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Abstract

We establish three partial differential equation models describing the thermodynamic behavior of a fluid
by combining the energetic variational approach, appropriate constitutive relations, and classical thermo-
dynamic laws. By using an explicit algebraic approach, we show a maximum/minimum principle for some
auxiliary variables involving the absolute temperature 6 and density p under some special conditions, which
then yields the positivity of the temperature. This important fact implies the thermodynamic consistency for
our models.
© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

The study of heat transfer in fluid dynamics has recently attracted growing attention. In non-
isothermal models, the temperature is a non-constant material property that flows with the fluid.
This creates local changes in the density and viscosity, which then cause the fluid flow to de-
viate from the classically expected outcome and further influence the rate of heat transfer. This
two-way coupling phenomenon is prevalent in heat exchangers, chemical reactors, atmospheric
flows, and processes in which components are cooled. One example we face almost every day
is the noble gas flow in fluorescent lights. If thermal effects become significant in the flow of
fluid through porous media, further applications appear: solidification of binary mixtures, dehu-
midification, insulation, and heat pipes (see [20] for more details). Besides the applications in
mechanical engineering, we also refer to [1] for an enhanced gas recovery application by non-
isothermal compressible gas flow.

Due to the prevalence of thermal effects in fluid flow, the literature has seen more and more
non-isothermal fluid dynamic models established and delicately analyzed. We list a few of them
here. By choosing an appropriate internal energy and entropy production, Mélek and Prisa
[28] arrive at a modern phenomenological theory (based in thermodynamics) of constitutive
relations for compressible and incompressible viscous heat-conducting fluids (Navier-Stokes-
Fourier), Korteweg fluids, and (in)compressible heat-conducting viscoelastic fluids (Oldroyd-
B and Maxwell). The existence of weak solutions for the Navier-Stokes-Fourier system (see
[14,35]) describing the evolution of a Newtonian heat-conducting fluid in a bounded domain is
systematically studied in [11,29]. Generalized non-isothermal compressible and incompressible
non-Newtonian fluid systems are derived in [21] using the energetic variational approach (see
[16,19]) which is based on Strutt [33] and Onsager [30,31]. This approach combines the two sys-
tems derived from the least action principle and the maximum dissipation principle, and has been
widely used to derive other non-isothermal models, by combining the basic thermodynamic laws.
We refer to [25] for non-isothermal electrokinetics, [5] for the non-isothermal general Ericksen-
Leslie system, [18] for the non-isothermal Poisson-Nernst-Planck-Fourier system, [23] for the
Brinkman-Fourier system with ideal gas equilibrium, and [24] for the non-isothermal reaction-
diffusion equation.

This paper is devoted exclusively to the a priori estimate of the positivity of the absolute tem-
perature as a key postulate of thermodynamics. The crucial proof of this property for all times
(starting from positive initial absolute temperature) is far from trivial in the non-isothermal set-
ting. In [7] the invalidity of negative temperature has been proved, by demonstrating that it arises
from the use of an entropy definition that is inconsistent both mathematically and thermody-
namically. In the recent series works on the Navier-Stokes-Fourier system by Feireisl et al., the
definition of weak solution includes the restriction on absolute temperature 6

0>0, ae.in(0,T) x Q,
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and can actually prove the positivity of temperature if it emanates from positive initial data. See
[12] for conditional regularity of very weak solutions to the Navier-Stokes-Fourier system, [10]
for the existence and stability of the weak solutions to the Navier-Stokes-Fourier system and their
relevance in the study of convergence of numerical schemes, and [2] for the existence of weak
solutions to the stationary Navier-Stokes-Fourier system. In [34] the third author studied two hy-
drodynamic model problems (one incompressible and one compressible) with three-dimensional
fluid flow on the torus and temperature-dependent viscosity and conductivity and established a
positive lower bound for the temperature in each case. We also refer to the excellent book [8]
and the monograph [9], a detailed introduction to the singular limits and scale analysis for the
Navier-Stokes-Fourier system, in which the positivity of absolute temperature was proved by us-
ing a Poincaré type inequality. We have to mention that thermodynamic consistency (positivity
of absolute temperature) for a class of phase change models proposed by Frémond [13] has been
widely studied in the past, see [3,22,26,27,32] and references therein.

This work focuses on the transport of heat in addition to fluid flow through porous media,
and gives a general framework for deriving non-isothermal models by combining the energetic
variational approach and some basic thermodynamic laws. From three different given free ener-
gies, we establish three different non-isothermal models, which we call non-isothermal ideal gas,
non-isothermal porous media, and generalized non-isothermal porous media. Moreover, in some
special cases for the first two models, we find maximum/minimum principles for some auxiliary
quantities related to the density and temperature (Theorems 4.1 and 5.1), by adapting an idea
originally from the work [34]. This then implies the positivity of the absolute temperature. To
avoid the problems connected with the boundary behavior of the fluid, we consider the problems
on the torus and impose periodic boundary conditions. The proof relies heavily on the struc-
ture of the equations, and exploits genuinely nonlinear interactions in the system of equations
coupling density and temperature. In the non-isothermal ideal gas model, the computations are
relatively straightforward, but become significantly more intricate in the non-isothermal porous
media model. The generalized non-isothermal porous media model creates yet more complicated
interactions, and a similar structure does not seem evident. Extending this methodology (or find-
ing a comprehensive approach that better incorporates the derivation) is an interesting question
for future research.

We emphasize that the three models are ultimately determined by a starting choice of free
energy W which depends on the local state variables p and 6 (density and temperature). This
choice is not arbitrary. The first model (see Section 3.1) uses the free energy for an ideal gas,
which must locally maintain that pressure be proportional to p8 (see (2.10), (2.11), and (3.1)).
This is the simplest form that W can take while maintaining physical consistency, and it leads
to the simplest of our three models (3.6). The other two models (3.12) and (3.17) arise from
natural variations on the ideal gas free energy, and are in a sense the “next simplest” models
to consider (again maintaining physical consistency). While it is possible to consider models
with a weaker coupling between p and 6, they would need to arise from exotic constitutive
laws (which might be found in certain areas of material science). The present work aims to
showcase the methodology for deriving a priori maximum principles using the nonlinear structure
of the equations. We investigate models that are thermodynamically consistent and derived from
fundamental principles to emphasize that the results are not “baked into” the equations.

Outline. In Section 2, we present a general derivation of models for non-isothermal fluid flow
starting from a given free energy function. In Section 3, we look at three free energy functions
to obtain equations for the ideal gas, porous media, and generalized porous media equations.
In Section 4, we prove a priori maximum and/or minimum principles for the temperature and
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density of the ideal gas model, by first proving them for certain auxiliary variables adapted to the
structure of the equation. In Section 5, we prove analogous (but slightly weaker) results for the
generalized porous media equations. In Section 6 we give some concluding remarks and future
research directions.

2. General frame to derive the non-isothermal model

This section aims to derive a system of equations involving a Darcy-type dissipative law for
a suitable family of non-isothermal fluids. For more detailed physical discussions such as the
choice of various energy functionals, the state variables, and also the kinematic transport rela-
tions, we will refer to the book [8] and also [23]. In this paper, for simplicity and illustration of the
approach, we will derive the overall governing equations, employing some minimum ingredients
and assumptions:

e The free energy of the system, which will be denoted by W.

e The entropy production A, related to the rate of dissipation of the system.

e The kinematic transport of the state variable and the conservation of density p (¢, x) along
the flow.

e The energetic variational approaches, including both the Least Action Principle and Maxi-
mum Dissipation Principle,

e Finally, the First and Second Laws of Thermodynamics.

We start from the free energy, W(p, 0), which is a function of the density p and the absolute
temperature 6. The (specific) entropy of the system and the (specific) internal energy can then
be linked to the free energy W by the standard Helmholtz relation (see formula (2.5.26) in the
classical book [4])

e (specific) entropy of the system:
n(p,0) :=—0dpW.
e (specific) internal energy (the Legendre transform in 6 of the free energy):
e(p,0): =V — Vo =W+ no.

Next we are going to establish a Darcy type diffusion law by using the Least Action Principle
and Maximum Dissipation Principle.

Lemma 2.1. Assume a given energy density V(p, 0). Assume further that the total dissipation
rate of the fluid is of Darcy type, i.e., %,0|u|2, with u(t, x) the velocity field of the fluid. Then the

conservation of p and the Onsanger’s principles automatically determine the equation of motion
for the fluid u(t, x), which corresponds to the following Darcy’s law:

Vp=—pu, 2.1
where the pressure is defined by
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p=¥Y,0—p. 2.2)

Proof. As stated in [15,19], we start from the total energy and dissipation which are chosen as

1
EtOtaIZ/\y(p,Q)dx, DlOtaIZE/pu2dx
Qr Q
in this paper, where Q7 is the deformed configuration corresponding to the reference configura-
tion Q(’)( ; here X represents Lagrangian coordinates and x represents Eulerian coordinates. We

first rewrite the energy functional in the Lagrangian coordinate system and then take the least
action principle conservative force.

T
A(X, 1) = —/ f v <@,90(X)) Jdxdt, 2.3)

OQ())(

where J =detF and F = 3x denotes the deformation gradient. Then taking the variation for
any smooth compactly supported y(X, 1) =Y(x(X, 1), t) with respect to x yields

A(x +¢€y)
e=0

Po(X) d(x + &y)
= Of/ < 3(X+8y)’90(X))(deta—X>dth
pX) ax
//<d8 e=0 <det3(x+sy)’00(x))) : (detﬁ>

—@(p‘)(x) Oo(X )) 4 (detw)dth
detdx & e=0 X

po(X) po(X) X dy
// (5 mon)- (= 557) (5 3%)
po(X) 90X dy
(P a0) o 22 axa

=//(\I’p(p(x,l))';O(X»l)—‘lf(p(x,t)))'(Vx'?)dxdt

0 o

d
Ax(X, 1) +ey(X, 1) = Te

e=0

_de

2.4

= [ [~ @0t o)~ Wit 19) Faxar,
0 Qr
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which gives the conservative force

Forcecons = — Vi (W (o (x,1) - p(x, 1) = ¥(p(x,1))) = —=Vp, (2.5)

where the negative pressure gradient is by definition equal to the conservative force. On the
other hand, according to the maximum dissipation principle, taking variation with respect to the
velocity of the dissipation functional yields the dissipative force

6,D = / pu - Sudx = /ForcedisS -Sudx, (2.6)
QF QF
where it is seen that Forcegiss = pu. With these two forces in hand, we may then apply Newton’s

force balance law, which states that all forces, both conservative and dissipative, add up to zero
(“action” equals “reaction”), thus

Forcecons = Forcegiss,

which yields (2.1) by combining (2.5) and (2.6). O

We also take p, n as new state variables and rewrite the internal energy function as
er(p,n)=e(p,0(p,m),

and hence we have

Lemma 2.2. The derivatives of the internal energy with respect to the new state variables satisfy
el =0, elp=Y,. 2.7

Proof. Direct computation yields that

ely =Wyl + 0 +no,
= —nb, +0 + no, (2.8)
=0
and

elp :\I’p+\L’99p+n9p

(2.9)

=V, O

Lemma 2.3. By the definitions above, it holds that
dop=n—"1ppP (2.10)

and
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Vp=pVei, +nVey,. 2.11)
Proof. We may get (2.10) by direct computation
dop=Vpop —Wog=n—1,p.
For (2.11), it is easy to see from the definition of pressure

Vp=VW,p—V¥)
=W Vo + ¥ VO p+V¥,Vp —¥,Vp —WyVH (2.12)
=W Vo + YV p +1nVe.
On the other hand, one has

pVerp, +nVeyy,
=p(Wpp Vo + ¥y VO) +1nVo,

2.13)

then (2.11) follows. O
Next we employ the following classical thermodynamic laws.
e The first one is related to the rate of change of the internal energy with dissipation and heat

de
—=V-W+V.q. 2.14
7 +V-.q (2.14)

Here W denotes the amount of thermodynamic work done by the system on its surroundings
and ¢ denotes the quantity of energy supplied to the system as heat.
e The second one is related to the change of entropy

8m+V~(r;u)=V-<%)+A, (2.15)
where A > 0 denotes the rate of entropy production.
e The third one is called Fourier’s law

where k3 denotes the material conductivity which may depend on p and 6.
Also, we make the general kinematic assumption of mass transport
pr+ V- (pu)=0. (2.17)
By (2.11), (2.14), (2.15), (2.16) and (2.17), one has
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dei(p,n)
dt

=¢e1ppr + ey

=e1, (=V - (pu)) +e1y (=Y - () + V- (3) +4)

g (2.18)
= — V- (e1ppu + erynu) + (pVer, +nVery) - u+6V - (5)+9A
=V~W+Vp~u+V~q—%-V0+0A

k3| Vo2
0

=V-W—pu>+V-q +0A,

where

W=—(e1pp+ein)u

denotes the work done by the system. Set the rate of entropy production by

(2.19)

then (2.18) turns out to be (2.14).
With the above preliminaries in hand, we may establish the non-isothermal equation by (2.15).
By combining (2.10) and (2.17), we have

ne+ V- (qu) =ng O +u-V0) +n,(p +u-Vp)+nV-u
=ng(6; +u-V0)+n,(—pV-u)+nV-u
=ng(O +u-V0)+(n—n,p)V-u
=ng(0; +u-VO)+dpV -u (2.20)
=V.j+A

_.2)1 2,4 V0
=v- (% +9<p|u|+ — ).

which yields

1 - Vo
ne(é’z-l-u'V@)—l-aepV'M:V'<g>+§<P|u|2+qT>. @21)

Hence, for a given free energy W(p, 6), the non-isothermal model can be established by (2.1),
(2.17), and (2.21).
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3. Thermodynamics models

In this section, we introduce three specific free energies, which are related to non-isothermal
ideal gas, non-isothermal porous media, and non-isothermal generalized porous media, respec-
tively.
3.1. Ideal gas

For the ideal gas, the free energy is given by

Y(p,0)=k10pInp — k200 1n6b.

This gives
p=kK100,
dop =K1p,
_Kp 3.1
Ne = 9

pu=—Vp=—k1V(p0).
Then the mass equation (2.17) becomes
dp=—V-(pu)

=K1V - (V(pd)) (3.2)
=K1 A(p0).

Then (2.21) changes to

K2
7(9, +u-VO0)+k1pV-u

v (S50 4 L (Cawiony . u s 2VOF Y
e . —_ —K U —_— s
o ) o\ T o
implying
k3Vo K3 VO
k2(00)s — k200 + Kk2pu - VO + K1V - (pOu) =6V - < 39 ) + 3| 5 | , 34
which can be simplified to
K2(p0)r — Kk1(k1 +12)V - (OV(p0)) =V - (k3V0). (3.5
Hence we get the non-isothermal model for ideal gas:
0rp = k1A(pB),
(3.6)

2(p0); — k1 (k1 +Kk2)V - (OV(p0)) =V - (k3V0).
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3.2. Porous media
For the porous media, we introduce the free energy as
W(p,0) :=k10p% — k00100, (3.7)
with « > 1. In this case we have

p=ki(a—16p%,
dp =ki(a —1)p%,
_K2p (3.8)
=5
pu=—Vp=—ki(a—1)V(@p%)
and
dp=—V-(pu)
=k1(a — DV - (V(6p*)) (3.9)
=«k1(a — DHAH”).

Also, (2.21) becomes

%(9, Fu-VO) 4@ —1)0p% 'V -

zv.<K39V@>+%<_K1(a_l)v(9pa).u+%0|2>7 (3.10)
which yields finally
k2(p0); + 12V - (pOu) + k1 (@ — D)V - (0p%u) =V - (k3V6), (3.11)
and hence we get the non-isothermal porous media system:
do=rk1(a@—1A (6%,
K2(p0); — kika (@ — DV - (OV(0p™)) — k(e — 1)V - (ep“*‘V(ep"‘)) (3.12)

=V - (k3V0).
3.3. Generalized porous media
We introduce the free energy for generalized porous media as
W(p,0) =k16p" — kapb”,
with «, 8 > 1. Then
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p=ki(a —1)6p*,
dgp =ki(a —1)p%,

(3.13)
no = kap(B—1)p6P 2,
ou=—-Vp=—ki(a—1)V(©p%),
and
p=—V-(pu)
=ki(a — DV - (V(6pY)) (3.14)
=ki(ax — 1)A@Op).
In this case (2.21) becomes
kaB(B— 1)p0P 720, +u - VO) + ki (e — 1)p*V -u
B k3VO 1 . k3| V62 (3.15)
—V~(T)+§(—k1(a—1)V(9p ) - u+ 7 >,
which yields finally
ka(B — 1)(p0P); — kikao(e — (B — DV - (9P V (0p™))
(3.16)

— e = D2V (00" 'V (O")) = V - (kVO),
and hence we obtain the non-isothermal porous media system:

0p = ki(a = DA (6p%),
k2 (B — D (p6%), — kika(@ — (B = DV - (67 V(6p™)) 3.17)

— K- 1)V (ep“—‘V(ep“)) — V. (k3V6).
4. The maximum/minimum principle for thermal ideal gas model

In this section, we use the structure of (3.6) to establish maximum and/or minimum principles
for certain auxiliary variables in the temperature and pressure. Even if one assumes a priori that
a smooth solution pair (p, 0) exists, it is not feasible to obtain max/min principles for the two
functions directly due to the complicated interdependence between p and 6. Indeed, maximum
principles for coupled systems of partial differential equations are notoriously hard to obtain, and
is one of the major obstacles in going from “scalar-valued” problems (e.g., heat, porous media, or
surface quasigeostrophic equation) to “vector-valued” problems (e.g., Navier-Stokes and Euler
equations). One might then search for a “state variable” A(p, 6) that is (super- or sub-) conserved,
but identifying the right variable X is nontrivial.

Nevertheless, if the material conductivity «3 is proportional to 8p, we can find two homo-
geneous auxiliary variables §p!'*7+ that, through careful cancellation in the structure of (3.6),
satisfy pointwise a priori maximum or minimum principles, in the form of Theorem 4.1 below.
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Rather than simply verifying the principle for the two auxiliary variables above, the proof takes
a more general approach. It will look at variables 6pf (p) for a to-be-determined positive weight
function f and, using the structure of (3.6), show that f must satisfy one of two possible ordi-
nary differential equations, which naturally lead to the variables above. The method is similar
to how [34] found appropriate temperature weights to close energy-type estimates for a fluid
equation with thermal dissipation. The proof below is also slightly more general, as the two
functions f can also be obtained implicitly when k3 = D(p)6, in terms of the function D. Note
that the ansatz 6pf (p) for the auxiliary variables essentially covers any “state variable” of the
form A(p, 0) =67 f (p) (for y > 0), so that the auxiliary variables found in the proof below are
the only ones in this class to satisfy maximum or minimum principles.

Theorem 4.1. Consider the non-isothermal ideal gas model (3.6) on [0, T) x T". Assume we
have a smooth solution pair (p, 0) on this domain. If the material conductivity k3 takes the form

K3 :/qﬁ@p,

for D>a fixed constant, then we have

I. The absolute temperature is positive on T" x [0, T).

I1. The density is bounded from above unconditionally.

II1. If the temperature 0(t, x) either blows up or goes to zero, then the density p(t,x) must
vanish. Precisely, we have

p(t,x) <min {6,672}, 4.1)
for some constants c¢1 > 0, co < 0 depending on «1, k3, and D.

Proof. We can slightly simplify system (3.6) by writing 8 = 1+« /k2 and (by abuse of notation)
replacing k3 by k3x7 to obtain

{E%p =Kk1A(pb) “2)

0 (p0) =V - (B10V (p0) +k3V0)
Here «3 is not necessarily constant; it generally depends on 6 and p. In the interest of making the
proof more general, we will initially take k3 = 6 D(p). Later, we make the special assumption
that D(p) =«1Dp.

Let f : (0, 00) — (0, 00) be a smooth monotone function to be determined later. We look at
the quantity f(p)p6. Taking a derivative and using (4.2) yields

¥ (fp0) =0f"pdip + f3,(p0) = k1p0f A(08) + fV - (Bk16V (08) +k3V). (4.3)
Let xo € T” be a point where fp6 achieves a local minimum (respectively maximum) in space.

Assume that f(p(xg))p(x0)0(xg) > 0. For the rest of the proof, all quantities are implicitly
evaluated at x(, though we suppress the notation. Then the gradient at this point vanishes, so that

(f'p+ HOVp+ fpVO =0, (4.4)
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and the quantity

L:=A(fp0) = Qf + f'p)0IVol* +2(f o+ IV -Vo+ (f'p+ f)OAp+ fpAb

_Iver ((fp)z(Zf’ +/"p)
0 (f'p+ 1)

is nonnegative (respectively nonpositive). The last equality used (4.4), which in general allows
us to compare terms of the form |V p|?, Vp - VO, and |V6|? to each other (recall that they are all
evaluated at xg).

Taking k3 = 60 D(p) and expanding (4.3) (again using (4.4)) yields

- 2fp> +(f'p+ OAp + foAo

3 (fo0) =k10f pA(p6) + f(ﬂKl OV - Vp+ p|VOI*> +0A(06))

+ D|VO|2 4+ DOAO + D'OVE - Vp)

=(k16f"p + Br16f) 0 Ap + <K19f/p + Br16f + Gfg) p A8

N (_ 21 /f'p? 3/%0 ) _ D

f'o+f f'o+f flo+f
=0(F10Ap + F,pA0) + F3|V6|>.

+ Bry <fp — + fD> Vo

The goal then is to choose f (in terms of 8, k>, and D) such that we may rewrite the above as
3 (fp0) =0FL + G|Vo%, 4.5)
with F > 0 and G nonnegative (respectively nonpositive). This would show that fp# satisfies a

minimum (respectively maximum) principle for such f.
In order for (4.5) to hold, there must be some A > 0 (not necessarily constant) such that

kif'o+Brif=a(f'o+ 1),

<L f'p+ BieLf + f% Y

Subtracting yields
D
h=
which immediately implies that
f' <o. (4.6)
We therefore need f to satisfy
/ fD _f*D
kif'p+prif+—+—==0.
P fp
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Solving for f’ formally yields

—Brip—D+ \/,Blezpz +2(8 — k1 pD + D?

fl=rf T @7

First, we remark that (4.6) is always satisfied whenever the right-hand-side of (4.7) is real-valued.
The numerator is of the form —b + v/b%2 — 4ac where each of a, b, and ¢ are positive (for p > 0).

Second, as long as «1 and xp are positive (so B > 1), the discriminant of (4.7) is strictly
positive for all p (regardless of the value of D). This is easily seen with the Schwartz inequality,
and that the discriminant is bounded below by (B — 1)/(22/02. Thus, (4.7) specifies two ODE’s
that are locally well-posed for all p > 0.

Third, it is immediate from (4.7) that | f'| < C|f|(p~" + D(p)p~2). Gronwall’s inequality
then guarantees that both ODE’s are globally well-posed on (0, co). That is, given pg > 0 and any
initial datum f > 0, there exist two unique, positive, monotone-decreasing weight functions f4+
defined on (0, co) such that f satisfies the corresponding ODE of (4.7) pointwise and f4(pg) =

fo.
Fourth, we can directly apply the Duhamel principle. Writing (4.7) as

f'(p) = f(p)T£(B. k1, D, p),
we get that

P

Jx(p) = foexp /Fi(ﬂ,Kl,D(r)v")d"

0

In the special case D(p) = Dk p (for D > 0 a fixed constant), an assumption we will make for
the remainder of this proof, the functions are given explicitly as fi(p) = fi(1)p?* with

DB +2p 0D+ D
2 |

Y+ =

Note that y4+ < 0 for all values of D, B, and k1. Moreover, 1 4+ y; > 0 while 1 + y_ <O.
Thus we do obtain (4.5), in the sense that

fD
f'p?

3 (fpd) =—0-L-=L+G|VO|?,

where

a_JD ((fp)z(Zf’ + f"p)

f'p? (f'p+ f)?

/ o [
+(fD+(ﬁ—2)K1fp—(D + 1138 2))f/p+f)'

- 2fp>
(4.8)
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Remark 4.2. This is a complicated expression which can be reduced by repeated use of (4.7)
until it only involves f, p, D, and D’. Notice that G does not depend on @ or on the position
or time variables. Its sign dictates the nature of the max/min principle satisfied by the auxiliary
variable 6pf (p), and this ultimately depends only on p. If D is left as a generic (monotone)
function of p, the range of possible behaviors is quite complicated, in some cases leading to
“banded” structure where the auxiliary variable satisfies a maximum principle in certain interval
ranges of p and a minimum principle on the complementary intervals (and both at the endpoints).
For this ideal gas model, one obtains much more precise and unconditional results if one adheres
to the special case D = Dp, with more general functions D left for future work.

Since f'p = y+ f, (4.8) reduces to the simpler expression

GiZKl 1Y
/ < ye(1+ys) l+y+ 14yt

QD gy rE 2P ) 4.9)

Recall that the minimum principle requires that G > 0, but the maximum principle requires that
G < 0. However, we see that G4 is in fact C fp for some fixed constants C that depend on
the initial parameters. This guarantees that each of f o6 individually satisfy either a maximum
principle or a minimum principle for the entire lifetime of the solution (p, ).
Observing that yy_ = D, a calculation shows that
G k1 fp

R
_ kifp
l+yy

(=D =2y + Dy + By — 274 - 28)
(f)(l +v4) +ﬂy+)-

Recall that 1 4y, > 0. We claim that D(1 + y) + By, is always negative. This is true if and

only if
(D+ B/ (D+B)2—4D < D*+28D + B2 —2D.

Since both sides of the inequality are positive (recall 8 > 1), we may square both sides and get
(D+B)* —4D(D + B)* < (D + p)* —4D(D + B)* + 4D,

which is always true (and therefore so is the claim). Thus, we always have G, < 0, guaranteeing
a maximum principle for p!*7+6.
A similar calculation shows that
~ K
G 2 fp

= ([)(1+y_)+ﬁy_).

Recall that y_ < —1. Then G_ > 0 which gives a minimum principle for p!*7-6.
Putting it all together, we have

o't <c; and 70> cp.

569



N.-A. Lai, C. Liu and A. Tarfulea Journal of Differential Equations 339 (2022) 555-578

The second inequality implies I (the positivity of the temperature). Further, both inequalities

imply II, as p¥+~ V- = p B2+2(8—2)D+D?

ally.
Since p is bounded above, the two inequalities imply that the density must vanish if the
temperature either blows up or goes to zero. This shows I11, as well as (4.1). O

< c1/c2. So the density is bounded above uncondition-

5. The maximum/minimum principle for thermal porous media model

The non-isothermal porous media model (3.12) is more complicated than (3.6), leading to
more intricate calculations for the auxiliary variables. Although they ultimately take the same
form as before (6pf (p)), and there are still exactly two possibilities for f, it is no longer possible
to find clean expressions for f even when «3 takes a simple form. The corresponding maximum
and minimum principles also become more conditional, and we must resort to asymptotic analy-
sis (i.e., large p and vanishing p limits) to determine precisely which case occurs for each of the
auxiliary variables. The proof is similar to that of Theorem 4.1, but more technical and involved.
For this reason, we present it here at the end, so that the proof of the previous section can be used
as a reference.

Theorem 5.1. If (p,0) is a smooth solution pair to (3.12) on [0,T) x T" and the material
conductivity k3 is given by

k3 =aD0, 6.1

with constants D > 0 and a == a — 1 > 0 (so independent of p), then we have

1. High density case: There is some threshold p for which, if p(t,x) > p on T", then there are
constants c1, ¢ > 0 depending on the data such that

a+1 Kia a
9>c and €X —_—— 0>c )
o =l P P< Kz(a+1)0) e &)

and hence

6 >max(cip ¢, crptex (L “))
= ( 10 20 p K2(a+1),0

I1. Low density case: There exists a threshold p for which, if p(t, x) < p on T", then the temper-
ature 6 is bounded from above. Moreover; there are constants c1, c2 > 0 depending on the data
such that

0<cy and pOexp (Lp_“”) > ¢y,
Kko(a+1)

and hence

p exp (Lp‘“—l> > 2 (5.2)
ka(a+1) cl

570



N.-A. Lai, C. Liu and A. Tarfulea Journal of Differential Equations 339 (2022) 555-578

It is worth noting that, in the case of low density, the estimates hold indefinitely for certain
initial data. The function on the left side of (5.2) is decreasing as p increases from zero, so if the
constants ¢; and ¢y are appropriately chosen (i.e., the initial data is appropriately chosen), then
(5.2) would fail if p became too large. If this threshold is less than p, then the case of very low
density also becomes self-maintaining; the density and temperature stay bounded above, and if
temperature vanishes somewhere then so must density. Unfortunately, in the high density case,
nothing prevents the temperature from becoming arbitrarily large. This then allows the density
to drop, which means the lower bounds no longer apply. The case of very high density is not
self-maintaining.

Proof. We first eliminate the x| constant by rescaling. If we define

1
15 = K]a pv
then (3.12) (where by abuse of notation we still write p instead of p) becomes

9o =ar@p*™)
(5.3)
K201 (00) = V - (@26 + a*0p") V(69" 1)) + V- (k3V6)

Let f: (0, 00) — (0, 00) be a smooth monotone function to be determined later. We look at the
quantity f(p)p0. Taking a derivative and using (5.3) yields

K20 (fp0) = k200 0 p + fK20;(pb)

1 ) 1 (5.4)
— kaapOf Aty + [V ((axze +d20p")V (6t )+K3v9).

Let xo € T" be a point where fp6 achieves a local minimum (respectively maximum) in space.
Assume that 8(xg) > 0 and f(p(xp))p(xg) > 0. For the rest of the proof, all quantities are im-
plicitly evaluated at x¢, though we suppress the notation. Then the gradient at this point vanishes,
so that

(f'p+ f)8Vp+ fpVo =0,
or
) Ve
(fp+f)Vp=—fp7- (5.5

In addition, the quantity

L:=A(fp0)=0(f'o+f)Ap+ foA0+2(f'p+ f) Vo -VO+0(f"p+2f) Vol

_ v (f”p+2f/
0 \Ue+f)?

f2o° - 2fp> +O(f o+ f)Ap+ fpAd
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is nonnegative (respectively nonpositive). The last equality used (5.5), which in general allows us

to compare terms of the form |V ,o|2, Vp -V, and |V6‘|2 to each other (when they are evaluated
at xg).

Expanding (5.4) then yields

k20 (fp0) = (k2af 0“0 + (k2a +a*p") fp" 10 + s f) A6
+ (kaata + 1) f'0+162 + (k2 + a®p") @ + 1) f°67) Ap
- (K2a2<a + 1) 0% +a(a+ 1) fp** 10 + (kaa + a* p*)ala + l)fp“‘192) IVpl?
+ (2/<2a(a + 1) f p°T10 + 3(k2a + a®p™)(a + 1) fp0 +a° fp>*0 + fam) V6 -Vp

+ (k2 +a2p®) fo“* + fp3 ) V62
(5.6)

The ultimate goal is to evaluate (5.6) at xg, the local minimum (respectively maximum) and
obtain

20, (fp0) = FL + G|Vo|? (5.7)

with F > 0 and G nonnegative (respectively nonpositive). This would show that fp# satisfies a
minimum (respectively maximum) principle for such f.
At xo, we use (5.5) and (5.1) to turn (5.6) into

K20k (fp0) =at (k2 f p™2 + (2 + ap™ fo“*! + Df ) A6

+a(a+ 1Dp0% (k2 f o+ (k2 +ap®) f) Ap

2 2.2
a“(a+1 _ -
cat DI (Kzf/p“rafpz“ ' (k2 +ap®) fpt 1)|V9|2

(f'p+ f)?
- ff;f T (2@t e 130 @ty @ D S+ fp) IVEF
ta ((Kz +ap®) ot + Df) Vo2,
(5.8)
In order for (5.7) to hold, there must be some A > 0 (not necessarily constant) such that
at (i f'p"2 + (k2 + ap) "' + Df ) =fp, (5.9)
ala+1)p0* (k2 f'p+ 2+ ap™) ) =20(fp + /). (5.10)

Writing A = akp~'0 crucially eliminates 6 from both equations above. From (5.9) we obtain

/
A= sz“+2§ + (k2 +ap®)p*t + D.
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Plugging this into (5.10) then yields

/
K@+ Dp* 2 f' 4 (a+ D +ap®)p ' f = (sz“+2f7 + (2 + ap®)pt! + D) (f'p+ 1)
This finally simplifies to

(P2 (20"t2) + £ (@0 = k2 +k2)p" T2+ Dp) + 12 (D = atiy + ap*) o) =o0.
(5.11)
Using the quadratic formula yields two branches of solutions. After simplification, this becomes

—(ap® +k2(1 —a))p**t = DL VA
2K2pa+2

f'=r

=: fWi(p), (5.12)
where the discriminant takes the form
2
A= (D + p T ap® — ko (a + 1))) + dicya(a + 1)p> 2.

Note that A is strictly positive for all p > 0. Thus (5.12) implies the existence of two solutions
f+ and f_ that both transform (5.8) into (5.7). Unfortunately, these ODE’s are not explicitly
solvable, and do not yield simple power laws for f.

We briefly examine now the asymptotic behavior of fi. One can rewrite (5.12) for f in the
following form:

fi
fr
(D +ap® —kr(a+ 1)) +dira(a +1)p3 T2 — (D + ap® T + o(1 — a)pT)?
B 2i209T2(D + ap2at! 415 (1 — a) pat! +/A)
2a2pH 4 ipapt! — D)
T p(D 4 apXtl 41— a)pat! +VA)

Asymptotically, we have
/ 1 + ’ a
f+%—;f+ as p— 0" and f_i_%;ﬁr as p — oo. (5.13)

Therefore f, has a positive singularity at p = 0 that grows like p~!, decreases to a minimum
value at some critical p; where a”p 2““ + K a/o“+l D, then becomes increasing and grows
like p¢.

A similar calculation for f_ shows that

a2pa—l

mf_ as p — oQ. (514)

x> b 07 and
fo~— pryes 2 f- as p— and f’ ~

573



N.-A. Lai, C. Liu and A. Tarfulea Journal of Differential Equations 339 (2022) 555-578

Thus, f_ also has a positive singularity at p = 0 that grows like exp (ﬁ ,0_(““‘1)), stays
monotone decreasing, and decays exponentially to zero with profile exp <— m p">~ The dif-

ference between f, and f_ comes from expanding the discriminant: ap?**t! + D + /A has
simple asymptotics, but ap?**! 4 D — +/A has cancellations at both limits.

We now look at the remaining terms of (5.8) in light of (5.12). Specifically, (5.8) has now
become (5.7) with

- / D
F=ab (sz“% +ap* + 5) .

and

G=-a (sz” _f/pf—i- f +ap* + 2) <7f”p 27 fo* - 2f/0>

o) \(f'p+f)?
2% (a+ Dp* ! 3 a(@® — Dpt —a®(4a +3)p* ! 2
(f'p+ f)? flo+f

+ <a2p2a+l —Kza(2a+ 1)pa+l +aD)f

1 D+ VA v v v
:_a< At et @ty ~/_>< +p | (Wip+ i)p_2>f

Ty r 2 2 Vop+1 " (Wip+1)2

8k3a’(a + 1)p*at3
+ (k2(a + 1)pa+1 _ap2a+1 - D+ \/K)Zf
2/(2261(612 — 1)p2t2 — 2ra?(4a + 3) p3at2
k2(a + D)pat! —gp2atl — D+ /A
+ (az,oza"'1 — k2aa + 1)p*! +aD> f

We now let p — oo (or 01) for G to obtain an asymptotic formula for that term in the limit of
large (or vanishing) density. Write G+ to correspond to f4. We then obtain

843 2a%(4a + 3)

~ a+?2
G~ 2 2a+1 2a+1 2a+1 2 2a+1
T Uy GO A vosns A AL
a*Q2a +9) 2a
+1
= >0 as p — o0.
9a+1) oy i’

However, the vanishing p limit is made more singular due to the fact that

. K2(a+1)2
lim W 1~ 22T 7 patl
p—0F o+ 4D P

From this we obtain

574



N.-A. Lai, C. Liu and A. Tarfulea Journal of Differential Equations 339 (2022) 555-578

. k2(a+1) 4D o 8 D2 Y
G.~ —a —a+l+D> = a1+7 2a 2_2
+ ( 2 7 2@+ 12’ K22(a+1)2p !
N 32D243 _1f+4Da(a—1)f+ Df
era aa—l -,
/c22(a+1)3'0 a+1
8aD3

—2a-2 +
N - <0 asp—0".
K22(a+1)2p S P

Thus, for very low values of p, G, is negative. This implies that f p6 has a minimum principle
for minima that are above a certain threshold p, and a maximum principle for maxima that are
below a second threshold p. If G has only one zero, then o = p. So this corresponds to a “state
change” in the material between low density and high density.

The corresponding calculations for G_ yield

1
G_~ —alcg%,o““f +2ai3(a + Dpf + axy(4a +3)p T f +a*p? T f
%a2p2a+1f as ,0 — 00,

and in the low density case

D —a—1 D —a—1
- —Zp (a+1)zZp
G_~ —kya(a+ 1)p*t! KZD + 2 -21f
1—Lp-a-t ( D ﬂH)z
K2 _E'O
2613(61 4 l)p2a+1 Kza(a2 _ 1)pa+1

~ +
5 b o] f+aDf =aDf as p— 0.
<_Qp—a—l> _Ep
K2

This case is of a different type. Owing to various cancellations, the last term in the formula for
G _ is the dominant one for large p, and the small p limit indicates that G_ is always positive.

Proof of I There is some threshold p for which, if p(¢, x) > p on T", then G4 is strictly positive.
Thus we have a minimum principle for the quantities f+ 0. Furthermore, as long as this p is
taken large enough, we may replace f by their asymptotic profiles, so that we obtain two explicit
minimum principles:

a+1 a a
6> and exX —_—— 0> .
PO = ¢ o p( Kz(aH)p) >

This implies an absolute lower bound on the temperature (if 6 gets too small, p has to increase
to keep the first quantity above its minimum, but that makes the second quantity decrease). Rig-
orously,

a
0> —l—a’ —1 a .
> max (clp cop” T exp (ﬁ(a—{— 1),0 ))

The right hand side has a positive minimum, which occurs when c¢1p™¢

scendental expression.

= cpexp(p?/Kk2), a tran-
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Proof of II: Similarly, there is a second threshold p for which, if p(, x) < p on T", then Gy <0,
G_>0,and f~ p~! while f_ ~exp(Dp~*'/(ks(a + 1))). This implies

0 <c d po _ D )
<c; an PO exp /cz(a—}—l)'o > co.

We get an upper bound for the temperature immediately, and (5.2) follows. O
6. Future directions

Theorems 4.1 and 5.1 show how the algebraic (and nonlinear) structure of certain consis-
tently derived models for thermal fluids reveal hidden maximum/minimum principles. These
were found through the use of auxiliary variables, yet only very specific choices for those vari-
ables (the density weight function f) could produce the necessary cancellations in the equations;
the proofs in Sections 4 and 5 show how to find these precise variables for two of our three
models.

Already in the second model (3.12) we see far more intricate conditions, including an ap-
parent “local state change” depending on the sign of G+. The third model (3.17) is yet more
complicated, but a deeper treatment could similarly reveal regions in state space (i.e. ranges of
p and 0), depending on the parameters, where the solution obeys conditional a priori bounds
(and likely disjoint regions in state space which produce qualitatively different a priori bounds).
The approach of this work can be further extended by considering different conductivities «3,
though it comes with the disadvantage that we lose several explicit formulas. But perhaps the
most ambitious goal for this line of research is in understanding the direct connection between
the auxiliary variables and the free energy function W. The above approach relied on the struc-
ture found in the system of equations after it was derived from the free energy, but it might be
possible to anticipate the variables directly from the free energy and constitutive laws (perhaps
even classifying which such laws lead to models with nice a priori bounds).

The results above are a priori in nature; they assume a smooth solution exists on a time interval
[0, T'] and provide quantitative bounds on that time interval. It is then natural to pare this with
an existence theory; see for instance [6], [24], and [23], which focus specifically on existence for
solutions to equations derived through the energy variational approach. Solutions can generally
be constructed in a weak setting through iteration schemes that rely on a linearization of the
model equations. However, this often restricts the solution to the perturbative (near-equilibrium)
regime, and even then only constructs solutions for a short time. The true utility of the a priori
bounds above is in extending the linear theory and establishing well-posedness for these models
for arbitrary times. A preliminary work in this direction is [17], which constructs weak solutions
exactly for the non-isothermal ideal gas model (3.6) with a generic conductivity 3.
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