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Abstract: We propose an extrinsic Bayesian optimization (eBO) framework for general optimization

problems on manifolds. Bayesian optimization algorithms build a surrogate of the objective function

by employing Gaussian processes and utilizing the uncertainty in that surrogate by deriving an

acquisition function. This acquisition function represents the probability of improvement based

on the kernel of the Gaussian process, which guides the search in the optimization process. The

critical challenge for designing Bayesian optimization algorithms on manifolds lies in the difficulty of

constructing valid covariance kernels for Gaussian processes on general manifolds. Our approach is to

employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensional

Euclidean space via equivariant embeddings and then constructing a valid covariance kernel on the

image manifold after the embedding. This leads to efficient and scalable algorithms for optimization

over complex manifolds. Simulation study and real data analyses are carried out to demonstrate the

utilities of our eBO framework by applying the eBO to various optimization problems over manifolds

such as the sphere, the Grassmannian, and the manifold of positive definite matrices.
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1. Introduction

Optimization concerns best decision-making, which is present in almost aspects of society.
Formally speaking, it aims to optimize some criterion, called the objective function, over some
parameters of variables of interest. In many cases, the variable to optimize possesses certain
constraints that should be incorporated or respected in the optimization process. There
are studies on constrained optimization incorporating linear and nonlinear constraints,
including Lagrange-based algorithms and interior points methods. Our work focuses on an
important class of optimization problems with geometric constraints in which the parameters
or variables to be optimized are assumed to lie on some manifolds, a well-characterized
object in differential geometry. In other words, we deal with optimization problems on manifolds.
Optimization on manifolds has abundant applications in modern data science. This is
motivated by the systematic collection of modern complex data that take the manifold form.
For example, one may encounter data in the forms of positive definite matrices [1], shape
objects [2], subspaces [3,4], networks and orthonormal frames [5]. Statistical inference and
learning of such data sets often involve optimization problems over manifolds. One of
the notable examples is the estimation of the Fréchet mean for statistical inference, which
can be cast as an optimization of the Fréchet function over manifolds [6–8]. In addition to
various examples with data and parameters lying on manifolds, many learning problems
in big data analysis with the primary goal of extracting some lower-dimensions structure,
and this lower-dimensional structure is often assumed to be a manifold. Learning this
lower-dimensional structure often requires solving optimization problems over manifolds
such as the Grassmannian.
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The critical challenge for solving optimization problems over manifolds lies in how to ap-
propriately incorporate the underlying geometry of manifolds for optimization. Although
there has been a fast development in optimization (over Euclidean spaces in general), and it
is an extremely active ongoing research area, there is a tremendous challenge for extending
theories and algorithms developed in optimization over Euclidean spaces to manifolds.
The optimization approach on manifolds is superior to performing free Euclidean optimiza-
tion and projecting the parameters back onto the search space after each iteration, such
as in the projected gradient descent method. It has been shown to outperform standard
algorithms for many problems [9–21]. Some of those algorithms, such as the Newton
method [22,23], conjugate gradient descent algorithm [3], steepest descent [24], and trusted
region method [25–28], have recently been extended to the Riemannian manifold from the
Euclidean space, and most of the methods require the knowledge of the gradients [29–33].
However, in many cases, analytical or simple forms of gradient information are unavailable.
In other cases, the evaluations and calculations of the gradient or the Hessian (second form
for the case of the manifold) can be expensive. There is a lack of gradient-free methods
for optimization problems when the gradient information is not available or expensive
to obtain or the objective function is expensive to evaluate. In these scenarios, gradient-
free methods can be appealing alternatives. Many gradient-free methods are proposed
for optimization problems in the Euclidean space, especially the state-of-the-art Bayesian
optimization method, which has emerged as a very powerful tool in machine learning for
tuning both learning parameters and hyperparameters [34]. Such algorithms outperform
many other global optimization algorithms [35]. Bayesian optimization originated with
the work of Kushner and Mockus [36,37]. It received considerably more attention after
Jones’ work on the Efficient Global Optimization (EGO) algorithm [38]. Following that
work, innovations developed in the same literature include multi-fidelity optimization [39],
multi-objective optimization [40], and a study of convergence rates [41]. The observation by
Snoek [34] that Bayesian optimization is useful for training deep neural networks sparked
significant interest in machine learning. Within this trend, Bayesian optimization has also
been used to choose laboratory experiments in materials and drug design [42], in the
calibration of environmental models [43], and in reinforcement learning [44].

However, most studies mainly focus on the input domain in a Euclidean space. In
recent years, with the surging collection of complex data, it is not common for the input
domain to have such a simple form. For instance, the inputs might be restricted to a non-
Euclidean manifold. Ref. [45] proposed a general extrinsic framework for GP modeling
on manifolds, which depends on the embedding of the manifold in the Euclidean space
and the construction of extrinsic kernels for GPs on their images. Ref. [46] learned a
nested-manifold embedding and a representation of the objective function in the latent
space using Bayesian optimization in low-dimensional latent spaces. Ref. [47] exploited
the geometry of non-Euclidean parameter spaces arising in robotics by using Bayesian
optimization to properly measure similarities in the parameter space through the Gaussian
process. Recently, Ref. [48] implemented Riemannian Matern kernels on manifolds to place
the Gaussian process prior and applied these kernels on the geometry-aware Bayesian opti-
mization for a variety of robotic applications, including orientation control, manipulability
optimization, and motion planning.

Motivated by the success of Bayesian optimization algorithms, in this work, we
propose to develop the eBO framework on manifolds. In particular, we employ an extrinsic
class of Gaussian processes on manifolds as the surrogate model for the objective function
and utilize the uncertainty for calculating the acquisition function. An acquisition function
can also be defined from this surrogate to decide where to sample [49]. The algorithms are
demonstrated and applied to both simulated and real data sets to various optimization
problems over different manifolds, including spheres, positive definite matrices, and
the Grassmannian.

We organize our work as follows. In Section 2, we provide a streamlined introduction
to Bayesian optimization on manifolds employing the extrinsic Gaussian process (eGP)
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on manifolds. In Section 3, we present a concrete illustration of our eBO algorithm in the
extrinsic setting in terms of optimizing the acquisition function from eGP. In Section 4, we
demonstrate numerical experiments on optimization problems over different manifolds,
including spheres, positive definite matrices, and the Grassmann manifold, and showcase
the performance of our approach.

2. Bayesian Optimization (BO) on Manifolds

Let f (x) be an objective function defined over some manifold M. We are interested
in solving

µ = argminx∈M f (x). (1)

Typically, the function f lacks a known special structure such as concavity or linearity that
would make it easy to optimize using techniques that leverage such structure to improve
efficiency. Furthermore, we assume one only needs to be able to evaluate f (x) without
having to know first or second-order information, such as gradient, when evaluating
f . We refer to problems having this property as “derivative-free”. Lastly, we seek to
know if the global optimizer exists. The principal ideas behind Bayesian optimization are
to build a probabilistic model for the objective function by imposing a Gaussian process
prior, and this probabilistic model will be used to guide to where in M the function is
next evaluated. The posterior predictive distribution will then be computed. Instead
of optimizing the usually expensive objective function, a cheap proxy function is often
optimized, which will determine the next point to evaluate. One of the inherent difficulties
lies in constructing valid Gaussian processes on manifolds that will be utilized for Bayesian
optimization on manifolds.

To be more specific, as above, let f (x) be the objective function on M for which we
omit the potential dependence on some data; for now, the goal is to find the minimum:
µ = arg minx∈M f (x). Let f (x) ∼ GP(ν(·), R(·, ·)), x ∈ M, be a Gaussian process (GP)
on the manifold M with mean function ν(x) and covariance kernel R(·, ·). Then we
evaluate f (x) at a finite number of points on the manifold following a multivariate Gaussian
distribution, that is,

( f (x1), . . . , f (xn)) ∼ N((ν(x1), . . . , ν(xn)), Σ),

Σij = cov
(

f (xi), f (xj)
)

= R(xi, xj).

Here R(·, ·) : M × M → R is a covariance kernel defined on the manifold, which is
a positive semi-definite kernel on M. It states that, for any sequence (a1, . . . , an) ∈ Rn,

∑
n
i=1 ∑

n
j=1 aiajR(xi, xj) ≥ 0.

After some evaluations, the GP gives us closed-form marginal means and vari-
ances. We denote the predictive means and variance as ν(x,D) and σ2(x,D), where
D = {x1, . . . , xn}. The acquisition function, which we denote by a : M → R+, determines
which point in M should be evaluated next via a proxy optimization

xnext = arg max
x∈M

a(x). (2)

There are several popular choices of acquisition functions that are proposed for Bayesian
optimization in Euclidean space [49]. The analogous version can be generalized to man-
ifolds. Under the Gaussian process prior, these functions depend on the model solely
through its predictive mean function ν(x,D) and variance σ2(x,D). In the preceding, we
denote the best current value as

xbest = argminxn
f (xn). (3)
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As above, let the predictive means and variance be ν(x,D) and σ2(x,D), where D
denotes the data. The acquisition function defined by Equation (4) represents the probability
of improvement. To find out the next point to evaluate, we need to maximize the acquisition
question. Since we use the zero mean eGP where m(·) equals 0, the expression of ν(x,D)
and σ(x,D) are given as follows:

ν(x,D) = K(xD, x)T(K(xD, xD) + σ2
n I)−1y, (6)

σ(x,D) = K(x, x)− k(xD, x)T(K(xD, xD) + σ2
n I)−1k(xD, x). (7)

Note that a(x) depends on x through J(x), let a(x) = ã(x̃) where x̃ = J(x) ∈ M̃. Therefore,
the optimization of a(x) over x is equivalent to the optimization of ã(x̃) over M̃. Let x̃∗ be the
optimizer of ã(x) over M̃, i.e.,

x̃∗ = argminx̃∈M̃ ã(x̃). (8)

Then, one has

x∗ = J−1(x̃∗), (9)

where

x∗ = argminx∈M a(x). (10)

The key is to solve (8). We consider the gradient descent or Newton’s method over the
submanifolds M̃ since the gradient is easy to obtain on M̃. Let grad ã(x̃) be the gradient of
ã(x̃) in the Euclidean space, then the gradient of ã(x̃) over the submanifold M̃ is given by

Pgrad ã(x̃), (11)

where P is the projection map P from Tx̃R
D onto the tangent space Tx̃ M̃. We propose the

following gradient descent Algorithm 2 for finding x̃∗ of ã(x̃) over M̃.

Algorithm 2 Gradient algorithms for optimization ã(x̃) along the submanifold M̃.

for t = 0, 1, . . . , T do

Let x̃0 ∈ M̃ be an initial point.
x̃t+1 = expx̃t

λPgrad ã(x̃) |x̃t ,

where exp is the exponential map on the submanifold. This exponential map is
with respect to the metric by restricting the Euclidean metric onto the image
manifold or submanifold.

4. Examples and Applications

To illustrate the broad applications of our eBO framework, we utilize a large class of
examples with data domains on different manifolds, including spheres, positive definite
matrices, and the Grassmann manifold. We construct the extrinsic kernels for eGPs based
on the corresponding embedding map on the specific manifold from [45]. In this section, we
show the simulation studies in Sections 4.1 and 4.2 and the main application on real data in
Section 4.3. In Section 4.1, the Fréchet mean estimation is carried out with data distributed
on the sphere. In Section 4.2, the eBO method is applied to the matrix approximation
problem on Grassmannians. Lastly, Section 4.3 considers a kernel regression problem on
the manifold of positive definite matrices, which has essential applications in neuroimaging.
We use the eBO method to solve the regression problem and show the difference between
healthy samples and HIV+ samples. For all examples in this section, we consider the
squared exponential kernel from [45] as follows:
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Kext(x, z) = αexp(−βρ(x, z)2), (12)

where ρ(x, z) = ‖J(x)− J(z)‖. The explicit form of embedding J depends on the specific
manifolds, which would be illustrated in the simulation cases. We initially set kernel
coefficients as α = 1, β = 0.5, and the regularization coefficient σ = 0.01. After adding a
new point to the data in Algorithm 2, we also update those coefficients by maximizing the
likelihood of all data.

4.1. Estimation of Fréchet Means

We will first apply the eBO method to the estimation of sample Fréchet means on the
sphere. Let x1, . . . , xn be n points on the manifold, such as the sphere. The sample Fréchet
function is defined as

fn(x) =
1

n

n

∑
i=1

ρ2(x, xi), (13)

and the minimization of fn(x) leads to the estimation of sample Fréchet mean µn, where

µn = arg min
x∈M

1

n

n

∑
i=1

ρ2(x, xi). (14)

The evaluation of fn(x) at the data point x1, . . . , xn will be our data points for guiding
the optimization to find the Fréchet mean. The choice of distance ρ leads to different notions
of means on manifolds. In the extrinsic setting, we can define an extrinsic mean via some
embedding of the manifold onto some Euclidean space. Specifically, let J : M → RD be
some embedding of the manifold onto some higher-dimensional Euclidean space RD. Then
one can define the extrinsic distance as

ρ(x, z) = ‖J(x)− J(z)‖, (15)

where ‖ · ‖ is the Euclidean distance on RD. This leads to the extrinsic Fréchet mean.

Fortunately, the extrinsic mean has a close form expression, namely µn = PM̃

(

∑
n
i=1 J(xi)

n

)

,

where P stands for the projection map onto the image M̃ = J(M).
In our simulation study, we estimate the extrinsic mean on the sphere S2 and evaluate

the performance of our eBO method by comparing it to the gradient descent (GD) algo-
rithm in terms of convergence to the ground truth (the true minimizer given above). The
embedding map J is the identity map I : S2 → R3. As shown in Figure 2, we simulate
some data on the sphere, and the goal is to find the extrinsic mean by solving Equation (14).
Specifically, those xi (i = 1, . . . , n) points in black are sampled on the circle of latitude,
which leads to the south pole (0, 0,−1) as the true extrinsic Fréchet mean. In terms of our
BO Algorithm 1, we first sample those blue points randomly on the sphere as initial points
and initialize the covariance matrix by evaluating the covariance kernel at these points.
Then, we randomly select the direction on the sphere to maximize the acquisition function
based on the eGP. In each iteration, we mark the minimizer as the stepping point in Figure 2
and add it to the data for the next iteration. Not surprisingly, those stepping points in red
converge to the ground truth (south pole) after a few steps. We also compare our eBO
method with the gradient descent (GD) method on the sphere under the same initialization.
As illustrated in Figure 3, although our BO method converges slightly slower than GD
at the first four steps, the BO method achieves better accuracy with a few more steps. It
confirms the quick convergence and high accuracy as the advantages of the eBO method.
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4.3. Positive Definite Matrices

Lastly, we apply the eBO method to a regression problem with the response on positive
definite matrices. Let (z1, y1), . . . , (zn, yn) be n points from a regression model in which
zi ∈ Rd and y ∈ M = SPD(p), where SPD(p) stands for p by p positive semi-definite
matrices. We are interested in modeling the regression map between z and y.

Let K(·, ·) : Rd ×Rd → R be a kernel function defined on covariate space Rd. For ex-
ample, one can take the standard Gaussian kernel. Let g(z) ∈ M be the regression map
evaluated at a covariate level z. We propose to estimate g as

g(z) = arg min
y∈M

n

∑
i=1

1

h
Kh(z, zi)ρ

2(y, yi), (17)

where h is the bandwidth parameter of the kernel function K. We take ρ to be the ex-
trinsic distance on the SPD(p) manifold. For the given input or covariate z, we denote
fn(y) = ∑

n
i=1

1
h Kh(z, zi)ρ

2(y, yi)) as the objective function and look for the minimizer g(z)
as the weighed Fréchet mean on the SPD(p) manifold. In order to calculate the extrinsic
distance on the SPD(p) manifold, we choose the embedding J as the log-map on the matrix,
which can map the SPD(p) into p by p real symmetric matrices Sym(3):

log : SPD(p) → Sym(p). (18)

For example, let A ∈ SPD(p) with a spectral decomposition A = UΛU−1; we have the
log-map of A as log(A) = U log(Λ)U−1 where log(Λ) denotes the diagonal matrix whose
diagonal entries are the logarithms of the diagonal entries of Λ. Moreover, embedding
J is a diffeomorphism, equivariant with respect to the actions of GL(p,R), the p by p
general linear group. That is, for h ∈ GL(p,R), we have log(hAh−1) = h log(A)h−1. On
the other hand, the inverse of embedding J−1 is the exp-map on the matrix, which takes
the exponential function on the diagonal entries under the spectral decomposition. Then
we obtain the extrinsic distance of two matrices A1, A2 ∈ SPD(p):

ρ(A1, A2) = ‖ log(A1)− log(A2)‖, (19)

where ‖ · ‖ denotes the Frobenius norm of the matrix (i.e. ‖A‖ = (Tr(AAT)1/2)).
In our analysis, we focus on the case of p = 3 and d = 1, which have important

applications in diffusion tensor imaging (DTI), designed to measure the diffusion of water
molecules in the brain. In more detail, diffusion represents the direction along the white
matter tracks or fibers, corresponding to structural connections between brain regions
along where brain activity and communications happen. DTI data are collected routinely
in human brain studies. People are interested in using DTI to build predictive models
of cognitive traits and neuropsychiatric disorders [45]. The diffusions are characterized
in terms of diffusion matrices, represented by 3 by 3 positive definite matrices. The data
set consists of 46 subjects with 28 HIV+ subjects and 18 healthy controls. Those 3 by
3 diffusion matrices were extracted along one atlas fiber tract of the splenium of the corpus
callosum. All the DTI data were registered in the same atlas space based on arc lengths,
with 75 tensors obtained along the fiber tract of each subject, which has been studied in [45]
in a regression and kernel regression setting. We aim to show the difference between the
positive (HIV+) and control samples based on kernel regression results.

We consider the arc length tensor as the covariant z ∈ R and the diffusion matrix as
y ∈ SPD(3) in our framework at each arc length z. In more detail, the arc length variable z
ranges from 0 to 48 with 75 different locations. We consider K(·, ·) as the standard Gaussian
kernel with bandwidth h = (4 ∗ σ̂5

z /(3 ∗ 75))0.2 = 6.33 following the rule of thumb of the
univariate variable. Overall, the dimension of the whole dataset is 46 ∗ 75 ∗ 3 ∗ 3, including
28 HIV+ samples and 18 healthy samples. For each sample, the dimension is 75 ∗ 3 ∗ 3
consisting of the matrix from SPD(3) over all 75 locations. Moreover, we separately apply
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