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1. Introduction

Mixing plays a central role in the study of stochastic properties of dynamical systems
preserving a finite measure. Recently, there has been a surge of interest in studying
mixing properties of infinite measure preserving systems ([32,41,42,40,54,3,8,39,55,45,
2,43,47,27,44,28]). Contrary to the case of finite measures, there are several different
notions of mixing in the infinite measure preserving case.
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A driving force behind the development of ergodic theory and dynamical systems
has always been a desire to understand physical systems. That is why we study here
the question of infinite measure mixing for specific mechanical systems. In many such
systems, it is natural to assume some periodicity or approximate periodicity and to
study the functions whose averages over large boxes stabilize. The notions of global
mixing introduced recently by Marco Lenci [35] (and further studied in [36,6,37]) are
particularly suitable for our purposes.

We will approximate our system by a periodic one: a Z%extension of a map f acting
on a compact space M and preserving a finite measure. Many finite measure preserving
mechanical systems f are hyperbolic and enjoy good mixing properties, such as the local
limit theorem (LLT). It turns out that the notions of LLT and mixing of the extended
system are nicely connected. We have studied this connection (for different notions of
mixing) in our recent work [26,27]. By further exploiting this relation, we are able to
prove global mixing for several mechanical systems.

Next, we give informal definitions of the notions of global mixing. Let T be a map of
a space X preserving an infinite measure p. The idea of [35] is to introduce two spaces:
the space of local functions L' and the space of global functions G C L*. The functions
from G are supposed to admit an average value

_ 1
® = Ilim —/@d
w(V)—oo (V) J a

where the limit has to be understood in an appropriate sense. The map T is called local
global mizing if for each ¢ € L*(u) and each ® € G we have

Jim [ () D(T" ) dp = (/¢du) P. (1.1)

T is called global global mixing if for each ®,,®5 € G for large n and large V,

1 o
mv/él(m)fﬁg(T x)dp ~ DDy

in a sense made precise in Definition 2.2 below.

The rest of the paper consists of two parts: an abstract part and an applied part. In
Section 2, we define an abstract framework and formulate several results implying local
global and global global mixing for periodic or approximately periodic maps preserving
an infinite invariant measure. In Section 3, we prove these results. In Section 4, we extend
the previous results to flows; still in an abstract framework.

The second part of the paper is about explicit examples where the abstract results
can be applied. In the preliminary Section 5 we review theory of hyperbolic dynamical
systems with singularities. We focus on Sinai billiards and related models. The most
important results of the paper are reported in Section 6. Here, we study local global and
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global global mixing of several mechanical systems. Our examples include the following
variants of Lorentz gas: periodic, locally perturbed, confined to a half strip, subject to
an asymptotically vanishing potential field and with Gaussian thermostats. Besides the
Lorentz gas, we study Galton boards, the Fermi Ulam pingpong and bouncing balls in a
gravity field. A reader interested in one of these examples can proceed to the appropri-
ate subsection of Section 6 after reading the abstract part. In some cases (in particular,
the periodic ones) the application of the abstract results from the first part is straight-
forward. In other cases a significant amount of work is required to verify our abstract
assumptions. This turns out to be most difficult in the case of the Lorentz gas with
asymptotically vanishing potential, and we present the most technical step of our analy-
sis in the separate Section 7. We hope that a similar approach could be used to analyze
other nonuniformly hyperbolic mechanical systems. Section 7 also contains an impor-
tant recurrence-transience dichotomy, which is of independent interest. Finally, we give
a short summary of our results and mention some future research directions in Section 8.

2. Abstract results
2.1. Periodic systems

Let us start with periodic systems. Let X = M x Z%, 2 = (y,2) € X and T(y,2) =
(f(y),z + 7(y)) where M is a compact metric space and f: M — M preserves a Borel
probability measure v. We equip X with the product topology. Denote by u the product
of v and the counting measure on Z¢%.

We write

n—1

Tu(y) = ZT(fj(y))~

Jj=0

We now specify our choice of the space of global functions G to provide the rigorous
definitions of local-global and global-global mixing. In fact, we consider three classes of
global functions.

We say that V C X is a cube if V = M x (z+ (—|w/2],w — [w/2]]%) for some z € Z4
and w € Zy. We also say that z is the center and w is the size of the cube.

Definition 2.1. Let G be the space of bounded uniformly continuous functions ¢ : X —
R for which there exists ® € R such that for any ai,as,...,aq,b1,ba,....,bg € R with
a; <0< bi7

1 _

im ————— d(z)d = .

NS T (0N — a;N) / ()du(z)
z=(y,2):z€ [][a; N,b; N]
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Let Gy be the space of bounded uniformly continuous functions ® : X — R for which
there exists ® € R such that for each e there exists Ny such that for each cube V of size
greater than Ny we have

1 _
m!@(m)du(m) - o <e. (2.1)

We say ® € G40 if @ is a uniformly continuous function from X to R for which there
exists ® € R such that for every ¢ > 0 there exists b = b(c) € Z,, and By = Bo(e) € Z
such that for all B > By we have

|Gy 8| > (1 —¢)B,

where Gy, 5 denotes the set of points z € ((—B/2, B/2]9NZ%) so that the cube V centered
at z and of size b satisfies (2.1).

We note that Gy C Gao C Go (the first inclusion is trivial, the second one follows
from approximating a large rectangular box by a disjoint union of smaller cubes). The
notation “O” represents that we require closeness to the average on boxes containing
the origin; “AQ” represents approximate closeness to the average near the origin and
“U” stand for uniform. G is the largest space of global functions where one could hope
to obtain mixing while Gy is the smallest space of interest. It turns out that Go is
too large for limit theorems, see Example 2.6. The intermediate space G40 has better
properties since it captures the notion that the global observables are often “close to the
local equilibrium on mesoscopic scales” (which is represented by b in our definition). An
important class of global observable are provided by functions of a random environment.
Namely, let h* be an ergodic Z? action on a space {2 preserving a measure P. Given a
function ¥ on M x Q let @, (z, z) = ¥(x, h*w). Then it follows from the ergodic theorem
that @, € Gap for P-a.e. w. We refer the reader to [21] for the applications of these
ideas to the study of mixing properties of skew products.

With the definitions of Go,Ga0,Gy, (1.1) furnishes the definition of local-global
mixing with respect to Gp, G 40, Gy. Next we define global-global mixing.

Definition 2.2. T is global-global mixing with respect to Go /G 40 /Gy if for each @1, P €

Go/Gao/Gu,
li li 1 /(I) (2)Po(T"x)d
11m 11m sup — xr T)apu =
nN=Oyey n(V)—oo (V) ' 2
li lim inf 1/@()®(T")d o0
1m 11m 1n — X x = .
60 VeV (V) —soo (V) 1 2 o 1%2

<
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Here, V is the collection of cubes containing M x {0} in case of Gp and G40 and the
collection of all cubes in case of Gy.

Definition 2.3. T satisfies a mizing local limit theorem (MLLT) at scale L,, with L,, — oo,
if there is a bounded, continuous function p : R¢ — [0, 00) such that

/p(z)dLeb(z) =1 (2.2)

and for each ¢y, ¢y € C(M) for each Z%valued sequence 20 such that z0/L, — 0 and
for each K < oo,

lim sup
N0 LeRd |z|<K

L / 61062 (F" (1)L —0 s or v — v(S)(G)P(2)| =0 (2.3)

where |.| means taking lower integer part coordinate-wise.
We say that T satisfies a shifted mizing local limit theorem at scale L, if there is a

sequence D,, € R? and a continuous and bounded function p satisfying (2.2), such that
0

- D,
for each ¢y, o € C(M) for each Z%valued sequence 20 such that Z"T — 0, and for
each K < 0o, (2.3) holds. !

We remark that the MLLT implies the following useful a priori bound: if ¢1, ¢o are
bounded functions and z € R¢ is chosen from a bounded set, then

| [ @0 eyt 8] < Clallell L

Now a standard approximation argument shows that the convergence in (2.3) is uni-
form for ¢y, g9 in a compact subset of C(M) (w.r.t. the C° topology). The same remark
applies to all variants of the MLLT considered in this paper, i.e. to the shifted MLLT,
the AMLLT and condition (M4) (the last two are to be defined later).

Theorem 2.4. Suppose that T satisfies an MLLT. Then

(a) T is local global mizing with respect to Go;
(b) T is global global mizing with respect to G a0.

For random walks, part (a) is proven in [7]. The proof of Theorem 2.4 follows the
arguments of [7], however, we will provide the proof in §3.1 since our setting is quite
different from that of [7].

Theorem 2.5. Suppose that T satisfies a shifted MLLT. Then

(a) T is local global mizing with respect to Gy ;
(b) T is global global mixing with respect to Gy .
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In the remaining part of §2.1, we comment on the suitability of the spaces
Go,Ga0,Gy for our setup. First, we note that Go and G 40 are suitable spaces in
case the MLLT holds with zero drift. In case the shifted MLLT holds with non-zero
drift, we need to work with the smaller space Gy as suggested by the following example.

Example 2.6. Suppose that d = 1, 7 is bounded and the MLLT holds with Ly = v/N
and a Gaussian p. Let ®(y, z) = (—=1)™ if m® < |z| < (m + 1)? for some non-negative
integer m. One can easily check that ® € Go and ® = 0. On the other hand, we claim
that for each NV,

1
li [ () (TN2)dpy =1 2.4
poplm / (@)B(TVz)dp = 1. (2.4)
\%

where V is the collection of boxes containing M x {0}. (2.4) shows that global-global

mixing with respect to Go does not hold. To prove (2.4), note that ®(y, 2)®(T (y, 2)) =
1 whenever

m? + N||7|lo < |2| < (m+1)? = N||7|lo

for some non-negative integer m and the relative measure of such points (y, z) in large
boxes is close to 1.

Next suppose that T satisfies a shifted LLT with Dy = vN for some v > 0, Ly = VN
and a Gaussian p. Let ¢ be a compactly supported Lipshitz probability density on X.
For any large positive integer m, there exists another large positive integer N so that

(2m)3 + (2m +1)3

5 <. (2.5)

-

Since (2m 4 1)% — (2m)? < m? > m?/? < N2, the LLT implies that ®(TVzx) = 1
for most = in the support of ¢, and so

‘/aﬁ(x)@(TNx)d,u - 1‘ = o (1). (2.6)

Consequently, T' does not satisfy local global mixing with respect to Gg.
Next, set m; = 27 and let

1 if (2m;)3 <z < (2m; + 1)3 for some j
®(y, ) = { ’ ’

0 otherwise.

One can check that ® € G 40 with ® = 0, however, taking N given by (2.5) with m = m;,
we get (2.6) showing that the local global mixing fails on G40 as well.
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Example 2.6 shows that Go and G 4o are too large for global mixing in some cases.
A typical application of mixing is to control the ergodic sums. A more sophisticated
version of Example 2.6 given in [23] shows that the Law of Large Numbers also fails on
those spaces (at least in the context of random walks), so one needs to consider smaller
spaces. One can argue that the space Gy is too small for many applications. To address
this issue, [23] introduces larger spaces, where, in the context of random walks, one
can prove local global mixing and the Law of Large Numbers. However the spaces from
[23] involve some additional parameters, so using them would make the present work
significantly more complicated. We prefer to work on G in order to highlight the main
ideas of our approach.

2.2. Almost periodic systems

The main results of this paper concern systems that are close to periodic in some
sense but not exactly periodic. Let us now consider a map T acting on the space

X = [Usen (Dz % {2N]U [U, iz wganpys M % {])

where d; and dy are non-negative integers, M and D,, z € B are compact metric spaces.
This setup is more general than the one in §2.1. On one hand we allow Z, in the phase
space to model systems with global reflections. On the other hand we allow a drastic
departure from periodicity: whenever z € B, the phase space D, can be different from
M.

We assume that B is small in the following sense. For every n > 0 there is £ = &(n)

and Qo = Qo(n) so that for @ > Qo

Hk € [0,Q" x [—%7 %rg N Z4+ ; dist(k, B) < gQH

Qi+ <n. (2.7)

Furthermore, we assume that T' preserves a o-finite measure

H= Z Vz

dy d
2€Z 1 X142

where there is some probability measure v supported on M so that v, (y,w) = Ly—,v(y)
for all z ¢ B, and there is a constant A > 1 so that v, is a finite measure of mass

lv.| < A, (2.8)

supported on D, for all z € B.
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Let

(v,z) ifz=(y,z).,yeMze (Z} xZ2%)\B
(00,00) if z(z) € B.

Here, oo is a label for the bad part of the phase space.

Definition 2.7. T satisfies the almost mixing LLT (AMLLT) if there is a bounded con-
tinuous function p : Ril x R% — [0, 00) satisfying (2.2) such that properties (a) and (b)
below hold.

()

Let 74 ., denote the measure defined by

dvgw(y, 2) = ¢(y)l.=wdv(y), (2.9)

where w € Zil x 7%\ B and ¢ : M — R is a Lipschitz function. Then for every
€ >0 and every R € R,

lim sup |L& %0, (l/f(y(jmx))lz(fnm):(anpw) —p(z —w/Ly)v()r(d)| =0

n—o00 AR
(2.10)
where the supremum in 2 . is taken over all quadruples (¢, 1, w, z) where ¢ and ¢
are Lipschitz functions on M satisfying

Ioleip < B Il B we (28 xZ%)\B, z€0,00" xR®,

w
7 — —
L,

< R, dist(L,z,B) > ¢cL,.

Let U4, denote the measure defined by

AV (Y, 2) = d(Y)1 = dVy (2.11)

where w € B, ¢ : D, — R is a Lipschitz function. Then for every w € B, every
Lipschitz function ¢ : D,, — R, every ¢, R > 0,

lim sup ’Lfbl+d2p¢,w (V@D ()=o) — D@ @(0) =0 (212)

n—)OO%RE

where the supremum in Bp . is taken over all pairs (¢,z) where ¢ is Lipschitz
functions on M satisfying

|y < R, z€[0,00)" xR%, |z| <R, dist(L,z,B) > ¢L,.
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The AMLLT is the first version of our approximate periodic assumptions and it de-
serves some commentary. The reader should think of “non-periodic part” U,eg(D, x{z})
ZGZiIXZdZ\B(M X {Z})

The condition (2.7) implies that most cubes of size £Q in the cube of size @) centered

as being “negligible” compared to the “periodic part” U

at origin are disjoint from B. In fact, in all of our applications, either B is a single point
(local perturbations of a periodic system) or dy = d2 = 1 and B = {1} x Z (systems
with boundary conditions). In these examples, it is immediate to check (2.7). However,
we present the general condition (2.7) because the proof of the forthcoming Theorem 2.8
is not easier in the special cases of B as above and we want to allow for more general
framework to accommodate systems with boundary conditions and with sparse local
impurities which might be a subject of a future work.

Note that in (2.10), one observable is encoded in the density of 7 (as compared with
the formulation of the MLLT'). We also observe that while we require the convergence in
(2.10) to be uniform in the initial position w and the initial density ¢, we do not require
this uniformity in (2.12). Consequently (2.12) is simpler: we may assume that n is so
large that ||w| < Lj). This is because (2.12) is only used in the proof of local global
mixing where the initial density is fixed while (2.10) is needed for global global mixing
and in the latter case one needs to decompose global observables as a sum of local ones,
which requires the uniformity of the convergence. See Section 3 for more details.

Using X instead of X and j instead of y, we can define Gy, Go, G 40 as before with
d = di + do. Namely, in the case d; = 0, the definition is the same with d = dy. If
d; > 0, we just need to accommodate for the fact that certain coordinates need to be
positive. That is, in the definition of G, ay,...,aq, are assumed to be non-negative. In
the definition of Gy, we consider cubes V = M x (z + (—|w/2],w — |w/2]]¢) where z €
Zhtd 5 zq, > 0and w € Zy satisfies w < 21,...,w < zg,. Finally, in the definition
of Gao, Gb,p denotes the set of points z € ((—=b/2, B — b/2]4 x (—=B/2, B/2]% UZ?) so
that the cube centered at z and of size b satisfies (2.1).

The definition of global-global mixing is the same as before, using the measure fi. In
the definition of local-global mixing (1.1), we allow any function ¢ which is in L(f).

We think about B as “small”, as exemplified by (2.7) and by the following observation.
The definitions of G and G 40 only depend on the “periodic part” of X in the sense
that if we change a function ® on the set U,epD, x {z} (so as the new function is still
bounded and uniformly continuous), then it will not affect whether ® € Go/G 40 holds
or not. This follows from (2.7).

We have the following result.

Theorem 2.8.

(a) If T satisfies the AMLLT, then it enjoys local global mizing with respect to Go.
(b) If T satisfies the AMLLT, then it enjoys global global mizing with respect to G a0.
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2.3. Approzimately periodic systems

Next we study global mixing for maps which are asymptotically periodic at infinity.
Thus we consider a periodic map 7" on the set X preserving the periodic measure p as
in §2.1. In the setup of the next proposition, global-global mixing of 1" is defined using
the averages with respect to p, which need not be preserved by T.

Proposition 2.9. If T is a periodic map of a space X preserving an infinite measure p
which is global global mizing with respect to either G a0 or Gy and if T is equal to T
away from a finite p-measure set, then T is also global global mizing with respect to the
same space.

In the remaining part of Section 2, we discuss more drastic perturbations. The
statements in this part of this section are unavoidably more technical. In fact, in our
formulations we had two (somewhat conflicting) goals. First, we wanted to facilitate
the verifications of our abstract conditions for specific models of Section 6. Second, we
wanted to emphasize that the proofs of our more technical results are very similar to the
proofs for simpler periodic models. We advise the reader to consult Sections 3.3 and 6
for a complete understanding of the role of the technical conditions imposed below.

Definition 2.10. Let T be a periodic map on the set X = M x Z? preserving the pe-
riodic measure p as in Section 2.1. Let T be a map on X. We say that 7" is very well
approzimated by T at infinity if T preserves p and

(i) For each € > 0 there exists R such that for each |z| > R there is a set A,. C M
such that p(A,.) <eandforally ¢ A,,

d(T(y,2),T(y, 2)) < e. (2.13)

Definition 2.11. Let T be as in Definition 2.10 and T be a map on X = DU (M x Z‘j} X
7%), where D is a compact metric space.

We say that T is well approzimated by T at infinity if T preserves a measure fi such
that i(D) < oo and for any € > 0 there is § = d(¢) > 0 satisfying the following: if V' is a
box centered at z = (21, 22) € Zil x Z.%2 of size w € 7 such that for alli = 1, ..., d; +da,
w < |z;|d, then
dpi dp

sup —— < (1 +¢)inf - 2.14
b?/pdu—( +e)in o (2.14)

and moreover either (i) or (ii) holds, where

(i) is as in Definition 2.10 (in particular d; = 0,ds = d) and
(if) dy > 0, (2.13) holds for z with |z;| > R.
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Observe that if the measure i satisfies (2.14) then the spaces of the global observables
defined with respect to u and ji coincide (and the infinite volume averages ® are the
same). Therefore we will suppose in that follows that the spaces Gy and G 40 below are
defined using the invariant measure of the system as a reference measure.

Theorem 2.12. Suppose that T is bounded and both 7 and T are almost everywhere con-
tinuous.

(a) If T is very well approzimated by T at infinity and T is global global mixing with
respect to either G oo or Gy, then T is global global mizing with respect to the same
space.

(b) If T is well approzimated by T at infinity and T is global global mizing with respect
to Gy, then so is T.

Note that in case of more general perturbations as in Theorem 2.12, we can only
guarantee global global mixing. See the beginning of §6.2 for a counterexample to local
global mixing in the same setting.

Next we provide sufficient conditions for local global mixing. Let T" be a periodic map
on the set X = M x Z% preserving the periodic measure p as in §2.1 and let T be a
map on X preserving a measure [i satisfying (2.14). The notion of global function is, as
discussed above, the same whether using p or i in the definition. Now we study local-
global mixing with respect to fi, that is, p is replaced by f in (1.1). We assume that
there is a class 9t of probability measures on X and for each € > 0 there is a class 9.
of probability measures on M such that

(M1) (Invariance) T preserves .

(M2) (Density) For each compactly supported Lipschitz function ¢ and for each € > 0
there is a finite set of functions ¢1,...,¢r € L*(X) N L'(f1) supported on
the unit neighborhood of the support of ¢ and constants cq,...c; such that

k
o — chgi)j <eand ¢;i € M.
j=1

oo

(M3) (Approximation) For each ¢ > 0 and n € N there exists R > 0 such that for each
me M

wm(z : |2(z)| > R and d(T"z, T"z) > ¢) < e.

(M4) (Uniform LLT) The measures from 9. satisfy uniform LLT in the sense that for
each ¢ € C'(M), for each K and for each z,,

and the convergence is uniform for m € M, and |z,|/L, < K.
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(M5) (Regularity Improvement) There is a constant C' < oo such that for each m € 9
and each € > 0 there exists ng = ng(m,e) such that for all n > ng there is a
decomposition T"'m = 3 ;(egml +cfm) where m;, m7/ are supported on M x {z =
j}. Furthermore, for all j, m’, when viewed as a measure on M (with z = j fixed),
is in the set 9. and Z dj < Ce.

J
(M6) (Dissipation) For each m € 9t and for each R > 0,

m(|z(T"z)| < R) — 0 as n — oc.

We observe that while conditions (M1)—(M6) are logically independent of well approx-
imation property (Definition 2.11), condition (M3) has the same flavor as properties (i)
and (ii) in that definition.

Theorem 2.13. If T and T satisfy (M1)-(M6), then T is local global mizing with respect
to GU,

3. Proofs

Let L be the space of compactly supported Lipschitz functions on X. Note that L
is dense in L*(u) so a standard approximation argument shows that it suffices to prove
(1.1) for ¢ € L. Henceforth we will suppose that all local functions are in L.

3.1. Periodic and almost periodic systems

Proof of Theorem 2.4(a). Let ¢ € L, ® € Go. Since ¢ is compactly supported, we have
&y, z) = > dr(y)1l.—x with a finite sum. Thus it suffices to prove the statement for
the function ¢(y,z) = ér(y)1.— for a fixed value of k € Z?. To prove the theorem, we
will choose some auxiliary parameters as follows. First, we fix ¢ > 0 and then we choose
R =R(),d =0(s,R), € =&(e,R), K9 = Ko(R,6,¢) and finally ng = ng(e, R, 9, Ko, €)
so that for n > ng, the difference between the left and right hand sides of (1.1) is less
than €. Now we give the details.

By the definition of G, for every given R, § > 0 and € > 0, there exists Ko(R,J,&)
such that the following property holds for all K > Kj:

(H) for any cube V of size 0 K whose center is within RK from the origin, we have

1 — _
M‘//Q)du—@ <E&. (3.1)
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Now choose R such that

p(z)dz <e. (3.2)
|2I>R

Then for large n, the MLLT implies
v(y: |t (y)| > LpR) < 2e. (3.3)
Indeed, we can use the MLLT to infer

W(lral < LaR) =Ly Y p(z/La)l <e/2

2€Z%:|z|<RL,

and so to conclude (3.3) by approximating the Riemann integral of p by a Riemann sum.
Thus

\/qb(x) sy~ [ o) du\<2|¢||w|¢||ma

where ¢ = ®1,.<rr, - Let &, = @1, for m € 7. By the foregoing discussion,

[o@earae- 3 [owe (3.4)

|m|<RL,

< 261012l -

By the MLLT, there exists a sequence of positive real numbers &, — 0 so that for
every m € Z® with |m| < RL,,

‘/¢ - Ly M(¢)H(‘I’m)p(m/Ln) anL;d.

Summing this estimate for all m as above and combining with (3.4), we obtain

‘ / $()(T"x)dp— Y Ly *u(@) (@ )p(m/Ln)

|m|<RL,

< 2||¢||oo||q)||005 + Rdfn.

Hence in order to prove Theorem 2.4(a), it suffices to verify that

IA
o™

—
w
ot

~

lim sup L,_Ld Z (@ )p(m/Ly) —

N
e |m|<RL,
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To this end, divide {z € Z?: |2| < RL,} into boxes C; of size §L,,. Let z; be the center
of C;. First, since p is uniformly continuous on the ball of radius R, we can choose ¢ so
small that the oscillation of p on any ball of radius ¢ within distance R from the origin
is bounded by £(2R?||®||o)~*. Thus for every j,

> n(@n)p(m/La) = 3 w(@n)p(zi/La)| € grzn(M X C). (36)

meC; meC;

Next, we use property (H) with & = Le[|p[l.c R~ to conclude

> u@np(22) | —p(F)Bu(M x )| < sn(M x ). (37)
mec; " "

Combining (3.6) and (3.7) and summing over j, we obtain

Lyt > u(fbnl)p(m/Ln)féZp(zj/Lmd <e. (3.8)

|m|<RL.,

Since (3.8) holds for an arbitrary small ¢ (provided that n is large enough) we can let
d — 0 thus replacing the second sum by a Riemann integral. Using (3.2), we obtain (3.5)
completing the proof of Theorem 2.4(a). O

Proof of Theorem 2.4(b). In part (b) we prove a slightly stronger result, namely we only
assume that ®; € Go. Let us fix &; € G, &3 € G40 and ¢ > 0. We will show that
there exists ng and By so that for all n > ng and B > By, we have

1 n -
mv/@(x)%@ ) — ByBy| < (3.9)

for any cube V of size B containing M x {0}. In fact, we will choose some auxiliary param-
eters R = R(®1, Py, ¢) and &’ = &'(®1, Do, R, &) before choosing ng = ng(P1, Pa, e, R, ')
and By = By(®;,®s,¢, R,¢'). To simplify notation, let us write z € V' if z € Z¢ and
M x {z} Cc V. To prove (3.9), we use the decomposition

1 mn
e V/ By (2)Bo(T"2)dps(x) (3.10)

_ ﬁ > / By (3, 2)®a (£, W), () s (y).
z€V/ weZd

We analyze the right hand side of (3.10) in 6 steps.
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STEP 1. Take R so large that for n sufficiently large, the probability that |7,| > RL,

is smaller than ————————_ Such R exists as in the proof of Theorem 2.4(a). Then
10[[@1 oo [|®2]|oo

we can restrict the sum in (3.10) to pairs such that |w — z| < RL,, with an error which
is at most 5.
STEP 2. Since f satisfies the MLLT, we can replace the terms with |w — z| < RL,, by

é /Cbl(y,z)dv(y) /‘1’2(%”)‘1”@) P <wL_nZ>

so that the total error we make in the sum (3.10) does not exceed (5. Indeed, by the

MLLT the error for any pair w, z with |w — z| < RL,, is less than for n large. So

_ &
T0RLY
far we derived

1 . -
’M V/ By (2)Bo(T" ) dp(x) (3.11)

—

Ie /(I)l(y,z)dl/(y) /%(y,w)dl/(y) p (wL_nz) ‘ < i_g'

Ly M

1
2
n(V) lw—s[=R

STEP 3. Let V be the cube with the same center as V such that the size of V equals
to the size of V' plus 2L, R. Denote

, 9

g = .
10 % 2941 RA([| @1 ]| oo + 1) (|| P2]loo + 1)([[Plloc +1)

(3.12)

Recall now the definition of G40 with the corresponding functions b(.), Bo(.) and set
Gy, . First, we let U be the cube centered at 0 and size b(¢'/2). Next, assume that the
size of V' is bigger than By := By(e'/2). Given z € U let

L:={weV :w =% (modd) Vi=1,..,d}.

Since the average proportion of G := Gy /2), size (v)(®2) in Us;cyy £z is greater than
1 — &’/2 there exists z such that the proportion of G in L3 is greater than 1 —&’/2. Let
{U;} be the collection of cubes of size b whose centers are congruent to z mod b and
which intersect V. Note that U;’s are disjoint and their union contains V. Let & be the
union of U; which are completely contained in V' such that

1

s / @ (x)dp(a) — s < 5 (3.13)

J

and B be the complement of & in V (& and B stand for “good” and “bad”). Since the
size of V is larger than By, we have
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1(B) < 'u(V) (3.14)

(we replaced €'/2 by ¢ in the RHS to account for boundary effects, that is, the cubes
which are not completely contained in V).

STEP 4. If n is sufficiently large, then the oscillation of p on the boxes of size b(¢’/2)/ L,
is smaller than &’. Let us denote by u; the centers of U;. Then by the definition of ¢’,
we can replace (3.11) by

/<I>1y, )dv(y > <

>Z/(I>2y, )dv(y

” zeV' iy :d(z,u;)<RL, weU;
Uj — 2
DI LIS ST e I KNI TC R
n zeViyr jid(zu;)<RLy, "

J

with an error smaller than 5.
STEP 5. Next, we estimate the error made when replacing fU Oy (z)dp(x) in (3.15)

by (U )<I>2 for all z and j. First, the error introduced by all j,z so that U; C & is at
most

13 3

nozev’ j:d(z,u;)<RL,,U;C®

where we used (3.13) and the definition of ¢’. Secondly, the error introduced by all j, z
so that U; C ‘B is at most

Ld > 11l > 1P lloc24(U;) |92l oo

nozev/ j:d(z,u;)<RL,,U;CB
2 cI)l oo ||P oo (bQ 00
< 2024l HVHLdH I S Uy 3 1
/.L( ) n 7:U; CB z€V':d(z,u;)<RL
Uj : yUj ) S n
2d+1Rd P o oo P o
< [P 1 [looIp[oo [ P2l W(B) < =
n(V) 10

where the penultimate inequality uses that there are at most (2RL,)¢ points z with
d(z,u;) < RL, and the last inequality follows from (3.14) and the definition of &’ (see
(3.12)). Recalling steps 2 and 4, we arrive at
- /@()@(T“)d() (3.10)
— 1\ )Po T)ap(x)— .
wvyJ

D3 RIUSIZU NS ST g PR

GV’ j:d(z,u;)<RL,
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STEP 6. Noting that u(U;) = b?, it remains to evaluate

Ld > [ @iy, )dvly > @ (UJL_Z> @

n 2eV’ iy j:d(zu;)<RLy

d
n

be -
For large n, the Riemann sum — Z p <uJL Z> can be replaced by the
™ jid(z,u;)<RLy,

integral / p(t)dt with an error smaller than

[t|[<R

L
10[191 oo | P20

The last integral is in the interval (1 — 1] by our choice of R. Thus we

&
) 10[[@1 oo [ P20
arrive at

1 " = Te
mv/él(aﬂ)ég(T 2)dp(x Z/ (v, 2)dw (y)®>| < .

zEV’

Finally, since ®; € Go, we have

) _ 13
u(v)v/cbl(m)du(z) -0 < 10| @00

The last two displays imply (3.9). Theorem 2.4 (b) follows. O

The proof of Theorem 2.5 is similar to the proof of Theorem 2.4 (a) except that we
need to consider boxes around D,, rather than around the origin. In fact, the proof of
Theorem 2.5 (b) is simpler than the proof of Theorem 2.4 (b) because all points w are
good and we don’t need the set B.

Proof of Theorem 2.8. The proof of Theorem 2.8 is similar to that of Theorem 2.4. Recall
that in the proof of Theorem 2.4 (a), we used the MLLT for m € C;, where C; is a box
of size dL,, within distance RL,, from the origin. We could treat the contribution of m
with |m| > L, R as an error term by (3.2).

We start the proof of Theorem 2.8 (a) by assuming without loss of generality that ¢
is supported on Dy x {k} for some k € Zil x Z% as in the beginning of the proof of
Theorem 2.4 (a). Note that now we will have to study both cases of k € B and k ¢ B5.
We again choose R as in (3.2) except that we replace € by

/ _ g
5 T BA+ [@fl) (T [6]l0)
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where A is defined by (2.8). Then the contribution of points m with |m| > RL, is
negligible. We again partition the set m € Zil x Z% with |m| < RL,, into boxes Cj of
size dL,,. Let us write j € 7 if dist(C;, B) > dL,, and j € J> otherwise. Let us also write
d=dy +ds.

First we prove that the contribution of boxes C;, j € J» is negligible. To this end,
apply (2.7) with

5.I

N= g
Re|lpflo

This gives us £ and Qg. Now we choose § < éR/(d + 1) and n big so that RL, > Qo.
Then by (2.7),

> ICi| < {k € Z§ x 2%, |k| < RL,, : dist(k, B) < (d+ 1)L, }|
JET>2

n(RL,)%. (3.17)

Let B* = U C; be §L,, neighborhood of B in the box of size RL,, around the origin
JET2
and G* = U C;. We have

JET

> [ @) ey ec, (o) < Gl (T € BY)
I€T2p, x {k}

< Nl 1Pl oo [V (Dk) — vi(T"x € G¥)] (3.18)

Applying the AMLLT (specifically, using (2.10) with ¢ =4 = 11in case k ¢ B and (2.12)
with ¢ = 1/v(Dy), ¥ = 1 in case k € B), we obtain that for large n large

T’Vl
% —d Z (0Ln)* [p(2j/Ln) + Kjn] = Zéd (zj/Ln) + Kjn)
Vi (D) J€Ts j€Ts

where z; are the centers of C; and the error term E Kjn can be made as small as we

JET2
wish by taking n large. Making § small we can make the last sum arbitrarily close to

/p(z)dz:l— / p(z)dz — / p(z)dz

G*/Ln [z|>R B*/Ln

3

3A[|¢ oo ||Plloc
the first one due to our choice of R, and the second one due to our choice of £,7n and

Both integrals on the right hand side of the last display are smaller than
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(3.17). Now combining the last two displays, we obtain

3e

ve(Di) = uel(T7e € G°) < grar g

which combined with (3.18) shows that the contribution of 75 is indeed negligible.

The computation of the main term, namely the contribution of boxes C;, j € Ji is
done along the lines of the proof of Theorem 2.4 (a). Indeed, the AMLLT is applicable
on those boxes. Theorem 2.8 (a) follows.

The proof of Theorem 2.8 (b) is again similar to the proof of Theorem 2.4 (b) so we
only explain the differences and use the same notations as there. In fact, in this proof
we only use (2.10) and won’t need (2.12).

We still prove (3.9), but now we allow By to depend on n, which is allowed by Defi-
nition 2.2. Now (3.10) reads

(2)®o (T x)dps()

1
u(V)/ "
14

1 n
ﬁ Z Z /q)l(yvz)q)Q(f va)lrn(y):w—zdl/z(y)' (319)
ev’ wEZdDz

First we show that the sum over z that are close to the set B is negligible. To this
end, we first apply (2.7) with

9
20A24|®1 [|oo || P2loo

’]7:

This gives us £ and Q. Now for an n, we will choose By so large that By > Qg and
Byé > 2RL,, + 0.

Now let V' be a cube of size B > By containing M x {0}. Then V is contained in
another box V of size at most 2B centered at the origin. The contribution of z € V' with
dist(z, B) < £B to the sum in (3.19) is now bounded by

1

ﬁ Z V2 (D2)[|®1 ] o[ P2l] 0o
K z€V'’ dist(z,B)<¢B
A
—,u(V) (11 |oo | P2||oc|{z € Zdl x 7% . D, x{z} C 114 ,dist(z, B) < (B}
A €
< ——||P P 2B —
< 1l @l (25)" < 5.

where the first inequality in the last line follows from (2.7) applied to the box V and the
last inequality follows from the estimate u(V') > BTd and the definition of 7.

Thus the sum for z with dist(z,B) < £B is negligible and instead of (3.19) it is
sufficient to study
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ﬁ > Z/ 2) @2 (f"y, w) s, () =w—-AV(Y)

zeV’ dist(z,B)>¢B wEZd

(note that if dist(z,B) > B, then in particular D, = M, v, = v).

Now we repeat Steps 1-6 of the proof of Theorem 2.4 (b) with two minor changes.
First, in Step 1, we use the AMLLT instead of the MLLT. Indeed, the AMLLT is appli-
cable because if |w — z| < RL,, then recalling the inequality B¢ > 2RL,, + b, we also
have dist(w, B) > RL,,. Second, in all of Steps 1-6, each sum over z is replaced by sum
over z with dist(z, B) > ¢B. Since the sum over z with dist(z,B8) < £B is negligible as
shown above, this change introduces negligible additional errors to the estimates of Steps
1-6. This completes the proof of Theorem 2.8 (b). O

3.2. Global global mizing for approrimations

Proof of Proposition 2.9: Let A = {z : Tz # Tx}. Then

/ Oy (2)[@o(T"x) — Oo(T"x)|dp (3.20)

J
< 2|1 ool [ @2 |oops(z : 30 S k <m: Tra # TFa) < 2[|@1]|oc||P2|oonps( A).

Since the last expression does not grow as u(V') — oo we obtain the result. 0O

Proof of Theorem 2.12. (a) We will show that for each n

1 N
lim —— Dy (2)Po(T"x)dp — | O1(z)Po(T"z)dp| = 0. (3.21)
[

p(V)—oo (V') J

Note that for each n, T™ is continuous almost everywhere. Fix an arbitrary n € N and
e > 0. An induction on n shows that for v a.e. y there exists § = d(y,e) such that if
{y}i=o 1s a sequence such that d(yp,y) < 0 and d(f(y;,), Vj41) < 6, then

d(f"(y),y,) <e and 7(y) = > T(yh).

We will say that y is (J,¢)-good. Let B, 5. be the set of not (4, ¢)-good points. Choose
d = d(e) so small that the measure of B,, 5. is less than e (such ¢ exists by the continuity
of the measure as v(Ns>0Bn.s..) = 0). Next, choose R = R(e) such that for |z| > R we
have pu(A,s) <e.

We are now ready to establish (3.21). To fix ideas let us suppose that V' is a cube of
size L. We split V into two parts. Let V4 be the set of points © = (y,z) € V for which
either
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o there is some k < n so that the absolute value of the z-coordinate of Tk is less than
R, or

o there is some k < n so that T*x € U,A. s, or

e YE Bpse.

Denote V5 = V — V;. Assume |7| < r. Then the orbit of points from V is within distance
nr from V. It follows that

p(V1) < (R+ )% +2(L 4 nr)ine + ¢,

where the three summands above correspond to the three cases in the definition of V;
above. Thus the contribution of V; to (3.21) is less than

[(R +nr)? +2(L + nr)dn€+€} 1P 1|00 || P2]]00-

On the other hand if (z,z) € Va then d(T™(x,2),T™(x,2)) < € and so the contribution
of V5 is less pu(V)||®1]]co Osc(P2,e) where

Osc(®,e) =  sup |®(z') — ®(a”)].

d(z’,x'")<e

It follows that for large L

1 L\ no.
7 V/ @1 (2) [B2(T"2) — Do(T")] dp

< 3nel[@1][oo|[P2]loc + [[P1]]oc Osc(P2, €).

Since ¢ is arbitrary, we can take the limit ¢ — 0 obtaining (3.21). This completes the
proof of part (a).

To prove part (b) we may assume that V is such that supy, z < (140(¢)) infy z. If this
does not hold, we subdivide V' into smaller boxes and remove the central part (which
has small relative measure). Next we use (2.14) to replace

[™x)dji L T [
5 | [ B@eTaaE) vy V/ @1 (2) 0 (") d

\%

and then conclude as before using (3.21). O
3.3. Local global mixing for approximations

Proof of Theorem 2.13. Due to (M2), it suffices to show that for each m € 9t and for
each ® € Gy, we have m(®(T"z)) — ® as n — oc.
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Fixme M, & € Gy and € > 0. We will show that for n large enough,

|m(®(T"z)) — @] < (44 C + || ®]| o0 ), (3.22)

where C' is the constant in (M5). To do so, we will choose a small parameter § = d(¢) > 0
and large numbers 7 = 71(¢), R = R(d,7), n = n(e, 8,7, R)> 7. We will apply T for n—n
iterations. Then we will show that during the remaining time 7, we can well approximate
T by T.

First, we prove the following preliminary estimate: for the already fixed € > 0 there
is 72 so that for all m’ € M, and all z € Z¢

‘/ O(f My, z + ta(y))dm’ (y) — | < e. (3.23)

Indeed, (3.23) follows from (M4) and precompactness of the set {®;} where ®;(z) =
®(x,1), as in to the proof of Theorem 2.4(a).

Next, by equicontinuity of {®;}, there exists 6 = d(¢) < e such that if d(z’,2") < 4,
then |®(z') — &(2)] < e.

Denote m = Tf‘ﬁm. We claim that if n is large enough, then

@(B(T7z)) — m(®(T72))| = [M(B(T7z)) — M(B(T"2))| < 3e. (3.24)

The equation in (3.24) follows from the definition of m. To prove the inequality, let us
write

w(®(T"z) — &(T"x))|

Here, R = R(d,n) is chosen so that
w(z: |2(z)| > R and d(T"z, T"z) > §) < §

(such R exists by (M3)).
By the choice of § and R, (3.25) is bounded above by

2|t : |2(x)| > R, d(T"z, T"z) > §) + & < 2||®||ocd + < 2¢

(note that we can assume without loss of generality that § < £/(2]|®||o)). Next, (M6)
implies that (3.26) is smaller than e if n is large enough. We have verified (3.24).

By (3.24), it remains to estimate m(®(T"z)). Assuming that n — 7 > ng(m, ), where
ng is defined in property (M5), we have
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where £ is an error term satisfying |€] < Ce. By (M5) and (3.23), for each j

[ (®(T"z)) — | <e.

Next, by (M5),

1220321—Zc;’21—a.
j

J

Combining the last three displays, we derive

@(®(T72)) — B < (1 +[|@]loe + C)e,
which together with (3.24) implies (3.22). The theorem follows. O
4. Mixing for flows

The results of Section 2 can be extended to flows. Here, we briefly summarize the
necessary changes in the definitions and theorems.

Let X = M x Z¢, v = (y,2) € X and G(y, 2) = (¢*(y), 2z + 7*(y)) for t > 0 (or for
t € R) where X is as before, and g* preserves a probability measure x. We equip X with
the measure A which is the product of K and the counting measure on Z<¢. We define the
spaces L, Gp, Gapo, Gy as before.

The definition of local-global and global-global mixing is analogous, we just need to
replace T™ by G! and let t+ — oo instead of n — oco. Noting that the second coordinate
of X is still discrete, we can extend the definition of MLLT and shifted MLLT by simply
replacing f", 7, 20 € 7%, L,, D, and n — oo by ¢, 7, 20 e 7%, Ly, Dy and t — o0
respectively. Similarly, we define AMLLT by replacing 7™, 2%, Ly and lim,, by Gt, 29,
L; and lim; respectively. With these adjustments, one can extend Theorems 2.4-2.8 as
well as their proofs to the case of flows.

In the remaining results, the map T was approximated by a periodic map 7. In case
of flows, we can define similar approximations by, say, comparing the two flows up to
time 1. First, the following analogue of Proposition 2.9 holds:

Proposition 4.1. If G* is a flow on a space X preserving an infinite measure k which is
global global mizing with respect to either G z0 or Gy and if G*(x) equals to G*(z) for
all t € 10,1] and all © away from a finite measure set, then G is global global mizing.
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We can obtain a proof of Proposition 4.1 from the proof of Proposition 2.9 by replacing
A={z:Tx# Tz} by A={x:3tc[0,1]: G'(z) # G'(x)}, and n by t in (3.20).

Similarly, in the definition of good and very good approximation, besides the obvious
changes, we require that for all y ¢ A, and for all t € [0,1], d(Gt(y, 2), Gt (y, 2)) < e.
Then we have

Theorem 4.2. Suppose that {1,(y) : y € M,t € [0,1]} is bounded and the set
{y € M : g:(y) and 1:(y) are continuous at y}
has full measure for any fixed t.

(a) If G is very well approzimated by G at infinity and G is global global mizing with
respect to either G oo or Gy, then G is global global mizing with respect to the same
space.

(b) If G is well approzimated by G at infinity and G is global global mizing with respect
to Gy, then so is G.

The proof of Theorem 4.2 is similar to that of Theorem 2.12 with minor changes as
before. We leave the details to the reader.

Finally, the assumptions (M1)—(M6) can analogously be formulated for flows. Namely,
(M1) claims that G* preserves 9t for every t, (M2) is unchanged and all changes in
(M3)—(M6) amount to replacing T,T by G,G are as before. With these changes, and
with a similar proof, we can derive the analogue of Theorem 2.13.

5. Preliminaries on Lorentz gas and related systems

In the remaining part of the paper, we give several examples of systems satisfying
the assumptions of Section 2. In those examples we have a point mass moving in R¢
with a number of scatterers removed and having elastic reflections from the boundary.
The motion between the collisions will be either free (such as in case of Lorentz gas) or
subject to a field. In this case the most interesting question from physical point of view
is to study mixing properties of the continuous time system, however, mathematically
one could also study the mixing properties of the collision map, too. We will also use
natural examples below to illustrate several subtleties associated to the notions of local
global and global global mixing.

In our examples, the system having approximate symmetry will be denoted by T while
its symmetric approximation will be denoted by T'. In the continuous time setting, the
corresponding systems will be denoted by G* and G, respectively.

For the reader’s convenience, we summarize some basic facts about Lorentz gas in this
section. We will focus on the notions and results that are most important for studying
global mixing properties. Everything in this section (as well as many other important
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results) can be found in [16]. Thus we do not give more references. Much of the theory
presented in this section has been extended to billiards subject to external fields (see
[10,11,17]). Additional references will be given later when we discuss specific examples.

Let O1,...,0; be disjoint convex subsets of the 2-torus T?2 with C® boundary with
non-vanishing curvature. These sets are also called scatterers. Consider a point particle
that flies freely (with speed 1) in the interior of Dy = T2\ UO;, and, upon reaching the
boundary, undergoes specular reflection (angle of incidence equals angle of reflection).
This dynamics is called the Sinai billiard flow (g*). It preserves the Lebesgue measure
on Dy x St (position and velocity). Let & be the invariant Lebesgue measure normalized
so as it is a probability measure. Identifying the torus with [0,1]?, and extending the
scatterer conﬁguration periodically to the plane, we define the billiard flow on D =

R?\ U U ;i + £) as before. We call the billiard flow in this infinite domain Lorentz
(eZ? j=1
gas and denote it by G*. It preserves ), the product of k and the counting measure on

Z?. We assume that the scatterer configuration is such that the free flight is bounded
(a.k.a. finite horizon condition).

The billiard flow induces a billiard map (or collision map) by the Poincaré section
taken at collisions. Namely, the phase space of the billiard map is

M = {(q.v) € 9Dy x 8. (v,m) > 0},

where n is the inward normal vector of 9D at ¢ (that is, ¢ is the point of collision
and v is the post-collisional velocity). The standard coordinates on M are r: arc length
parameter for ¢ and ¢: the angle between n and v (¢ € [—7/2,7/2] with clockwise
orientation). The billiard map is denoted by f : M — M. It preserves the invariant
measure v = c¢cos ¢ drde¢, where c¢ is a normalizing constant. Similarly, the billiard map
of the Lorentz gas is T : X — X, where X = M x Z?, T(y,z) = (f(y),z + 7(y)) and
T € Z? is the vector connecting the center of the cells where two consecutive collisions
take place. It preserves the invariant measure

(= v X counting. (5.1)

The map f is hyperbolic: there are stable and unstable conefields, C;,C;} C T,M
such that Df(Cy) € C5(,, Df~'(Cy) C C¥-1(y)- The cones are transversal, that is the
angle between any stable vector (an element of C; for some y) and any unstable vector is
uniformly bounded below by a positive number. (In fact there exist constants 0 < ¢ < ¢

so that C* can be defined as
1 <d¢/dr < co (5.2)

C? can be defined as —co < d¢p/dr < —c; for ally € M.)
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The map f is piecewise smooth with singularities at grazing collisions. Furthermore,
as the expansion and the distortion are unbounded near grazing collisions, it is common
to introduce artificial singularities

Hy = {(r,¢) : ¢ = £7/2 F k2},

for k > ko. We call a smooth curve of uniformly bounded curvature (un)stable if at
each point its tangent vector belongs to the (un)stable cone. An (un)stable curve is
homogeneous if it does not cross any singularity, genuine or artificial. We call W a local
stable (unstable) manifold if f™(W) is a stable (unstable) curve for any n > 0 (n < 0,
respectively).

For any unstable curve W and point y € W, we define the Jacobian of f™ on W at
y by Jw " (y) = || D f™(dy)||/l|dy|| with dy € T,W. The uniform hyperbolicity implies
that there are constants A > 1 and C so that Jw f™(y) > CA™ for n > 0 (and similarly
for stable curves and n < 0). Furthermore, after the above extra partitioning of the
phase space, one has the following distortion bounds. Let W be a homogeneous unstable
curve, such that f~" (W) is also homogeneous unstable for n = 1,..., N — 1. Then for
any y1,y2 € Wandn=1,..., N — 1 we have

—ewe o Iwf ") clw(i/e .
‘ S Twf ) =€ (5.3)

Here, as well as in the sequel, C' denotes some finite number depending only on the
dynamical system (and not on the curve W or n). Furthermore, the value of C' is not
important and may change from line to line.

Given z € M, the homogeneous stable (unstable) manifold of x is the set of points y
such that f"y and f™z belong to the same continuity component for all n > 0 (respec-
tively, for n < 0). (Here, in the definition of the continuity component, both genuine and
artificial singularities are accounted for.) The homogeneous stable (unstable) manifold
of 2 will be denoted by W#*(z) (W"(x)). It is known that W#(x) is homogeneous stable
curve and W*(x) is homogeneous unstable curve.

For any point y € M, we denote by r,(y) (rs(y)) the distance between y and the
singularity set, measured along the unstable (stable) manifold. More generally, given an
unstable curve W and y € W, there is a homogeneous unstable curve W’ C (W) that
contains f™(y). W’ is cut by f™(y) into two pieces, the length of the shorter piece is
denoted by 7, (y).

The measure of points y such that r,(y) = 0 or r4(y) = 0 is zero. It is also true that
the measure of points having short (un)stable manifolds is small, namely

v(y : min{r,(y),rs(y)} <e) < Ce. (5.4)

A pair ¢ = (W, p) is called a standard pair, if W is a homogeneous unstable curve and
p is a probability measure on W satisfying
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|W(y1, y2)|

(yQ) S C |W|2/3 )

dp dp
log m(yl) —log Jmes
where |W(y1,y2)| is the length of the segment of W bounded by y; and y2. Here, and
also in the sequel, mes stands for the Lebesgue measure.

The image of a standard pair by the dynamics is a weighted sum of standard pairs
(the image of a homogeneous unstable curve is a family of homogeneous unstable curves
and the regularity of the density of p is preserved). A weighted sum of standard pairs is
called a standard family. Namely, a standard family is a (possibly uncountable) collection
of standard pairs G = {(W,, v,)}aeu and a probability measure n = ng on 2. Such a
standard family G induces a measure on M by

v() = / va(. A Wa)dng(a). (5.5)

A

For standard families, the Z-function is defined as

1
26 =sup~ [ valro < o).
e>0 €

Important special cases are standard pairs (2 has a single element ¢, in which case we
simply write vg = vg) or the decomposition of the invariant measure v into conditional
measures on unstable manifolds. It can be shown that the conditional measures have the
required regularity and the Z-function of this family is finite.

Standard pairs are stretched by the dynamics due to expansion and are cut by singu-
larities. The next result tells us that “the expansion wins over fragmentation”, that is,
most of the weight is carried by long curves.

Lemma 5.1 (Growth lemma). There are constants 0 < 1,C1,Cy such that for a standard
family G = {(Wy,ve)},a €, and G, = f(G), we have

Zg, < C10"Zg + Cs.

We also consider standard pairs on the phase space of the Lorentz gas, by shifting W
with a vector m € Z?, where ¢ = (W, p) is a standard pair for the Sinai billiard. In this
case, we write [¢] = m.

The Growth Lemma implies that for any unstable curve W and for any n > 0,

mes(y € W :r,(y) <e) < Ce,
where mes denotes the Lebesgue measure on W.

We will also use the following important consequence of the Growth Lemma (which
is a local version of (5.4) see [16, §5.12] as well as the proof of (7.12) in §7.2). Given an
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unstable curve v and a positive number 4§, let vs = {x € v : r5(z) > §}. Then there is a
constant K* such that

mes(y —v5) < K. (5.6)

Another application of the Growth Lemma requires an extra definition. Fix a large
constant Z. In particular we require that Z > 2C, where Cj is the constant from the
Growth Lemma. In practice it is convenient to choose Z so large that there is a standard
family G with Zg < Z such that vg is the invariant measure v. We say that a standard
family G is proper if Zg < Z. Then the Growth Lemma implies that there exists ng such
that for any n > ng and for any measure v defined by a proper standard family G, the
measure U, (¢) = v(¢ o f™) also corresponds to a proper standard family (namely f"G).

Another crucial property of partition of (M, r) into stable (unstable) manifolds is
absolute continuity. We refer the reader to [5, §8.6] for a comprehensive overview of
absolute continuity of stable and unstable laminations. Here we just summarize the
results for dispersive billiards we are going to use. Let W; and W5 be two unstable
curves which are close to each other. Let

Wj = {IE S Wj : WS(SC) N W3_j}

and let 7, : W3 — Ws be the stable holonomy ,(2) = W*(2)NW,. Then 7, is absolutely
continuous and its Jacobian equals to J(x, ms2) where ([16, Equation (5.23)])

oo

_ janI (fnx)
J(x,msx) = H Trwafrmet) (5.7)

n=0

Next, [16, Theorem 5.42] tells us that there is a constant C' such that

e—c(d1/3(x,wsx)+l3) < J( C(d1/3(ac,ﬂ's$)+ﬁ) (5.8)

x,msx) < e ,
where (3 is the angle between the tangent vector to W; at x and the tangent vector to
Wy at mgx.

Similar statements hold for the unstable holonomy.

Let us list several standard consequences of this fact ([5]).

Given an unstable curve v and a positive number §, consider the Hopf brush Ay =
U W#(x). Consider the measure ¥ defined by

P(A) = / mesw (W* () N A) dmes, ().

Let vy, denote the restriction of v to As. Suppose that |y| > 2K*§ so that (5.6) implies
that As # 0. Then there is a constant k1 = k1(d) such that
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< dv
K
L= dVA5

< wit (5.9)

From the foregoing discussion it is not difficult to see that there is a constant kg = k2(0)
such that for each v of length at least 2K™*§,

v(As(7)) = Re. (5.10)

Another consequence of (5.9) is that if A is a set of measure zero, then
for v almost every z, mes(W?(x) N A) = mes(W*(x) N A) = 0. (5.11)

We finish this section by commenting on the case of unbounded free flight (infinite
horizon). The preliminaries discussed in this section extend to that case, too. The billiard
map is local-global and global-global mixing just like in the case of finite horizon (see
Section 6.1) as the MLLT holds with scaling L,, = v/nlogn [53]. We have little doubt
that the same holds in continuous time, too, but we are not aware of any explicit proof
of the MLLT in the literature. To study the perturbed models as in §§6.2—6.5 one would
need a more serious departure from the case of finite horizon (but see [14,49] for some
results in these directions). In the rest of this paper, we only study the case of finite
horizon.

6. Examples

Here we describe several examples satisfying the assumptions of Section 2. Each time
we use the MLLT or its variants (shifted MLLT, AMLLT), we choose L, = /n and,
unless noted otherwise, p a centered Gaussian density. We formulated the results of
Section 2 with general L, and p because there are other natural examples (e.g. the
infinite horizon Lorentz gas or interacting particle systems studied e.g. in [46]) whose
global mixing properties could be approachable by our methods.

6.1. Lorentz gas

The mixing local limit theorem holds for Lorentz gas with finite horizon in both
discrete [52] and continuous setting [24]. Accordingly Theorem 2.4 applies to both Lorentz
collision map and Lorentz flow, and so, both systems enjoy both local global mixing with
respect to Go and global global mixing with respect to G 40.-

One can also consider a Lorentz tube, where instead of motion on the plane the particle
moves on the strip with a periodic configuration of convex scatterers removed. As before
[52,24] give MLLT in both discrete and continuous setting and so the system enjoys both
local global mixing with respect to Go and global global mixing with respect to G 40.
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6.2. Local perturbations of Lorentz gas

Consider a billiard in a domain which is periodic outside of some ball. If the limiting
periodic configuration has finite horizon (or equivalently, the perturbed configuration
has finite horizon) then the conditions of Propositions 2.9 and 4.1 are satisfied and so
the system enjoys global global mixing. On the other hand, local perturbations of the
Lorentz gas do not have to be local global mixing. Indeed, we can trap particles in a
bounded part of the phase space. For example, by allowing non-convex scatterers, one
can arrange that the system has a stable elliptic orbit, so that the set 5 of bounded orbits
has positive measure. Let By be the set of orbits which always stay within distance L
from the origin. Take ¢ such that fBL ¢dp > 0. Take two functions @1, P4 € G such that

(i) ®2 > ®; and moreover
(ii) ®2 — @1 > 1 inside the ball of radius L;
(iii) @y = @;.

In this case

[ ol(@: = @00 > [ od

Br

does not tend to 0, so it is impossible that both

[ o@a(T2)duta) — w()a and [ o(a)n (T 0)dn(z) > (@),

However, the system remains local global mixing if the configuration is a finite per-
turbation (i.e. finitely many scatterers discarded, finitely many new ones included) of
a periodic Lorentz gas such that the scatterers in the entire configuration (including
the perturbed part) are strictly convex, disjoint and have C3® boundary. We call such
a perturbation a mild perturbation. Without loss of generality, we can assume that the
fundamental domain is large enough so that outside the cell at the origin, the system is
periodic. Thus we are in the setup of §2.2, with dy = 0, d3 = 2, B = {0}, M the phase
space of the billiard map on any cell but zero, Dy the phase space of the billiard map
in the zeroth cell and the measures v and vy are the usual measures on M and Dy, as
defined in Section 5 (in continuous time, we need to define M and Dy as the phase space
of the flow, restricted to the same cells as before and consider the invariant physical
measures on them, denoted by & in Section 5).

Mildly perturbed Lorentz gases are local global mixing with respect to Go and global
global mixing with respect to G 40 as implied by Theorem 2.8 and the following.

Theorem 6.1. The mildly perturbed periodic Lorentz gas satisfies the AMLLT.
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Proof. The proof is similar to (but easier than) the proof of Proposition 3.8 in [24] so
we provide only a sketch of the argument.

We begin with discrete time. In the proof we will use letters with tildes to denote
the objects associated to the mildly perturbed Lorentz gas, and the same letter without
tildes will refer to periodic (unperturbed) system.

Let 4, be the measure defined by either (2.9) or (2.11). The global central limit
theorem for mildly perturbed periodic Lorentz gas is proved in [30, Theorem 1]. Thus
there is a positive definite matrix D such that

Do (% cQ+ %) = () é/g(u)du

as n — 00, where g is the density of the centered Gaussian distribution with covariance
matrix D and Q C R2 is a set whose boundary has zero Lebesgue measure and the
convergence is uniform for ¢ with bounded Lipschitz norm.

We need to evaluate

Ly = Dy (0(F0) 12, g/} ) -

To simplify the notation, we drop the subscript of 7 and write z, = |zy/n| — w. Take
0¢ < 1 and denote no = §;n, Ny = n — nsy.
Let the measure v* be the normalized version of the restriction of T™*7 to the cell
z. That is, if p,, (2) = #(z 0 T™ = z) and A C M, then
5 1
vi(A) = -
Pny (Z)

v(z:T™(3) € (Ax {2z =2z})).
Then we have the decomposition

I, = Z Pny (E)VE (¢(i’n2)1%m2 =zn—2) +é1

zeZ2-{0}

where £, is an error term corresponding to the set of points Z so that zoT™ () = 0 and
we assumed that all perturbations are in the zeroth cell.
Choose K > 1 and consider the following approximation

I, = Z Pny (g)yz(w(mnz)l‘ﬂig:znfg) +é1+ & (61)
|Z—2n <K /N2

where &, is an error term. Note that there are no tildes inside v*(-). That is we pretend
that the particle moves in the unperturbed environment for the last ng collisions. The
error £ = &1 + €5 comes from two sources:

(A) There are contributions from the cells with |z — z,| > K/nz and
(B) the particle may visit the perturbed region for some k € [ny,n].
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Given ¢ we can choose d; so small and K so large that both (A) and (B) have contri-
butions which is less than £ similarly to [24, §6.2]. Note that [24, Lemma 2.8(b)], which
is extensively used in this step, is formulated for the Lorentz tube and thus is not directly
applicable here. However, we can replace it by [26, Lemma 4.8(b)], which is valid in a
much more general setting, including the Lorentz gas.

Returning to the main term in (6.1) we can use the MLLT for the periodic Lorentz
gas to conclude that

) g mn2) % g (w:—) V(). (6.2

Let us divide the set {z : |z — z,,| < K/ny} into boxes B; of size d,1/n where §; < ;.
Then,

Z pm(2)1/2(1/1(:10712)1.,”2:%,5)

|Z2—2zn | <K /N2
Zn
~ - . 6.3
M;;p o () (63

. . . 5 - Zn . . Z(J) — Z’ﬂ
Since the oscillation of g on B; is small, we can replace it by g | ———

NG N

where zU) is the center of Bj. Accordingly

— @ —
gpnl <z\/7’z’ﬂ>%g<z] Zn) anl =
ze

zeB;

g (Z(j)\/;_;”> (%0, € B;). (6.4)

The global CLT for the mildly perturbed Lorentz gas and the fact that 2() are close to
zp for all j imply that

v (Tny € Bj) ~ 629(2) (6.5)

Combining (6.1)—(6.5) we obtain
g(z)v 62 (20) — 2,
o= S 5 2 |
n 7 (5,5 \/TL_Q

The last sum is the Riemann sum of the integral of a Gaussian density over the set {|z] <
K}. Accordingly taking K large and choosing 05 small to make the mesh sufficiently fine,
we can make the last sum as close to 1 as we wish. This completes the sketch of proof
of the AMLLT in the discrete time case.
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The continuous time case is similar but we need to use the MLLT for flows proven in
[26]. O

6.3. Lorenz gas in a half strip

Consider a Lorentz gas in a half strip, i.e. in R x [0, 1] with a periodic configuration
of convex scatterers removed. (By periodicity we mean that if S is a scatterer in our
configuration and Sy := S £ (1,0), then S; is in the scatterer configuration and if
S_ C (RT x[0,1]), then S_ also belongs to the configuration.)

Similarly to the mildly perturbed Lorentz gas, we are in the setup of §2.2, now with
dy = 1,dy = 0, B = {1}. Using [30, Theorem 2] and proceeding as in the proof of
Theorem 6.1, we have

Theorem 6.2. Lorentz gases in half strips satisfy the AMLLT with p being the probability
density of the absolute value of a centered Gaussian random variable.

Thus by Theorem 2.8, the Lorentz gas in a half strip satisfies both local global mixing
with respect to Go and global global mixing with respect to G ao.

6.4. Lorenz gas in a half plane

Consider a Lorentz gas in a half plane, i.e. in RT x R with a periodic configuration
of convex scatterers removed. (By periodicity we mean that if S is a scatterer in our
configuration, then & + (1,0), S £ (0,1) are also in the configuration. If S — (1,0) C
(RT x R), then S — (1,0) also belongs to the configuration.)

Similarly to the mildly perturbed Lorentz gas and to the Lorentz gas in a half strip,
we are in the setup of Section 2.2, now with d; = 1, ds = 1, B = {1} x Z. Using [30,
Theorem 4] and proceeding as in the proof of Theorem 6.1, we have

Theorem 6.3. Lorentz gases in the half plane satisfy the AMLLT with p being the density
at time 1 of the Brownian motion with diffusion matriz of the Lorentz process reflected
from the y axis.

Thus by Theorem 2.8, the Lorentz gas in a half plane satisfies both local global mixing
with respect to Go and global global mixing with respect to G 40.

6.5. Lorentz gas with external fields
6.5.1. Lorentz gas in asymptotically vanishing potential fields

Now we consider the same configuration of scatterers as in Example 6.1 but assume
that the motion between collisions is subject to the potential

j=—-VU.
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We suppose that the first three derivatives of U are uniformly bounded and that

lim U(q) =0, lim VU(q)=0. (6.6)

lg|—o0 lg|—o0

An example of such system is given by the Coulomb potential

Ulq) = (6.7)

lq|”

For the Coulomb potential it is natural to assume that the origin is contained in the
center of one of the scatterers. In this case U is bounded.

In any case our system is Hamiltonian preserving the energy H = 1v? + U(q). Sinai
billiards with external fields were studied in [10,11]. First, note that the phase space of
both the map and the flow is the same as in case of no external field. Next, we note
that the flow G preserves the Lebesgue measure and the collision map 7' preserves the

measure u defined in (5.1) (see e.g. the Remark on page 201 of [10]).

Theorem 6.4. Under assumption (6.6) both the collision map T and the continuous time
system G enjoy global global mizing with respect to G 0.

Proof. We claim that both 7" and G* are very well approximated by the Lorentz gas
and so by Theorems 2.12 and 4.2 the result will follow. To prove the above claim, it is
sufficient to check condition (i) of Definition 2.10 (and its continuous time counterpart).
In continuous time, we can choose A, . = ) as the flow G is continuous and for R large,
is uniformly close to the unperturbed billiard flow G* up to time 1 by condition (6.6).
To check condition (i) for the map, choose A, . as the ¢ neighborhood of the primary
singularity set of the unperturbed billiard map 7. By choosing § sufficiently small, we
clearly have (A, ) < ¢ and now choosing R large (and consequently the field small),
we have (2.13). O

Similarly to §6.2, the assumption (6.6) is insufficient to ensure hyperbolicity close to
the origin. In particular the system could have elliptic islands in the bounded part of
the space (cf. [51]) and so it may fail to be local global mixing. On the other hand, our
next result gives local global mixing under the extra assumption that the field is small
everywhere.

Theorem 6.5. Assume besides (6.6) that ||U||cs is sufficiently small (e.g. in the Coulomb
potential case the charge e is small). Then both the collision map T and the continuous
time system G* enjoy local global mizing with respect to Gy.

Proof. By Theorem 2.13, it suffices to check conditions (M1)—(MG6).
We begin with the discrete time system. Much of the theory discussed in Section 5
has been extended to the Sinai billiards on compact phase space with external fields in
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[10,11]. Several of these results can be used in our non-compact setup, too, since the
proofs do not rely on the compactness of the phase space. For example, standard pairs
are defined in [11]. In fact, standard pairs for T are exactly the same as standard pairs
for T (of course, unstable manifolds are different but the unstable cone can be chosen
the same). Using the notation of Section 5, we say that a standard family is compactly
supported if there is a finite set A C Z? so that for all standard pairs ¢ in the family,
[ € A.

Let 991 to be the set of all compactly supported proper standard families. Specifically,
we require that m € 91 satisfies

m(z:r(z) <e) < Ke, (6.8)

where K is a sufficiently large constant only depending on the system. Then (M1) is
checked in [11]. To check (M2), let ¢ be a Lipschitz function supported on a single
scatterer §). (Note that it suffices to check the local global mixing for Lipschitz functions
¢ as the set of Lipschitz functions is dense in L. The condition that ¢ is supported
on a single scatter is also not restrictive since a function supported on a finite set of
scatterers is a finite linear combination of functions supported on a single scatterer.) We
first observe that for each ¢ there exists K () such that if ¢ has the following properties:

5<¢<d', p¢)=1, Lip(¢)<2, (6.9)

then ¢pu € M where M is defined by (6.8) with K = K (4), see e.g. [10, Proposition 5.6].
Pick a large B> §~1 We have the following decomposition: ¢ = R1g — (R — ¢)1q. Thus
¢ = c1¢1 — ca¢2 where ¢ and co are constants and

o= to,_de—§ (6.10)
@ T - '

Note that as R — 00, ¢2 — 1lo/u(f2) in the space of Lipschitz functions, so if R is
sufficiently large then ¢1, ¢ satisfy (6.9) with constant § depending only on the minimal
perimeter of the scatterers in our configuration. By the foregoing discussion, ¢1u, popt €
M.

To prove (M3), we use the transversality of the unstable curves to singularities of the
system (see [12, Section 4.5] for a similar argument). Specifically, given € and n, we choose
some d < €. Then for the given €,n,d, we choose R so large so that for every z with
|2(z)| > R and for any s € [0,7(Tmax + 1)], d(G*(x), G*(2)) < . Such an R exists since
for small field, the trajectories are uniformly close to the unperturbed ones (here, Tpax is
the maximum free flight time of the unperturbed system and consequently the maximum
free flight time of the perturbed system is bounded by Tyax + 1.) Thus choosing ¢ small,
we can ensure that the singularity curves of T™ are in the £2 neighborhood of those of
T™. Furthermore, the singularity curves of T™ are transversal to the unstable cones by
[10, Lemma 3.10]. Let m € 9, £ = (W, p) a standard pair in m and z € W. If |2(z)| > R
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and d(T"z, T”x) > ¢, then by the foregoing discussion, x is necessarily Ce? close to an
endpoint of W (here C is a geometric constant coming from the transversality). By (6.8),
the m measure of such points is bounded by KCe?. For ¢ small enough, KCe? < ¢ and
so (M3) follows (clearly, it is sufficient to prove (M3) for & small enough).

Next, let M. be the set of standard families on M such that all standard pairs in m
are longer than €. The local limit theorem for standard families follows from the mixing
LLT for T [24, Lemma 2.8]. Thus (M4) holds.

Next, in our system a stronger variant of (M5) holds, namely ng is uniform in m € 9t.
Indeed, for m in 997 let m; be the measure corresponding to the standard pairs from 7™m
which belong to {z = j} and have length greater than e. The desired inequality of (M5)
follows from the growth lemma (see [10, Lemma 5.3] and the discussion on page 95 of
11)).

Since checking (M6) requires more effort, we postpone it to Section 7.

The continuous time case can be handled similarly. We refer the reader to [25,4] for
the Growth Lemma and related results in the continuous time setting. O

6.5.2. Lorentz gas in external field and Gaussian thermostat
Suppose that the system moves in the same domain as the Lorentz gas but the motion
between the collisions is not free but rather satisfies

(¢, E(q))
I14][?

where E(q) is a periodic field and the second term models energy dissipation. This system

4= FE(q) —

is a Z>2-cover of a Sinai billiard in external field which we will denote by f. There are two
important differences between this model and the one studied in §6.5.1: this one is easier
in the sense that it is periodic but more difficult in the sense that the Lebesgue measure is
no longer invariant. However, [10] implies that f has unique SRB measure pp if ||E||c1 is
sufficiently small. Furthermore, a Young tower can be constructed by the results of [10,11]
(see also [9]). Thus the (shifted) MLLT holds for (f, ug) by [26, Lemma 4.3] The shifted
MLLT for continuous time system also follows from [26, Theorem 4.1]. Accordingly by
Theorem 2.5, we have local global and global global mixing with respect to (L, Gy/). We
note that for typical F (including the constant field) the drift in the CLT is not equal
to zero ([15]). We also note that in the presence of the drift, the system is dissipative
in the sense of ergodic theory, that is, almost every particle tends to infinity. This gives
a physical example of a system which enjoys both local global and global global mixing
but is not ergodic.

6.6. Galton board
This model is similar to Example 6.5.1, however, we do not assume that the potential

is vanishing at infinity. Namely we consider a particle moving in a half plane ¢; > 0
with a periodic configuration of convex scatterers removed (we confine the particle to
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the half plane by adding the vertical axis g1 = 0 to the boundary of our domain). The
motion between collisions is subject to a constant force field which corresponds to a
linear potential U = —gq;. This system preserves the energy

H=1v%/2—-gq.

It is convenient to use the following coordinates: ¢ € R? is the position of the particle
and 6 is the polar angle of the velocity vector tané = ¢;/¢o. Then the speed could be
recovered using the equation |v| = \/2(H + gq1). In Lemma 6.7 below we will see that the
evolution of ¢ and 6 coordinates is well approximated by the Lorentz gas. Therefore the
appropriate space of observables are functions which are uniformly continuous in (g, 6)
coordinates and admit the averages on large cubes. Namely given ¢ = (q1,q2) € [0,00) xR
and R > 0 such that q; > R consider the cube Qqr = {(¢,0) : |¢ — qloc < R} and let

Gy = {® : ® be uniformly continuous in (g, §) variables and for each ¢ there is Ry such
that if R > Ry then for each Q4 r as above

M(Qq,R

The main result of this section is

Theorem 6.6. There exists Hy such that if H > Hy, then both the collision map T and
the continuous flow Gt enjoy global global mixzing with respect to G a0 and local global
mixing with respect to Gy .

In order to prove Theorem 6.6 we need to recall several results from [13].

Lemma 6.7. The collision map T for Galton board is well approzimated for large kinetic

energy by the collision map T of the Lorentz gas. More precisely, the following condition
holds

(M3) For each ¢ > 0 and n € N there exists R > 0 such that if m is a measure
corresponding' to a proper standard family, then

m(z : qi(z) > R and d(T"x, T"z) > ¢) < e.

Note that the condition (M3) above is different from the condition (M3) imposed in
Section 2. Namely, we replace the requirement ¢? + g5 > R? by a stronger requirement
g1 > R. Lemma 6.7 is proven in [13, Section 3], however we recall the argument since it
plays an important role in the analysis below.

! In the sense of (5.5).
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Proof. Let (¢n,0,, K,,) denote the position, direction and kinetic energy of the Galton
particle after n collisions. The motion until the next collision is obtained by solving the
following ODE

d?q dq
dt2 ge, q( ) q dt

(0) = v/2K,,(cos 0y, sin 6,,).

Making the time change

(6.11)

(note that changing the time does not change the place of the next collision) we get

¢ g
= -7 €1, q(o) = d(qn,

aq dg
i~ 2K,

o (0) = (cos by, sinb,,). (6.12)

Note that K,, = H+g(¢n)1, where H is the particle’s energy. Therefore by taking R large
enough we can make the RHS of the ODE in (6.12) as small as we wish if (¢,)1 > R.
Accordingly the solution to (6.12) can be made as close as we wish to the solution of

d?q

dq dg
dt?

i (0) = (cos Oy, sinb,,).

=0, ¢(0) = gn,
Since the last equation describes the flow of the Lorentz gas without external field be-
tween two collisions, the lemma follows. O

Since the Lorentz gas is hyperbolic, we have that the Galton board dynamics is also
hyperbolic for large kinetic energies. The condition that the total energy is large ensures
that the kinetic energy is large as well, so the hyperbolicity persists in all of the phase
space.

Proposition 6.8. There are constants o and o such that the following holds.
Suppose that (q(0),v(0)) is distributed according to some standard family.

(a) Let K,, denote the kinetic energy of the particle after n collisions. Then the random
process K™ (t) = ﬁKm converges in law, as n — oo to K(t) which is the solution
to the following stochastic differential equation:

=2
K = Z—Kdt +adw, K(0)=o0. (6.13)
(b) Let K(t) denote the kinetic energy of the particle at time t. Then the random process
- KT .
Kr(t) = (2/3) converges in law, as T — oo to K(t) which is the solution to the

following stochastic differential equation:
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0.2

dK =

dt + (2K)Y*edw, K(0) = 0. (6.14)

~

2V2K

Note that the equations (6.13) and (6.14) are well posed despite the singular coeffi-
cients as discussed in [13].

Proof. Part (b) is a restatement of Theorem 3 in [13]. Namely [13] uses the rescaled time

5 = 717z (cf. (6.11)). In the rescaled time the part (b) states that K(;QT;B) = K(t) as

T — oo. Denoting € = T~2/3 we can rewrite the last statement as eK (se~2) = K(t) as

€ — 0 which exactly the statement of Theorem 3 in [13].

Next we discuss the part (a). In the case we start away from 0 and the process K" is
stopped when it reaches too high or too low values, (6.13) is proven in [13, Theorem 4].
The removal of those cutoffs can be done in the same way as in the continuous time case,
see the proof of Theorem 3 in [13] (note that this theorem assumes that the total energy
H is large enough). O

We mention that the explicit formulas for o and & are the following (cf. [13, page 839]).
Let 6 be the diffusion coefficient of ¢ for the Lorentz gas with respect to the discrete
time. That is

52 = lim v (_(%,n)%)

n—00 n

where g, is the position of the particle after the n-th collision in the Lorentz gas and
v is any smooth compactly supported measure. Then & = 6g and o = 5//7 where T is
the free path length. However, we do not need the explicit values of o and ¢ in the proof
of Theorem 6.6.

Proof of Theorem 6.6. Given the background presented above, the proof proceeds simi-
larly to the arguments of Section 3 with minor modifications described below.

Global global mixing for 7. Given Lemma 6.7, the proof of the global global mixing
is the same as the proof of Theorem 2.12 (a) with d; = dy = 1, except instead of the
fact that z(T*) is large for all k& < n for most initial conditions in our cube, we use that
q1(T*z) (and, hence, K(T*z)) is large for all k¥ < n for most initial conditions in our
cube.

Local global mixing for 7. We check (slightly modified) conditions (M1)—(M6). We
choose M and M, in the same way as in Example 6.5.1. (M2) and (M4) are checked
in the same way as in that example. (M1) and (M5) follow from [13, Lemma 2.1]. We
already checked (M3), which is an analogue of (M3), in Lemma 6.7. Since (M3) is weaker
than (M3), we need to replace (M6) by a stronger condition, namely

(M6) For each m € 9 and for each R > 0, m(|K(T"z)| < R) — 0 as n — oo where K
denotes the kinetic energy.
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Similarly to Theorem 2.13, local global mixing is implied by (M1), (M2) (M3), (M4),
(M5) (M6). It remains to verify (M6). To this end, we note that by Proposition 6.8(a), 5%
converges to K(1), where K(-) is the solution to (6.13). Note that K(¢) is a power of the
square Bessel process, so its density can be computed explicitly (cf. [20]). In particular,
P(Z = 0) = 0 proving (M6).

Local global mixing for G*. In this case, we also need to modify (M1)-(M6). Note
that if ¢(t) ~ Q@ > 1, then v(t) ~ /@Q so the particle will travel distance of order /@

during a unit time interval. This distance is too large for Lorentz particle to serve as a

good approximation to the Galton particle. The good news is that a much shorter time
is sufficient to observe the LLT on Galton board.
Note that Lemma 6.7 does not tell us that G* is well approximated by G?. Instead G*

approximates the rescaled flow. Namely, let G* be obtained from G? by the time change

d
d_j = (2Kn(t))_1/2, where n(t) is the number of collisions before time ¢. Then the proof

of Lemma 6.7 shows that G* is well approximated by G* for large values of the kinetic
energy.
Accordingly we replace 9. by the family 91, ; consisting of the measures m such that

(i) all standard pairs m are longer than e; and
(ii) m is supported on the set {z : ¢ < K(x)/t?/3 < 1/} where £ is chosen so that

“ I/C\(U) 1 I
P <25 < 1278 < % for all u € [t/2,t]> >1-— 00’

where K is the solution of (6.14).

Next we replace (M3) by

—_—

(M3): For all me M V7 3T :Vt > T

K 1 = s/ SR ,

mlz:é< Kz) < < but sup d(G/VHE@ g G x))>e| <e
t2/3 € s€(0,7]

and replace by (M5) by

(M5): For each m € 9 for each € > 0 and s>0 there exists T" such that for ¢t > T we
can decompose

~t_s/¢1/3
G / m= g CiMy | + CerrMery,
J

where for all j, m; € 9. ; and there is some x; such that m; is supported on
{|K(x) — ;| < 1}. Furthermore, c¢r <e.
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The verification of (M1), (M2), (I\/I/\_i’)/) (M4), 6\/1/5) (M6) is similar to the verification
of (M1), (M2), (M3), (M4), (M5), (M6) for the collision map 7.
Next, we explain what adjustments are needed in the proof of Theorem 2.13 (and its

P

continuous time counterpart) to verify that (/1\7[/3), (M5), can be used in lieu of (M3) and
(M5) to infer local global mixing,.

First, given ® € Gy, m € M, § > 0, and s > 0, we choose ¢ > 0 small and apply (M5)
to conclude that for all sufficiently large ¢

oGt chmj (20G"") <5,

Further increasing ¢ if necessary, the bounded oscillation of K(.) on m; € M. ; becomes
negligible compared to t: specifically, for sufficiently large ¢, we have

‘mj (‘P o Gs/tl/a) —m; (‘POGSpf/\/m)‘ <4

2K
tT?’j' Next, by the definition of 9. ;, we have 2V/E <p; < 2/\/5

Thus we can use (M3) with 7 replaced by 27/v/¢ to conclude that

for all j, where p; =

‘mj <<I> o GSW/\/W> —m; (P oG*7)| <4

Combining the last three displays, we get
m (®oGY) chmj ® o G| < 36. (6.15)

As in the proof of Theorem 2.13, it is sufficient to verify that

lim m(@oét) = ®.

t—o00

Thus by (6.15), it suffices to verify that
Im; (o G*) — D] < §

for all j. This can be done by choosing s = s(d) large and using the MLLT for G. This
completes the proof of the local global mixing of G.

Global global mixing for G*. The proof is a simplified version of the proof of Theo-
rem 2.4(b) because we have now ®1, 3 € Gy. Namely, we decompose

/ O, ()02 (GM2) Z / ) (2)=- P2 (Gl x)dp(x)

Qq,R
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where z(z) is the label of the fundamental domain containing z. We claim that if R is
sufficiently large, then there is a set £2 C Q4 r which is a union of fundamental domains,

§) Q

such that M
,U(Qq,R) _

that R > t°° and let Q be the union of fundamental domains such that q;(z) > R'/®

everywhere on the domain. Using the fact that the speed of the particle is O(RY/19) to

the left in the strip 0 < ¢; < R'/®, we conclude that for = € Q

= O(R™'/%) and for z € Q, mérg ¢1(G"x) > RY°. Indeed suppose

min g1 (G'z) > RY/5 — CRY10t > RO-2 _ ¢ RO-12 > R1/10
u<t
for R large, which proves the claim.
Arguing the same way as in the proof of local global mixing, we conclude that for the
fundamental domains in

[ 1@ G i) = [ / @1<z>1z(m>_zdu<x>] By + 0o soo(1).

Since ®; € Gy, we obtain

[ ®1@)duta) = &1+ onsnc 1)

q,R

! 1
1(Qq.5) ZQ/ D1 ()1, (0)=-dp(z) = O

a.R)
completing the proof of global-global mixing. 0O
6.7. Fermi-Ulam pingpong

Consider the following one-dimensional system: a unit point mass moves horizontally
between two infinitely heavy walls. Between collisions, the motion is free so that the
kinetic energy is conserved, collisions between the particle and the walls are elastic. The
left wall moves periodically, while the right one is fixed. The distance between the two
walls at time ¢ is denoted by £(t). We assume that ¢ is strictly positive, continuous and
periodic of period 1. Moreover we suppose that the restriction of ¢ to the open interval
(0,1) is C® but £(1—) # £(1+), where £(1+) = lim; o £(t) and £(1—) = limgp £(¢). Thus
¢ is piecewise smooth with singularities only at integers. Let T be the map defined as
follows. Let the particle move until the next integer moment of time and then stop it
after the first collision with the moving wall. Note that 7" is conjugated to G-the time 1
map of the system. Namely for T it is natural to use the following coordinates: the time
of collision (taken modulo Z) and the post collisional velocity at the moment of collision.
For G it is natural to use velocity and height. To pass from the first coordinate set to
the second one, we replace the post collisional velocity with the precollisional one and
then let the particle move backward until the first time it becomes an integer.

It is shown in [18] that T is well approximated at infinity by the following map of the
cylinder T x R:
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T(r,I)=(r—=I,I+A(r—1)) (6.16)

where
1
A= 5(0)0/4-2(3) ds, o= 0(1+) - i(1-).
0

T covers a map f of T? which is defined by formula (6.16) with I taken mod 1. Specif-
ically, property (ii) of Definition 2.11 holds with dqy = 1, do = 0. If A ¢ (0,4) then the
map f is piecewise hyperbolic and according to [56, Section 7], it admits a Young tower
and hence, satisfies the MLLT (see e.g. [31]). Therefore in this case T and, hence, G are
global global mixing with respect to Gy .

We note that while the dynamics for large energies is described by a single parameter
A, the dynamics for low energies is far from universal. In particular, it is easy to construct
an example where T has elliptic fixed points and so it is not ergodic. Thus we get another
natural example where the map is global global mixing but is not ergodic.

On the other hand it is shown in [19] that if £ is piecewise convex, then T is ergodic for
most values of the parameter A (with at most a countable set of exceptions). One could
expect that in that case T is local global mixing, but this question requires a further
investigation.

6.8. Bouncing ball in a gravity field

In this model a particle moves on R in a linear potential U(x) = gz and collides
elastically with an infinitely heavy wall whose position at time ¢ equals to h(t). We
assume that h is 1-periodic and piecewise C2 but not C2. Let T be the collision map in
this model. It is shown in [57] that T is well approximated at infinity by the map T of
the cylinder T x R given by

T(t,v) = (t + 2v/g,v + 2h(t 4+ 2v/g)). (6.17)

T is a Z cover of the map f of T2 defined by (6.17) with ¢ taken mod 1 and v taken
mod . (Again, property (ii) of Definition 2.11 holds with d; = 1, do = 0.) Moreover, it
is proven in [57] that if either

h>0o0r|h+al <e (6.18)

where a > g and € = ¢(a) is a small constant, then f satisfies the conditions of [9].
Consequently it admits a Young tower with exponential tail and hence satisfies the
MLLT. It follows from Theorem 2.12 that if (6.18) is satisfied, then T enjoys global
global mixing with respect to Gy .
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As in the previous example, the dynamics for small energies is not universal and
the question about local global mixing may depend on the law energy dynamics of the
system. Finally we note that the continuous time system is not global global mixing since
on most of the phase space the motion is integrable. Namely let ® be a non negative
continuous function which depends only on velocity, is 1-periodic and is supported on
{v:d(v,Z) < 0.01}. Then & = fol ®(v)dv > 0. On the other hand for each T', on most
of the set {v < V} with V > T, velocity remains large on the time interval [0, 7T]. For
such orbits v(t) = v(0) — gt for t € [0,T] and so if d(¢T,Z) > 0.04 then ®- (®oGT) = 0.
Accordingly the large volume limit for such 77s is

d-(PoGT)=0

precluding global global mixing. As in the discrete time case the question of local global
mixing is more subtle and deserves a further investigation.

7. Condition (M6) for Lorentz gas with external fields

Here we complete the proof of Theorem 6.5 by checking the condition (M6) for Lorentz
gas with vanishing potential. We hope that similar arguments will apply to other hy-
perbolic systems with singularities, including the examples of §6.7 and §6.8 once their
dynamics in the low energy regime is better understood.

7.1. Recurrence-transience dichotomy

For sets A, B we shall write A = B if their symmetric difference satisfies u(AAB) = 0.
In this section we prove an auxiliary result of independent interest. Let

RE = {z: |2(T"x)| £ oo as n — +oo}.

Then, (see e.g. [1, §1.1]), R~ = RT. Let R = R~ NR™" be the set of recurrent orbits.
Then R=R"=R".

Lemma 7.1. Either u(R) = 0 or u(R¢) = 0. In the second case, T is ergodic.
Proof. Let Rg = R, RE = R*, and for n > 0 define inductively R,, = R;f N R, where

RE ={r € Rp_1:mes(W*(x) N RE_,) = 0},
R, ={r € Rp_1 :mes(W"(x) NR;,_;) =0}.

We shall show inductively that

Rn =R

Ry =R (7.1)
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For n = 0 this follows from the foregoing discussion. Assuming that (7.1) holds for n — 1
we obtain, using the absolute continuity of the stable lamination (namely, (5.11)) and
the relation R,,_1 = RI_I, that

RE = {z € Ri_, : mes(W*(@) N (R}_,)9) = 0} =R,
where the last step uses that, by construction,
mes(W*(z) N (R{_,)) = 0
for € R ;. Thus R} = R,,_1. Likewise R,, = R,,_1, proving (7.1). (7.1) shows that

7%,:ﬂRﬂzR. (7.2)

Let & = & = £ET N E™ where
EF = {z:|2(T"x)| — 0o as n — +o0}

and define &, and £, similarly to R,, and R, respectively. Similarly to (7.2) we obtain
that

Ex=E=ET=€.
Denote G = £ U R By the foregoing discussion
G=EUR=ETURT.

Since the last set equals to the whole phase space we conclude that ©(G¢) = 0.
Suppose for a moment that Ry, # 0. Pick ' € Roo. Then, by [11, Lemma 3.6] for
every z” € G there exists a Hopf chain, that is, a chain

' =yo,Y1,...,yn = 2" such that y; € G and y;11 € W*(y;) UW*(y;).
By construction since ¢y = 2’ € Roo then y; € Ro for all j. Thus z”’ € Ro and hence
n(Re) = 0.
On the other hand if Ro, = 0 then u(R) = 0. This proves the first claim of the lemma.

The fact that recurrence implies ergodicity follows from [34]. O

Corollary 7.2. For any set A of finite measure and for any €, R > 0 there exists n such
that

pwx € A:T"z € Bg) <, (7.3)

where Bp = {x : |z(z)| < R}.



46 D. Dolgopyat, P. Nandori / Advances in Mathematics 410 (2022) 108757

Proof. If u(R) = 0 then T is dissipative ([1, §1.1]), that is, for a.e. x

lim |2(T"z)| = +oo0,
n——4oo
so (7.3) is obvious.
On the other hand if u(R€) = 0 then T is ergodic, so the Ratio Ergodic Theorem tells
us that for each 2z, 2o and for almost every x

lim Card(n < N : z(]?"z) =z) _ wx:z(x) =2z
N—oo Card(n < N : 2(Tnx) = z5)  plx: z(x) = 22)

Since the last expression is uniformly bounded away from 0 we have that for any z and
almost every x

Card(n < N : z(T"z) = )

N, N =0
By the Dominated Convergence Theorem
N = _
1 ~ _ Cardin < N : z(T"z) =%
N ol A a(Tra) =5 = (ORI =, )
n=1

as N — co. Summing over z’s such that |Z| < R we get

2=

N
Zﬂ(xEA:T”xGBR)%O.
n=1

Therefore the set of times n when (7.3) is false has zero density. O

The preliminaries discussed in Section 5 extend to the case of billiards will small
external fields by [10,11]. In particular for an unstable curve -, we write

v ={reyire) 26}, As() = |J Wo(a).

TEYs

Then (5.6) holds (see [11, Lemma 3.2] in case of external fields) and we have the analogue
of (5.9):

and the analogue of (5.10):
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Corollary 7.3. For any unstable curve v for any €, R > 0 there exists n such that
mes(z € v : T"x € Bg) < ¢. (7.6)

Proof. Since measure of v — s tends to 0 as 6 — 0 (see (5.6)), it suffices to prove that,
for each fixed 0, (7.6) holds with 7 replaced by ~s. Combining Corollary 7.2 with (7.4)
we obtain for each € > 0 there exists n such that

f(x € As: |2(T"z)| < R+1) <e.
On the other hand the definition of [ easily shows that
f(z € As : |2(T"x)| < R+ 1) > dmes(z € 75 : [2(T"x)| < R)
proving the result. O

7.2. Verifying (M6)

By our choice of 9t it suffices to show that for each d, for each € and R there exists
ng such that for n > ng for each unstable curve I' of length at least § we have

mes(z € T': T"z € Bg) < e. (7.7)
We first show this result under an additional assumption that
|2(T)| > R (7.8)

provided R = R(s, J, R) is sufficiently large and then use Corollary 7.3 to remove this
restriction.

Before giving the formal proof let us describe the main idea. Given an unstable curve
I" satisfying the conditions above and 1 € N we consider the Hopf n-brush obtained by
issuing the stable manifolds from all points of T7T". We shall show that

(i) If n = n(e,d, R) is large, then the brush has a large measure;

(ii) If at some time n > 7 a significant proportion of I' came close to the origin, then a
significant portion of the n-brush would come close to the origin at time n —n. Since
T™=" is measure preserving, there is not enough room in a fixed neighborhood of
the origin, giving a contradiction.

To prove part (i) above we show that the image T"T stretches across a large number of
cells. For T this is true because of the LLT, while for T this is true because it is very well
approximated by T at infinity (at this step it is important that we take R = R(e, d, R,7)
sufficiently large). Next, the Growth Lemma implies that most of the components of
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T™T are not too short. Consequently, there are many cells whose intersection with 77T
contains relatively long component. Now (7.5) implies that the brush has a significant
measure in each such cell.

The proof of part (ii) uses the fact that if a point returns close to the origin then the
same is true for its whole (homogeneous) stable manifold.

We now give a more detailed argument. We divide the proof into seven steps.

Step 1: Preliminaries.
Let §; < ¢ be a small constant. The precise requirements on §; will be given below.
Here we require that for each unstable curve I' of length at least § and for each n,

mes(z € I' : x is not (J;,n) — good) < 2, (7.9)
where we call = (§1,n)-good if

ro(x) > /61 and ro(T"2) > /6. (7.10)

(The existence of §; when only the first inequality is required in (7.10) follows from the
Growth Lemma 5.1 ([10, Proposition 5.3] in case of external fields). The second inequality
can also be ensured by combining (5.6) ([11, Lemma 3.2] in case of external fields) with
(M1).)

By transversality of stable and unstable directions, there is a constant K7 such that
if 7 is an unstable curve and 7 is the projection to 7 along the stable leaves, then

d(rz,z) < Kid(z,T) (7.11)

provided that 7 is defined at z.
Step 2: Long brushes are abundant. Let

Xp,={zeX:VyeBnV0o<j< k T is continuous on B(T7y,n)},

and define M ko similarly with X replaced by M and T replaced by T. In step 2, we
prove that for k large enough and for §; = 61(15) sufficiently small the following holds. If
T € Xj ox,s5, and T is an unstable curve of length d; through z, then

mes(t' € T :rs(t') > 2K,61) > %1. (7.12)

To prove (7.12), first we recall inequality (5.58) from [16]:
rs(t) > mggA"ds(T”t’,S)

where A > 1 is the minimal expansion factor of T, S is the discontinuity set of 7" and
d*(T"¢,S) is the length of the shortest unstable curve that connects 7™t with the set
S.
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Note that if the above minimum falls below 2K, then also

min A"d* (T, S) < 2K,6;. (7.13)

n>k
(Indeed, for n < k,
A" (T, S) > d* (T, S) > d(T™,S) > 2K16,
by the definition of Xj ,p s -) Let us write £ = (T, %mesT). Then, we have

vo(t € T : min A"d* (T, S) < 2K,61)
n>k

Z (Y eT:d*(T",S) < A""2K,6,).

Next, observe that by transversality there exists some constant C' so that for every t € T,
ra(Y) < Cd*(T™,S). Thus the above display can be bounded by

S wlt € T i) < AT"2CK116y) < Z Z(TM)A"2C K6
n:fc n=k

Using the fact that Z, = 2/§; and the growth lemma, the above is bounded by

> " 20K16,  AKCCh j, i  2K1CCi6, B
Zk(cle U Ul py A 1_1/AA = [ +1I.

Now we choose k so that I < 1/4 and then choose §; = 6;(k) so that IT < 1/4. Since
vy = ilmesT, (7.12) follows.

To complete Step 2 we show that Xj oz s, fills most of the space. Namely, by further
reducing §; = 01 (k) if necessary, we may assume that

p(M = M 5p,5,) < e, (7.14)

Then for large R and for each cell C = {z = m} which is at least R away from the origin,
1(X = X 05,5,) NC) < 27 (7.15)

Step 3: Construction of unstable frame. Next, we construct a collection of unstable
curves {Wi;}, i = 1,.,1, 7 = 1,..,J, k € Z* with Wy,;; C X N {z = k} with
length(W ; ;) € [d1,2d1) that will serve as the handles of our brushes.

Recall that by (5.2), the unstable cones can be defined in a way that there is a segment
[,7] C St (here S' is identified with [0,27)) so that 0 < o < v < 7/2 and for any
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y € M and for any 3 € [a, 7], the direction § = d¢/dr is in the unstable cone. Increasing
« and decreasing v a little and assuming that the field is small enough, the same is true
for (y,k) € X for all y € M and k € Z2. Let us now fix k € Z2. First we fix parallel
lines Wi, .. Wr C X N{z = k} with angle d¢/dr =  where § := (o + )/2 and the
distance between W; and W, is d1. (To be more precise, we have to fix these lines
in all connected components of X N {z = k}, which are topological cylinders, but to
simplify notation we pretend that there is only one cylinder. Also we do not emphasize
the dependence on k as the curves are translated of one another for different k’s.) Each
line segment W; connects the two boundaries of the cylinder, that is one of its endpoints
is on the line ¢ = —7/2, the other one is on the line ¢ = w/2. The index I is defined by

I = max{i : icos()d; < arc length of the scatterer} — 1.

We would like to use W;’s as the frame for building our brushes. However, there are
two problems when trying to use (7.12). First, W;’s are too long compared to d1, so the
right hand side of (7.12) does not give a good bound for the relative measure on W;.
Secondly, W; may be disjoint to X} ox 5, and so (7.12) may not hold. To handle the first
issue we subdivide each W; into shorter pieces. To handle the second issue we perturb
slightly each short segment so that the resulting broken line lies in a £4; neighborhood
of W; and most of the resulting segments {Wi; j};=1,...,s contain a point in Xt oKk,6,-
They are defined as follows. Wy ; ; is the line segment connecting (i ; j—1, ki j—1,K)
and (ki j, Px.ij, K), where ¢k ;; = —m/2 + jsin(B)d, for

Jj<J:=max{j:jsin(f)o1 < 7}

and ¢k ; g = m/2, and ri; ; is defined inductively. First, ri ; ¢ is such that (1,0, —7/2)
is an endpoint of W; and denote 7i; j = 7k 4,0 + j cos(8)d1 (thus (fiij, Pk,i i k) € Wi).
Now assume that ri; ; is defined so that rx; ;j — fi,i; € (—£01,661). If risj — Prsj <
0 (> 0, resp.), then we try to choose ri; j+1 € (Fi,ij+1, ki j+1 + &01) (respectively
Tk,ij+1 € (Prij+1 — €01, Pk, j+1)) so that the line segment Wy ; ; contains a point in
Xi oKk, 6, If this is not possible, we choose 7k ; j+1 arbitrarily (in the above interval) and
say that Wiy ; ; is bad. Note that in case Wy ; ; is bad, then there is a corresponding bad
region of area C'9? that is disjoint to Xi oKk, 6,-

To facilitate the comparison between the invariant measure p and the area, we say
that Wy ; ; is marginal if min{j, J — j} < £2/(261). Thus there are three kinds of line
segments Wy ; ;: marginal, bad (from now on bad means bad in the sense defined above,
but not marginal) and good.

Now if Wy ; ; is bad, then the ;1 measure of the corresponding bad region is at least
Ce*6? and so by (7.15), the number of bad curves for any k is bounded by 2§, 2/2.
Also, the u measure of the K1d; neighborhood of marginal curves is bounded by £2/2.

Step 4: Anticoncentration of measure. Next, pick an unstable curve I' of length at
least ¢ satisfying (7.8). Let T be the union of the line segments {Wj, ; ;} constructed in
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Step 3. Given 71 € N let 7 : T"T" — T be the projection to the closest Wy s,; along the
stable leaves. Assuming that 6; is so small that v/0; > K0, we get that 75 is defined
on Tz if x is (61, 7)-good. Denote by J; the inverse of the Jacobian of T% : T' — T™T.
For t € T let

JH= > Jal)

x is (81,n)—good

ma(Thz)=t

Let Ly = {t € T : 0 < Ja(t) < ﬁ} In Step 4, we prove the following claim: if
i = 7(61), R = R(6,,7) are large enough, Wi, is a good line segment constructed in
Step 3, t € Wy; ; and J(t) > 0, then t € L.

To prove this claim, first we observe that by the definition of 7z and (7.11), if
7 (Tmx) = t, then d(T"x,t) < K,6,. Take t', on the same Wi ; ; as t with r,(t) > 2K, 5,
(the Lebesgue measure of such points is at least d1/2 by (7.12) by the fact that Wy, ;
is good). Since z is (d1,7)-good and by the construction of T, there is 2’ € I such that
T™z' belongs to the same component as Tz and 7(T"z') = t'. By bounded distortion
of T™ (see (5.3)), there exists a constant ¢ such that if J5(t) > Lﬁ, then J5(¥) > T
Combining the absolute continuity of 5 (see (5.7) and (5.8)) with (7.12) (and noting
that the length of Wi ; ; is bounded by 20, by construction), we conclude that if there
existed t' such that J5(t') > ﬁ, then we would have

mes(z € I : 2(T"z) = 2(t)) > o1

z =

On the other hand the LLT for 7" shows that there is a constant C' such that for each
71 there exists R such that if z(I') > R, then

(7.16)

mes(z € T : 2(T"x) = z(1)) <

[ % (7.17)

c e
If 7 is so large that — < C—}, that is,
n n
5\ 2
C
n> | — 7.18
(=) (7.19)
this gives a contradiction with (7.16) proving the claim.
Step 5: Most of the image of I' is not too close to the discontinuities. We claim that
if 6, is small, then for appropriate 71, R we have

mes(T"\ T*) < 4¢2, (7.19)

where T'* is the set of points  in T' such that z is (61, 7)-good and 75 (T"x) € L.
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To prove (7.19) note that by combining (7.9) with the fact that for (61, 7)—good points
x, T (T™x) exists, (7.19) will be implied by the following:

mes(T'#) < 3¢2,

where T'# is the set of points z in I that are (01, 7)-good and 74 (1) ¢ Ly. By Step 4, it
is sufficient to prove that the Lebesgue measure of points x € I so that z is (d1,7)—good
and ﬂﬁ(Tﬁx) € Wy,; € T with some marginal or bad Wy ; ; is bounded by 3e2.

Note that by choosing R large we can ensure that the goodness of Wy s,; only depends
on ¢, j and not on k as long as |k| > R — 7. Indeed, for fixed k, 6;,7 we can ensure that
the singularities of TE+7 are uniformly close to those of Th+ by choosing the field small.
Let us write (i,j) € B if Wy ; ; is bad or marginal for some (and hence for all) k with
k| > R — 7.

Next, increasing . = 7(d1) if necessary, uniform equidistribution of the images of
unstable curves (see [11, Proposition 2.2]) implies that

mes(z € T': 3k, 3(4, ) € B: m5(T"x) € Wiei )
< 2/1,(1' cX: d(mvu(i,j)EBWf{,i,g‘) < K1(51)

where k is arbitrary with |E| > R. The last displayed formula is bounded by 3¢2 by the
last paragraph of Step 3. We have verified (7.19).

Step 6: Proof of (7.7) assuming (7.8). By the definition of Lj, for any N > 7,
1 _
mes(z € T* : TNz € Bg) < \/—Tmes(y € Ly : TN "y € Bpy1). (7.20)
7l

On the other hand combining the absolute continuity of the stable lamination (see (7.4))
with the fact that r¢ > §; on Lj, we obtain that there is a constant C such that

_ C . i
mes(y € Ly : TN "™y € Bpy1) < é—u(y € Ly : TNy € Bpyo), (7.21)
1
where L = U W?(z).
B z€L#x
Since T preserves p, we have
w(y € Ly : TN "y € Brys) < D(R + 2)? (7.22)

for some D > 0. Combining (7.20), (7.21), and (7.22), we see that

DC(R +2)?
sV

mes(z € T : TNz € Bg) <

Thus if
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2

DC(R + 2)? 7 (7.23)

- | POR+2)7
"= 261 (e — 4e?)

then
mes(z € T* : TNz € Bg) < e — 4¢2.

Combining this with (7.19) we obtain (7.7) provided |z(T")| is large as required by
(7.8).

Step 7: Relaxing (7.8). It remains to obtain (7.7) without assuming (7.8). Fix ¢ > 0.
Then take d5 so small that for every unstable curve I' of length § and for all sufficiently
large n,

mes(z € I : 7 () < &) < €% (7.24)

Applying (7.7) with & replaced by &5 and ¢ replaced by dz¢e, we find that there exists R
so that for any curve T’ of length greater than &, such that |z(T)| > R we have

mes(z € T': 2(T"z) < R) < 2[T| for n > no(R,e,d). (7.25)

Next for each I with |T'| > §, Corollary 7.3 shows that there is some time ny = nq (T, €)
such that

mes(z € T : [2(T™x)| < R) < &% (7.26)

By compactness there exists N such that for all curves I' of length at least § one has
n1(T",€) < Nj. Further increasing N if necessary, we can assume that (7.24) holds with
n = Nj. Next, take n > N + ng(R, €, 3). Divide the set of  such that |2(T"z)| < R
into three parts

(1) : 7, (x) < 8oy (i4) @ |2(T™2)| < R,
(i) : TN, (x) > 8o, |2(TN x)| > R but |2(T"x)| < R.

Inequalities (7.24), (7.25), and (7.26) show that contribution of each part to mes(z :
|2(T"x)| < R) is at most 2. This proves (7.7) for

n Z N1 + ’I”Lo(R,é‘,(Sé).
8. Conclusions
This paper deals with global mixing, that is, calculation of the expected value of an

extended observable in a long time limit, for mechanical systems. The systems considered
in this paper admit approximations at infinity, that is, when either the position or the
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velocity is large, by a periodic system. It turns out that if the map, obtained from the
approximating system by factoring out the Z? extension, is chaotic (in our examples,
the reduced systems are hyperbolic systems with singularities), then the original system
enjoys global global mixing. To establish local global mixing, in addition to controlling
the dynamics at infinity we also need to ensure the hyperbolicity in the whole phase space.
In particular, we gave examples, where local modifications of the dynamics destroy local
global mixing.

We note that notions of global mixing discussed in this paper are neither implied
by nor imply the classical properties studied in infinite ergodic theory [1]. For example,
Lorentz gas in a small external field is dissipative but it enjoys both local global and
global global mixing. Non mild local perturbations of Lorentz gas are conservative but not
ergodic and they enjoy global global mixing (even though under natural assumptions,
ergodicity is a necessary prerequisite for local global mixing in the recurrent case, cf.
discussion in §6.2). On the other hand, certain continuous time systems of bouncing
balls in gravity field (i.e. special cases of the systems studied in §6.8) are likely to
be ergodic and Krickeberg mixing but they are not global global mixing. This logical
independence between global mixing and other infinite ergodic theoretic properties is not
surprising since those notions serve different purposes. Namely, classical ergodic theory
strives to control the ergodic sum of localized (L') observables and the notions such as
Krickeberg mixing are useful for that purpose (see e.g. [29,48,50]). The global mixing, on
the other hand, is useful for studying ergodic sums of extended observables (cf. [6,38]).
In particular, it seems to us that the global mixing is more suitable for derivation of
macroscopic dynamics from microscopic laws, as statistical mechanics concerns itself
with extended observables. In fact, in this paper we were able to prove

(A) global global mixing for systems where a good control on the dynamics in the bulk
is already known and

(B) local global mixing for systems where full limit theorems are available due to a good
control of the boundary conditions ([10,11,30,24]).

We also note that for mechanical systems there are more examples where the local
global mixing is known than the examples where the Krickeberg mixing was proven.
Intuitively, proving local global mixing is easier since it only requires control on most of
the phase space, while Krickeberg mixing requires a good understanding of the dynamics
in the localized regions of the phase space.

In summary global mixing is an interesting recent concept, which is relevant in several
areas of mathematics including mathematical physics (cf. [33]), dynamical systems ([21]),
homogenization ([23]) and probability ([22]) and is easier to establish than several other
mixing properties. Our paper is a first step in studying global mixing for mechanical sys-
tems. A natural next question to study is the Birkhoff theorem for global observables. In
[23] we address this question in the simplest setting, namely for random walks. However,
since the main tool in [23] is the local limit theorem and related asymptotic expansions,
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we hope that the results similar to [23] also hold for many of the mechanical systems
addressed here.

We also hope our work will stimulate further research on global mixing. Some of the
natural questions motivated by our results include the multiple mixing, limit theorems
for ergodic sums of global observables as well as quantitative aspects of global mixing.
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