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Generalization of steric Nernst–Planck equation to non-isothermal scenarios.
A temperature model based on the first and second law of thermodynamics.
Reversible and irreversible heat generation in charging and discharging processes.
CVT curve for cyclic voltammetry.

A R T I C L E I N F O

Keywords:
Electrokinetics
Electro-thermal coupling
Energetic variation approach
Cyclic voltammetry
Modified Poisson–Nernst–Planck equations

A B S T R A C T

This work proposes a new variational, thermodynamically consistent model to predict thermal electrokinetics in
electric double layer capacitors (EDLCs) by using an energetic variational approach. The least action principle
and maximum dissipation principle from the non-equilibrium thermodynamics are employed to develop
modified Nernst–Planck equations for non-isothermal ion transport with temperature inhomogeneity. Laws of
thermodynamics are employed to derive a temperature evolution equation with heat sources due to thermal
pressure and electrostatic interactions. Numerical simulations successfully predict temperature oscillation in
the charging–discharging processes of EDLCs, indicating that the developed model is able to capture reversible
and irreversible heat generations. The impact of ionic sizes and scan rate of surface potential on ion transport,
heat generation, and charge current is systematically assessed in cyclic voltammetry simulations. It is found
that the thermal electrokinetics in EDLCs cannot follow the surface potential with fast scan rates, showing
delayed dynamics with hysteresis diagrams. Our work thus provides a useful tool for physics-based prediction
of thermal electrokinetics in EDLCs.
1. Introduction

Immense demand for green energy has greatly promoted the de-
velopment of electrical energy storage technologies. Electric double
layer capacitors (EDLCs), also known as supercapacitors, have received
significant attention in recent years for their unique features and broad
application spectrum [1]. Electric energy is stored in electric double
ayers forming at solid/liquid interface. In contrast to traditional di-
lectric capacitors, EDLCs can achieve much larger energy densities
ue to small charge separation in nanoscale electric double layers [2].
n contrast to conventional rechargeable batteries, EDLCs have higher
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charging/discharging efficiency, longer cycle life, and higher power
density [3–7].

The heat generation is a major concern for the function of EDLCs in
that they are often cycled under high current density, which may result
in an unexpected local temperature rise. In practice, excessive temper-
ature rise in EDLCs could cause various irreversible damages, e.g., ac-
celerated aging [8], enhanced self-discharge rates [9–11], capacitance
reduction [12,13], and electrolytes decomposition/evaporation [14].
To avoid these issues, temperature elevation in EDLCs during opera-
tion should be suppressed. Therefore, comprehensive understanding on
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heat generation is of significance and highly desirable for the design,
optimization, and manufacture of new generation EDLCs, to ensure the
safety and long-term stability.

Temperature oscillations observed in the charging and discharging
experiments of EDLCs evidence the contribution of the reversible and
irreversible heat generation [5,15–17]. Many existing models on heat
generation neglect the underlying thermal electrokinetic details in the
operation of EDLCs. Either uniform heat generation for the whole
device is assumed [10,16,18,19] or only irreversible heat generation is
accounted for with parameters determined by experiments [5,10,20].
The irreversible Joule heating effect, which is proportional to the
square of charge current, often accounts partially for the temperature
change in EDLCs during charging and discharging processes [21–23].
Without reversible heat generation, theoretical models fail in predicting
the temperature recession in the discharging process.

Much attention has been paid to the first-principle modeling of
reversible and irreversible heat generation in EDLCs in recent years.
Based on a thermodynamic viewpoint, Schiffer et al. [5] took into
account the reversible heat generation rate as −𝑇 𝑑𝑆

𝑑𝑡 , where the en-
tropy change of ions due to the formation and dissolution of electric
double layers is estimated by using the volume of Stern layers. The
derived model can successfully predict the temperature oscillation in
the charging–discharging processes. Zhang et al. proposed to describe
the reversible heat via the relationship between surface Gibbs free
energy and electric energy at the electric double layer interface [17].
Simulation results indicated that the proposed model could capture
temperature oscillation during charging and discharging cycles and
very well fit the experimental temperature profiles. To get physically
faithful models with spatiotemporal resolution, d’Entremont et al. [24]
developed an energy conservation equation for temperature, coupling
electrodiffusion, heat generation, and thermal transport. The model
incorporates irreversible Joule heating and reversible heat generation
due to electrodiffusion, steric effect, and entropy changes. It is further
extended to consider the effect of asymmetric ionic sizes on ther-
mal and charge dynamics [22]. Numerical simulations demonstrated
that the model is capable of predicting the temperature oscillation in
charging–discharging processes. To reduce computational cost, scaling
law analysis was performed to gain insights on reversible heating and
develop a guideline for thermal management strategies [25].

Another type of model is derived by considering a source term
that is the dot product of current and the electric field, including
irreversible and reversible heat generation [23]. It is demonstrated that
in terms of predicting the temperature change, the model has a good
agreement with a thermodynamic identity involving temperature and
electrostatics in the slow charging process. More recently, reversible
heat production is studied based on a model that is derived by con-
sidering the ratio of reversible heat production into EDLCs during an
isothermal charging process and the electric work [26]. It should be
pointed out that the abovementioned models ignore porous structure
of electrodes and treat EDLCs as a simple one-dimensional system
with planar electrodes. Recent years have seen the development of
models to evaluate the impact of cylindrical or porous electrodes on the
performance of EDLCs [27–33]. For instance, a stack-electrode model
with an electric circuit analogy was proposed to mimic the porous
electrodes, and applied the model to study the relation between relax-
ation timescale and porosity [29,32]. The model was also extended to
investigate the influence of structural parameters of porous electrodes
on the temperature rise during the charging process of EDLCs [33].

Despite irreversible and reversible heat generations have been in-
cluded, the abovementioned models describe ion transport by modified
Nernst–Planck (NP) equations with ionic size effects [22,34–37], which
ignore the impact of inhomogeneous temperature distribution on the
ion transport as in isothermal scenarios. The effect of spatio-temporal
inhomogeneity in temperature on charge dynamics is expected to be-
2

come significant as large temperature rises in EDLCs [24]. Due to the
multi-scale and multi-physics nature, the development of thermody-
namically consistent models for the charging/discharging processes of
EDLCs has been a challenging issue.

In this work, we propose a variational, thermodynamically con-
sistent model to predict thermal electrokinetics in EDLCs by using
an energetic variational approach, which has been proved to be a
powerful tool in studying numerous complex multi-scale, multi-physics
systems [38], such as liquid crystals [39], multiple-phase flows [40],
and ionic solutions [41]. The least action principle and maximum
dissipation principle from the non-equilibrium thermodynamics are
employed to derive modified NP equations that take into account the
diffusion, ionic steric effect, and convection due to the gradient of
temperature and electrostatic potential. Laws of thermodynamics are
employed to derive temperature evolution equations with heat sources
arising from thermal pressure and electrostatic interactions. Extensive
numerical simulations based on the proposed model are performed
to understand the thermal electrokinetics in the charging–discharging
processes of EDLCs.

2. Methods

Consider a one-dimensional electric double layer capacitor (EDLC)
that consists of binary, symmetric electrolytes blocked by two parallel
electrodes located at 𝑥 = −𝐿 − 𝐻 and 𝑥 = 𝐿 + 𝐻 ; cf. a schematic
plot of the system shown in Fig. 1. Hydrated cations and anions are
assumed to have a uniform diameter 𝑎. With applied biased potential
difference exerted by the electrodes, electric double layers due to
electrostatic interactions are formed at electrodes. In electrolytes, a
Stern layer right adjacent to each electrode is assumed to have width
𝐻 = 𝑎∕2, and it is followed by a diffuse layer. It is assumed that there
is no electrochemical reaction at the interface between electrolytes and
electrodes.

2.1. Energetic variational approach

We now propose an energetic variational model for the description
of ionic electrodiffusion, heat generation, and thermal transport in
EDLCs. Although a one-dimensional EDLC is mainly studied in present
work, the model derived here is valid for general three dimensional
cases.

To characterize the charging and discharging processes, we denote
by 𝑇 (𝒙, 𝑡), 𝜓(𝒙, 𝑡), and 𝜌𝑖(𝒙, 𝑡) the temperature distribution, electric
potential, and ionic concentration at location 𝒙 for time 𝑡, respectively.
Let 𝛺 be the domain for an EDLC system under consideration. For
any arbitrary subdomain 𝑉 ⊂ 𝛺, the mean-field electrostatic free-
energy functional 𝐹 (𝑉 , 𝑡) is a functional of the particle densities and
temperature given by

𝐹 (𝑉 , 𝑡) = 𝐹𝑝𝑜𝑡(𝑉 , 𝑡) + 𝐹𝑒𝑛𝑡(𝑉 , 𝑡). (2.1)

Here the electrostatic potential energy reads

𝐹𝑝𝑜𝑡(𝑉 , 𝑡) =
∑

𝑖,𝑚=±

𝑞𝑖𝑞𝑚
2 ∬𝑉

𝜌𝑖(𝒙, 𝑡)𝜌𝑚(𝒙′, 𝑡)𝐺(𝒙,𝒙′)𝑑𝒙𝑑𝒙′

+
∑

𝑖=±
𝑞𝑖 ∫𝑉

𝜌𝑖(𝒙)

(

𝜓𝑋 (𝒙, 𝑡) + ∫𝛺∖𝑉

∑

𝑚=±
𝜌𝑚(𝒙′, 𝑡)𝐺(𝒙,𝒙′)𝑑𝒙′

)

𝑑𝒙,

(2.2)

where 𝑞𝑖 = 𝑧𝑖𝑒 with 𝑧𝑖 being the ionic valence. The first term in
𝐹𝑝𝑜𝑡(𝑉 , 𝑡) represents for the electrostatic potential energy inside 𝑉
from the Coulomb interactions, with the Green function 𝐺 satisfying
−∇ ⋅ 𝜖𝑟𝜖0∇𝐺(𝒙,𝒙′) = 𝛿(𝒙,𝒙′). Here 𝜖0 is the absolute permittivity and
𝜖𝑟 is the dielectric coefficient. The second term is the electrostatic
potential energy from the external fields, including contributions from
ions outside 𝑉 and an external electric potential 𝜓 , e.g., the boundary
𝑋
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Fig. 1. A schematic view of an electric double layer capacitor. Hydrated cations and anions are assumed to have a uniform diameter 𝑎. Biased potential differences are applied
cross two thermally-insulated, blocking parallel electrodes that are located at 𝑥 = −𝐿 −𝐻 and 𝑥 = 𝐿 +𝐻 with 𝐻 being the width of Stern layers.
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potential on the electrodes. The entropy contribution in (2.1) is given
y

𝑒𝑛𝑡(𝑉 , 𝑡) =
∑

𝑖=0,±
∫𝑉

𝑘𝐵𝑇 (𝒙, 𝑡)𝜌𝑖(𝒙, 𝑡)[log(𝑣𝜌𝑖(𝒙, 𝑡)) − 𝐶𝑖 log 𝑇 (𝒙, 𝑡)]𝑑𝒙,

(2.3)

here 𝑘𝐵 is the Boltzmann constant and 𝐶𝑖 is a constant related to
he heat capacitance of each species. Note that the subscript 𝑖 = 0
tands for the solvent molecules, and uniform volume of both ions
nd solvent molecules, denoted by 𝑣 = 𝑎3, is assumed here. The steric
ffect is taken into account via the inclusion of solvent entropy, which
s described by a lattice-gas model for uniform-sized solvent molecules
nd ions [42,43]. An upper limit 1∕𝑣 is imposed on the local density
via the constraint
∑

𝑖=0,±
𝑣𝜌𝑖(𝒙, 𝑡) = 1. (2.4)

For simplicity, we assume that 𝐶+ = 𝐶− = 𝐶0 for each species. As such,
the entropy contribution reads

𝐹𝑒𝑛𝑡(𝑉 , 𝑡) = ∫𝑉
𝛹
(

𝜌+(𝒙, 𝑡), 𝜌−(𝒙, 𝑡), 𝑇 (𝒙, 𝑡)
)

𝑑𝒙

∶= ∫𝑉

[

∑

𝑖=±
𝛹𝑖

(

𝜌𝑖(𝒙, 𝑡), 𝑇 (𝒙, 𝑡)
)

+𝛹0
(

𝜌+(𝒙, 𝑡), 𝜌−(𝒙, 𝑡), 𝑇 (𝒙, 𝑡)
)

− 𝛹𝑇 (𝑇 (𝒙, 𝑡))
]

𝑑𝒙,

where 𝛹±, 𝛹0, and 𝛹𝑇 are defined as

𝛹±
(

𝜌±(𝒙, 𝑡), 𝑇 (𝒙, 𝑡)
)

∶= 𝑘𝐵𝑇 (𝒙, 𝑡)𝜌±(𝒙, 𝑡) log
(

𝑣𝜌±(𝒙, 𝑡)
)

,

𝛹0
(

𝜌+(𝒙, 𝑡), 𝜌−(𝒙, 𝑡), 𝑇 (𝒙, 𝑡)
)

∶= 𝑘𝐵𝑇 (𝒙, 𝑡)
1 −

∑

𝑖=± 𝑣𝜌𝑖(𝒙, 𝑡)
𝑣

log(1 −
∑

𝑖=±
𝑣𝜌𝑖(𝒙, 𝑡)),

𝑇 (𝑇 (𝒙, 𝑡)) ∶=
𝑘𝐵𝐶0
𝑣

𝑇 (𝒙, 𝑡) log 𝑇 (𝒙, 𝑡).

(2.5)

Then the entropy is given by

𝑆(𝑉 , 𝑡) = −∫𝑉

𝜕𝛹
(

𝜌+(𝒙, 𝑡), 𝜌−(𝒙, 𝑡), 𝑇 (𝒙, 𝑡)
)

𝜕𝑇 (𝒙, 𝑡)
𝑑𝒙. (2.6)

Application of the Legendre transform of the free energy leads to the
internal energy

𝑈 (𝑉 , 𝑡) = 𝐹 (𝑉 , 𝑡) − 𝑇 (𝒙, 𝑡)
𝜕𝛹

(

𝜌+(𝒙, 𝑡), 𝜌−(𝒙, 𝑡), 𝑇 (𝒙, 𝑡)
)

𝑑𝒙. (2.7)
3

∫𝑉 𝜕𝑇 (𝒙, 𝑡) p
To characterize the thermal electrokinetics in EDLCs, we propose
an energetic variational model that combines the non-equilibrium sta-
tistical mechanics and nonlinear thermodynamics [41,44,45]. Central
n this model is the energy dissipation law

𝑑𝐸tot

𝑑𝑡
= −𝛥, (2.8)

here 𝐸tot is the total energy and the dissipation functional 𝛥 often
is a linear combination of the squares of various rate functions, such
as velocity and rate of strain. In the energetic variational approach,
the Least Action Principle (LAP) is used to derive conservative forces
and the Maximum Dissipation Principle (MDP) is employed to obtain
dissipative forces. The balance of total forces gives the governing
equations for the motion of ions.

We first introduce the Lagrangian and Eulerian coordinate systems.
Let 𝛺𝑋

0 be the reference configuration and 𝛺𝑥
𝑡 be the deformed con-

figuration of ions. Denote by 𝑿 ∈ 𝛺𝑋
0 the Lagrangian coordinate and

𝒙 ∈ 𝛺𝑥
𝑡 the Eulerian coordinate. Introduce the flow maps that are

defined by
𝜕
𝜕𝑡
𝒙±(𝑿, 𝑡) = 𝒖±, 𝑡 > 0 and 𝒙(𝑿, 0) = 𝑿, (2.9)

here 𝒖± are velocities fields for cations and anions. By mass conser-
vation, the ionic densities satisfy the kinematic equations
𝜕𝜌±
𝜕𝑡

+ ∇ ⋅ (𝜌±𝒖±) = 0. (2.10)

lternatively, the kinematic mass conservation equations in the La-
rangian coordinate read [46]

±
(

𝒙±(𝑿, 𝑡), 𝑡
)

=
𝜌±(𝑿, 0)
det 

, (2.11)

where  (𝑿, 𝑡) = 𝜕𝒙(𝑿,𝑡)
𝜕𝑿 is the deformation gradient tensor.

The Least Action Principle states that the variation of the action
unctional with respect to the flow map gives the conservative force
𝑐𝑜𝑛,± = 𝛿𝐴(𝒙+(𝑿,𝑡),𝒙−(𝑿,𝑡))

𝛿𝒙±
, where the action functional is defined as

𝐴
(

𝒙+(𝑿, 𝑡),𝒙−(𝑿, 𝑡)
)

= −∫

𝑡∗

0
𝐹𝑝𝑜𝑡(𝛺, 𝑡) + 𝐹𝑒𝑛𝑡(𝛺, 𝑡)𝑑𝑡

= 𝐴𝑝𝑜𝑡
(

𝒙+(𝑿, 𝑡),𝒙−(𝑿, 𝑡)
)

+ 𝐴𝑒𝑛𝑡
(

𝒙+(𝑿, 𝑡),𝒙−(𝑿, 𝑡)
)

for some time 𝑡∗ > 0. Here the kinetic energy of particles is assumed to
e negligible.
Taking the derivation of conservative forces for cations as an exam-

le, we obtain by taking variation of actions with respect to the flow
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map 𝒙+(𝑿, 𝑡):

𝑒𝑛𝑡
𝑐𝑜𝑛,+ =

𝛿𝐴𝑒𝑛𝑡
(

𝒙+(𝑿, 𝑡),𝒙−(𝑿, 𝑡)
)

𝛿𝒙+(𝑿, 𝑡)

= −

[

𝑘𝐵𝑇∇𝜌+ + 𝑘𝐵𝑇
𝑣𝜌+

1 −
∑

𝑖=± 𝑣𝜌𝑖

∑

𝑗=±
∇𝜌𝑗 +

𝜕𝑃+
𝜕𝑇

∇𝑇

]

, (2.12)

where the thermal pressure for cations is given by

𝑃+ = 𝑘𝐵𝑇
(

𝜌− − 1
𝑣

)

log

(

1 −
∑

𝑗=±
𝑣𝜌𝑗

)

.

The mathematical details on the derivation of (2.12) are presented in
the Supporting Information.

The conservative force due to the electrostatic potential energy can
be analogously derived as follows [41,44]:

𝑭 𝑝𝑜𝑡
𝑐𝑜𝑛,+ =

𝛿𝐴𝑝𝑜𝑡
(

𝒙+(𝑿, 𝑡),𝒙−(𝑿, 𝑡)
)

𝛿𝒙+

= 𝛿
𝛿𝒙+ ∫

𝑡∗

0
−

[

∑

𝑖,𝑚=±

𝑞𝑖𝑞𝑚
2 ∬𝛺𝑥𝑡

𝜌𝑖(𝒙, 𝑡)𝜌𝑚(𝒙′, 𝑡)𝐺(𝒙,𝒙′)𝑑𝒙𝑑𝒙′

+
∑

𝑖=±
𝑞𝑖 ∫𝛺𝑥𝑡

𝜌𝑖(𝒙)𝜓𝑋 (𝒙, 𝑡)𝑑𝒙

]

𝑑𝑡

= −𝑞+𝜌+∇𝜙, (2.13)

where 𝜙(𝒙, 𝑡) = 𝜓𝑋 (𝒙, 𝑡) +
∑

𝑖=± 𝑞𝑖 ∫𝛺 𝜌𝑖(𝒙
′, 𝑡)𝐺(𝒙,𝒙′)𝑑𝒙′ is the electric

otential. Combination of 𝑭 𝑒𝑛𝑡
𝑐𝑜𝑛,± and 𝑭 𝑝𝑜𝑡

𝑐𝑜𝑛,± leads to the conservative
force for cations and anions:

𝑭 𝑐𝑜𝑛,± = −

(

𝑘𝐵𝑇∇𝜌± + 𝑘𝐵𝑇
𝑣𝜌±

1 −
∑

𝑖=± 𝑣𝜌𝑖

∑

𝑗=±
∇𝜌𝑗 + 𝑞±𝜌±∇𝜙 +

𝜕𝑃±
𝜕𝑇

∇𝑇

)

.

(2.14)

In order to predict the irreversible heat generation, we consider
ntropy production functional 𝛥(𝑉 , 𝑡) = ∫𝑉 𝛥(𝒙, 𝑡)𝑑𝒙 for an arbitrary
domain 𝑉 , with the entropy production density given by

𝛥 =
∑

𝑖=±

𝜈𝑖𝜌𝑖|𝒖𝑖|2

𝑇
+ 1
𝑘
|

𝒋ℎ
𝑇
|

2
. (2.15)

Here 𝜈𝑖 is the viscosity of ions of the 𝑖th species, 𝒋ℎ represents for
the heat flux, and 𝑘 is a constant related to the heat conductance. We
employ the Maximum Dissipation Principle (MDP) to derive dissipative
forces by taking variation of the dissipation functional 𝛥 with respect
to the rates (velocity) in Eulerian coordinates, i.e.,

𝑭 𝑑𝑖𝑠,+(𝒙, 𝑡) =
𝑇
2
𝛿𝛥(𝛺, 𝑡)
𝛿𝒖+(𝒙, 𝑡)

= 𝜈+𝜌+𝒖+. (2.16)

Note that the factor 1
2 is included due to the convention that the energy

issipation is always a quadratic function of certain rates.
Therefore, the balance of conservative forces and dissipative forces

ields

±𝜌±𝒖±

= −

(

𝑘𝐵𝑇∇𝜌± +
𝜕𝑃±
𝜕𝑇

∇𝑇 + 𝑘𝐵𝑇
𝑣𝜌±

1 −
∑

𝑖=± 𝑣𝜌𝑖

∑

𝑗=±
∇𝜌𝑗 + 𝑞±𝜌±∇𝜙

)

.

(2.17)

Combining the mass conservation equation (2.10), one obtains modi-
fied Nernst–Planck (NP) equations that include ionic steric effect and
thermal effect for ion transport:
𝜕𝜌±
𝜕𝑡

= 1
𝜈±

∇ ⋅

(

𝑘𝐵𝑇∇𝜌± +
𝜕𝑃±
𝜕𝑇

∇𝑇 + 𝑘𝐵𝑇
𝑣𝜌±

1 −
∑

𝑖=± 𝑣𝜌𝑖

∑

𝑗=±
∇𝜌𝑗 + 𝑞±𝜌±∇𝜙

)

.

(2.18)
4

Note that the second term in the right side of the modified NP equa-
tion (2.18) can be regarded as the Soret effect that describes ion motion
due to temperature gradient [47,48]. In addition, it is remarked that for
an isothermal case, the modified NP Eqs. (2.18) reduces to the modified
NP equations with ionic steric effects in the work [43].

With (2.17), we define the ionic flux density by 𝒋± = 𝜌±𝒖±. Since
the electrodes are two blocking walls without electrochemical reaction,
zero-flux boundary conditions are imposed at the Stern/diffuse layer
interface at 𝑥 = −𝐿 and 𝑥 = 𝐿, i.e.,

𝒋±(−𝐿, 𝑡) = 0 and 𝒋±(𝐿, 𝑡) = 0. (2.19)

.2. Poisson’s equation

The electric potential 𝜙(𝒙, 𝑡) is determined by the Poisson’s equation

− ∇ ⋅ 𝜖0𝜖𝑟∇𝜙(𝒙, 𝑡) =
∑

𝑖=±
𝑞𝑖𝜌𝑖(𝒙, 𝑡). (2.20)

To take the Stern layers of width 𝐻 into account, we impose Robin
boundary conditions for the electric potential at 𝑥 = −𝐿 and 𝑥 = 𝐿 as
shown in Fig. 1:

𝜙(±𝐿, 𝑡) ±𝐻
𝜕𝜙
𝜕𝑥

(±𝐿, 𝑡) = ∓𝜙𝑠(𝑡), (2.21)

here 𝜙𝑠 is the applied potential at the electrode surface. In Cyclic
oltammetry (CV) measurements, 𝜙𝑠(𝑡) is prescribed periodically and
inearly with time as [49]

𝜙𝑠(𝑡) =

{

𝜙𝑚𝑖𝑛 + 𝜈𝑡, 2(𝑛 − 1)𝑡0 ≤ 𝑡 < (2𝑛 − 1)𝑡0,

𝜙𝑚𝑎𝑥 − 𝜈
[

𝑡 − (2𝑛 − 1)𝑡0
]

, (2𝑛 − 1)𝑡0 ≤ 𝑡 < 2𝑛𝑡0,
(2.22)

where 𝜈 is the scan rate in 𝑉 ∕𝑠 and 𝑛(= 1, 2, 3,…) is the number of
cycles. In such CV measurements, 𝜏𝑐𝑣 = (𝜙𝑚𝑎𝑥−𝜙𝑚𝑖𝑛)∕𝜈 denotes the half
cycle period.

2.3. Energy conservation equation

The first law of thermodynamics that describes energy conservation
is employed here to derive the governing equation for temperature
evolution. Consider an arbitrary control volume 𝑉 that does not move
along with the flow maps of ions. The rate of work done on 𝑉 is given
by

𝑑
𝑑𝑡
𝑊 (𝑉 , 𝑡) =

∑

𝑖=±
𝑞𝑖 ∫𝑉

𝜌𝑖
𝜕
𝜕𝑡

[

𝜓𝑋 (𝒙, 𝑡) +
∑

𝑚=±
𝑞𝑚 ∫𝛺∖𝑉

𝜌𝑚(𝒙′)𝐺(𝒙,𝒙′)𝑑𝒙′

]

𝑑𝒙

+
∑

𝑖=±
∫𝜕𝑉

−𝑃𝑖(𝒙, 𝑡)𝒖𝑖(𝒙, 𝑡) ⋅ 𝑑𝑺,

(2.23)

here the first term represents the rate of work done by a time-
ependent electric potential outside 𝑉 , including the contributions
rom ions in the domain 𝛺∖𝑉 and external potential 𝜓𝑋 . The second
erm describes the rate of work done by the thermal pressure 𝑃𝑖 through
the boundary of 𝑉 . The rate of heat transfer is given by the heat flux
𝒋ℎ through 𝜕𝑉 :

𝑑
𝑑𝑡
𝑄(𝑉 , 𝑡) = −∫𝜕𝑉

𝒋ℎ ⋅ 𝑑𝑺. (2.24)

ince 𝑉 does not move with the flow maps of ions, we need to consider
he total energy flux 𝐽𝐸 through the boundary:

𝐸 (𝑉 , 𝑡) =
∑

𝑖=± ∫𝜕𝑉

(

𝑞𝑖𝜌𝑖𝜙 + 𝑒𝑖𝑛𝑡𝑖
)

𝒖𝑖 ⋅ 𝑑𝑺, (2.25)

here 𝑒𝑖𝑛𝑡𝑖 = 𝛹𝑖 − 𝑇
𝜕𝛹𝑖
𝜕𝑇 is the internal energy density, with 𝛹𝑖 defined

n (2.5). Note that 𝑒𝑖𝑛𝑡± = 0 due to the linearity of 𝛹± with respect to 𝑇 .
y the arbitrariness of the control volume 𝑉 , we derive from the energy
onservation
𝑑 𝑈 (𝑉 , 𝑡) + 𝐽 (𝑉 , 𝑡) = 𝑑 𝑊 (𝑉 , 𝑡) + 𝑑 𝑄(𝑉 , 𝑡), (2.26)

𝑑𝑡 𝐸 𝑑𝑡 𝑑𝑡
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(2.7), and (2.23)-(2.25) that
𝑘𝐵𝐶0
𝑣

𝜕𝑇
𝜕𝑡

= ∇ ⋅ (𝑘∇𝑇 ) −
∑

𝑖=±
∇ ⋅ (𝑃𝑖𝒖𝑖) −

∑

𝑖=±
𝑞𝑖𝜌𝑖𝒖𝑖 ⋅ ∇𝜙. (2.27)

Here the first term in the right describes heat diffusion, the second
term represents the work of thermal pressure converted into heat, and
the third term that includes irreversible Joule heating describes the
heat converted from electrostatic interactions. The derivation details
for (2.27) can be found in Supporting Information.

To describe thermally insulated electrodes, the boundary conditions
of the temperature equation (2.27) are prescribed by
𝜕𝑇
𝜕𝑥

(±𝐿) = 0. (2.28)

2.4. Governing equations

In summary, we have the following governing equations to describe
the thermal electrokinetics of EDLCs:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− ∇ ⋅ 𝜀0𝜀𝑟∇𝜙 =
∑

𝑖=±
𝑞𝑖𝜌𝑖,

𝜕𝜌±
𝜕𝑡

+ ∇ ⋅
(

𝜌±𝒖±
)

= 0,

𝜌±𝒖± = − 1
𝜈±

(

𝑘𝐵𝑇∇𝜌± +
𝜕𝑃±
𝜕𝑇

∇𝑇 + 𝑘𝐵𝑇
𝑣𝜌±

1 −
∑

𝑖=± 𝑣𝜌𝑖

∑

𝑗=±
∇𝜌𝑗 + 𝑞±𝜌±∇𝜙

)

,

𝑘𝐵𝐶0

𝑣
𝜕𝑇
𝜕𝑡

= ∇ ⋅ (𝑘∇𝑇 ) −
∑

𝑖=±
∇ ⋅ (𝑃𝑖𝒖𝑖) −

∑

𝑖=±
𝑞𝑖𝜌𝑖𝒖𝑖 ⋅ ∇𝜙,

𝑃± = 𝑘𝐵𝑇
(

𝜌∓ − 1
𝑣

)

log

(

1 −
∑

𝑗=±
𝑣𝜌𝑗

)

.

(2.29)

To nondimensionalize the equations, we introduce reference tempera-

ture 𝑇0, microscopic length scale 𝜆𝐷 =
√

𝜀0𝜀𝑟𝑘𝐵𝑇0
2𝑒2𝜌∞

, density 𝜌∞, viscosity

𝜈0, and time scale 𝜏 =
𝜆𝐷𝐿𝜈0
𝑘𝐵𝑇0

. Also, we introduce dimensionless quanti-
ies 𝑥 = 𝑥∕𝐿, 𝑡̃ = 𝑡∕𝜏, 𝑇 = 𝑇 ∕𝑇0, 𝑣 = 2𝑣𝜌∞, 𝜙 = 𝑒𝜙

𝑘𝐵𝑇0
, 𝑘̃ = 𝜏𝑘

2𝑘𝐵𝜌∞𝐿2 , and
= 𝜆𝐷∕𝐿, which is often a small parameter for macroscopic EDLCs.
or binary monovalent electrolyte solutions under consideration, we
ssume 𝜈± = 𝜈0, consider salt density 𝑐 = 𝜌++𝜌−

2𝜌∞
and charge density

𝜌 = 𝜌+−𝜌−
2𝜌∞

, and introduce 𝑠 = log(1 − 𝑣𝑐). Dropping the tildes in new
ariables, we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑐
𝜕𝑡

= −𝜖
𝜕𝑗𝑐
𝜕𝑥

, 𝑗𝑐 = −
(

𝑇
1 − 𝑣𝑐

𝜕𝑐
𝜕𝑥

+ 𝜌
𝜕𝜙
𝜕𝑥

− 2 − 𝑣𝑐
𝑣

𝑠 𝜕𝑇
𝜕𝑥

)

,

𝜕𝜌
𝜕𝑡

= −𝜖
𝜕𝑗𝜌
𝜕𝑥

, 𝑗𝜌 = −
(

𝑇
𝜕𝜌
𝜕𝑥

+ 𝑐
𝜕𝜙
𝜕𝑥

+ 𝑇
𝑣𝜌

1 − 𝑣𝑐
𝜕𝑐
𝜕𝑥

− 𝜌𝑠 𝜕𝑇
𝜕𝑥

)

,
(2.30)

where 𝑗𝜌 is the dimensionless Faradaic current scaled by 𝑗0 = 2𝑒𝜌∞𝜈∕
𝑘𝐵𝑇0, and 𝑗𝑐 is the dimensionless salt current. Thus, we have the
ollowing relations between the reduced variables and original density
nd velocity of each ionic species:

± = 𝑐 ± 𝜌, 𝑢± =
𝑗𝑐 ± 𝑗𝜌
𝑐 ± 𝜌

. (2.31)

Finally, we have the following reformulated dimensionless governing
equations for the electric potential, densities, and temperature:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

− 𝜖2
𝜕2𝜙
𝜕𝑥2

= 𝜌,

𝜕𝑐
𝜕𝑡

= −𝜖
𝜕𝑗𝑐
𝜕𝑥

, 𝑗𝑐 = −
(

𝑇
1 − 𝑣𝑐

𝜕𝑐
𝜕𝑥

+ 𝜌
𝜕𝜙
𝜕𝑥

− 2 − 𝑣𝑐
𝑣

𝑠 𝜕𝑇
𝜕𝑥

)

,

𝜕𝜌
𝜕𝑡

= −𝜖
𝜕𝑗𝜌
𝜕𝑥

, 𝑗𝜌 = −
(

𝑇
𝜕𝜌
𝜕𝑥

+ 𝑐
𝜕𝜙
𝜕𝑥

+ 𝑇
𝑣𝜌

1 − 𝑣𝑐
𝜕𝑐
𝜕𝑥

− 𝜌𝑠 𝜕𝑇
𝜕𝑥

)

,

𝐶0
𝑣
𝜕𝑇
𝜕𝑡

= 𝑘𝜕
2𝑇
𝜕𝑥2

− 𝜖
∑ 𝜕

𝜕𝑥
(𝑃𝑖𝑢𝑖) − 𝜖𝑗𝜌

𝜕𝜙
𝜕𝑥
,

(2.32)
5

⎩

𝑖=±
where 𝑠 = log(1 − 𝑣𝑐) and 𝑃± = 𝑣𝜌∓−1
𝑣 𝑇 log(1 −

∑

𝑗=± 𝑣𝜌𝑗 ).

2.5. Numerical method

The system (2.32) with boundary conditions (2.19), (2.21), and
2.28) is a numerically challenging problem, especially when boundary
ayers present due to small 𝜖 for macroscopic EDLCs. For temporal
ntegration, we propose a fully implicit time-discretization scheme

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− 𝜖2
𝜕2𝜙𝑛+1

𝜕𝑥2
= 𝜌𝑛+1,

𝑐𝑛+1 − 𝑐𝑛
𝛥𝑡

= −𝜖
𝜕𝑗𝑛+1𝑐
𝜕𝑥

,

𝑗𝑛+1𝑐 = −
(

𝑇 𝑛+1

1 − 𝑣𝑐𝑛+1
𝜕𝑐𝑛+1

𝜕𝑥
+ 𝜌𝑛+1

𝜕𝜙𝑛+1

𝜕𝑥
− 2 − 𝑣𝑐𝑛+1

𝑣
𝑠𝑛+1 𝜕𝑇

𝑛+1

𝜕𝑥

)

,

𝜌𝑛+1 − 𝜌𝑛

𝛥𝑡
= −𝜖

𝜕𝑗𝑛+1𝜌

𝜕𝑥
,

𝑗𝑛+1𝜌 = −
(

𝑇 𝑛+1
𝜕𝜌𝑛+1

𝜕𝑥
+ 𝑐𝑛+1

𝜕𝜙𝑛+1

𝜕𝑥

+𝑇 𝑛+1
𝑣𝜌𝑛+1

1 − 𝑣𝑐𝑛+1
𝜕𝑐𝑛+1

𝜕𝑥
− 𝜌𝑛+1𝑠𝑛+1 𝜕𝑇

𝑛+1

𝜕𝑥

)

,

𝐶0
𝑣
𝑇 𝑛+1 − 𝑇 𝑛

𝛥𝑡
= 𝑘𝜕

2𝑇 𝑛+1

𝜕𝑥2
− 𝜖 𝜕

𝜕𝑥
(

𝑃 𝑛+1+ 𝑢𝑛+1+ + 𝑃 𝑛+1− 𝑢𝑛+1−
)

− 𝜖𝑗𝑛+1𝜌
𝜕𝜙𝑛+1

𝜕𝑥
,

(2.33)

where 𝛥𝑡 is a time step size, and 𝑐𝑛, 𝜌𝑛, 𝑇 𝑛, and 𝜙𝑛 are numerical
approximations of 𝑐(⋅, 𝑡𝑛), 𝜌(⋅, 𝑡𝑛), 𝑇 (⋅, 𝑡𝑛), and 𝜙(⋅, 𝑡𝑛) at 𝑡𝑛 = 𝑛𝛥𝑡,
espectively.
After temporal discretization, the system (2.33) with boundary con-

itions is spatially discretized with a collocation method implemented
n BVP4C [50] in the Matlab. For small 𝜖, boundary layers are resolved
ith an adaptive, nonuniform mesh, in which grid points are densely
istributed adjacent to the electrodes. The resulting nonlinear algebraic
quations are solved iteratively by Newton-type methods. A strategy
f continuation on the parameter 𝜖 is adopted to generate good initial
uesses for iterations at the first time step. Further numerical details
re presented in the Supporting Information.

. Results

To demonstrate the performance of the proposed model, extensive
umerical simulations based on the model are conducted to investigate
he effect of charging–discharging scan rates and ionic sizes on the ther-
al electrokinetics of EDLCs and unravel underlying mechanism of the
eversible and irreversible heat generation. In the periodic charging–
ischarging processes, a time-dependent voltage is applied through
he boundary condition (2.21) with the scheme (2.22), in which the
maximum and minimum surface electric potentials are set as 𝜓𝑚𝑎𝑥 = 1 V
and 𝜓𝑚𝑖𝑛 = 0 V. We consider monovalent binary electrolyte solutions
that are blocked by two thermally insulated electrodes. Unless specified
otherwise, the electrolyte relative permittivity is taken as that of water
𝜖𝑟 = 66.1, uniform ionic diffusion coefficients 𝐷± = 𝑘𝐵𝑇0∕𝜈± =
1.7 × 10−10 m2∕s are considered, and typical solvated ion diameter
𝑎 is used, ranging from 0.50 to 0.68 nm [24]. The initial and bulk
ion concentrations are set as 𝜌∞ = 1𝑀 , which gives 𝜆𝐷 = 0.3 nm.
To simulate macroscopic EDLCs, we consider a computational domain
[−𝐿,𝐿] with 𝐿 = 1 μm. Therefore, 𝜖 = 0.0003 which indicates that there
are thin boundary layers closed to electrodes.

3.1. Charging dynamics

The proposed model is first applied to study thermal electrokinet-
ics of an EDLC charging to steady states. A fixed surface potential
𝜙𝑠(𝑡) ≡ 20

(

𝑘𝐵𝑇0∕𝑒
)

is applied at electrodes; cf. the Robin boundary
conditions (2.21). The simulations take a uniform ionic size 𝑎 =
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Fig. 2. Snapshots of ionic concentration 𝜌±(𝒙, 𝑡) profiles (a), electric potential 𝜙(𝒙, 𝑡) profiles (b), current density 𝑗𝜌(𝒙, 𝑡) profiles (c), and temperature 𝑇 (𝒙, 𝑡) profiles (d).
0.68 nm, which implies a saturation concentration 𝜌𝑚𝑎𝑥 = 1∕𝑎3 =
5.3𝑀 . As displayed in Fig. 2(a), counterions gradually accumulate
next to the surface with the applied voltage, and the concentration
eventually reaches a saturation concentration due to steric hindrance.
By contrast, coions are depleted away from the electrode due to the
electrostatic interaction. As the charging process reaches a steady state,
a pronounced saturated layer with uniform concentration 𝜌− = 𝜌𝑚𝑎𝑥
forms near electrodes. Fig. 2(b) depicts the profiles of electrostatic
potential as charging process proceeds. Notice that the potential first
drops linearly from the surface value 𝜙𝑠 within the Stern layer 𝐻 .
In addition, the electrostatic potential further gets screened quickly
because of the attracted counterions in the EDL.

Fig. 2(c) shows the current density distribution 𝑗𝜌(𝒙, 𝑡) (rescaled by
𝑗0) during the charging process. Since zero-flux boundary conditions
are imposed, the current density vanishes in the Stern layer for the
entire charging process. In initial stages, there is large current density
extending into bulk regions, ascribing to the transport of the attracted
of counterions and repulsed of coions. As the saturation layer builds
up, the electrostatic interactions get screened and the current both in
EDL and bulk decreases. Eventually, the current vanishes everywhere
when the system approaches the steady state. Overall, it should be
emphasized that ionic concentrations, potential, and current all level
off quickly to bulk values within a very thin boundary layer next to
the electrode (about 0.002𝜇m width). The inset of Fig. 2(d) shows
that the profiles of temperature 𝑇 (𝒙, 𝑡) exhibit a parabolic shape for the
whole domain during the charging process. The temperature at bound-
aries takes the lead to rise in that the heat source terms contribute
significantly more than that in the bulk. This is further confirmed in
the analysis of heat generation presented in Section 3.3. The internal
6

bulk electrolytes subsequently get heated up as well, due to the heat
diffusion and heat generation in the bulk. We note that the bulk region
also contributes a fair amount of heat in the system, because its size
is much larger than the boundary layers. With thermally insulated
boundary conditions, the temperature becomes homogeneous every-
where in the steady state. To better understand the spatial distribution
of temperature at certain time, the main plot of Fig. 2(d) delineates
the profile of temperature 𝑇 (𝒙, 𝑡) at 𝑡∕𝜏 = 8.64. In addition to an
overall parabolic shape, mild kinks emerge at the interfaces between
the boundary layers and the bulk. Such kinks can be explained by the
analysis on heat generation source terms; cf. Section 3.3.

3.2. Periodic charging and discharging

The proposed model is also applied to probe thermal electrokinetics
in EDLCs with a linearly varying surface potential 𝜙𝑠 given by (2.22),
in which 𝜙𝑚𝑖𝑛 = 0(𝑘𝐵𝑇0∕𝑒) and 𝜙𝑚𝑎𝑥 = 20(𝑘𝐵𝑇0∕𝑒); cf. the inset plot
of Fig. 3(a). Various ionic sizes and cyclic voltammetry scan rates
are considered to evaluate their impact on the thermal electrokinet-
ics. Fig. 3(a), the counterion concentration at the Stern/diffuse layer
interface increases synchronously as the potential rises, and reaches
their maximum allowable saturation values that are determined by
their ionic sizes. As the potential decreases, the concentration declines
synchronously back to the initial bulk values at the end of cycles.
Fig. 3(b) presents the periodic evolution of current density in the bulk
region. Obviously, one can observe that the current surges drastically
to a maximum value, and then decreases gradually, in that electrostatic
attractions, i.e., the driving force, are weakened by the accumulated
ions. Comparing two current curves, one can see that the smaller ionic
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r
i

Fig. 3. Evolution of counterion concentration 𝜌−(−𝐿, 𝑡) (a), current density 𝑗𝜌(0, 𝑡) in the bulk (b), and temperature change 𝛥𝑇 = 𝑇 (−𝐿, 𝑡)−𝑇 (−𝐿, 0) (c), using the cyclic voltammetry
scan rate 𝜈 = 2 × 104𝑉 ∕𝑠 and different ionic diameters 𝑎 = 0.50 nm and 𝑎 = 0.68 nm. (d) Temperature change 𝛥𝑇 at electrodes using different scan rate 𝜈 and an ionic diameter
𝑎 = 0.68 nm. The parameter 𝜒 denotes the slope of dash lines that reflect the linear increase of 𝛥𝑇 with respect to time.
a
s
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𝐼

size has larger maximum flux, since more ions are allowed to transport
into EDLs. After 𝑡 = 0.05 ms, the potential begins to decrease linearly
and the attracted ions in the EDL start to diffuse back to the bulk. This
explains the abrupt switching of the positive charge current to negative
charge current at the same time. In addition, the shape of the profile
before and after 𝑡 = 0.05 ms is highly symmetric.

In addition, simulations are performed to assess the impact of ionic
size on the temperature in continuous charging–discharging cycles.
From Fig. 3(c), one can see that the temperature at the Stern/diffuse
layer interface rises in a sawtooth shape. It is heated up monotonically
in a charging stage, and partially cooled down in a discharging stage.
This demonstrates that the proposed model is able to capture the
reversible and irreversible heat generation in the charging–discharging
cycles. Overall, the temperature still rises oscillatory due to the ir-
reversible contribution. Furthermore, it is seen that a larger ionic
diameter 𝑎 contributes more irreversible heat, leading to overall steeper
temperature rise. To further quantify the temperature rise, we use 𝜒 to
denote the slope of overall temperature rise; cf. Fig. 3(d). This figure
presents the effect of scan rate of 𝜙𝑠 on the temperature rise. It is found
that, when the scan rate changes from 𝜈 = 1×104 V∕s to 𝜈 = 2×104 V∕s,
the slope 𝜒 is correspondingly magnified by four times. Further increase
from 𝜈 = 2×104 V∕s to 𝜈 = 1×105 V∕s reveals the scaling relation 𝜒 ∝ 𝜈2.

To further quantitatively study the scaling relation of 𝜒 against 𝑎
and 𝜈, we perform additional simulations with a larger range of 𝑎 and
𝜈. It is of interest to observe from Fig. 4 that the slope of temperature
ise 𝜒 depends linearly on the ionic diameter 𝑎, showing that more
rreversible heat is generated in each charging/discharging period with
7

larger ionic diameter. In addition, the log–log plot of 𝜒 against 𝜈2
hows a perfect scaling relation 𝜒 ∝ 𝜈2. To understand this, we define
he average current 𝐼 of a voltammetry cycle as

̄ =
∫ 𝜏𝑐𝑣𝑡=0 𝑗𝜌(0, 𝑡)𝑑𝑡

𝜏𝑐𝑣
, (3.1)

where 𝜏𝑐𝑣 is the half cycle period. Numerical results find that the
average current 𝐼 scales linearly with the increase of 𝜈. Therefore,
it comes to the conclusion that the contribution of irreversible heat,
represented by 𝜒 , is proportional to the square of the current, i.e., 𝜒 ∝
𝐼2. Such a conclusion is consistent with previous understanding on
Joule heating effect [17,22,23].

3.3. Heat generation

To further understand the heat generation of the proposed model,
we investigate contributions of two source terms of the temperature
evolution equation in (2.32): −𝑗𝜌 ⋅ ∇𝜙 due to the charge current and
−
∑

𝑖=± ∇⋅(𝑃𝑖𝑢𝑖) due to the thermal pressure. Fig. 5(a) and (b) compare
such two terms in the charging and discharging stage. First, both terms
are positive in the charging stage and negative in the discharging stage,
indicating that they are both exothermic and endothermic in charging
and discharging stages, respectively. In addition, the contribution made
by the term due to charge current is a bit more significant than the term
due to thermal pressure in the whole charging–discharging cycle. It is
interesting to note that such terms both vanish at the boundary, and
mainly concentrate and peak in the boundary layers. Although such

terms are small in the bulk region, the bulk region is much larger than
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Fig. 4. (a) A plot of 𝜒 against the ionic diameter 𝑎; (b) A log–log plot of 𝜒 against 𝜈2.
Fig. 5. Comparison of two heat generation source terms in the charging (a) and discharging (b) stage. Evolution of the source terms −𝑗𝜌 ⋅ ∇𝜙 (c) and −
∑

𝑖=± ∇ ⋅ (𝑃𝑖𝑢𝑖) (d) in one
harging–discharging cycle.
m
t
p
t
d
p
t
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he boundary layers and therefore they still contribute a fair amount of
eat in charging–discharging cycles.

In order to understand the dynamics of such terms, we also plot
he distribution of such terms in various phases in one charging–
ischarging cycle. Fig. 5(c) and (d) display 8 snapshots of the dis-
ribution of the terms at times that divide the cycle into 8 phases; cf.
he labels in the inset. The source term due to charge current rises
ositively and reaches the maximum value at the first quarter of the
ycle. After that, the profile lowers with the position of the peaks
8

oving away from the electrode, and suddenly changes its sign in
he second half of the cycle. For the second half, i.e., the discharging
rocess, the profile follows a similar pattern, rising negatively in the
hird quarter and diminishing in the fourth quarter. For the term
ue to thermal pressure, the profiles in Fig. 5(d) show a different
attern—it reaches the maximum in the first quarter, then damps in
he rest of charging process, and keeps rising negatively in discharging
rocess until the seven eighths of one cycle. Notice that the peaks
f both terms move away from the electrode in the charging process
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s

Fig. 6. The magnitude of heat generation source terms 𝑗𝜌 ⋅ ∇𝜙 (a) and ∑

𝑖=± ∇ ⋅ (𝑃𝑖𝑢𝑖) (b) with different scan rates of surface potential in the middle of charging and discharging
tages.
Fig. 7. (a) Evolution curve of the charge current in the bulk 𝑗𝜌(0, 𝑡), the electrostatic surface potential 𝜙𝑠(𝑡), and the temperature change 𝛥𝑇 compared to the initial temperature at
electrodes in cyclic voltammetry measurements; (b) Projection of the evolution curve to the 𝜙𝑠 −𝛥𝑇 plane; (c) Projection of the evolution curve to the 𝜙𝑠 − 𝑗𝜌 plane; (d) Projection
of the evolution curve to the 𝑗𝜌 − 𝛥𝑇 plane. The red ring symbols represent the charging process, and the blue star symbols represent the discharging process. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
and approach the electrode in the discharging process. This can be
explained by the fact that the accumulated counterions are piling up in
layers at electrodes due to steric hindrance in the charging process, and
the layering counterions dissolve back to the bulk in the discharging
process.
9

To understand the impact of scan rate on the heat generation,
simulations are also performed with different scan rates that are rep-
resented by 𝜏𝑐𝑣 = 𝜓𝑚𝑎𝑥−𝜓𝑚𝑖𝑛

𝜈 . It has been systematically studied that
the dimensionless ratio 𝜏𝑅𝐶∕𝜏𝑐𝑣 is a key parameter to characterize the
CV measurements [32,51]. Here 𝜏𝑅𝐶 = 𝜆𝐷𝐿𝜈0

𝑘𝐵𝑇0
is the characteristic
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Fig. 8. The 𝑗𝜌 − 𝜙𝑠 curve (a) and 𝜌−(−𝐿, 𝑡) − 𝜙𝑠 curve (b) in CV simulations with various scan rates in one cycle. The inset plot gives the surface potential and counterion
concentration against time. The 𝑗𝜌 − 𝜙𝑠 curve (c) and 𝜌−(−𝐿, 𝑡) − 𝜙𝑠 curve (d) in CV simulations with various ionic sizes in one cycle.
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relaxation timescale. As shown in Fig. 6 (a), the difference of the
magnitude of 𝑗𝜌 ⋅∇𝜙 in the charging and discharging stages is magnified
s the timescale ratio increases. Similar results can be observed for the
eat source term |

∑

𝑖=± ∇ ⋅ (𝑃𝑖𝑢𝑖)|. The difference of the magnitude in
harging and discharging processes is related to the irreversible heat
eneration in EDLCs. Such results are consistent with the results shown
n Fig. 3(d) that temperature rise over cycles due to irreversible heat
eneration is enhanced significantly as the scan rate increases.

.4. Cyclic voltammetry

Cyclic voltammetry is a very powerful method to characterize the
erformance of electrochemical devices under various conditions [27,
8,49,51,52]. Here, we apply the proposed model to understand the
nterplay between temperature and other key factors in CV measure-
ents. Again, the boundary conditions (2.21) with the surface potential
iven by the scheme (2.22) are prescribed with the Poisson’s equation.
ig. 7(a) presents a 3D evolution curve of the charge current in the bulk
𝜌(0, 𝑡), the electrostatic surface potential 𝜙𝑠(𝑡), and the temperature
hange 𝛥𝑇 compared to the initial temperature at electrodes, in several
eriods of charging and discharging. In contrast to the traditional
lot of current-versus-potential, such a CVT presentation includes the
emperature as another player and unravels the dependence of the
emperature on both the charge current and surface potential. Overall,
ne can observe that the temperature rises in a spiral path. It is clearly
een that the temperature rises significantly and linearly after the
harge current climbs over its peak value, and remains unchanged in
he transitions between charging and discharging processes.
10
To further understand the pairwise interplay between two of three
factors, the CVT evolution curve is projected to the 𝜙𝑠−𝛥𝑇 plane, 𝜙𝑠−𝑗𝜌
lane, and 𝑗𝜌 − 𝛥𝑇 plane in Fig. 7. The dependence of 𝛥𝑇 on 𝜙𝑠 shows
lear alternation between increasing and switching back, with a net
ncrease about 0.003 K in each cycle. The magnitude is smaller than
eported experimental data for commercial EDLCs [5,17,24,53]. There
re several possible reasons for the discrepancy, e.g., simple planar
eometry rather than porous structures is employed in the model. The
rojection onto the 𝜙𝑠 − 𝑗𝜌 plane gives a typical CV curve that is often
hown in CV simulations. It should be pointed out that the projection
f the 3D curve of several cycles almost collapse into one overlapped
V curve, indicating that the rising of temperature does not impact the
V simulations very much. One possible reason is that the diffusion
oefficient, dielectric coefficient, etc. are assumed to be independent
f temperature in the model. Further refinement of our model on this
espect should be considered in future work. In addition, the CV curve
epicts that the current rises drastically in the initial short period of
ime. After reaching the peak value, the current declines gradually until
t transits from charging process to the discharging process. The peak
alue can be explained by the formation of a saturation layer in the
DL [49]. The dependence of 𝛥𝑇 on 𝑗𝜌 further confirms our finding that
he temperature only changes significantly when the charge current is
arge and has no variation during the charging–discharging transitions.

In order to further probe the CV measurements, we perform sim-
lations with different scan rates and ionic sizes. Fig. 8(a) displays
he CV diagram with 𝜓𝑚𝑎𝑥 = 40𝑘𝐵𝑇0∕𝑒, 𝑎 = 0.68𝑛𝑚, and scan rates
anging from 𝜈 = 1.0 × 104 V∕s to 𝜈 = 1 × 105 V∕s. With faster scan
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rates, the range for charge current in the charging–discharging process
becomes much larger. Also, it is known that the enclosed area of the CV
curve represents the charge per unit surface area accumulated at the
electrode surface during one cycle [49]. Thus, faster scan rates gives
larger integral capacitance for EDLCs in CV measurements. Fig. 8(b)
resents the dependence of the counterion concentration at electrodes
n the surface potential. Of interest is that, as the scan rate increases,
he charging and discharging processes follow different pathways, ex-
ibiting a hysteresis diagram. When the system relaxation time scale is
uch larger than that of scanning potential, i.e. 𝜏𝑅𝐶 ≫ 𝜏𝑐𝑣, the thermal
lectrokinetics in EDLCs cannot follow the change of scanning potential
nd the concentration show obvious delayed dynamics. Starting from
he second cycle, the discharging stage ends before the concentration
elaxes to the bulk concentration 1 M. The retard concentration keeps
eclining a little bit even though the potential is increasing in the
eginning of the next charging stage. This is confirmed by the inset plot
f the surface potential and counterion concentration against time. It
s reasonable to see that the delayed dynamics becomes less obvious
or a slower scan rate 𝜈 = 1.0 × 104 V∕s, for which 𝜏𝑅𝐶∕𝜏𝑐𝑣 ∼ (1). The
orresponding concentration relaxes closer to the bulk concentration at
he charging–discharging transition.
Fig. 8(c) and (d) present the CV simulations with a fast scan rate

= 1 × 105 V∕s and three different ionic sizes ranging from 𝑎 = 0.6 nm
o 𝑎 = 0.68 nm. With a small ionic size, the range of charge current
nlarges, being consistent with the understanding that the maximum
alue (hump) in the curve is due to the formation of a saturation layer
n the EDL [49]. Therefore, a larger area is enclosed by the CV curve
nd higher integral capacitance is achieved in the CV simulations with a
maller ionic size. The counterion concentration at the electrode shown
n Fig. 8(d) demonstrates that, with a smaller ionic size, the saturation
oncentration increases and the area enclosed by the hysteresis-loop
urve gets larger as well. This can be ascribed to the fact that more
ounterions are involved in the periodic formation and dissolution of
he EDLs.

. Conclusions

This study has proposed a new variational, thermodynamically con-
istent model to predict thermal electrokinetics in EDLCs by using an
nergetic variational approach. Modified Nernst–Planck (NP) equations
ncorporating the diffusion, ionic steric effect, and convection due
o the gradient of temperature and electrostatic potential have been
eveloped by using the least action principle and maximum dissipation
rinciple. The proposed modified NP equations are a thermodynam-
cally consistent generalization of the steric NP equations presented
n [34] to non-isothermal scenarios with temperature inhomogeneity.
emperature evolution equations with heat source due to thermal
ressure and electrostatic interactions have been derived by using laws
f thermodynamics.
Extensive simulations of EDLCs have demonstrated that the de-

eloped model can successfully predict temperature oscillation in the
harging–discharging processes, and larger ionic sizes and faster scan
ate of surface potential lead to faster oscillatory temperature rise. In
ddition, the temperature rise slope, reflecting the irreversible Joule
eating effect, has been found to scale quadratically with the average
urrent in cyclic voltammetry (CV). Further study on heat genera-
ion source terms have unraveled that they are both exothermic and
ndothermic in charging and discharging stages, respectively. The dis-
repancy of source terms in charging and discharging stages, due to
rreversible heat generation, gets larger as the scan rate increases. In
V measurements, the temperature has been included as an additional
imension to the traditional CV curve, resulting in a 3D spiral CVT
urve. For fast scan rates, the CV curves and counterion concentrations
ave evidenced that the thermal electrokinetics in EDLCs cannot fol-
ow the scanning potential in time, showing delayed dynamics with
11

ysteresis diagrams. Such simulation results have demonstrated that
he proposed model is capable of predicting thermal electrokinetics in
DLCs during charging/discharging processes. With further refinement
n the description of porous structure of electrodes and temperature
ependent parameters, the proposed model is expected to provide a
seful tool for the design, optimization, and manufacture of EDLCs with
afety and long-term stability.
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