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Abstract

We establish three partial differential equation models describing the thermodynamic behavior of a fluid 
by combining the energetic variational approach, appropriate constitutive relations, and classical thermo-
dynamic laws. By using an explicit algebraic approach, we show a maximum/minimum principle for some 
auxiliary variables involving the absolute temperature θ and density ρ under some special conditions, which 
then yields the positivity of the temperature. This important fact implies the thermodynamic consistency for 
our models.
© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

The study of heat transfer in fluid dynamics has recently attracted growing attention. In non-
isothermal models, the temperature is a non-constant material property that flows with the fluid. 
This creates local changes in the density and viscosity, which then cause the fluid flow to de-
viate from the classically expected outcome and further influence the rate of heat transfer. This 
two-way coupling phenomenon is prevalent in heat exchangers, chemical reactors, atmospheric 
flows, and processes in which components are cooled. One example we face almost every day 
is the noble gas flow in fluorescent lights. If thermal effects become significant in the flow of 
fluid through porous media, further applications appear: solidification of binary mixtures, dehu-
midification, insulation, and heat pipes (see [20] for more details). Besides the applications in 
mechanical engineering, we also refer to [1] for an enhanced gas recovery application by non-
isothermal compressible gas flow.

Due to the prevalence of thermal effects in fluid flow, the literature has seen more and more 
non-isothermal fluid dynamic models established and delicately analyzed. We list a few of them 
here. By choosing an appropriate internal energy and entropy production, Málek and Průša 
[28] arrive at a modern phenomenological theory (based in thermodynamics) of constitutive 
relations for compressible and incompressible viscous heat-conducting fluids (Navier-Stokes-
Fourier), Korteweg fluids, and (in)compressible heat-conducting viscoelastic fluids (Oldroyd-
B and Maxwell). The existence of weak solutions for the Navier-Stokes-Fourier system (see 
[14,35]) describing the evolution of a Newtonian heat-conducting fluid in a bounded domain is 
systematically studied in [11,29]. Generalized non-isothermal compressible and incompressible 
non-Newtonian fluid systems are derived in [21] using the energetic variational approach (see 
[16,19]) which is based on Strutt [33] and Onsager [30,31]. This approach combines the two sys-
tems derived from the least action principle and the maximum dissipation principle, and has been 
widely used to derive other non-isothermal models, by combining the basic thermodynamic laws. 
We refer to [25] for non-isothermal electrokinetics, [5] for the non-isothermal general Ericksen-
Leslie system, [18] for the non-isothermal Poisson-Nernst-Planck-Fourier system, [23] for the 
Brinkman-Fourier system with ideal gas equilibrium, and [24] for the non-isothermal reaction-
diffusion equation.

This paper is devoted exclusively to the a priori estimate of the positivity of the absolute tem-
perature as a key postulate of thermodynamics. The crucial proof of this property for all times 
(starting from positive initial absolute temperature) is far from trivial in the non-isothermal set-
ting. In [7] the invalidity of negative temperature has been proved, by demonstrating that it arises 
from the use of an entropy definition that is inconsistent both mathematically and thermody-
namically. In the recent series works on the Navier-Stokes-Fourier system by Feireisl et al., the 
definition of weak solution includes the restriction on absolute temperature θ

θ > 0, a.e. in (0, T ) × �,
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and can actually prove the positivity of temperature if it emanates from positive initial data. See 
[12] for conditional regularity of very weak solutions to the Navier-Stokes-Fourier system, [10]
for the existence and stability of the weak solutions to the Navier-Stokes-Fourier system and their 
relevance in the study of convergence of numerical schemes, and [2] for the existence of weak 
solutions to the stationary Navier-Stokes-Fourier system. In [34] the third author studied two hy-
drodynamic model problems (one incompressible and one compressible) with three-dimensional 
fluid flow on the torus and temperature-dependent viscosity and conductivity and established a 
positive lower bound for the temperature in each case. We also refer to the excellent book [8]
and the monograph [9], a detailed introduction to the singular limits and scale analysis for the 
Navier-Stokes-Fourier system, in which the positivity of absolute temperature was proved by us-
ing a Poincaré type inequality. We have to mention that thermodynamic consistency (positivity 
of absolute temperature) for a class of phase change models proposed by Frémond [13] has been 
widely studied in the past, see [3,22,26,27,32] and references therein.

This work focuses on the transport of heat in addition to fluid flow through porous media, 
and gives a general framework for deriving non-isothermal models by combining the energetic 
variational approach and some basic thermodynamic laws. From three different given free ener-
gies, we establish three different non-isothermal models, which we call non-isothermal ideal gas, 
non-isothermal porous media, and generalized non-isothermal porous media. Moreover, in some 
special cases for the first two models, we find maximum/minimum principles for some auxiliary 
quantities related to the density and temperature (Theorems 4.1 and 5.1), by adapting an idea 
originally from the work [34]. This then implies the positivity of the absolute temperature. To 
avoid the problems connected with the boundary behavior of the fluid, we consider the problems 
on the torus and impose periodic boundary conditions. The proof relies heavily on the struc-
ture of the equations, and exploits genuinely nonlinear interactions in the system of equations 
coupling density and temperature. In the non-isothermal ideal gas model, the computations are 
relatively straightforward, but become significantly more intricate in the non-isothermal porous 
media model. The generalized non-isothermal porous media model creates yet more complicated 
interactions, and a similar structure does not seem evident. Extending this methodology (or find-
ing a comprehensive approach that better incorporates the derivation) is an interesting question 
for future research.

We emphasize that the three models are ultimately determined by a starting choice of free 
energy � which depends on the local state variables ρ and θ (density and temperature). This 
choice is not arbitrary. The first model (see Section 3.1) uses the free energy for an ideal gas, 
which must locally maintain that pressure be proportional to ρθ (see (2.10), (2.11), and (3.1)). 
This is the simplest form that � can take while maintaining physical consistency, and it leads 
to the simplest of our three models (3.6). The other two models (3.12) and (3.17) arise from 
natural variations on the ideal gas free energy, and are in a sense the “next simplest” models 
to consider (again maintaining physical consistency). While it is possible to consider models 
with a weaker coupling between ρ and θ , they would need to arise from exotic constitutive 
laws (which might be found in certain areas of material science). The present work aims to 
showcase the methodology for deriving a priori maximum principles using the nonlinear structure 
of the equations. We investigate models that are thermodynamically consistent and derived from 
fundamental principles to emphasize that the results are not “baked into” the equations.

Outline. In Section 2, we present a general derivation of models for non-isothermal fluid flow 
starting from a given free energy function. In Section 3, we look at three free energy functions 
to obtain equations for the ideal gas, porous media, and generalized porous media equations. 
In Section 4, we prove a priori maximum and/or minimum principles for the temperature and 
557



N.-A. Lai, C. Liu and A. Tarfulea Journal of Differential Equations 339 (2022) 555–578
density of the ideal gas model, by first proving them for certain auxiliary variables adapted to the 
structure of the equation. In Section 5, we prove analogous (but slightly weaker) results for the 
generalized porous media equations. In Section 6 we give some concluding remarks and future 
research directions.

2. General frame to derive the non-isothermal model

This section aims to derive a system of equations involving a Darcy-type dissipative law for 
a suitable family of non-isothermal fluids. For more detailed physical discussions such as the 
choice of various energy functionals, the state variables, and also the kinematic transport rela-
tions, we will refer to the book [8] and also [23]. In this paper, for simplicity and illustration of the 
approach, we will derive the overall governing equations, employing some minimum ingredients 
and assumptions:

• The free energy of the system, which will be denoted by �.
• The entropy production �, related to the rate of dissipation of the system.
• The kinematic transport of the state variable and the conservation of density ρ(t, x) along 

the flow.
• The energetic variational approaches, including both the Least Action Principle and Maxi-

mum Dissipation Principle,
• Finally, the First and Second Laws of Thermodynamics.

We start from the free energy, �(ρ, θ), which is a function of the density ρ and the absolute 
temperature θ . The (specific) entropy of the system and the (specific) internal energy can then 
be linked to the free energy � by the standard Helmholtz relation (see formula (2.5.26) in the 
classical book [4])

• (specific) entropy of the system:

η(ρ, θ) := −∂θ�.

• (specific) internal energy (the Legendre transform in θ of the free energy):

e(ρ, θ) := � − ∂θ�θ = � + ηθ.

Next we are going to establish a Darcy type diffusion law by using the Least Action Principle 
and Maximum Dissipation Principle.

Lemma 2.1. Assume a given energy density �(ρ, θ). Assume further that the total dissipation 
rate of the fluid is of Darcy type, i.e., 1

2ρ|u|2, with u(t, x) the velocity field of the fluid. Then the 
conservation of ρ and the Onsanger’s principles automatically determine the equation of motion 
for the fluid u(t, x), which corresponds to the following Darcy’s law:

∇p = −ρu, (2.1)

where the pressure is defined by
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p = �ρρ − ρ. (2.2)

Proof. As stated in [15,19], we start from the total energy and dissipation which are chosen as

Etotal =
∫
�x

t

�(ρ, θ)dx, Dtotal = 1

2

∫
�x

t

ρu2dx

in this paper, where �x
t is the deformed configuration corresponding to the reference configura-

tion �X
0 ; here X represents Lagrangian coordinates and x represents Eulerian coordinates. We 

first rewrite the energy functional in the Lagrangian coordinate system and then take the least 
action principle conservative force.

A(x(X, t)) = −
T∫

0

∫
�X

0

�

(
ρ0(X)

J
, θ0(X)

)
JdXdt, (2.3)

where J = detF and F = ∂x
∂X

denotes the deformation gradient. Then taking the variation for 
any smooth compactly supported y(X, t) = ỹ(x(X, t), t) with respect to x yields

d

dε

∣∣∣∣
ε=0

A(x(X, t) + εy(X, t)) = d

dε

∣∣∣∣
ε=0

A(x + εy)

= − d

dε

∣∣∣∣
ε=0

T∫
0

∫
�X

0

�

(
ρ0(X)

det ∂(x+εy)
∂X

, θ0(X)

)(
det

∂(x + εy)

∂X

)
dXdt

= −
T∫

0

∫
�X

0

(
d

dε

∣∣∣∣
ε=0

�

(
ρ(X)

det ∂(x+εy)
∂X

, θ0(X)

))
·
(

det
∂x

∂X

)

− �

(
ρ0(X)

det ∂x
∂X

, θ0(X)

)
· d

dε

∣∣∣∣
ε=0

(
det

∂(x + εy)

∂X

)
dXdt

= −
T∫

0

∫
�X

0

�ρ

(
ρ0(X)

J
, θ0(X)

)
·
(

− ρ0(X)

J 2

)
· J · tr

(
∂X

∂x

∂y

∂X

)
· J

+ �

(
ρ0(X)

J
, θ0(X)

)
· J · tr

(
∂X

∂x

∂y

∂X

)
dXdt

=
T∫

0

∫
�x

t

(
�ρ(ρ(x, t)) · ρ(x, t) − �(ρ(x, t))

) · (∇x · ỹ)dxdt

=
T∫

0

∫
x

−∇x

(
�ρ(ρ(x, t)) · ρ(x, t) − �(ρ(x, t))

) · ỹdxdt,

(2.4)
�t
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which gives the conservative force

Forcecons = −∇x

(
�ρ(ρ(x, t)) · ρ(x, t) − �(ρ(x, t))

) =: −∇p, (2.5)

where the negative pressure gradient is by definition equal to the conservative force. On the 
other hand, according to the maximum dissipation principle, taking variation with respect to the 
velocity of the dissipation functional yields the dissipative force

δuD =
∫
�x

t

ρu · δudx =
∫
�x

t

Forcediss · δudx, (2.6)

where it is seen that Forcediss = ρu. With these two forces in hand, we may then apply Newton’s 
force balance law, which states that all forces, both conservative and dissipative, add up to zero 
(“action” equals “reaction”), thus

Forcecons = Forcediss,

which yields (2.1) by combining (2.5) and (2.6). �
We also take ρ, η as new state variables and rewrite the internal energy function as

e1(ρ, η) = e (ρ, θ(ρ, η)) ,

and hence we have

Lemma 2.2. The derivatives of the internal energy with respect to the new state variables satisfy

e1η = θ, e1ρ = �ρ. (2.7)

Proof. Direct computation yields that

e1η = �θθη + θ + ηθη

= −ηθη + θ + ηθη

= θ

(2.8)

and

e1ρ = �ρ + �θθρ + ηθρ

= �ρ. � (2.9)

Lemma 2.3. By the definitions above, it holds that

∂θp = η − ηρρ (2.10)

and
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∇p = ρ∇e1ρ + η∇e1η. (2.11)

Proof. We may get (2.10) by direct computation

∂θp = �ρθρ − �θ = η − ηρρ.

For (2.11), it is easy to see from the definition of pressure

∇p = ∇(�ρρ − �)

= (�ρρ∇ρ + �ρθ∇θ)ρ + �ρ∇ρ − �ρ∇ρ − �θ∇θ

= (�ρρ∇ρ + �ρθ∇θ)ρ + η∇θ.

(2.12)

On the other hand, one has

ρ∇e1ρ + η∇e1η

=ρ(�ρρ∇ρ + �ρθ∇θ) + η∇θ,
(2.13)

then (2.11) follows. �
Next we employ the following classical thermodynamic laws.

• The first one is related to the rate of change of the internal energy with dissipation and heat

de

dt
= ∇ · W + ∇ · q. (2.14)

Here W denotes the amount of thermodynamic work done by the system on its surroundings 
and q denotes the quantity of energy supplied to the system as heat.

• The second one is related to the change of entropy

∂tη + ∇ · (ηu) = ∇ ·
(q

θ

)
+ �, (2.15)

where � ≥ 0 denotes the rate of entropy production.
• The third one is called Fourier’s law

q = κ3∇θ, (2.16)

where κ3 denotes the material conductivity which may depend on ρ and θ .

Also, we make the general kinematic assumption of mass transport

ρt + ∇ · (ρu) = 0. (2.17)

By (2.11), (2.14), (2.15), (2.16) and (2.17), one has
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de1(ρ, η)

dt

=e1ρρt + e1ηηt

=e1ρ (−∇ · (ρu)) + e1η

(
−∇ · (ηu) + ∇ ·

(q

θ

)
+ �

)
= − ∇ · (e1ρρu + e1ηηu

) + (
ρ∇e1ρ + η∇e1η

) · u + θ∇ ·
(q

θ

)
+ θ�

=∇ · W + ∇p · u + ∇ · q − q

θ
· ∇θ + θ�

=∇ · W − ρu2 + ∇ · q − κ3|∇θ |2
θ

+ θ�,

(2.18)

where

W = − (
e1ρρ + e1ηη

)
u

denotes the work done by the system. Set the rate of entropy production by

� = 1

θ

(
ρ|u|2 + q · ∇θ

θ

)
= 1

θ

(
ρ|u|2 + κ3|∇θ |2

θ

)
,

(2.19)

then (2.18) turns out to be (2.14).
With the above preliminaries in hand, we may establish the non-isothermal equation by (2.15). 

By combining (2.10) and (2.17), we have

ηt + ∇ · (ηu) =ηθ (θt + u · ∇θ) + ηρ(ρt + u · ∇ρ) + η∇ · u
=ηθ (θt + u · ∇θ) + ηρ (−ρ∇ · u) + η∇ · u
=ηθ (θt + u · ∇θ) + (

η − ηρρ
)∇ · u

=ηθ (θt + u · ∇θ) + ∂θp∇ · u
=∇ · j + �

=∇ ·
(q

θ

)
+ 1

θ

(
ρ|u|2 + q · ∇θ

θ

)
,

(2.20)

which yields

ηθ (θt + u · ∇θ) + ∂θp∇ · u = ∇ ·
(q

θ

)
+ 1

θ

(
ρ|u|2 + q · ∇θ

θ

)
. (2.21)

Hence, for a given free energy �(ρ, θ), the non-isothermal model can be established by (2.1), 
(2.17), and (2.21).
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3. Thermodynamics models

In this section, we introduce three specific free energies, which are related to non-isothermal 
ideal gas, non-isothermal porous media, and non-isothermal generalized porous media, respec-
tively.

3.1. Ideal gas

For the ideal gas, the free energy is given by

�(ρ, θ) = κ1θρ lnρ − κ2ρθ ln θ.

This gives

p = κ1ρθ,

∂θp = κ1ρ,

ηθ = κ2ρ

θ
,

ρu = −∇p = −κ1∇(ρθ).

(3.1)

Then the mass equation (2.17) becomes

∂tρ = −∇ · (ρu)

= κ1∇ · (∇(ρθ))

= κ1�(ρθ).

(3.2)

Then (2.21) changes to

κ2ρ

θ
(θt + u · ∇θ) + κ1ρ∇ · u

=∇ ·
(

κ3∇θ

θ

)
+ 1

θ

(
−κ1∇(ρθ) · u + κ3|∇θ |2

θ

)
,

(3.3)

implying

κ2(ρθ)t − κ2θρt + κ2ρu · ∇θ + κ1∇ · (ρθu) = θ∇ ·
(

κ3∇θ

θ

)
+ κ3|∇θ |2

θ
, (3.4)

which can be simplified to

κ2(ρθ)t − κ1(κ1 + κ2)∇ · (θ∇(ρθ)) = ∇ · (κ3∇θ) . (3.5)

Hence we get the non-isothermal model for ideal gas:{
∂tρ = κ1�(ρθ),

κ (ρθ) − κ (κ + κ )∇ · (θ∇(ρθ)) = ∇ · (κ ∇θ) .
(3.6)
2 t 1 1 2 3
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3.2. Porous media

For the porous media, we introduce the free energy as

�(ρ, θ) := κ1θρ
α − κ2ρθ ln θ, (3.7)

with α > 1. In this case we have

p = κ1(α − 1)θρα,

∂θp = κ1(α − 1)ρα,

ηθ = κ2ρ

θ
,

ρu = −∇p = −κ1(α − 1)∇(θρα)

(3.8)

and

∂tρ = −∇ · (ρu)

= κ1(α − 1)∇ · (∇(θρα)
)

= κ1(α − 1)�(θρα).

(3.9)

Also, (2.21) becomes

κ2ρ

θ
(θt + u · ∇θ) + κ1(α − 1)θρα−1∇ · u

=∇ ·
(

κ3∇θ

θ

)
+ 1

θ

(
−κ1(α − 1)∇(θρα) · u + κ3|∇θ |2

θ

)
,

(3.10)

which yields finally

κ2(ρθ)t + κ2∇ · (ρθu) + κ1(α − 1)∇ · (θραu) = ∇ · (κ3∇θ), (3.11)

and hence we get the non-isothermal porous media system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tρ = κ1(α − 1)�

(
θρα

)
,

κ2(ρθ)t − κ1κ2(α − 1)∇ · (θ∇(θρα)
) − κ2

1 (α − 1)2∇ ·
(
θρα−1∇(θρα)

)
= ∇ · (κ3∇θ).

(3.12)

3.3. Generalized porous media

We introduce the free energy for generalized porous media as

�(ρ, θ) = k1θρ
α − k2ρθβ,

with α, β > 1. Then
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p = k1(α − 1)θρα,

∂θp = k1(α − 1)ρα,

ηθ = k2β(β − 1)ρθβ−2,

ρu = −∇p = −k1(α − 1)∇(θρα),

(3.13)

and

∂tρ = −∇ · (ρu)

= k1(α − 1)∇ · (∇(θρα)
)

= k1(α − 1)�(θρα).

(3.14)

In this case (2.21) becomes

k2β(β − 1)ρθβ−2(θt + u · ∇θ) + k1(α − 1)ρα∇ · u

=∇ ·
(

k3∇θ

θ

)
+ 1

θ

(
−k1(α − 1)∇(θρα) · u + k3|∇θ |2

θ

)
,

(3.15)

which yields finally

k2(β − 1)(ρθβ)t − k1k2(α − 1)(β − 1)∇ · (θβ∇(θρα)
)

− k2
1(α − 1)2∇ ·

(
θρα−1∇(θρα)

)
= ∇ · (k3∇θ),

(3.16)

and hence we obtain the non-isothermal porous media system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tρ = k1(α − 1)�

(
θρα

)
,

k2(β − 1)(ρθβ)t − k1k2(α − 1)(β − 1)∇ · (θβ∇(θρα)
)

− k2
1(α − 1)2∇ ·

(
θρα−1∇(θρα)

)
= ∇ · (k3∇θ).

(3.17)

4. The maximum/minimum principle for thermal ideal gas model

In this section, we use the structure of (3.6) to establish maximum and/or minimum principles 
for certain auxiliary variables in the temperature and pressure. Even if one assumes a priori that 
a smooth solution pair (ρ, θ) exists, it is not feasible to obtain max/min principles for the two 
functions directly due to the complicated interdependence between ρ and θ . Indeed, maximum 
principles for coupled systems of partial differential equations are notoriously hard to obtain, and 
is one of the major obstacles in going from “scalar-valued” problems (e.g., heat, porous media, or 
surface quasigeostrophic equation) to “vector-valued” problems (e.g., Navier-Stokes and Euler 
equations). One might then search for a “state variable” λ(ρ, θ) that is (super- or sub-) conserved, 
but identifying the right variable λ is nontrivial.

Nevertheless, if the material conductivity κ3 is proportional to θρ, we can find two homo-
geneous auxiliary variables θρ1+γ± that, through careful cancellation in the structure of (3.6), 
satisfy pointwise a priori maximum or minimum principles, in the form of Theorem 4.1 below. 
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Rather than simply verifying the principle for the two auxiliary variables above, the proof takes 
a more general approach. It will look at variables θρf (ρ) for a to-be-determined positive weight 
function f and, using the structure of (3.6), show that f must satisfy one of two possible ordi-
nary differential equations, which naturally lead to the variables above. The method is similar 
to how [34] found appropriate temperature weights to close energy-type estimates for a fluid 
equation with thermal dissipation. The proof below is also slightly more general, as the two 
functions f can also be obtained implicitly when κ3 = D(ρ)θ , in terms of the function D. Note 
that the ansatz θρf (ρ) for the auxiliary variables essentially covers any “state variable” of the 
form λ(ρ, θ) = θγ f̃ (ρ) (for γ > 0), so that the auxiliary variables found in the proof below are 
the only ones in this class to satisfy maximum or minimum principles.

Theorem 4.1. Consider the non-isothermal ideal gas model (3.6) on [0, T ) × Tn. Assume we 
have a smooth solution pair (ρ, θ) on this domain. If the material conductivity κ3 takes the form

κ3 = κ1D̃θρ,

for D̃ > a fixed constant, then we have
I. The absolute temperature is positive on Tn × [0, T ).
II. The density is bounded from above unconditionally.
III. If the temperature θ(t, x) either blows up or goes to zero, then the density ρ(t, x) must 
vanish. Precisely, we have

ρ(t, x) ≤ min
{
θ−c1, θ−c2

}
, (4.1)

for some constants c1 > 0, c2 < 0 depending on κ1, κ2, and D̃.

Proof. We can slightly simplify system (3.6) by writing β = 1 +κ1/κ2 and (by abuse of notation) 
replacing κ3 by κ3κ2 to obtain{

∂tρ = κ1�(ρθ)

∂t (ρθ) = ∇ · (βκ1θ∇(ρθ) + κ3∇θ)
(4.2)

Here κ3 is not necessarily constant; it generally depends on θ and ρ. In the interest of making the 
proof more general, we will initially take κ3 = θD(ρ). Later, we make the special assumption 
that D(ρ) = κ1D̃ρ.

Let f : (0, ∞) → (0, ∞) be a smooth monotone function to be determined later. We look at 
the quantity f (ρ)ρθ . Taking a derivative and using (4.2) yields

∂t (fρθ) = θf ′ρ∂tρ + f ∂t (ρθ) = κ1ρθf ′�(ρθ) + f ∇ · (βκ1θ∇(ρθ) + κ3∇θ) . (4.3)

Let x0 ∈ Tn be a point where fρθ achieves a local minimum (respectively maximum) in space. 
Assume that f (ρ(x0))ρ(x0)θ(x0) > 0. For the rest of the proof, all quantities are implicitly 
evaluated at x0, though we suppress the notation. Then the gradient at this point vanishes, so that

(f ′ρ + f )θ∇ρ + fρ∇θ = 0, (4.4)
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and the quantity

L := �(fρθ) = (2f ′ + f ′′ρ)θ |∇ρ|2 + 2(f ′ρ + f )∇θ · ∇ρ + (f ′ρ + f )θ�ρ + fρ�θ

= |∇θ |2
θ

(
(fρ)2(2f ′ + f ′′ρ)

(f ′ρ + f )2 − 2fρ

)
+ (f ′ρ + f )θ�ρ + fρ�θ

is nonnegative (respectively nonpositive). The last equality used (4.4), which in general allows 
us to compare terms of the form |∇ρ|2, ∇ρ · ∇θ , and |∇θ |2 to each other (recall that they are all 
evaluated at x0).

Taking κ3 = θD(ρ) and expanding (4.3) (again using (4.4)) yields

∂t (fρθ) =κ1θf
′ρ�(ρθ) + f

(
βκ1(θ∇θ · ∇ρ + ρ|∇θ |2 + θ�(ρθ))

+ D|∇θ |2 + Dθ�θ + D′θ∇θ · ∇ρ
)

= (
κ1θf

′ρ + βκ1θf
)
θ�ρ +

(
κ1θf

′ρ + βκ1θf + θf
D

ρ

)
ρ�θ

+
(

−2κ1ff ′ρ2

f ′ρ + f
+ βκ1

(
fρ − 3f 2ρ

f ′ρ + f

)
− f 2ρD′

f ′ρ + f
+ f D

)
|∇θ |2

=θ(F1θ�ρ + F2ρ�θ) + F3|∇θ |2.
The goal then is to choose f (in terms of β , κ2, and D) such that we may rewrite the above as

∂t (fρθ) = θF̃L + G̃|∇θ |2, (4.5)

with F̃ ≥ 0 and G̃ nonnegative (respectively nonpositive). This would show that fρθ satisfies a 
minimum (respectively maximum) principle for such f .

In order for (4.5) to hold, there must be some λ ≥ 0 (not necessarily constant) such that

κ1f
′ρ + βκ1f = λ(f ′ρ + f ),

κ1f
′ρ + βκ1f + f

D

ρ
= λf.

Subtracting yields

λ = − f D

f ′ρ2 ,

which immediately implies that

f ′ < 0. (4.6)

We therefore need f to satisfy

κ1f
′ρ + βκ1f + f D + f 2D

′ 2 = 0.

ρ f ρ
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Solving for f ′ formally yields

f ′ = f
−βκ1ρ − D ±

√
β2κ2

1 ρ2 + 2(β − 2)κ1ρD + D2

2κ1ρ2 (4.7)

First, we remark that (4.6) is always satisfied whenever the right-hand-side of (4.7) is real-valued. 
The numerator is of the form −b ±√

b2 − 4ac where each of a, b, and c are positive (for ρ > 0).
Second, as long as κ1 and κ2 are positive (so β > 1), the discriminant of (4.7) is strictly 

positive for all ρ (regardless of the value of D). This is easily seen with the Schwartz inequality, 
and that the discriminant is bounded below by (β2 − 1)κ2

2ρ2. Thus, (4.7) specifies two ODE’s 
that are locally well-posed for all ρ > 0.

Third, it is immediate from (4.7) that |f ′| ≤ C|f |(ρ−1 + D(ρ)ρ−2). Gronwall’s inequality 
then guarantees that both ODE’s are globally well-posed on (0, ∞). That is, given ρ0 > 0 and any 
initial datum f0 > 0, there exist two unique, positive, monotone-decreasing weight functions f±
defined on (0, ∞) such that f± satisfies the corresponding ODE of (4.7) pointwise and f±(ρ0) =
f0.

Fourth, we can directly apply the Duhamel principle. Writing (4.7) as

f ′(ρ) = f (ρ)�±(β, κ1,D,ρ),

we get that

f±(ρ) = f0 exp

⎛⎝ ρ∫
ρ0

�±(β, κ1,D(r), r)dr

⎞⎠ .

In the special case D(ρ) = D̃κ1ρ (for D̃ > 0 a fixed constant), an assumption we will make for 
the remainder of this proof, the functions are given explicitly as f±(ρ) = f±(1)ργ± with

γ± = −β − D̃ ±
√

β2 + 2(β − 2)D̃ + D̃2

2
.

Note that γ± < 0 for all values of D̃, β , and κ1. Moreover, 1 + γ+ > 0 while 1 + γ− < 0.
Thus we do obtain (4.5), in the sense that

∂t (fρθ) = −θ
f D

f ′ρ2 L + G̃|∇θ |2,

where

G̃ = f D

f ′ρ2

(
(fρ)2(2f ′ + f ′′ρ)

(f ′ρ + f )2 − 2fρ

)
+

(
f D + (β − 2)κ1fρ − (D′ + κ1(3β − 2))

f 2ρ

′

)
.

(4.8)
f ρ + f
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Remark 4.2. This is a complicated expression which can be reduced by repeated use of (4.7)
until it only involves f , ρ, D, and D′. Notice that G̃ does not depend on θ or on the position 
or time variables. Its sign dictates the nature of the max/min principle satisfied by the auxiliary 
variable θρf (ρ), and this ultimately depends only on ρ. If D is left as a generic (monotone) 
function of ρ, the range of possible behaviors is quite complicated, in some cases leading to 
“banded” structure where the auxiliary variable satisfies a maximum principle in certain interval 
ranges of ρ and a minimum principle on the complementary intervals (and both at the endpoints). 
For this ideal gas model, one obtains much more precise and unconditional results if one adheres 
to the special case D = D̃ρ, with more general functions D left for future work.

Since f ′ρ = γ±f , (4.8) reduces to the simpler expression

G̃± = κ1fρ

(
− (2 + γ±)D̃

γ±(1 + γ±)
+ (D̃ + β − 2)

γ±
1 + γ±

− 2β

1 + γ±

)
. (4.9)

Recall that the minimum principle requires that G̃ ≥ 0, but the maximum principle requires that 
G̃ ≤ 0. However, we see that G̃± is in fact C±fρ for some fixed constants C± that depend on 
the initial parameters. This guarantees that each of f±ρθ individually satisfy either a maximum 
principle or a minimum principle for the entire lifetime of the solution (ρ, θ).

Observing that γ+γ− = D̃, a calculation shows that

G̃+ = κ1fρ

1 + γ+

(
−D̃ − 2γ− + D̃γ+ + βγ+ − 2γ+ − 2β

)
= κ1fρ

1 + γ+

(
D̃(1 + γ+) + βγ+

)
.

Recall that 1 + γ+ > 0. We claim that D̃(1 + γ+) + βγ+ is always negative. This is true if and 
only if

(D̃ + β)

√
(D̃ + β)2 − 4D̃ ≤ D̃2 + 2βD̃ + β2 − 2D̃.

Since both sides of the inequality are positive (recall β > 1), we may square both sides and get

(D̃ + β)4 − 4D̃(D̃ + β)2 ≤ (D̃ + β)4 − 4D̃(D̃ + β)2 + 4D̃,

which is always true (and therefore so is the claim). Thus, we always have G̃+ < 0, guaranteeing 
a maximum principle for ρ1+γ+θ .

A similar calculation shows that

G̃− = κ2fρ

1 + γ−

(
D̃(1 + γ−) + βγ−

)
.

Recall that γ− < −1. Then G̃− > 0 which gives a minimum principle for ρ1+γ−θ .
Putting it all together, we have

ρ1+γ+θ ≤ c1 and ρ1+γ−θ ≥ c2.
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The second inequality implies I (the positivity of the temperature). Further, both inequalities 

imply II, as ργ+−γ− = ρ

√
β2+2(β−2)D̃+D̃2 ≤ c1/c2. So the density is bounded above uncondition-

ally.
Since ρ is bounded above, the two inequalities imply that the density must vanish if the 

temperature either blows up or goes to zero. This shows III, as well as (4.1). �
5. The maximum/minimum principle for thermal porous media model

The non-isothermal porous media model (3.12) is more complicated than (3.6), leading to 
more intricate calculations for the auxiliary variables. Although they ultimately take the same 
form as before (θρf (ρ)), and there are still exactly two possibilities for f , it is no longer possible 
to find clean expressions for f even when κ3 takes a simple form. The corresponding maximum 
and minimum principles also become more conditional, and we must resort to asymptotic analy-
sis (i.e., large ρ and vanishing ρ limits) to determine precisely which case occurs for each of the 
auxiliary variables. The proof is similar to that of Theorem 4.1, but more technical and involved. 
For this reason, we present it here at the end, so that the proof of the previous section can be used 
as a reference.

Theorem 5.1. If (ρ, θ) is a smooth solution pair to (3.12) on [0, T ) × Tn and the material 
conductivity κ3 is given by

κ3 = aDθ, (5.1)

with constants D > 0 and a := α − 1 > 0 (so independent of ρ), then we have

I. High density case: There is some threshold ρ for which, if ρ(t, x) > ρ on Tn, then there are 
constants c1, c2 > 0 depending on the data such that

ρa+1θ ≥ c1 and ρ exp

(
− κ1a

κ2(a + 1)
ρa

)
θ ≥ c2,

and hence

θ ≥ max

(
c1ρ

−a−1, c2ρ
−1 exp

(
κ1a

κ2(a + 1)
ρa

))
.

II. Low density case: There exists a threshold ρ for which, if ρ(t, x) < ρ on Tn, then the temper-
ature θ is bounded from above. Moreover, there are constants c1, c2 > 0 depending on the data 
such that

θ ≤ c1 and ρθ exp

(
D

κ2(a + 1)
ρ−a−1

)
≥ c2,

and hence

ρ exp

(
D

ρ−a−1
)

≥ c2
. (5.2)
κ2(a + 1) c1
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It is worth noting that, in the case of low density, the estimates hold indefinitely for certain 
initial data. The function on the left side of (5.2) is decreasing as ρ increases from zero, so if the 
constants c1 and c2 are appropriately chosen (i.e., the initial data is appropriately chosen), then 
(5.2) would fail if ρ became too large. If this threshold is less than ρ, then the case of very low 
density also becomes self-maintaining; the density and temperature stay bounded above, and if 
temperature vanishes somewhere then so must density. Unfortunately, in the high density case, 
nothing prevents the temperature from becoming arbitrarily large. This then allows the density 
to drop, which means the lower bounds no longer apply. The case of very high density is not 
self-maintaining.

Proof. We first eliminate the κ1 constant by rescaling. If we define

ρ̃ := κ
1
a

1 ρ,

then (3.12) (where by abuse of notation we still write ρ instead of ρ̃) becomes

⎧⎨⎩∂tρ = a�(θρa+1)

κ2∂t (ρθ) = ∇ ·
(
(aκ2θ + a2θρa)∇(θρa+1)

)
+ ∇ · (κ3∇θ)

(5.3)

Let f : (0, ∞) → (0, ∞) be a smooth monotone function to be determined later. We look at the 
quantity f (ρ)ρθ . Taking a derivative and using (5.3) yields

κ2∂t (fρθ) = κ2ρθf ′∂tρ + f κ2∂t (ρθ)

= κ2aρθf ′�(θρa+1) + f ∇ ·
(
(aκ2θ + a2θρa)∇(θρa+1) + κ3∇θ

)
.

(5.4)

Let x0 ∈ Tn be a point where fρθ achieves a local minimum (respectively maximum) in space. 
Assume that θ(x0) > 0 and f (ρ(x0))ρ(x0) > 0. For the rest of the proof, all quantities are im-
plicitly evaluated at x0, though we suppress the notation. Then the gradient at this point vanishes, 
so that

(f ′ρ + f )θ∇ρ + fρ∇θ = 0,

or

(f ′ρ + f )∇ρ = −fρ
∇θ

θ
. (5.5)

In addition, the quantity

L := �(fρθ) = θ
(
f ′ρ + f

)
�ρ + fρ�θ + 2

(
f ′ρ + f

)∇ρ · ∇θ + θ
(
f ′′ρ + 2f ′) |∇ρ|2

= |∇θ |2
θ

(
f ′′ρ + 2f ′

(f ′ρ + f )2 f 2ρ2 − 2fρ

)
+ θ(f ′ρ + f )�ρ + fρ�θ
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is nonnegative (respectively nonpositive). The last equality used (5.5), which in general allows us 
to compare terms of the form |∇ρ|2, ∇ρ · ∇θ , and |∇θ |2 to each other (when they are evaluated 
at x0).

Expanding (5.4) then yields

κ2∂t (fρθ) =
(
κ2af

′ρa+2θ + (κ2a + a2ρa)fρa+1θ + κ3f
)

�θ

+
(
κ2a(a + 1)f ′ρa+1θ2 + (κ2a + a2ρa)(a + 1)fρaθ2

)
�ρ

+
(
κ2a

2(a + 1)f ′ρaθ2 + a3(a + 1)fρ2a−1θ2 + (κ2a + a2ρa)a(a + 1)fρa−1θ2
)

|∇ρ|2

+
(

2κ2a(a + 1)f ′ρa+1θ + 3(κ2a + a2ρa)(a + 1)fρaθ + a3fρ2aθ + f ∂ρκ3

)
∇θ · ∇ρ

+
(
(κ2a + a2ρa)fρa+1 + f ∂θκ3

)
|∇θ |2.

(5.6)

The ultimate goal is to evaluate (5.6) at x0, the local minimum (respectively maximum) and 
obtain

κ2∂t (fρθ) = F̃L + G̃|∇θ |2 (5.7)

with F̃ ≥ 0 and G̃ nonnegative (respectively nonpositive). This would show that fρθ satisfies a 
minimum (respectively maximum) principle for such f .

At x0, we use (5.5) and (5.1) to turn (5.6) into

κ2∂t (fρθ) = aθ
(
κ2f

′ρa+2 + (κ2 + aρa)fρa+1 + Df
)

�θ

+ a(a + 1)ρaθ2 (
κ2f

′ρ + (κ2 + aρa)f
)
�ρ

+ a2(a + 1)f 2ρ2

(f ′ρ + f )2

(
κ2f

′ρa + afρ2a−1 + (κ2 + aρa)fρa−1
)

|∇θ |2

− afρ

f ′ρ + f

(
2κ2(a + 1)f ′ρa+1 + 3(κ2 + aρa)(a + 1)fρa + a2fρ2a

)
|∇θ |2

+ a
(
(κ2 + aρa)fρa+1 + Df

)
|∇θ |2.

(5.8)

In order for (5.7) to hold, there must be some λ ≥ 0 (not necessarily constant) such that

aθ
(
κ2f

′ρa+2 + (κ2 + aρa)fρa+1 + Df
)

= λfρ, (5.9)

a(a + 1)ρaθ2 (
κ2f

′ρ + (κ2 + aρa)f
) = λθ(f ′ρ + f ). (5.10)

Writing λ = aλ̃ρ−1θ crucially eliminates θ from both equations above. From (5.9) we obtain

λ̃ = κ2ρ
a+2 f ′

+ (κ2 + aρa)ρa+1 + D.

f
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Plugging this into (5.10) then yields

κ2(a +1)ρa+2f ′ + (a +1)(κ2 +aρa)ρa+1f =
(

κ2ρ
a+2 f ′

f
+ (κ2 + aρa)ρa+1 + D

)
(f ′ρ +f ).

This finally simplifies to

(f ′)2
(
κ2ρ

a+3
)

+ ff ′ ((aρa − κ2a + κ2)ρ
a+2 + Dρ

)
+ f 2

(
D − a(κ2 + aρa)ρa+1

)
= 0.

(5.11)
Using the quadratic formula yields two branches of solutions. After simplification, this becomes

f ′ = f
−(aρa + κ2(1 − a))ρa+1 − D ± √

�

2κ2ρa+2 =: f �±(ρ), (5.12)

where the discriminant takes the form

� :=
(
D + ρa+1(aρa − κ2(a + 1))

)2 + 4κ2a(a + 1)ρ3a+2.

Note that � is strictly positive for all ρ ≥ 0. Thus (5.12) implies the existence of two solutions 
f+ and f− that both transform (5.8) into (5.7). Unfortunately, these ODE’s are not explicitly 
solvable, and do not yield simple power laws for f .

We briefly examine now the asymptotic behavior of f±. One can rewrite (5.12) for f+ in the 
following form:

f ′+
f+

= (D + aρ2a+1 − κ2(a + 1)ρa+1)2 + 4κ2a(a + 1)ρ3a+2 − (D + aρ2a+1 + κ2(1 − a)ρa+1)2

2κ2ρa+2(D + aρ2a+1 + κ2(1 − a)ρa+1 + √
�)

= 2(a2ρ2a+1 + κ2aρ
a+1 − D)

ρ(D + aρ2a+1 + κ2(1 − a)ρa+1 + √
�)

.

Asymptotically, we have

f ′+ ≈ − 1

ρ
f+ as ρ → 0+ and f ′+ ≈ a

ρ
f+ as ρ → ∞. (5.13)

Therefore f+ has a positive singularity at ρ = 0 that grows like ρ−1, decreases to a minimum 
value at some critical ρ1 where a2ρ2a+1

1 + κ2aρ
a+1
1 = D, then becomes increasing and grows 

like ρa .
A similar calculation for f− shows that

f ′− ≈ − D

a+2 f− as ρ → 0+ and f ′− ≈ − a2ρa−1

f− as ρ → ∞. (5.14)

κ2ρ κ2(a + 1)
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Thus, f− also has a positive singularity at ρ = 0 that grows like exp
(

D
κ2(a+1)

ρ−(a+1)
)

, stays 

monotone decreasing, and decays exponentially to zero with profile exp
(
− a

κ2(a+1)
ρa

)
. The dif-

ference between f+ and f− comes from expanding the discriminant: aρ2a+1 + D + √
� has 

simple asymptotics, but aρ2a+1 + D − √
� has cancellations at both limits.

We now look at the remaining terms of (5.8) in light of (5.12). Specifically, (5.8) has now 
become (5.7) with

F̃ = aθ

(
κ2ρ

a f ′ρ + f

f
+ aρ2a + D

ρ

)
,

and

G̃ = − a

(
κ2ρ

a f ′ρ + f

f
+ aρ2a + D

ρ

)(
f ′′ρ + 2f ′

(f ′ρ + f )2 f 2ρ2 − 2fρ

)
+ 2a3(a + 1)ρ2a+1

(f ′ρ + f )2 f 3 + κ2a(a2 − 1)ρa+1 − a2(4a + 3)ρ2a+1

f ′ρ + f
f 2

+
(
a2ρ2a+1 − κ2a(2a + 1)ρa+1 + aD

)
f

= − a

(
κ2

a + 1

2
ρa+1 + a

2
ρ2a+1 + D ± √

�

2

)(
�±ρ

�±ρ + 1
+ (�′±ρ + �±)ρ

(�±ρ + 1)2 − 2

)
f

+ 8κ2
2a3(a + 1)ρ4a+3

(κ2(a + 1)ρa+1 − aρ2a+1 − D ± √
�)2

f

+ 2κ2
2a(a2 − 1)ρ2a+2 − 2κ2a

2(4a + 3)ρ3a+2

κ2(a + 1)ρa+1 − aρ2a+1 − D ± √
�

f

+
(
a2ρ2a+1 − κ2a(2a + 1)ρa+1 + aD

)
f

We now let ρ → ∞ (or 0+) for G̃ to obtain an asymptotic formula for that term in the limit of 
large (or vanishing) density. Write G̃± to correspond to f±. We then obtain

G̃+ ≈ a2 a + 2

a + 1
ρ2a+1f + 8a3

9(a + 1)
ρ2a+1f − 2a2(4a + 3)

3(a + 1)
ρ2a+1f + a2ρ2a+1f

= a2(2a + 9)

9(a + 1)
ρ2a+1f > 0 as ρ → ∞.

However, the vanishing ρ limit is made more singular due to the fact that

lim
ρ→0+ �+ρ + 1 ≈ κ2(a + 1)2

4D
ρa+1.

From this we obtain
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G̃+ ≈ −a

(
κ2(a + 1)

2
ρa+1 + D

)(
4D

κ2(a + 1)2 ρ−a−1 + 8D2

κ2
2 (a + 1)2

ρ−2a−2 − 2

)
f

+ 32D2a3

κ2
2 (a + 1)3

ρ−1f + 4Da(a − 1)

a + 1
f + aDf

≈ − 8aD3

κ2
2 (a + 1)2

ρ−2a−2f < 0 as ρ → 0+.

Thus, for very low values of ρ, G̃+ is negative. This implies that f+ρθ has a minimum principle
for minima that are above a certain threshold ρ, and a maximum principle for maxima that are 
below a second threshold ρ. If G̃+ has only one zero, then ρ = ρ. So this corresponds to a “state 
change” in the material between low density and high density.

The corresponding calculations for G− yield

G̃− ≈ −aκ2
a + 1

2
ρa+1f + 2aκ2

2 (a + 1)ρf + aκ2(4a + 3)ρa+1f + a2ρ2a+1f

≈ a2ρ2a+1f as ρ → ∞,

and in the low density case

G̃− ≈ −κ2a(a + 1)ρa+1

⎛⎜⎝ − D
κ2

ρ−a−1

1 − D
κ2

ρ−a−1
+ (a + 1) D

κ2
ρ−a−1(

− D
κ2

ρ−a−1
)2 − 2

⎞⎟⎠f

+ 2a3(a + 1)ρ2a+1(
− D

κ2
ρ−a−1

)2 f + κ2a(a2 − 1)ρa+1

− D
κ2

ρ−a−1
f + aDf ≈ aDf as ρ → 0+.

This case is of a different type. Owing to various cancellations, the last term in the formula for 
G̃− is the dominant one for large ρ, and the small ρ limit indicates that G̃− is always positive.

Proof of I: There is some threshold ρ for which, if ρ(t, x) > ρ on Tn, then G̃± is strictly positive. 
Thus we have a minimum principle for the quantities f±ρθ . Furthermore, as long as this ρ is 
taken large enough, we may replace f± by their asymptotic profiles, so that we obtain two explicit 
minimum principles:

ρa+1θ ≥ c1 and ρ exp

(
− a

κ2(a + 1)
ρa

)
θ ≥ c2.

This implies an absolute lower bound on the temperature (if θ gets too small, ρ has to increase 
to keep the first quantity above its minimum, but that makes the second quantity decrease). Rig-
orously,

θ ≥ max

(
c1ρ

−1−a, c2ρ
−1 exp

(
a

κ2(a + 1)
ρa

))
.

The right hand side has a positive minimum, which occurs when c1ρ
−a = c2 exp(ρa/κ2), a tran-

scendental expression.
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Proof of II: Similarly, there is a second threshold ρ for which, if ρ(t, x) < ρ on Tn, then G̃+ < 0, 

G̃− > 0, and f+ ≈ ρ−1 while f− ≈ exp(Dρ−a−1/(κ2(a + 1))). This implies

θ ≤ c1 and ρθ exp

(
D

κ2(a + 1)
ρ−a−1

)
≥ c2.

We get an upper bound for the temperature immediately, and (5.2) follows. �
6. Future directions

Theorems 4.1 and 5.1 show how the algebraic (and nonlinear) structure of certain consis-
tently derived models for thermal fluids reveal hidden maximum/minimum principles. These 
were found through the use of auxiliary variables, yet only very specific choices for those vari-
ables (the density weight function f ) could produce the necessary cancellations in the equations; 
the proofs in Sections 4 and 5 show how to find these precise variables for two of our three 
models.

Already in the second model (3.12) we see far more intricate conditions, including an ap-
parent “local state change” depending on the sign of G̃+. The third model (3.17) is yet more 
complicated, but a deeper treatment could similarly reveal regions in state space (i.e. ranges of 
ρ and θ ), depending on the parameters, where the solution obeys conditional a priori bounds 
(and likely disjoint regions in state space which produce qualitatively different a priori bounds). 
The approach of this work can be further extended by considering different conductivities κ3, 
though it comes with the disadvantage that we lose several explicit formulas. But perhaps the 
most ambitious goal for this line of research is in understanding the direct connection between 
the auxiliary variables and the free energy function �. The above approach relied on the struc-
ture found in the system of equations after it was derived from the free energy, but it might be 
possible to anticipate the variables directly from the free energy and constitutive laws (perhaps 
even classifying which such laws lead to models with nice a priori bounds).

The results above are a priori in nature; they assume a smooth solution exists on a time interval 
[0, T ] and provide quantitative bounds on that time interval. It is then natural to pare this with 
an existence theory; see for instance [6], [24], and [23], which focus specifically on existence for 
solutions to equations derived through the energy variational approach. Solutions can generally 
be constructed in a weak setting through iteration schemes that rely on a linearization of the 
model equations. However, this often restricts the solution to the perturbative (near-equilibrium) 
regime, and even then only constructs solutions for a short time. The true utility of the a priori 
bounds above is in extending the linear theory and establishing well-posedness for these models 
for arbitrary times. A preliminary work in this direction is [17], which constructs weak solutions 
exactly for the non-isothermal ideal gas model (3.6) with a generic conductivity κ3.
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