several
optimal results concerning the convergence rate in the CLT for bounded additive
functionals of uniformly elliptic non-stationary Markov chains. Our results include

• Berry–Esseen bound, which holds without any additional assumptions;
• first order Edgeworth expansion in the irreducible case, extending theorems of
Esseen and of Hervé–Pène;

• higher order expansions for the chains with either decaying L∞ norm or with
bounded Hölder norm.

We emphasize that our assumptions concern only regularity of the observables. No
additional assumptions dealing with either the growth of variance or with the decay
of characteristic function away from zero are made.

Our approach is the following. We will introduce a block decomposition of SN ,
so that the number of blocks is proportional to the variance of the underlying partial
sum. Then the results of [20] allow to control the moments of the sum in each block,
while the results of [40] make it possible to related those moments to the sequential
pressure3 inside the block. The asymptotic expansion of the characteristic function
near zero then follows from the additivity of the sequential pressure. This is sufficient
for proving Berry Esseen bound. In order to obtain the Edgeworth expansions we
need to control characteirstic function far from the origin. To this end we combine the
structure theory of [20] with the ideas of [15].

Let us describe the structure of the paper. Section2 contains the precise statements
of our results. The necessary background from [20, 40] is given in Sect. 3. In Sect. 4
we discuss the Edgeworth expansions. In general, those expansions follow from the
asymptotics of the characteristic function around 0, together with decay of the char-
acteristic functions over appropriate domains. In Sect. 4 we will show that the desired
expansions around the origin hold under certain logarithmic growth conditions. We
demonstrate that under the above growth conditions the asymptotics of the character-
istic function near zero always comes from the Edgeworth polynomials (regardless of
whether the Edgeworth expansions hold or not). Those polynomials are defined canon-
ically, andwe show that under our logarithmic growth conditions the polynomials have
bounded coefficients. The main step in our proofs is a verification of the latter growth
conditions for the uniformly elliptic Markov chains considered in this paper. This is
accomplished in Sect. 5. Using the sequential complex Perron–Frobenius Theorem
from [40], the required estimates are obtained by studying the behavior around the
origin of a resulting sequential complex pressure functions. For independent variables
the n-th pressure function coincides with the logarithm of the characteristic function

3 See Sect. 5.2 for the definition of the sequential pressure.
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of the n-th summand, and our arguments essentially reduce to the ones in [27, 29]. In
comparison with [40], where the Markov chains in random environment were stud-
ied, the main difficulty is that the variance does not grow linearly fast in the number
of summands N . The Berry–Essen theorem is a direct consequence of the detailed
asymptotics of the characteristic function near zero established in Sect. 5. The first
order expansion also follows by combining the same estimates with the results of
[20].

In order to achieve the desired rate of decay away from 0, an additional structure is
needed. Thus we consider two special classes of additive functionals. The first is when
the essential supremum of the n-th summand converges to 0 as n → ∞. We show in
Sect. 6 that if ‖ fn‖∞ = O

(
n−β

)
for some β ∈ (0, 1/2) then the partial sums admit

expansions of any order r < 1
1−2β , and that this condition is optimal. The second

type of additive functionals we consider are Hölder continuous functions. If {Xn} is a
Markov chain evolving on a compact Riemannian manifold with uniformly bounded

and bounded away from 0 densities and SN =
∑N

n=1
fn(Xn, Xn+1), then we show

in Sect. 7 that when fn’s are uniformly bounded Lipschitz functions then SN admits
Edgeworth expansions of all orders, while when fn’s are uniformly bounded Hölder
continuous functions with exponent α ∈ (0, 1), then SN admits expansions of every
order r < 1+α

1−α
, and that the latter condition is optimal. In fact, we will show that the

condition r > 1+α
1−α

is optimal even in the stationary case when {Xn} is homogeneous
Markov chain and fn = f does not depend on n.

2 Main results

2.1 A Berry–Esseen theorem and expansions of order 1

Let (Xi ,Fi ), i ≥ 1 be a sequence of measurable spaces. For each i , let Ri (x, dy), x ∈
Xi be a measurable family of (transition) probability measures onXi+1. Letμ1 be any
probability measure on X1, and let X1 be an X1-valued random variable with distri-
bution μ1. Let {X j } be the Markov started from X1 with the transition probabilities

P(X j+1 ∈ A|X j = x) = R j (x, A),

where x ∈ X j and A ⊂ X j+1 is ameasurable set. Each R j also gives rise to a transition
operator given by

R j g(x) = E[g(X j+1)|X j = x] =
∫

g(y)R j (x, dy)

which maps an integrable function g on X j+1 to an integrable function on X j (the
integrability is with respect to the laws of X j+1 and X j , respectively). We assume
here that there are probability measures m j , j > 1 on X j and families of transition
probabilities p j (x, y) so that
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R j g(x) =
∫

g(y)p j (x, y)dm j+1(y).

Moreover, there exists ε0 > 0 so that for any j we have

sup
x,y

p j (x, y) ≤ 1/ε0, (2.1)

and the transition probabilities of the second step transition operators R j ◦ R j+1 of
X j+2 given X j are bounded from below by ε0 (this is the uniform ellipticity condition

inf
j≥1

inf
x,z

∫
p j (x, y)p j+1(y, z)dm j+1(y) ≥ ε0. (2.2)

Remark 1 The assumptions that we have uniform lower bound on the two step density
and that the summands fn introduced below depend only on two variables are taken
form [20]. In fact, the arguments of [20] also work in the case we have uniform
ellipticity after k steps where k is an arbitrary fixed number, and fn depend on finitely
many variables (Xn, . . . , Xn+k−1). The main change in the argument is that when
we define the structure constants (see Sect. 3.2) the hexagons need to be replaced by
(2k + 2)-gons describing two different ways of getting from Xn to Xn+k , (see §1.3.3
of [20] for additional discussion). On the other hand there are some new effects in the
case f depends on two variables which could not be seen in the case (considered in
[14]) where fn depend on a single variable, cf. Remark 3 below. In this paper we keep
the convention from [20] and assume two step ellipticity and two step dependence for
additive functionals. Treating larger k would not require any new ideas but it would
significantly complicate the notation. We refer to the Appendix for an example of a
Markov chains satisfying (2.1) and (2.2), but with densities pn(x, y) which vanish on
a large set.

By [20, Proposition 1.22] Markov chains satisfying (2.2) are exponentially fast
ψ-mixing. That is, if we denote by Fk the σ -algebra generated by {X1, . . . , Xk} and
F (m) the σ -algebra generated by {X j : j ≥ m} then there are constants C > 0 and
δ ∈ (0, 1) which depend only on ε0 such that for every n ∈ N,

ψ(n) := sup
k

sup

{∣∣∣∣
P(A ∩ B)

P(A)P(B)
− 1

∣∣∣∣ : A ∈ Fk, B ∈ Fk+n, P(A)P(B) > 0

}
≤ Cδn .

Next, for a uniformly bounded sequence ofmeasurable functions fn : Xn×Xn+1 →
R we set Yn = fn(Xn, Xn+1) and

SN =
N∑

n=1

(Yn − E(Yn)). (2.3)

Set VN = Var(SN ) and σN = √
VN .
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Remark 2 The above assumptions were considered recently in [20] in the context of
local limit theorems. The proofs in [20] involved certain type of decay rates of the
characteristic functions on compact sets. Two other related results are [51, 52], where
local limit theorems where obtained under conditions similar to (2.1) and (2.2), where
in [51] a condition ε0 ≤ pn(x, y) ≤ ε−1

0 was assumed, while in [52] only the lower
bounds ε0 ≤ pn(x, y) where assumed [we refer to the appendix for an example in
which pn(x, y) might vanish but (2.1) and (2.2) hold]. The proof of these results also
involved decay rates of the characteristic functions on appropriate compact sets.

The main difference in our setting is that our results also require certain expansions
of the characteristic functions around the origin (and not only bounds), as well as
precise estimates on the characteristic functions on intervals of length O(‖SN‖r

L2).

Remark 3 Note that when fn(Xn, Xn+1) depends only on Xn and (2.2) is replaced by
the stronger condition

inf
i
inf
x,y

pi (x, y) ≥ ε0 (2.4)

then by [14] (see also [62]) we have

C1

N∑

n=1

Var(Yn) ≤ VN ≤ C2

N∑

n=1

Var(Yn) (2.5)

for some constants C1,C2 which depend only on the first correlation coefficient of the
chain. However, even if (2.4) holds, the lower bound might fail when fn truly depends
on two variables.4 In our setup by [20, Theorem 2.2] we have limN→∞ VN = ∞ if
and only if one can not decompose Yn as

Yn = E(Yn) + an+1(Xn+1) − an(Xn) + gn(Xn, Xn+1)

where an are uniformly bounded functions and
∑

n
gn(Xn, Xn+1) converges almost

surely.

2.2 Optimal CLT rates and first order Edgeworth expansions

The CLT in the case VN → ∞ is due to [14], see [62] for a modern proof. Our first
result is a version of the Berry–Esseen theorem. Denote

ŜN = (SN − E[SN ]) /σN . (2.6)

4 For instance, let (Xn) be a sequence of independent uniformly random variable so that E[Xi ] = 0,

E[X2
i ] = 1. Let Yn = εn Xn + (Xn − Xn+1). Then Var(SN ) =

∑N

n=1
ε2n + O(1) can grow arbitrarily

slow (or be bounded) but
∑N

n=1
Var(Yn) =

∑N

n=1
(2 + 2εn + ε2n) ≥ 2N .
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Theorem 4 Suppose that limN→∞ VN = ∞. Then there is a constant C > 0 which
depends only on supn ‖Yn‖L∞ and ε0 so that for any N ≥ 1,

sup
t∈R

∣∣∣P(ŜN ≤ t) − �(t)
∣∣∣ ≤ Cσ−1

N (2.7)

where � is the standard normal distribution function.

Next we introduce some terminology from [20]. We say that a sequence ZN of
random variables is center tight if there are constants cN such that {ZN − cN } is

tight. Two additive functionals fn and f̃n are homologous if
∑N

n=1
( fn(Xn, Xn+1) −

f̃n(Xn, Xn+1)) is center tight. We say that { fn} is reducible if it is homologous to an
additive functional taking values in hZ for some h > 0. If { fn} is not reducible, it is
called irreducible.

Theorem 5 If VN diverges and { fn} is irreducible then SN satisfies the Edgeworth
expansion of order 1, where

P1,N (t) = E[(SN − E[SN ])3]
6VN

(t3 − 3t).

Remark 6 When SN = ξ1 + · · · + ξN is a sum of iid non-constant random variable ξ j
then VN = NE[ξ21 ] and E[(SN − E[SN ])3] = E[S3N ] = NE[ξ31 ] and thus

P1,N (t) = E[ξ31 ]
6E[ξ21 ] (t

3 − 3t)

which is the classical first order correction term (see [29]). To see why in the setup of
this paper the coefficients of P1,N are bounded, note that by [20, Lemma 2.6] we have
E[(SN − E[SN ])3] = O(VN ).

Next, we say that fn stably5 obeys Edgeworth expansion of order r if any additive
functional homologous to fn satisfies Edgeworth expansions of order r .

Corollary 7 fn stably obeys Edgeworth expansion of order 1 iff it is irreducible.

Proof If fn is irreducible then any homologous additive functional f̃n is also irre-
ducible, so by Theorem 5, f̃n obeys Edgeworth expansion of order 1.

If fn is reducible then its homology class contains an hZ valued functional f̃n, for
some h > 0. By the LLT of [20, Section 5], S̃N has jumps of order 1/

√
VN , so S̃N

does not obey expansion of order 1. ��
5 The notion of stable Edgeworth expansion is motivated by the notion of stable local limit theorem
studied in [55, 59]. We note that [18] obtains conditions for the stability of Edgeworth expansions for the
sums of independent integer valued random variables (in the integer case one studies the expansions for
P(SN = kN )), see also an extension to Markov chains [19].

123



A Berry–Esseen theorem and Edgeworth expansions for… 447

2.3 Higher order expansions

2.3.1 Summands with small essential supremum

We obtain the following extension of the Edgeworth expansions for function fn which
converge to 0 as n → ∞.

Theorem 8 Suppose that limN→∞ VN = ∞, and that there are C > 0 and β ∈
(0, 1/2) so that for all n ∈ N we have ‖ fn‖∞ ≤ C

nβ
. Let r ≥ 1 be an integer

satisfying

r <
1

1 − 2β
. (2.8)

Then SN admits an Edgeworth expansion of order r . In particular, if ‖ fn‖∞ =
O(n−1/2) then SN admits Edgeworth expansions of all orders.

The following result shows that the conditions of Theorem 8 are optimal.

Theorem 9 For every β ∈ (0, 1
2 ) there exists a sequence of centered independent6

random variables Xn so that C1n−β ≤ ‖Xn‖L∞ ≤ C2n−β for some C1,C2 > 0 and

all n large enough, V (SN ) is of order N 1−2β but SN =
∑N

n=1
Xn fails to satisfy

Edgeworth expansions of any order s such that s > 1
1−2β .

Taking β ∈ (0, 1/4) we have 1
1−2β < 2, and we get from Theorem 9 that SN might

not admit Edgeworth expansions of order larger than 1 if ‖ fn‖∞ � n−β .

Remark 10 Themain purpose of Theorem9 is to consider the casewhen ‖ fn‖L∞ → 0,
but it is also true when β = 0. In this case we arrive to the conclusion that the first
order expansions fails, which is consistent with Corollary 7 since our examples for
Xn will have a certain lattice structure (in fact, for β = 0 we can just take Xn = Yn).

2.3.2 Markov chains on compact Riemannian manifolds

Let us assume that {Xn} is a Markov chain on a compact Riemannian manifold M
with transition densities pn(x, y) bounded and bounded away from 0, uniformly in
n. Let α ∈ (0, 1] and let fn : M × M → R be observables satisfying ‖ fn‖α :=
max(sup | fn|, vα( fn)) ≤ 1, where vα( fn) is the Hölder constant of fn corresponding
to the exponent α. Consider the sum

SN =
N∑

n=1

fn(Xn, Xn+1).

Theorem 11 Suppose that VN = V (SN ) → ∞.

6 Note that the proof of Theorem 9 proceeds similarly when Xn is has the form Xn = fn(Zn) for a one
step elliptic Markov chains Zn (s.t. P(Zn = ±1) = 1

2 ). The present formulation of Theorem 9 shows that
the condition (2.8) is already optimal for independent random variables.
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448 D. Dolgopyat , Y. Hafouta

(i) If α = 1 then SN satisfies the Edgeworth expansion of all orders.
(ii) If α < 1 then SN satisfies the Edgeworth expansion of any order r < 1+α

1−α
.

For smooth functions, expansions of all orders were obtained in [30] for stationary
Markov chains and functions fn = f which do not depend on n. Here we have to
overcome the difficulty that the variance of fn(Xn, Xn+1) might be small, and hence
the proof differs from the one in [30] even for smooth functions. Note that it was
assumed in [30] that the transition densities p(x, y) of the chain are smooth, while our
results only involves additional assumptions on the functions, and hence Theorem 11
(i) is also new in the stationary case (even for smooth functions). In addition, we are not
aware of any kind of results for α < 1 in the stationary case (even for smooth functions
p(x, y)), and so Theorem 11 (ii) seems to be a new result also in the stationary case.

The proof of Theorem 11 follows the approach of [15]. We note that similar esti-
mates are used in [15, 16] to prove polynomial bounds for the decay of correlations for
hyperbolic suspension flows with Hölder roof functions. However, the bound of [15,
16] are not explicit whereas here we get an explicit (and optimal, see below) control
on the possible location of resonances.

We see that asα → 1, the largest order of the expansions ensured by Theorem 11(ii)
diverges to ∞. The following theorem shows that the conditions of Theorem 11(ii)
are optimal.

Theorem 12 Let {xn} be iid random variables uniformly distributed on [−1, 1]. For
every 0 < α < 1 there exists an increasing odd function f : [−1, 1] → [−1, 1]which
is Hölder continuous with exponent α and is onto [−1, 1], so that Sn =

∑n

j=1
f (x j )

does not admit Edgeworth expansion of any order r > 1+α
1−α

.

Theorem 12 show that the conditions of Theorem 11(ii) are optimal even in the
stationary case. The idea in the proof of Theorem 12 is to first approximate α by
numbers of the form αq,p = ln(p)/ ln(p + q), for some p, q ≥ 2 so that q|(p − 1).
Then, the restriction of the function f to [0, 1] will be the, so called, Cantor function
(see [32]) corresponding to a certain Cantor set with Hausdorff dimension αq,p.

2.4 The canonical form of the Edgeworth polynomials

We note that in the non-stationary setting, (1.3) does not define the Edgeworth poly-
nomials uniquely since we could always modify the coefficients by terms of order
o(σ−r

N ). However, it turns out that one could make a canonical choice which a simple
computation of its coefficient in a quite general setting including additive functionals
of uniformly elliptic Markov chains considered here.

Given a nonconstant random variable S with finite moments of all orders, let a j (S)

denote the normalized cumulant

a j (S) = 1

Var(S)i j
d j

dt j

∣∣∣
t=0

ln
[
E

(
eit(S−E(S))

)]
.
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Theorem 13 There exist polynomialsP j (z; a3, a4, . . . , a j+2) such that for each inte-
ger r ≥ 1 there is a positive constant δr = δr (ε0, K ), K = supn ‖ fn(Xn, Xn+1)‖L∞ ,
such that if SN and ŜN are given by (2.3) and (2.6), respectively, then denoting

Pj,N (z) = P j (z, a3(SN ), . . . , a j+2(SN )), (2.9)

Er ,N (z) = �(z)+φ(z)
∑r

j=1
σ

− j
N Pj,N (z) and letting Êr ,N denote the Fourier trans-

form of Er ,N (z) we have

∫ δrσN

−δrσN

∣∣∣∣∣∣

E

(
eit ŜN

)
− Êr ,N (t)

t

∣∣∣∣∣∣
dt = O

(
σ

−(1+r)
N

)
. (2.10)

We note that our proofs of Theorems 5, 8 and 11 provide the Edgeworth expansions
with the above polynomials Pj,n .

The polynomialsP j are given inDefinition 21. In Sect. 5.4we show that for additive
functionals of the Markov chains considered in this paper the Edgeworth polynomials
have bounded coefficients. This is done by verifying Assumption 23 which ensures
the boundness for an abstract sequence of random variables.

We note that (2.10) holds without any additional assumptions. However, to ensure
that the term Er ,N (z) provides a good approximation to P(ŜN ≤ z) we need to control
the LHS of (2.10) on longer intervals of size Bσ r

N for an arbitrary B. In the case r = 1
the contribution of [−BσN , BσN ]\[−δ1σN , δ1σN ] is analyzed in [20]. The case r > 1
is addressed in Sects. 6 and 7 where we control the characteristic function of ŜN under
the assumptions of Theorems 8 and 11, respectively.

3 Background

3.1 A sequential Perron–Frobenius theorem

For all j ∈ N and z ∈ C, let R( j)
z the operator given by

R( j)
z g(x) = E[g(X j+1)e

z f j (X j ,X j+1)|X j = x] = R j (e
z f j (x,·)g)(x)

where g : X j+1 → R is a bounded function. Denote by Bj the space of bounded
functions on X j , equipped with the supremum norm ‖ · ‖∞. For every integer j ≥ 1,

n ∈ N and z ∈ C consider the n-th order iterates R j,n
z : Bj+n → Bj given by

R j,n
z = R( j)

z ◦ R( j+1)
z ◦ · · · ◦ R( j+n−1)

z . (3.1)

Let B∗
j be the dual space to the Banach space Bj and (R( j)

z )∗ : B∗
j → B∗

j+1 be the

dual operator of R(z)
j .

We have the following.
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Theorem 14 There exists a complex neighborhood U of 0 which depends only on
‖ f ‖∞ := sup j sup | f j | and ε0 (from the definition of the uniform ellipticity) so that

for any z ∈ U and an integer j ≥ 1 there exists a triplet λ j (z), h
(z)
j and ν

(z)
j consisting

of a nonzero complex number λ j (z), a complex function h(z)
j ∈ Bj and a continuous

linear functional ν(z)
j ∈ B∗

j satisfying that ν
(z)
j (1) = 1, ν(z)

j (h(z)
j ) = 1 and

R( j)
z h(z)

j+1 = λ j (z)h
(z)
j , and

(
R( j)
z
)∗

ν
(z)
j = λ j (z)ν

(z)
j+1

When z = t ∈ R then h(t)
j is strictly positive, ν(t)

j is a probability measure and there
exist constants a, b > 0, which depend only on ‖ f ‖∞ and ε0 so that λ j (t) ∈ [a, b]
and h(t)

j ≥ a. When t = 0 we have λ j (0) = 1 and h(0)
j = 1.

Moreover, this triplet is analytic and uniformly bounded. Namely, the maps

λ j (·) : U → C, h(·)
j : U → Bj and ν

(·)
j : U → B∗

j

are analytic, and there exists a constant C > 0 so that

max

(
sup
z∈U

|λ j (z)|, sup
z∈U

‖h(z)
j ‖∞, sup

z∈U
‖ν(z)

j ‖∞
)

≤ C (3.2)

where ‖ν‖∞ is the operator norm of a linear functional ν : Bj → C.
Furthermore, there exist constants C > 0 and δ ∈ (0, 1) such that for all n ≥ 1,

j ∈ N, z ∈ U and q ∈ Bj+n,

∥∥∥∥
R j,n
z q

λ j,n(z)
− (

ν
(z)
j+n(q)

)
h(z)
j

∥∥∥∥∞
≤ C‖q‖∞ · δn (3.3)

and ∥∥∥∥
(R j,n

z )∗μ
λ j,n(z)

− (
μh(z)

j

)
ν

(z)
j+n

∥∥∥∥∞
≤ C‖μ‖∞ · δn (3.4)

where λ j,n(z) =
n−1∏

k=0

λ j+k(z).

Remark 15 In the homogeneous case (i.e. when R j = R and f j = f do not depend
on j), Theorem 14 follows from the spectral gap of R, together with an appropriate
analytic perturbation theorem. This approach to proving limit theorems based on the
spectral theory of twisted Markov operators is called the Nagaev-Guivarch method,
and it dates back to [54].

The proof of Theorem 14 was given in [40, Ch.4&6] by a successive application
of the complex projective contraction. We remark that the arguments in [40, Ch.4&6]
formally require us to have a two sided sequence of operators, which can be achieved
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by setting X j = X1 and R( j)
z g(x) = E[g(X1)] for j ≤ 0. This amounts to taking

independent copies {Z j : j ≤ 0} of X1, setting X j = Z j and f j = 0 for j ≤ 0.

In fact, in [40, Ch.4&6] the setup included random operators R( j)
z = Rθ jω

z , when
ω ∈ � and (�,F , P, θ) is some invertible measure preserving system, which is
not necessarily ergodic. The main reason for considering random operators in [40],
and not just a sequence of operators, is that the random Perron–Frobenius theorem
was needed in the proof of the local CLT from [40, Ch. 2], where random operators
arise after a certain conditioning argument. The measurability of the resulting Perron–
Frobenius triplets λω(z), h(z)

ω , ν
(z)
ω as functions of ω played an important rule in that

proof, which lead to amore general setup of random operators in [40, Ch. 4], for which
there is meaning to such measurability. However, in our purely sequential setup such
measurability issues do not arises, and thus we can just repeat the arguments from [40,
Ch. 4] pertaining to a fixedω and ignore the ones addressing measurability. Finally, let
us note that Theorem 14 is also true when fn(x, y) = fn(x) depends only on the first
variable x and supn ‖ fn(Xn)‖L2 < ∞ (see, for instance, the proof of [19, Theorem
10]).

Remark 16 In the proof of the Berry–Esseen theorem and the Edgeworth expansions
it will be convenient to assume that an := E[ fn(Xn, Xn+1)] = 0. This amount to
replacing fn with fn − an , and hence to replacing R j

z with e−a j z R j
z and replacing

λ j (z) with e−za j λ j (z).

3.2 The structure constants

As it was mentioned in the introduction a new feature of our work is that we do not
make any assumptions on how slow variance of SN grows. In this section we recall a
few results from [20] which provide some geometric control on the variance.

By a random hexagon based at n we mean a tuple

Pn = (Xn−2,Xn−1,Xn;Yn−1,Yn,Yn+1)

where (Xn−2,Xn−1) and (Yn,Yn+1) are independent, (Xn−2,Xn−1) and (Xn−2,

Xn−1) are equality distributed, (Yn,Yn+1) and (Xn, Xn+1) are equality distributed
and Xn and Yn−1 are conditionally independent given the previous choices and are
sampled according to the bridge distributions

P(Xn ∈ E |Xn−1 = xn−1,Yn+1 = yn+1) = P(Xn ∈ E |Xn−1 = xn−1, Xn+1 = yn+1)

and

P(Yn−1 ∈ E |Xn−2 = xn−2,Yn = yn) = P(Xn−1 ∈ E |Xn−2 = xn−2, Xn = yn).

The balance �(Pn) of the hexagon is given by

�(Pn) = fn−2(Xn−2,Xn−1) + fn−1(Xn−1,Xn) + fn(Xn,Yn+1)

− fn−2(Xn−2,Yn−1) − fn−1(Yn−1,Yn) − fn(Yn,Yn+1).
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Next, let
u2n = E[�(Pn)

2]. (3.5)

Theorem 17 ([20], Theorem 2.1) There exist positive constants C1,C2,C3,C4 so that
for any m ≥ 0 and N ≥ 3,

C1

m+N∑

n=m+3

u2n − C2 ≤ VN = Var(SN − Sm) ≤ C3

m+N∑

n=m+3

u2n + C4. (3.6)

It turns out that the hexagon process also allows to control the characteristic function
of SN . Denote

dn(ξ)2 = E[|eiξ�(Pn) − 1|2] = 4E[sin2(ξ�(Pn)/2)], DN (ξ) =
N∑

n=1

d2n (ξ). (3.7)

Lemma 18 ([20], eq. (4.2.6)) There are constants C, c > 0 so that for each N and
ξ ∈ R, the characteristic function �N (ξ) = E

(
eiξ SN

)
satisfies

|�N (ξ)| ≤ Ce−cDN (ξ). (3.8)

3.3 Mixing andmoment estimates

Next we discuss the mixing properties of {Xn}.
Lemma 19 (Proposition 1.11 (2), [20]) There exist δ ∈ (0, 1) and C > 0 which
depends only on ε0 [from (2.1) and (2.2)] such that for all n, k ∈ N we have

∣∣Cov
(
fn(Xn, Xn+1), fn+k(Xn+k, Xn+k+1)

)∣∣ ≤ Aδk .

where A = C supn ‖ fn(Xn, Xn+1)‖2L2 .

Next, for each j and n consider the random variable S j,n given by

S j,n =
j+n−1∑

k= j

fk(Xk, Xk+1). (3.9)

Then S1,n = Sn .

Lemma 20 (Lemma 2.16, [20]) For every integer p ≥ 1 there are constants Cp, Rp >

0 which depend only on p, ε0 and supn ‖Yn‖L∞ so that for all j and n,

∣∣E
[(
S j,n − E(S j,n)

)p]∣∣ ≤ Rp + Cp

(
Var(S j,n)

)[p/2]
.

We note that Lemma 20 is also a consequence of [50, Theorem 6.17] together with
[20, Proposition 1.22].
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4 Edgewoth expansions under logarithmic growth assumptions

4.1 The Edgewoth polynomials

Let S be a random variable with finite moments of all orders. We recall that the k-th
cumulant of S is given by

�k(S) = 1

i k
dk

dtk
(
lnE[eit S])∣∣t=0.

Note that �k(aS) = ak�k(S) for every a ∈ R. Moreover, �1(S) = E[S], �2(S) =
Var(S) and for k ≥ 3 by (1.34) in [61], we have

�k(S) =
k∑

v=1

(−1)v−1

v

∑

k1+···+kv=k

k!
k1!k2! · · · kv!αk1αk2 · · · αkv (4.1)

where αm = αm(S) = E[Sm] (this formula is a consequence of the Taylor expansion
of the function ln(1 + z)).

The cumulants of order k ≥ 3 measure the distance of the distribution of Ŝ =(
S − E[S])/σ , from the standard normal distribution, where σ = √

Var(S), assuming

of course that σ > 0. We have �k(S) = 0 for all k ≥ 3 if and only if Ŝ is standard
normal, and we refer to [61] for conditions on �k(Ŝ)which insure that the distribution
function of Ŝ is close to the standard normal distribution function in the uniform
metric. We also refer to [2, 57] for expansions of expectations of smooth functions of
Ŝ which involve growth properties of cumulants.

Next, let us assume that E[S] = 0 and σ 2 = E[S2] > 0. Consider the function

�(t; S) = lnE[eit S/σ ] + t2/2.

Then �(0; S) = 0, �′
n(0; S) = E[S] = 0, �′′

n(0; S) = E[S2]/σ 2 − 1 = 0, and for
k ≥ 3 we have

�(k)(0) := dk

dtk
�(t; S)

∣∣
t=0 = i k�k(S)σ−k .

Thus, the k-th Taylor polynomial of �(t; S) is given by

Pk(t; S) =
k∑

j=3

i j� j (S)

j !σ j
t j =

k∑

j=3

i j a j (S)σ−( j−2)t j .
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where7 a j (S) = � j (S)

j !σ 2 . Consider the formal power series

�(t; S) =
∑

j≥3

i j� j (S)

j !σ j
t j =

∑

j≥3

i j a j (S)σ−( j−2)t j ,

where a j (S) is viewed as a variable independent of σ . This leads to the following
formal series

exp(�(t; S)) = 1 +
∑

j≥1

i j�(t; S) j

j ! = 1 +
∑

j≥1

σ− j A j (t; S)

where A j (t; S) is the polynomial given by

A j (t; S) =
j∑

m=1

1

m!
∑

k1,...,km∈A j,m

m∏

u=1

i ki aki (S)t j+2m

and A j,m is the set of all m-tuples (k1, . . . , km) of integers such that

ki ≥ 3 and
∑

i

ki = 2m + j .

Definition 21 The j-th Edgewoth polynomial S is the unique polynomial Pj (t; S) so

that the Fourier transform ofφ(t)Pj (t; S) is e−t2/2A j (t; S), whereφ(t) is the standard
normal density.

Notice that the polynomials A j (t; S) and Pj (t; S) depend on S only through the
first 3 j moments. Note also that A j (0; S) = 0 for all j .

Remark 22 In order to compute A j (t; S) for j ≤ k it is enough to expand ePk+2(t;S) to

a power series and represent it in the form 1+
∑

j≥1
σ

− j
n Ã j (t; S). Indeed, it follows

that Ã j (t; S) = A j (t; S) for all j ≤ k since

�(t, S) − Pk+2(t; S) = σ−(k+1)
∞∑

j=k+3

i j a j (S)σ−( j−k−3)t j .

Thus, to compute A j (t; S), j ≤ k we first write

ePk+2(t;S) = 1 +
∞∑

j=1

Pk+2(t; S) j

j ! .

7 The reason we divide � j (S) by σ 2 is that under suitable restrictions on S, the quantities |� j (S)σ−2|
will be bounded by a constant independent of S (see next section). This will be the case when S = Sn , for
which the latter quantities will be bounded in n. Here Sn are the sums considered in Sect. 2.
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Now, since Pk(t; S) has a factor8 σ−1, we can compute A j (t; S), j ≤ k by con-
sidering only the first k summands

1 +
k∑

j=1

Pk+2(t; S) j

j ! .

After writing the above expression in the form 1+
∑∞

j=1
σ− j Ā j,k(t; S) (this is a

finite sum) we have A j (t; S) = Ā j,k(t; S) for all j ≤ k.

In particular P3(t; S) = i3a3(S)t3

6σ
= A1(t; S)

σ
, whence

P1(t; S) = a3(S)

6
(t3 − 3t) = E[(S − E[S])3]

6σ 2 (t3 − 3t)

where we have used that the transform Fourier of (t3 − 3t)φ(t) is i3e− 1
2 ξ2ξ3.

4.2 A Berry–Esseen theorem and Edgeworth expansions via decay of
characteristic functions

Let Wn be a sequence of centered random variables so that limn→∞ Var(Wn) = ∞.
Let us set

�n(t) = �(t;Wn), �n(t) = �(t;Wn/σn), A j,n(t) = A j (t;Wn), Pj,n(t) = Pj (t;Wn),

whereσn = √
Var(Wn).Wewill prove here Edgeworth expansions under the following

logarithmic growth assumptions.

Assumption 23 For some k ≥ 3, for all j ≤ k there exist constants C j , ε j > 0 so that

sup
t∈[−ε jσn ,ε jσn ]

|�( j)
n (t)| ≤ C jσ

−( j−2)
n . (4.2)

Note that under Assumption 23 the polynomials A j,n and Pj,n , j ≤ k have bounded
coefficients (for that it is enough to only consider t = 0). For t = 0 conditions of the
form |�( j)

n (0)| = |� j (Wn/σn)| ≤ ( j !)1+γ σ
−( j−2)
n , γ ≥ 0 appear in literature [21,

23, 61] in the context of moderate deviations and related results (see also references
therein).

The relevance of Assumption 23 stems from the following facts proven in Sect. 4.4.

Proposition 24 Let Assumption 23 holdwith k = 3. Then there exists a constant C > 0
so that for every n ≥ 1 we have

sup
t∈R

|P(Wn/σn ≤ t) − �(t)| ≤ Cσ−1
n

8 Recall that a j (S) are viewed as constants.
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where � is the standard normal distribution and density function.

Proposition 25 Let r ≥ 1 be an integer. Let Assumption 23 hold with k = r + 3.
Suppose also that for every B > 0 and all δ > 0

∫

δ≤|x |≤Bσ r−1
n

|E(eixWn )/x |dx = o
(
σ−r
n

)
. (4.3)

Then

sup
t

∣∣∣∣∣∣
P(Wn/σn ≤ t) − �(t) −

r∑

j=1

σ
− j
n Pj,n(t)φ(t)

∣∣∣∣∣∣
= o

(
σ−r
n

)
(4.4)

where� and φ are the standard normal distribution and density function, respectively.

4.3 Auxillary estimates

Here we present several technical estimates needed in the proofs of Propositions 24
and 25.

We need two lemmata.

Lemma 26 Let k ≥ 3 be an integer and let Assumption 23 hold with this k. Set
Ak = max3≤ j≤k C j and Bk = k Ak. Then for every t ∈ [−σn, σn],

|Pk,n(t)| ≤ Bkσ
−1
n |t |3 = Bkt

2|t/σn|.

Therefore, for every t ∈ [−δkσn, δkσn], δk = 1
4Bk

, we have

|ePk,n(t)| ≤ et
2/4.

Lemma 27 Let Assumption 23 hold with k = 3 and set δ0 = min( 1
3C3

, ε3). Then for

every real t such that |t/σn| ≤ δ0 we have |e�n(t)| ≤ et
2/3.

Proof of Lemmas 26 and 27 Let us first prove Lemma 26. By taking t = 0 in (4.2) and
using that � j (aW ) = a jW we have |� j (Wn)| ≤ C jσ

2
n . Thus, if |t/σn| ≤ 1 then

|Pk,n(t)| ≤
k∑

j=3

|� j (Wn)|
j !σ j

n

|t | j ≤ Akt
2

k∑

j=3

|t/σn| j−2/ j ! ≤ Akt
2

k∑

j=3

|t/σn| ≤ Bk |t |3σ−1
n .

Hence, if |t/σn| ≤ 1
4Bk

= δk then |Pk,n(t)| ≤ t2/4 and so

∣∣∣ePk,n(t)
∣∣∣ ≤ et

2/4.
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Next, since the second Taylor polynomialP2,n(t) of�n around the origin vanishes,
we can write write�n(t) = P2,n(t)+R2,n(t) = R2,n(t), whereR2,n(t) is the Taylor
remainder of order 2 around the origin. Then by the Lagrange form of the Taylor

remainder we can writeR2,n(t) = t3�′′′
n (t1)
3! for some t1 such that |t1| ≤ |t |. Therefore,

by Assumption 23 we have

|R2,n(t)| ≤ C3|t |3σ−1
n = C3t

2 · |t/σn|, if |t | ≤ ε3.

Thus when also |t/σn| < 1
3C3

we have |�n(t)| = |R2,n(t)| < t2/3, and Lemma
27 follows. ��
Corollary 28 Under assumption 23 with k = 3 there exist constants c > 0 and δ > 0
so that for every natural n and t ∈ [−δ, δ] we have

|E[eitWn ]| ≤ e−ct2σ 2
n .

In fact, we can take c = 1
6 and δ = δ0, but we will not be using the specific form of

c and δ in this paper.

The key step in estimating the rate of convergence for the CLT is the following.

Proposition 29 Let r ≥ 0 be an integer and let Assumption 23 hold with k = r + 3.
Then there is a constant δr > 0 such that

∫ δrσn

−δrσn

∣∣∣∣∣
E[eitWn/σn ] − e−t2/2(1 + Qr ,n(t))

|t |

∣∣∣∣∣ dt = O(σ−r−1
n )

where for r = 0 we set Q0,n(t) = 0 and for r ≥ 1

Qr ,n(t) =
r∑

j=1

σ
− j
n A j,n(t).

Proof Write

E[eitWn/σn ] = e−t2/2e�n(t) = e−t2/2ePr+2,n(t)+Rr+2,n(t) (4.5)

whereRr+2,n(t) is the Taylor remainder of order r + 2 around 0. Using the Lagrange
form of Taylor remainders together with Assumption 23 we get that

Rr+2,n(t) = O
(
tr+3σ−(r+1)

n

)
. (4.6)

Next, by themean value theorem and Lemmas 26 and 27 there are constants δr > 0,
C0 > 0 and b0 ∈ (0, 1/2) so that if |t/σn| ≤ δr then

∣∣∣e�n(t) − ePr+2,n(t)
∣∣∣ ≤ C0e

b0t2 |Rr+2,n(t)|. (4.7)
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Moreover, by Lemma 26 and the Lagrange form of Taylor remainders,

∣∣∣∣∣∣
ePr+2,n(t) −

⎛

⎝1 +
r∑

j=1

P j+2,n(t) j

j !

⎞

⎠

∣∣∣∣∣∣
≤ Dre

b0t2σ−(r+1)
n |t |3(r+2) (4.8)

where Dr > 0 is some constant (when r = 0 then the left hand side vanishes since
P2,n(t) = 0). Combining (4.5), (4.6), (4.7) and (4.8), for every real t so that |t/σn| ≤ δr
we have

∣∣∣∣∣∣
E[eitWn/σn ] − e−t2/2

⎛

⎝1 +
r∑

j=1

P j+2,n(t)
j

j !

⎞

⎠

∣∣∣∣∣∣
≤ Ce−ct2σ

−(r+1)
n max

(
|t |, |t |(r+3)(r+2)

)

where c = 1/2 − b0 > 0. Next, by Remark 22, we have

r∑

j=1

Pr+2,n(t) j

j ! = Qr ,n(t) + max(|t |, |t |r(r+2))O
(
σ−r−1
n

)

where the term max(|t |, |t |r(r+2))O(σ−r−1
n ) comes from the terms which include

powers of σ−1
n larger than r (when r = 0 both the left hand side and Qr ,n(t) equal 0).

We conclude that

∣∣∣E[eitWn/σn ] − e−t2/2(1 + Qr ,n(t))
∣∣∣ ≤ Ce−ct2σ−(r+1)

n max
(
|t |, |t |(r+3)(r+2)

)
.

Therefore,

∫ δrσn

−δrσn

∣∣∣∣∣
E[eitWn/σn ] − e−t2/2(1 + Qr ,n(t))

|t |

∣∣∣∣∣ dt

≤ Cσ−(r+1)
n

∫ ∞

−∞
e−ct2

(
1 + |t |(r+3)(r+2)−1

)
dt ≤ C ′σ−(r+1)

n

completing the proof of the proposition. ��

4.4 Proofs of Propositions 24 and 25

Proof of Proposition 24 The first step in the proof is quite standard.We use generalized
Esseen inequality [29, §XVI.3]. Let F : R → R be a probability distribution function
and G : R → R be a differential function with bounded derivative so that G(−∞) =
0. Let f (t) = ∫

eitxdF(x) and g(t) = ∫
eitxdG(x) be the corresponding Fourier
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transforms. Then for every T > 0 we have

sup
x∈R

|F(x) − G(x)| ≤ 2
∫ T

−T

∣∣∣∣
f (t) − g(t)

t

∣∣∣∣ dt + 24‖G ′‖∞
πT

. (4.9)

Taking F to be the distribution of Wn/σn , G to be the standard normal distribution
and Tn = δ1σn where δ1 comes from Lemma 26 we conclude that Proposition 24 will
follow if we prove that

∫ δ1σn

−δ1σn

∣∣∣∣∣
E[eitWn/σn ] − e−t2/2

t

∣∣∣∣∣ dt ≤ Cσ−1
n (4.10)

for some constant C . Finally, (4.10) follows from Proposition 29 with r = 0. ��
Proof of Proposition 25 Relying on Proposition 29, the proof proceeds essentially in
the same way as [27, 29]. We provide the details for readers’ convenience.

Let F = Fn be the distribution function of Wn/σn , and G = Gn,r be the function
whose Fourier transform is e−t2/2(1+ Qn,r (t)), where Qn,r comes from Proposition
29. Then Gn,r has the form

Gn,r (t) = �(t) +
r∑

j=1

σ
− j
n Pj,n(t)φ(t)

where Pj,n’s are the Edgeworth polynomials of Wn .
Let ε > 0 and B = 1/ε. Applying (4.9) with F = Fn , G = Gn and T = Bσ r

n we
obtain

sup
t

∣∣∣∣∣∣
P(Wn/σn ≤ t) − �(t) −

r∑

j=1

σ
− j
n Pj,n(t)φ(t)

∣∣∣∣∣∣
≤ I1 + I2 + I3 + O(ε)σ−r

n

where for δ small enough

I1 =
∫ δσn

−δσn

∣∣∣∣∣
E[eitWn/σn ] − e−t2/2(1 + Qr ,n(t))

t

∣∣∣∣∣ dt

I2 =
∫

δσn≤|t |≤Bσ r
n

∣∣∣∣
E[eitWn/σn ]

t

∣∣∣∣ dt, I3 =
∫

|t |≥σnδ

e−t2/2
∣∣∣∣
1 + Qr ,n(t)

t

∣∣∣∣ dt .

By Proposition 29 we have I1 = o(σ−r
n ), (4.3) gives that I2 = o(σ−r

n ), while

I3 = O(e−cσ 2
n ) for some c > 0 since Qr ,n is a polynomial with bounded coefficients

and degree depending only on r . ��
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5 Application to uniformly elliptic inhomogeneousMarkov chains

5.1 Verification of Assumption 23

In this section we consider uniformly bounded additive functional SN of a Markov
chain Xn which satisfies (2.1) and (2.2). We prove the following.

Proposition 30 The sequence of random variables Sn verifies Assumption 23 for every
k, namely, if �n(t) = lnE[eit Sn/σn ] + t2/2 then for every k ≥ 3 there exist constants
δk,Ck > 0 so that for all n,

sup
t∈[−σnδk ,σnδk ]

|�(k)
n (t)| ≤ Ckσ

−(k−2)
n .

The proof of Proposition 30 is based on the construction of sequential pressure
functions described in Sect. 5.2.

Remark 31 In [61, Theorem 4.26] the authors show that if Sn =
∑n

j=1
Y j/σn , and

{Y j } is an exponentially fast φ-mixing uniformly bounded centered Markov chain,
such that Var(Y j ) is bounded away from 0 then there is a constant C such that for all
m ∈ N |� j (Sn/σn)| ≤ Cmm!σ−(m−2)

n . It follows that the function �n is real analytic
and, hence, Assumption 23 holds for every k. By [20, Proposition 1.22], the Markov
chains {Xn} considered in this paper are also exponentially fast φ-mixing, however,
we consider functionals Yn = fn(Xn, Xn+1) whose variance can be small, and so
Proposition 30 cannot be derived from [61, Theorem 4.26] despite the related setup.

5.2 The sequential pressure function. Definition and basic properties

Recall Theorem 14. For every j ≥ 1, denote by μ j the distribution of X j (which
is a probability measure on X j ). Recall that λ j (z) is uniformly bounded in j and
λ j (0) = 1. Let � j (z) denote the analytic branch of the logarithms of λ j (z), such that
� j (0) = 0. We call � j (z) the sequential pressure functions. Then

sup
j

sup
|z|≤s0

|� j (z)| ≤ c0 (5.1)

where s0 and c0 are some positive constants. We note that all the derivatives of � j at
z = 0 are real numbers, since the function λ j (z) is positive for real z’s.

Remark 32 ByRemark 16, upon replacing fn with fn−E[ fn(Xn, Xn+1)], the resulting
pressure function becomes� j (z)−E[ fn(Xn, Xn+1)]z. This has no affect on the value
of the pressure function at z = 0 and on the derivatives of it of any order larger than
1. Thus, it will essentially make no difference in the following arguments if we have
already centralized fn or not.
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Let j, n be positive integers. Set

� j,n(z) = lnE[ezS j,n ], � j,n(z) =
j+n−1∑

s= j

�s(z)

where S j,n is defined in (3.9).

Lemma 33 There is a constant a > 0 with the following property: for every integer
k ≥ 0 there exists ck > 0 such that for each j, n for all complex z so that |z| ≤ a we
have ∣∣�(k)

j,n(z) − �
(k)
j,n(z)

∣∣ ≤ ck (5.2)

where g(k)(z) denotes the k-th derivative of a function g(z).

Note that for k = 0, 1, 2 and z = 0 we have �
′
j,n(0) = E[S j,n], �

′′
j,n(0) =

Var(S j,n) while for larger k’s �
(k)
j,n(0) is just the k-th cumulant of S j,n . In particular,

�′
1,n(0) = E(Sn) + O(1) and �′′

1,n(0) = σ 2
n + O(1).

Proof Since h j (0) = 1 and the norms ‖h(z)
j ‖∞ are uniformly bounded in j around 0,

it follows from the Cauchy integral formula that
∂h j
∂z is uniformly bounded around the

origin. Hence, if δ0 is small enough then for any complex z with |z| ≤ δ0 we have

1

2
< inf

j

∣∣μ j
(
h(z)
j

)∣∣. (5.3)

Recall that E[ezS j,n ] = μ j (R
j,n
z 1). By (3.3), if |z| is sufficiently small then for all

j and n we have

E[ezS j,n ] = e
∑ j+n−1

s= j �s (z)
(
μ j

(
h(z)
j

) + δ j,n(z)
)

(5.4)

where δ j,n is an analytic function so that |δ j,n(z)| ≤ Cδn for someC > 0 and δ ∈ (0, 1)

which do not depend on j and n. In fact, since h(0)
j = 1 we have δ j,n(0) = 0 and so

Cauchy integral formula also implies |δ j,n(z)| ≤ C |z|δn . Using (5.3), we can take the
logarithms of both sides of (5.4) and derive that when |z| is sufficiently small, there is
a constant c0 so that ∣∣� j,n(z) − � j,n(z)

∣∣ ≤ c0 (5.5)

Applying the Cauchy integral formula once more we conclude that for each k there
exists a constant ck > 0 so that for every j and n we have

∣∣�(k)
j,n(z) − �

(k)
j,n(z)

∣∣ ≤ ck (5.6)

and the lemma follows. ��
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5.3 The derivatives of the pressure function around the origin

Here we prove several useful auxiliary estimates.

Lemma 34 Let k ≥ 2 be an integer, and let S be a real-valued random variable with
finite first k moments. Let us define ϕ(t) = E

(
eit S

)
and �(t) = ln ϕ(t). Then there

exists a constant Dk which depends only on k so that with r0 = 1

2
√

E(S2)
we have

sup
t∈[−r0,r0]

|�(k)(t)| ≤ DkE[|S|k].

Proof We first recall that for the characteristic function ϕ(t) = E
(
eit S

)
of a random

variable S with finite first k moments and any real t we have

|ϕ(t) − 1| ≤ |t |E[|S|] ≤ |t |‖S‖L2

and that for j = 0, 1, 2, . . . , k we have

|ϕ( j)(t)| ≤ E[|S| j ]. (5.7)

Next, let �(t) = ln ϕ(t) and r0 = 1

2
√

E(S2)
. Then |ϕ(t)| ≥ 1

2 for all t ∈ [−r0, r0].
By Faá di Bruno’s formula (see [48, Section 1.3]), for every t ∈ [−r0, r0] we have

|�(k)(t)| =
∣∣∣∣∣∣

∑

m1,...,mk

k!
∏k

j=1(m j !( j !)m j )
· 1

ϕ(t)
∑k

j=1 m j

k∏

j=1

(
(i) jE[S j eit S]

)m j

∣∣∣∣∣∣

where (m1, . . . ,mk) range over all the k-tuples of nonnegative integers such that∑
j
jm j = k. Now the lemma follows from (5.7) and the Hölder inequality. ��

Lemma 35 Fix some integer k ≥ 2 and let B1 < B2 be constants. Then if B1 is
sufficiently large there are constants D and r0 depending only on B1, B2 and k so that
for every t ∈ [−r0, r0] and each j, n ∈ N such that B1 ≤ Var(S j,n) ≤ B2, we have

∣∣�(k)
j,n(i t)

∣∣ ≤ D.

Proof Let � j,n(t) = lnE[eit S j,n ]. Then, in the notation of Lemma 33, � j,n(t) =
� j,n(i t). Applying Lemma 34 with S = S j,n and using (5.6) and Lemma 20 we
obtain that for every t ∈ [−r0, r0] we have

∣∣�(k)
j,n(i t)

∣∣ ≤ ck + ∣∣�(k)
j,n(t)

∣∣ ≤ ck + DkE
[|S j,n|k

] ≤ ck + C
(
Var(S j,n)

)k/2

≤ ck + CBk/2
2

competing the proof of the lemma. ��
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Corollary 36 For every k ≥ 2 there exist constants εk > 0 and Ck > 0 so that for
each n ∈ N and t ∈ [−εk, εk],

∣∣�(k)
1,n(i t)

∣∣ ≤ Ckσ
2
n .

Hence, with �̃n(t) = �1,n(i t/σn) we have

sup
t∈[−εkσn ,εkσn ]

∣∣�̃(k)
n (t)

∣∣ ≤ Ckσ
−(k−2)
n .

Proof Fix some k ≥ 2. Let B1 and B2 be large constants so that Lemma 35 holds.
Let r0 be the constant specified in Lemma 35. Let I1, I2, . . . , Imn be disjoint intervals
whose union cover {1, . . . , n} so that

B1 ≤ Var(SIl ) ≤ B2

where for each l we set SIl =
∑

j∈Il
f j (X j , X j+1). Note that it is indeed possible

to find such intervals if B1 and B2/B1 are sufficiently large because of Theorem 17.
Indeed, with u2n denoting the structural constants appearing there, there are constants
C1,C2 > 0 so that for any n ≥ 3 and j ,

C−1
1

j+n−1∑

m= j

u2m − C2 ≤ Var(S j,n) ≤ C1

j+n−1∑

m= j

u2m + C2. (5.8)

It is also clear that mn/σ
2
n is uniformly bounded away from 0 and ∞ (if n is large

enough). Now, by Lemma 35 there are εk > 0 and Ak > 0 so that for each 1 ≤ l ≤ mn

and t ∈ [−εk, εk],
∣∣∣∣∣∣

∑

j∈Il
�

(k)
j (i t)

∣∣∣∣∣∣
≤ Ak .

Hence, |�1,n(i t)| ≤
∑

l

∣∣∣∣∣∣

∑

j∈Il
�

(k)
j (i t)

∣∣∣∣∣∣
≤ Akmn ≤ Ckσ

2
n . ��

5.4 Verification of Assumption 23

Proof of Proposition 30 Since both sides of (5.4) with j = 1 are analytic, |δ1,n(z)| ≤
C |z|δn for some δ ∈ (0, 1) and C > 0. Moreover μ1(h

(0)
1 ) = 1. Hence, if |z| is small

enough then

lnE[ezSn ] = �1,n(z) + Gn(z)
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where Gn(z) = ln
(
μ1(h

(z)
1 ) + δ1,n(z)

)
, which is an analytic and uniformly bounded

function around the origin (uniformly in n). Thus Proposition 30 follows from Corol-
lary 36. ��
Corollary 37 Let r ≥ 1. Suppose that for any B > 0 and δ > 0 small enough,

∫

δ≤|x |≤Bσ r−1
n

|E(eixSn )/x |dx = o
(
σ−r
n

)
. (5.9)

Then

sup
t

∣∣∣∣∣∣
P((Sn − E[Sn])/σn ≤ t) − �(t) −

r∑

j=1

σ
− j
n Pj,n(t)φ(t)

∣∣∣∣∣∣
= o

(
σ−r
n

)
(5.10)

where� and φ are the standard normal distribution and density function, respectively,
and Pj,n(t) = Pj (t, Ŝn) are the Edgeworth polynomials of S̄n = Sn − E[Sn].

Corollary 37 follows from Proposition 25 since Sn verifies Assumption 23.

5.5 A Berry–Esseen theorem and Expansions of order 1

Proof of Theorems 4 and 5 First, Theorem 4 follows from Propositions 30 and 24.
Next, applying [20, Theorem 3.5] and [20, (4.2.7)] we see that if { fn} is irreducible

then condition (5.9) with r = 1 is satisfied. This proves Theorem 5. ��

6 High order expansions for summands with small essential
supremum, proof of Theorems 8 and 9

6.1 Existence of expansions

Recall (3.7). In order to prove Theorem 8, we need the following:

Lemma 38 [20, eq. (3.3.7)] ∃δ > 0 s.t. if ‖ fn‖∞|ξ | ≤ δ then d2n (ξ) ≥ ξ2u2n
2

.

Proof of Theorem 8 Let us fix some r < 1
1−2β , and take some r < r0 < 1

1−2β . We
claim that there are constants c,C > 0 so that for all N large enough we have

|�N (ξ)| ≤ exp
(
−cξ2VN

)
for |ξ | ≤ Cσ

r0−1
N .

This is enough for the Edgeworth expansion of order r to hold by Corollary 37.
In order to prove the claim, let N0 = N0(N ) be the smallest positive integer such

that σ
r0−1
N ‖ fn‖∞ ≤ δ for all n > N0 where δ is the number from Lemma 38. Then,
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since ‖ fn‖ = O(n−β)

N0 = O

(
σ

r0−1
β

N

)
= O

(
V

r0−1
2β

N

)
. (6.1)

Let us show now that N0 = o(N ), which in particular yields that N0 < N/2 if N is
large enough. The assumption that ‖ fn‖∞ = O(n−β) also implies that u2n = O(n−2β)

and so by (3.6),
VN = O(N 1−2β). (6.2)

Combining this with r0 < 1
1−2β we see that σ

r0−1
β

N = O(N κ), where

κ = (r0 − 1)

2β
(1 − 2β) = 1 − 1 − r0(1 − 2β)

2β
< 1. (6.3)

Therefore, N0 = O(N κ).
Next, let us write

N∑

n=N0+1

u2n =
3∑

k=0

∑

N0<n≤N ,
n mod 4=k

u2n :=
3∑

k=0

UN0,N ,k .

Let kN be so that UN0,N ,kN = max{UN0,N ,k : 0 ≤ k ≤ 3}. Then by (3.6) there are
constants C, D > 0 so that

V (SN − SN0) ≤ CUN0,N ,kN + D. (6.4)

Combining (3.8), Lemma 38, and (6.4) we see that the characteristic function of
SN satisfies

|�N (ξ)| ≤ exp
(
−cξ2V (SN − SN0)

)
for |ξ | ≤ Cσ

r0−1
N (6.5)

where C > 0 is some constant which depends on β, r0, and ε0 but not on ξ or N . Note
that by Lemma 19 we have

VN = VN0 + V (SN − SN0) + 2Cov(SN0 , SN − SN0) = VN0 + V (SN − SN0) + O(1).

It follows that

V (SN − SN0) = VN − VN0 + O(1).

On the other hand, by (6.2),

VN0 ≤ N 1−2β
0 ≤ C ′V κ

N
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where κ is given by (6.3). Therefore V (SN − SN0) = VN + O
(
V κ
N

)
. Combining this

with (6.5) gives

|�N (ξ)| ≤ exp
(
−cξ2(VN + O(V κ

N ))
)
for |ξ | ≤ Cσ

r0−1
N

and the claim follows since κ < 1. ��

6.2 Optimality

Proof of Theorem 9 Fix some 0 < β < 1/2, and take an integer s > 1
1−2β . Then

sβ := (s − 1)

(
1

2
− β

)
> β.

Take c ∈ (β, sβ). Set qn = 2[c log2 n] and pn = [n−βqn]. Let

an = pn
qn

.

Since c > β we have

n−β(1 + o(1)) = n−β − 2−[c log2 n] ≤ an ≤ n−β.

Let Yn be an iid sequence of random variables so that P(Yn = ±1) = 1
2 . Set

Xn = anYn = pn
qn

Yn .

Then, E[Xn] = 0, |Xn| = an � n−β and V (Xn) = a2n � n−2β . Next, since qn
divides qN if n ≤ N we have

qN SN = SN2
[c log2 N ] ∈ Z

and so the minimal jump of SN is at least 1
qN

. Therefore, if αN is a possible value of
SN then

P
(
SN ∈ (αN , αN + 1

2
2−[c log2 N ]]) = 0.
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On the other hand, if SN obeyed an expansion of order s then, choosing αN =
O(σN ) and denoting εN = 2−[c log2 N ]σ−1

N , we would get

0 = P
(
SN ∈ (αN , αN + 1

2
2−[c log2 N ]]) = P

(
SN/σN ∈ (αN/σN , αN/σN + εN ])

= P
(
SN/σN ≤ αN/σN + εN

) − P
(
SN/σN ≤ αN/σN

)

= �(αN/σN + εN ) − �(αN/σN )

+ 1√
2π

s∑

j=1

(
Pj,N (αN/σN + εN )e− 1

2 (αN /σN+εN )2 − Pj,N (αN/σN )e− 1
2α2

Nσ−2
N

)
σ

− j
N

+o(σ−s
N ) ≥ CεN + o(σ−s

N ) ≥ C ′2−c log2 Nσ−1
N + o(σ−s

N ).

Since σ 2
N if of order

∑N

n=1
n−2β � N 1−2β we must have

c >
(s − 1)(1 − 2β)

2
= sβ

which contradicts that c ∈ (β, sβ). Taking s = s(β) to be the smallest integer such
that s > 1

1−2β we see that the expansions of orders r > 1
1−2β do not hold. ��

7 High order expansions for Hölder continuous functions on
Riemannianmanifolds

7.1 Distribution of Hölder functions

The following estimate plays an important role in the proof of Theorem 11.

Lemma 39 For every Riemanian manifold X there is a constant c such that for each
real-valued function ϕ on X with ‖ϕ‖α ≤ 1 and each t, ε

ν(ϕ ∈ [t, t + ε]) ≥ cε1/α min(ν(ϕ ≥ t + ε), μ(ϕ ≤ t))

where ν is the normalized Riemannian volume on X .

Proof Since X is compact, it can be covered by a finite number of coordinate charts.
Hence for any given ε′ we can coverX by theCr images of coordinate cubes of size ε′
so that the multiplicity of the cover is bounded by a constant K which is independent
of ε′.

Now, let ε′ = δε1/α where δ is so small that the diameter of each partition element
is smaller than ε1/α/2.Consider the cover ofX described above and let A be the union
of all cover elements Q such that ϕ(x) ≥ t + ε

2 for each x ∈ Q and S be the union of
all partition elements which intersect ∂A. By the Isoperimetric Inequality,

Area(∂A) ≥ h

K
min(ν(A), ν(Ac)) ≥ h

K
min(ν(ϕ ≥ t + ε), ν(ϕ ≤ t))
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where h is the Cheeger constant of X . On the other hand, there exists a constant κ

which does not depend on ε or α so that

Area(∂A) ≤ Area(∂S) ≤ Kκε1/αν(S)

since for each cover element Q ⊂ S we have

Area
(
∂S

⋂
∂Q

) ≤ κε1/αν(Q).

Since ϕ ∈ [t, t + ε] on S the result follows. ��

7.2 Proof of Theorem 11

For the rest of Sect. 7 we consider the following setting. Let {Xn} evolve on a
compact Riemannian manifold M with transition densities pn(x, y) bounded and
bounded away from 0. Let us assume that fn : M × M → R satisfy ‖ fn‖α :=
max(sup | fn|, vα( fn)) ≤ 1 for some 0 < α ≤ 1. Denote �N (ξ) = E(eξ SN ).

Proposition 40 For all 0 < α ≤ 1 and δ > 0 there exists C1(α, δ), c1 = c1(α, δ) > 0
so that for every n ∈ N and ξ ∈ R with |ξ | ≥ δ we have

|�N (ξ)| ≤ C1 exp
(
−c1VN |ξ |1− 1

α

)
.

Theorem 11 follows by Proposition 40 together with Corollary 37.
The main step in the proof of Proposition 40 is the following.

Lemma 41 For every Riemanian manifold X for every δ > 0 there is a constant ĉ
such that for each real-valued function ϕ on X with ‖ϕ‖α ≤ 1 and each ξ such that
|ξ | ≥ δ,

∫∫
sin2

(
ξ [ϕ(x1) − ϕ(x2)]

2

)
ν(x1)dν(x2) ≤ ĉ|ξ |1−(1/α)

∫∫
[ϕ(x1) − ϕ(x2)]

2 ν(x1)dν(x2).

where ν is the normalized Riemannian volume on X .

The lemmawill be proven inSect. 7.3.Herewe complete the proof of the proposition
based on the lemma.

Let μ denote the normalized Riemannian volume on M . Fix some n ∈ N and
consider a random hexagon Pn = (xn−2, xn−1, xn; yn−1, yn, yn+1) based at n.

Recall (3.5) and (3.7). By uniform ellipticity we have

u2n �
∫

�2(Pn)dμ6(Pn), d2n (ξ) �
∫

sin2
(

ξ�(Pn)

2

)
dμ6(Pn). (7.1)
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where

�(Pn) = fn−2(xn−2, xn−1) + fn−1(xn−1, xn) + fn(xn, yn+1)

− fn−2(xn−2, yn−1) − fn−1(yn−1, yn) − fn(yn, yn+1)

is the balance of Pn .
Applying Lemma 41 with X = M × M and

φxn−2,yn+1(xn−1, xn) = fn−2(xn−2, xn−1) + fn−1(xn−1, xn) + fn(xn, yn+1)

and integrating with respect to xn−2 and yn+1 we obtain d2n (ξ) ≥ Cξ1−(1/α)u2n .
Now Proposition 40 follows from (3.8).

7.3 The proof of Lemma 41

Set

�(x1, x2) = |ϕ(x1) − ϕn(x2)|, ε = ξ−1, u2 =
∫∫

�2(x1, x2)ν(x1)dν(x2),

d2(ξ) =
∫∫

sin2
(

�(x1, x2)

2ε

)
ν(x1)dν(x2).

Decompose X × X = A1 ∪ A2 where A1 =
{
(x1, x2) : � ≤ ε

8

}
and A2 is its

complement. We split the proof of Lemma 41 into two cases.

Case 1 If the integral of �2 overA1 is larger than the integral overA2 then using that∣∣ sin t
t

∣∣ ≥ c for |t | ≤ 1/8 we get

d2(ξ) ≥
∫∫

A1

sin2
�(x1, x2)

2ε
dν(x1)dν(x2) ≥ c2ξ2

4
u2.

Case 2 Now we assume that the integral over A2 is larger. Let

lk = 2kε, k∗ = argmax [lk(ν × ν)(� ∈ [lk, 2lk))] , l = lk∗

and

v = l(ν × ν)(� ∈ [l, 2l)).

Note that under the assumptions of Case 2 we have

u2 ≤ C0

log2(1/ε)∑

k=−3

∑

k

l2k (ν × ν)(� ∈ [lk, 2lk)) ≤ C0v

log2(1/ε)∑

k=−3

lk ≤ Cv. (7.2)
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Next, let m denote a median of ϕ with respect to ν, ϕ̃ = ϕ − m and

�1 = {ϕ̃ ≤ l/2}, �2 = {ϕ̃ ∈ (−l/2, l/2)}, �3 = {ϕ̃ ≥ l/2}.

Let us assume that μ(�3) ≥ μ(�1), the case where the opposite inequality holds
being similar. Since �(x1, x2) < l for (x1, x2) ∈ �2 × �2 we have

(ν × ν)(� ≥ l) ≤ 2 [ν(�1) + ν(�3)] ≤ 4ν(�3).

Let

�′
j = {ϕ̃ ∈ [( j + 0.1)ε, ( j + 0.2)ε]} �′′

j = {ϕ̃ ∈ [( j + 0.3)ε, ( j + 0.4)ε]}.

Sincem is a median, ν(�1∪�2) ≥ 1

2
. Hence Lemma 39 shows that that for j ≤ l

4ε

we have
ν(�′

j ) ≥ cε1/αν(�3), ν(�′′
j ) ≥ cε1/αν(�3). (7.3)

On the other hand there is a constant δ0 > 0 such that for each x1 ∈ X we have that

sin2
(

�(x1, x2)

2ε

)
≥ δ0 either for all j and all x2 ∈ �′

j or for all j for all x2 ∈ �′′
j . It

follows that if A2 dominates then

d2(ξ) ≥ δ0 min

⎛

⎝
l/4ε∑

j=1

ν(�′
j ),

l/4ε∑

j=1

ν(�′′
j )

⎞

⎠

≥ ĉlμ(�3) = c̃ε1/α−1l(ν × ν)(� ∈ [l, 2l)) = c̃ε1/α−1v.

Combining this with (7.2) we obtain that ifA2 dominates then d2(ξ) ≥ cε1/α−1u2.
Combining the estimates of cases 1 and 2 we obtain the result. ��

7.4 Cantor functions

In order to show the optimality of Theorem 11 we need to consider a function f for
which the estimate of Lemma 41 is optimal. Moreover, we want f to grow on a set
of small Hausdorff dimension and we want the distribution of f to have atoms at
values which are commensurable with each other. It turns out that Cantor functions
studied in [22, 32] satisfy these conditions. So in this subsection we describe briefly
the construction and properties of Cantor functions.

Let us fix some integers p ≥ 3, k ≥ 1 and let q = (p − 1)k. Set

αp,p+q = 1

logp(q + p)
= ln p

ln(p + q)
.

On [0, 1], let Cp,p+q (where q = (p − 1)k) be the Cantor set of all numbers of the

form x =
∑∞

j=1

(k + 1)a j

(p + q) j
, a j = 0, 1, . . . , p − 1. In other words Cp,p+q consists
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of all numbers in [0, 1] which can be written in base p + q so that all its digits are
divisible by k + 1.

Let f be the corresponding Cantor function ( [32]). Namely, for x ∈ Cp,p+q we
have

f (x) =
∑

j

a j

p j
, if x =

∑

j

(k + 1)a j

(p + q) j
,

while outside Cp,p+q we have

f (x) = sup
y∈Cp,p+q , y≤x

f (y) =
n∑

j=1

b j
p j

where x =
∑

j

x j
(p + q) j

, b j =
[

x j
k + 1

]
+ 1

and n is the first index so that xn is not divisible by k + 1. By [32, Theorem 2]
(see also [22]), f is Hölder continuous with exponent αp,q , which is also the the
Hausdorff dimension of Cp,q+p. Note that f is increasing (see [32, Theorem 1]) and
that f (0) = 0 and f (1) = 1.

Lemma 42 For each n ∈ N

Leb{x ∈ [0, 1] : pn f (x) /∈ Z} =
(

p

p + q

)n

. (7.4)

Proof To prove the lemma we explain the inductive construction of f by following
the recursive construction of the set Cp,q+p. First, we split [0, 1] into p + q closed
intervals I1, I2, . . . , Ip+q of the same length 1

p+q so that Is is to the left of Is+1 for
each s. Next, define intervals J1, J2, . . . , J2p+1 as follows: we define J1 = I1, and
then inductively J2l+1 = Isl+k+1, if J2l−1 = Isl . For 1 ≤ l < p we define and J2l to
be the union of the intervals Is between J2l−1 and J2l+1. On J2l we define f |J2l = l

p .
The reconstruction of the function f now proceeds by induction. Suppose that at

the n-th step of the construction f was additionally defined on a union of closed inter-
vals U1, . . . ,Ujn , jn = (p − 1)pn−1 of length k(p + q)−n so that f |Uj = j p−n ,
Uj is to the left of Uj+1, and the gap between Uj and Uj+1 is (p + q)−n , where
U0 = {0} and Ujn+1 = {1}. Split the interval between Uj and Uj+1 into equal
p + q intervals I1, j,n+1, I2, j,n+1, . . . , Ip+q, j,n+1 of length (p + q)−n−1 so that
Is, j,n+1 is to the left of Is+1, j,n+1 for each s. In the (n + 1)-th step the inter-
vals J1, j,n+1, J2, j,n+1, . . . , J2p+1, j,n+1 are defined as follows: we define J1, j,n+1 =
I1, j,n+1, and then inductively J2l+1, j,n+1 = Isl+k+1, j,n+1, if J2l−1, j,n+1 = Isl , j,n+1.
For 1 ≤ l < p we define and J2l, j,n+1 to be the union of the intervals Is, j,n+1 between
J2l−1, j,n+1 and J2l+1, j,n+1. On J2l, j,n+1 we define

f |J2l, j,n+1 = j p + l

pn+1 = j

pn
+ l

pn+1 .

In view of the above recursive construction of f , we obtain (7.4) since in the (n+1)-
th step there are pn intervals of length (p + q)−n on which f has not been defined
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yet, and the values of f in all the steps following the n-th step do not have the form
s/pn for s ∈ Z. ��

7.5 Optimality

Proof of Theorem 12 Wefirst observe that it is enough to prove Theorem 12 for a dense
set of numbers α in (0, 1). Indeed, if the theorem holds for α belonging to a dense set
A, given α0 ∈ (0, 1) and r > α0+1

1−α0
, we can find α ∈ A so that α > α0 and r > α+1

1−α
.

Now, the α-Hölder continuous function we get from Theorem 12 with this α is also
α0-Hölder continuous so the result follows.

Next, let us consider the set

A =
{

ln p

ln(p + q)
: p, q ∈ N, p ≥ 3, q|(p − 1)

}
.

This set is dense in (0, 1). Indeed, let 0 < a < b < 1. Then, using that ln p
ln(q+p) =

1
logp(q+p) , for all p ≥ 3 and denoting k = q

(p−1) , k ∈ N we have

1

logp(q + p)
∈ (a, b) ⇐⇒ p1/b−1 < k + 1 − 1

p
< p1/a−1.

Since limp→∞ p1/a−1− p1/b−1 = ∞, we can find a number k satisfying the above
inequality provided that p is large enough.

Thus we fix some integers p ≥ 3, k ≥ 1 and let q = (p − 1)k. Set

α = αp,p+q = 1

logp(q + p)
= ln p

ln(p + q)
.

Let f : [−1, 1] → [−1, 1] be the odd function whose restriction to [0, 1] is the
Cantor function from Sect. 7.4. We will now show that Sn f does not obey Edgworth
expansions of any order r > α+1

α−1 . Let r = r(α) be the smallest integer so that r > α+1
α−1 ,

where α = αp,q . Let us take α
1−α

< c < r
2 − 1

2 and set kN = p[c logp N ]. Then

P(kN SN /∈ Z) ≤ NP(kN f /∈ Z) = N

(
p

p + q

)[c logp N ]
= O

(
N 1−[(1/α)−1]c) = oN→∞(1)

where the second step follows from Lemma 42 and the last step follows since

c

(
1

α
− 1

)
= c(1 − α)

α
> 1.

Let pN = p[c logp N ]σN = kNσN which is of order Nc+1/2. Then

lim
N→∞ P(SN/σN ∈ (pN )−1

Z) = 1.
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Thus, by considering points in (pN )−1
Z which are of order 1, we find that if C is

large enough then denoting

mN = argmax{P(SN/σN = k/pN ) : |k/pN | ≤ C}

and recalling that c + 1
2 > r we have

P(SN/σN = mN/pN ) ≥ C1 p
−1
N ≥ C2N

−c−1/2 ≥ C3σ
−r
N (7.5)

where C1,C2 and C3 are positive constants. On the other hand, if SN obeyed expan-
sions of order r then

P

(
SN
σN

= mN

pN

)
≤ lim sup

δ→0+

[
P

(
SN
σN

≤ mN

pN

)
− P

(
SN
σN

≤ mN

pN
− δ

)]
= o(σ−r

N )

which is inconsistent with (7.5). ��

Declarations

Conflict of interest The authors have no conflict of interests to declare.

Appendix A. A dynamically defined example of a two step uniformly
elliptic Markov chain on the unit interval

Let X = [0, 1) and for each n ∈ N consider a map fn : X → X such that there
is a partition of [0, 1) into finitely many intervals Ii (n) = [ai (n), bi (n)) so that on
each Ii (n) the function gi,n := fn|Ii (n) is differentiable, monotone and is onto X .
Moreover, we suppose that there is a bounded sequence or positive numbers (mn) and
constants K > 0 such that

mn ≤ |g′
i,n(x)| ≤ Kmn, for every x ∈ Ii (n). (A.1)

Since gi,n(Ii (n)) = X , it follows that the length of Ii (n) is between 1
Kmn

and 1
mn

.
A simple example is the case when fn(x) = (mnx) mod 1 for some integer mn ≥ 2
and in this case Ii,n = [ i−1

mn
, i
mn

) for i = 1, 2, . . . ,mn and gi,n(x) = mnx − (i − 1).
Next, take a sequence (εn) of positive numbers in (0, 1/2) and a sequence (Un) of

independent random variables which are uniformly distributed on [−εn, εn] (mod 1).
Let X0 be a random variable independent of (Un) and let us define recursively

Xn+1 = fn(Xn) +Un+1 (mod 1). (A.2)

Then (Xn) is a Markov chain.

Lemma 43 If mnεn ≥ 1 for all n then there exists ε0 > 0 such that the Markov chain
(Xn) satisfies (2.1) and (2.2) with μ j = Lebesgue measure.
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Note that one step ellipticity condition fails in this case since Xn+1 conditioned on
Xn is uniformly distributed on a segment of length 2εn < 1.

Proof We regardX as the circle by identifying its endpoints. First, (2.1) holds because
mn is bounded above. Let us now show that (2.2) is satisfied. Fix x and consider our
Markov chain conditioned on Xn = x . Then Xn+1 is uniformly distributed on an
interval Jn+1 = Jn+1(x) of length 2εn+1. Note that Jn+1 contains some interval In+1
where fn+1 is continuous. Otherwise Jn+1 would intersect at most two continuity
intervals of fn+1 which is impossible since εn+1 ≥ 1/mn+1. Next for each interval
L ∈ X we have

Px ( fn+1(Xn+1) ∈ L) ≥ Px ( fn+1(Xn+1) ∈ L, Xn+1 ∈ In+1) ≥ |L|
2εn+1Kmn+1

since the conditional density of Xn+1 equals to 1/(2εn+1) and | f ′
n+1(x)| ≤ Kmn+1.

Thus the density of fn+1(Xn+1) is at least (2εn+1Kmn+1)
−1. Since rotations of

the circle preserve the Lebesgue measure, the density of Xn+2 has the same lower
bound. ��

Suppose now that fn are fixed but we start decreasing (εn). We saw above that one
step ellipticity condition fails if εn < 1/2.Decreasing (εn) even further we may cause
the failure of the two step ellipticity as well. On the other hand, suppose that there is
λ > 1 such that f ′

n(x) ≥ λ for all n and all continuity points of fn (in particular, fn
preserves the orientation and so they induce a continuous map of the circle). Assume
moreover that there is ε̄ > 0 such that εn ≥ ε̄ for all n. We claim that k step ellipticity
condition holds provided that 2ε̄λk−1 > 1. Indeed as before it suffices to fix Xn as well
as ε j for j > n+ 1 and obtain a uniform lower bound on Xn+k after the conditioning.
As before Xn+1 is uniformly distributed on a segment Jn+1 whose length is at least
2ε̄. Next, denote f̃ j (z) = f j (z) + ε j+1. Then for each interval L with f̃ j (L) covers
the circle or it is an interval whose length is at least λ|L|. Thus the image of Jn+1 will
grow after each application of f̃ j until it would cover the whole circle giving required
ellipticity.

Therefore Theorems 4, 5 and 11 hold for our chain. This provides an illustration of
the usefullness of relaxing one step elllipticity.
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