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hi i i i 1 h in th i f v ies for the i igati f
Available online 23 November 2022 this software can assist experimental research in the design of new strategies for the investigation o

fundamental quantum properties of materials. The package introduced here can simulate both standard
NMR spectroscopic observables and the time-evolution of an interacting single-spin system subject to

ﬁﬁ‘;vgf ;agnetic resonance complex pulse sequences, i.e. quantum gates. The main purpose of this software is to facilitate the
Nuclear quadrupole resonance development of much needed novel NMR-based probes of emergent quantum order, which can be
Quadrupolar interaction elusive to standard experimental probes. The software is based on a quantum mechanical description of
Spin dynamics nuclear spin dynamics in NMR/NQR experiments and has been widely tested on available theoretical and
Magnetic resonance experimental results. Moreover, the structure of the software allows for basic experiments to be easily
I?;;‘:::‘;‘ computing generalized to more sophisticated ones because it includes all the libraries required for the numerical

simulation of generic spin systems. In order to make the program easily accessible to a large user base,
we developed a user-friendly graphical interface, Jupyter notebooks, and fully-detailed documentation.
Lastly, we portray several examples of the execution of the code that illustrate the prosepcts of a novel
NMR paradigm, inspired by QIS, for efficient investigation of emergent phases in strongly correlated
materials.

Program summary

Program Title: PULSEE (Program for the simULation of nuclear Spin Ensemble Evolution)

CPC Library link to program files: https://doi.org/10.17632/vvv8tcb2nt.1

Developer’s repository link: https://github.com/vemiBGH/PULSEE

Licensing provisions: GPLv3

Programming language: Python 3

Nature of problem: Application of nuclear magnetic/quadrupole resonance techniques to study properties
of materials often requires extensive spectral simulations. On the other hand, application of magnetic
resonance techniques to quantum information science (QIS) involves different sets of observables.
Available simulation software addresses only one of these applications: either detailed spectral simulations
[1] or QIS relevant observables [2]. For this reason, NMR has not seen as much development in the
condensed matter community compared to other spectroscopic techniques that combine these two
approaches. Therefore, there is a need for an up-to-date and easily accessible software that can simulate
an extensive set of NMR/NQR experimental observables, reproducing the behavior/response of nuclear
systems with a varying degree of complexity encountered in strongly correlated quantum materials.
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Solution method: The open-source Python code provides an extensive set of libraries for the simulation
of spin time evolution in the presence of specific interactions and reproduction of spectra; as well as
other observables measured in magnetic resonance experiments; and simulations of quantum circuits
and gates. The ready-to-use software features a user-friendly graphical interface, and Jupyter notebooks.
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1. Introduction

Nuclear magnetic and quadrupole resonance (NMR/NQR) have a
long-standing reputation as accurate methods for the microscopic
investigation of materials based on remarkably simple working
principles. In addition to being a dominant tool in chemistry, ma-
terials science, structural biology, and medicine, NMR represents
an essential tool in quantum information science (QIS) [1-3]. NMR
can also be utilized for fundamental tests of quantum mechanics
[4] and condensed matter physics, as well as for probing micro-
scopic spin and charge properties of materials [5-8]. These features
are the reason for the success of magnetic resonance techniques
in implementing one of the first quantum information processors:
the high degree of control of nuclear spins that they provide natu-
rally leads to basic quantum computing, and has made it possible
to witness the experimental realization of several quantum algo-
rithms for the first time [9-17]. The handling of quantum systems
to perform data processing tasks in NMR is accomplished through
the application of specific radio frequency (RF) pulses (logic gates)
on adequately prepared ensemble states, referred to as pseudopure
states (PPS) [15,16,18-20]. The logic gates can be executed with
high fidelity due to the superior level of control of the quantum
evolution of nuclear spins. Indeed, a 12-qubit NMR based quantum
computer holds a record for a large quantum computer, i.e. a high
fidelity implementation of a quantum algorithm with coherent ma-
nipulation of 12 qubits [21]. Nonetheless, the long term interest in
the applications of NMR in quantum computing has faded since
NMR presents some major limitations when it comes to imple-
menting a large scale quantum computer.

Unfortunately, NMR has not seen as much development in the
strongly correlated materials community compared to other spec-
troscopic techniques in recent decades. The only place where NMR
methodologies have kept on pace with our understanding of spin
dynamics is as a control paradigm for quantum information tech-
nology (e.g. diamond-NV centers [22]). Much of that progress has
been in the realm of quantum control and sensing, i.e. the creation
of specially engineered pulse sequences that best extract informa-
tion out of single-spin systems [23-27]. However, these protocols
developed for the manipulation of NMR qubits (single-spin sys-
tems) promise to be valuable resources for the exploration of com-
plex emergent properties of materials [28,29].

Here, we introduce unified protocols, presented in an open
source software with a user-friendly interface, to enable the sim-
ulation of both standard NMR spectroscopic observables and the
time-evolution of an interacting single-spin system subject to com-
plex pulse sequences, i.e. quantum gates. Our software can simu-
late the acquisition of the characteristic observable measured in a
laboratory for single-spin systems under different pulse sequences,
such as the free induction decay signal (FID), and then generate
the NMR/NQR spectrum in a form which can be directly compared
to real experimental results. The program is adaptable to the sim-

ulation of a wide range of experimental outcomes, as it makes
use of three different evolution solvers: (i) the time-independent
Hamiltonian diagonal solver, (ii) the average Hamiltonian theory,
implemented up to third order but easily extendable to higher or-
ders as required, and (iii) QuTiP with its different master equations
[30,31]. In addition, the program incorporates a quantum comput-
ing module that allows for the design of quantum circuit elements,
relevant for both researchers and developers that focus on the di-
rect, real-time interface with instrumentation for quantum control,
such as the Quantum Orchestration Platform provided by Quantum
Machines [32].

The goal of the program is to aid the development of novel
NMR-based protocols for identification of emergent quantum or-
ders, which can be elusive to standard experimental probes.
Theoretically-identified, complex quantum phases of matter [33,
34] may encode details of their intricate structure in NMR re-
sponses [35,36] in ways that lay outside the current NMR spec-
troscopy paradigm. Therefore, our computational tool is instru-
mental in designing the experiments (i.e. NMR pulse sequences)
that optimize the sensitivity of an NMR observable to the intricate
structure of correlated quantum states, as discussed in Sec. 4.5.
Moreover, the extension of this work to ensembles of nuclei will
be vital for providing relevant data to enable the reverse engineer-
ing of Hamiltonians of such quantum phases in strongly interacting
materials [37,38]. Finally, this program can be beneficial when de-
signing optimal control protocols for quantum sensing applications.

Realizing NMR protocols, which ultimately enable identifying
quantum phases in complex materials via careful manipulation
of nuclear spin degrees of freedom requires the development of
software to simulate experimental techniques featuring the repre-
sentation of nuclear spin states. Although there are many other
NMR simulation programs, to our knowledge, most modern NM-
R/NQR software is mainly geared towards applications in chem-
istry, or is an add-on library to closed-source software. Some well
liked, but aging programs that simulate NMR/NQR experiments
are coded with less widely-used programming languages, such as
SIMULDENS that uses VAS PASCAL [39], SIMPSON in the Tcl script-
ing language, while its core in the C programming language [40],
WSOLIDS1 in Microsoft Visual C++ 2008 Express Edition [41], and
WINDNMR-Pro, which is a stand-alone Windows programs whose
development has ceased and whose source code is not publicly
available [42]. A similar package to ours is the NMR/NQR simula-
tion that includes elliptically polarized RF fields with preparation
of pseudo-pure states and basic quantum gates, proposed by Possa
et al. [43], but its source is inaccessible, and it requires the paid
Wolfram Mathematica environment. Additional extensively used
packages include SpinDynamica [44], also for Mathematica, and
Spinach for MATLAB [45]. There exists other licensed software,
such as SpinEvolution [46] and the PERCH software, a wholly-
owned subsidiary of Bruker BioSpin [47]. Further, programs such as
QUEST [48] and SPINUS [49] lack the density matrix visualization
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of spin states. For completeness, we note that numerous software
packages have been developed in the computational chemistry
community, but these are mainly dedicated to molecular and pro-
tein structure determinations [50,51]. Therefore, our aim was to
develop an up-to-date, open-source, extensively-documented soft-
ware, written in the more popular programming language Python
that combines and makes fully accessible all features relevant to
physics research. Furthermore, our software is integrated with the
fairly well known, highly efficient open-quantum-systems dynam-
ics simulator, QuTiP [30,31], empowering it with even more ca-
pabilities. The reason for an initial independent framework is to
better understand and account for the technical difficulties, as op-
posed to using an existing framework as a black box.

Our software PULSEE (Program for the simULation of nuclear
Spin Ensemble Evolution) [52] is based on the quantum mechan-
ical description of magnetic resonance and can simulate the time
evolution of nuclear spins in a wide variety of configurations en-
countered experimentally. One way we calculate the dynamics of
the spin system is in the interaction frame where the quantum
states only evolve as a result of time-dependent pulses, which
makes the program highly versatile in its application. Although
this package was designed to handle non-interacting, single-spin
systems in solids dominated by the Zeeman and quadrupolar in-
teractions, the software can handle relevant coupling with other
nuclei and/or electrons, simulating the evolution of single-spin sys-
tems subject to different pulse sequences. As such, the software
is not intended to directly reproduce experiments that study cor-
relations and/or entanglement in quantum materials, but rather
to quantify the deviation of these experiments from an idealized
single-spin evolution. Once established, one may proceed to de-
termine the source of the novel phenomena. To directly investigate
strongly correlated phases of matter, one may use other techniques
and simulations of many-interacting spins. One such approach is
a novel methodology in NMR that can probe the electronic sus-
ceptibility via the variation of the pulse strength and applied field
orientation, which has direct applications in sensing and charac-
terizing emergent electronic phases [36,53].

The paper is organized as follows: Section 2 gives an overview
of the theory of NMR and NQR, including both the description of
nuclear spin dynamics and the generation of the spectra from the
analysis of the FID. Section 3 presents the simulation software,
providing practical information about its installation, structure, and
usage. Section 4 provides several examples of simulations carried
out with PULSEE, which have been chosen for their relevance to
quantum control and quantum information processing. Specifically,
in Section 4.5 we illustrate how ideas developed in the context
of QIS can be deployed to efficiently probe the complexity of the
hyperfine tensor arising as a result of intricate interactions in the
emergent quantum phases of matter [33,34,54,55].

2. Theoretical background

Nuclear magnetic and quadrupole resonance (NMR/NQR) in-
volve the time evolution of resonantly perturbed nuclear spins. Ex-
perimentally, the distinction between the two methods lies in the
different nuclear interactions being probed: NMR pertains to nu-
clei coupled to a local magnetic field (that is, an externally applied
magnetic field), while NQR deals with the quadrupolar interac-
tion between each nucleus and the surrounding electronic charges.
From a theoretical point of view, it is convenient to treat the prob-
lem where both interactions are simultaneously present, since it
includes all the possible intermediate configurations between pure
NMR and pure NQR. In addition, the system may include other
less significant interactions that influence its evolution, such as
dipole-dipole and hyperfine interactions, chemical and paramag-
netic shifts, J-coupling, and gradient fields [7].
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Although we aim to understand correlated systems, it is more
beneficial to study single-spin, non-interacting systems, and grad-
ually include interactions. The stationary Hamiltonian at thermal
equilibrium is given by:

Hput=Hz +Ho +Hur +Hces +Hp +Hj + Hother- (1)

Here, 7z and Hq stand for the dominant Zeeman and quadrupo-
lar interaction terms, respectively. The next four terms, Hyr, Hcs,
Hp, and H, are the hyperfine interaction, chemical shift, dipole-
dipole interaction, and J-coupling, respectively, and their relevance
is material-specific. The last term Hoper includes any other po-
tential time-independent interactions. The Zeeman term represents
the direct coupling between the nuclear intrinsic magnetic mo-
ment YAl and the externally applied magnetic field Bp:

Hz =—yhl-By, (2)

where y is the gyromagnetic ratio of the spin and #I is the spin
operator of the nucleus. The term Hg represents the interaction
between the electric quadrupole moment of the nucleus and the
electric field gradient (EFG), generated by the surrounding elec-
trons, represented by a 3x3 tensor V(®), is given by

e

Hq = Qe ye).L 3)

2121 —-1)

In the coordinate system of the principal axis of the EFG it reads:

2
e“qQ 2 1 2 2
=—— (315 —-1(IT+1 =n( I , 4
Q 41(21_1)( P10+ D+ on( +12) (4)

where [ is the nuclear spin number, e is the elementary charge,
eq = Vzz is the largest eigenvalue of the EFG tensor, eQ is the
electric quadrupole moment, and 7 is the asymmetry parameter of
the EFG. In strongly correlated materials, the next most important
term is the hyperfine coupling, which describes the interaction of
the nuclear spin with that of the electron and includes a dipole-
dipole interaction and Fermi contact term, given by

Hyr =SAL (5)

where S,1 are the electronic/nuclear spin operators, respectively,
and A is the hyperfine tensor [7]. The other interaction terms and
their secular approximations are described in Appendix A.

In NMR/NQR, one probes these interactions by sending a pulse
of radiation onto the system, which accounts for a perturbing term
to be included in the full Hamiltonian:

H1(t) = (2B cosmvpt — @p)) -1 (6)

where 2B; is the magnetic component of the radiation pulse, vp
and ¢p are the pulse’s frequency and phase, respectively. This B
radiation field is in a plane perpendicular to the externally applied
static magnetic field, By, that defines the Zeeman quantization
axis.

Before the application of any pulses, the system is in a thermal
equilibrium state, p(top = 0), which at room temperature is approx-
imated as

p(0) = exp(~Ho/ksT)/Z ~ (1 — Ho/ksT)/Z (7)

The software uses numerical methods to calculate the exponen-
tial of a matrix up to a high precision, instead of just using the
first-order term of the Taylor expansion. Computing the evolu-
tion of this state under the action of a pulse is equivalent to
finding the corresponding evolution operator U(tp,0), where tp
is the time duration of the pulse. In the most general case, this
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operator cannot be computed directly, since the full Hamiltonian
H = Ho+ H1(t) may depend on time. Here, Ho encompasses only
the terms of the full Hamiltonian specific to the problem to be
simulated.

2.1. Computing the spin dynamics

The program has three main modes to evaluate the system
dynamics, that is, evaluating the effects of the time evolution op-
erator:

i Direct diagonalization of the unitary evolution operator.
The method is intended for low-dimensional spin Hilbert
spaces and time-independent Hamiltonians, where pulses are
modeled as instantaneous rotation operators.
i Average Hamiltonian Theory (AHT) up to 3™ order in the
Magnus expansion.
The AHT approach is appropriate for time-dependent Hamilto-
nians whenever the Zeeman interaction is dominant, ensuring
that the Magnus expansion converges. Evidently, this method
fails for modeling Zeeman perturbed NQR.
Using QuTiP’s solvers which support collapse operators and
non-unitary evolution for efficient simulation of dynamics of
open quantum systems.
This is the most general and resource-demanding method that
can handle extensive range of time-dependent Hamiltonians.
One can improve the QuTiP backend’s efficiency by compiling
with the optional Cython and parallelization dependencies.

ii

The user can readily choose the optimal mode for their intended
implementation and appropriate evaluation of the spin dynamics.
We point out that a full simulation of any realistic material is im-
possible because of the huge dimension of the resulting Hilbert
space ((2I + 1N, where N is the number of interacting spin-I
nuclei). Instead, spin dynamics are modeled by effective spin com-
ponents that can be calculated in a highly reduced Hilbert space
of just a handful of spins.

i. Direct Diagonalization

Even though this high-precision, high-performance solver is de-
signed for time-independent Hamiltonians, it supports modeling
NMR pulses as instantaneous operators that represent a spin rota-
tion. The advantage of this approach is that the precision is inde-
pendent of the time steps used. The floating point precision is the
only limiting factor: the dynamics of the system are governed by
the time evolution operator, U(t), for the initial state, | (0)), of
the following form,

Y (6) = U@y (0) =e MM |y (0)), (8)

while in the density matrix formalism, one utilizes the von Neu-
mann equation for the initial density matrix, p(0), to obtain

,O(t) — e_th/ﬁ,O(O)eth/ﬁ. (9)

Such dynamics can then be simulated by executing the matrix di-
agonalization directly. This method is a powerful and efficient tool
for a fairly good approximation of NMR dynamics.

The RF pulses are considered idealized spin rotation operators
in the direct diagonalization method. Thus, a pulse of angle «, ap-
plied along some direction, 1,is represented by

R(a) = exp{—ial}, (10)

where T is the axis along which the spins are rotated. We note
that one could model the time-dependent RF pulses within the
exact diagonalization approach by dividing the Hamiltonian into
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small time-steps in which each Hamiltonian is treated as time-
independent. However, if the time-discretization is too fine, the
exact diagonalization approach will no longer have a performance
improvement over average Hamiltonian theory. Therefore, we rec-
ommend that the Magnus expansion be used to investigate the
effect of finite pulses.

An example of a functional application of the direct diagonal-
ization mode is the implementation of quantum computing proto-
cols for electron-nuclear systems, readily attainable by using the
hyperfine coupling (Eq. (5)) [56]. Successful coherent control of
such electron-nuclear systems achieved through a highly-detailed
simulation of the system’s dynamics can facilitate the realization
of robust quantum gates. Such a simulation, in some measure, is
difficult because of the three orders of magnitude difference be-
tween nuclear and electronic spin gyromagnetic ratios. Using nu-
merical methods to simulate the dynamics would require the use
of a time-step size congruent with the particular timescale of the
system, set by for example, the dominant Zeeman interaction for
systems placed in a strong magnetic field. The Zeeman interaction
of electron-nuclear system is represented by,

Ho=-—wn(I;®1) —ws(1®S7), (11)

where wy,, ws are the nuclear and electronic Larmor frequencies,
respectively. The standard NMR procedure would be to solve the
dynamics of the system in the rotating frame of the nucleus. How-
ever, since the electronic Larmor frequency is three orders of mag-
nitude greater than the nuclear one, passing to the rotating frame
of the nucleus is to no avail. Employing the direct diagonalization
mode, one can surpass these issues because the dynamics of the
system can be evaluated at each step, independent of each other.
Any digitization issues can be easily overcome by including more
points in the time array. The parallelization in Python can be used
to enhance the program’s performance if speed-up is necessary.

Even so, the direct diagonalization method can become time-
consuming as the dimensions of the relevant Hilbert space in-
crease. This problem can be somewhat overcome by the paral-
lelization process in Python, and by using sparse matrices. Never-
theless, direct diagonalization is practically impossible for systems
with large Hilbert spaces, and additionally modeling dissipation
would be a daunting task. For such endeavors, we turn to alter-
native numerical methods.

ii. Average Hamiltonian Theory

In most NMR applications, the dominant term is the Zeeman
interaction, Ho = Hz, defining the so called rotating frame [57,58].
The procedure that this mode follows consists of two steps:

1. The problem is cast to the interaction frame, where the only
relevant term of the Hamiltonian is the perturbing one:
H(t) = Hyu, (t) = exp(iHot/h)H1(t) exp(—iHot/R).  (12)

2. The evolution operator is approximated by retaining the num-
ber of terms of the Magnus expansion depending on the ap-
plication [57,58], the first few of which are computed through
the following formulas:

tp

Q](fp,O):/dt]ﬁ(t]) (13)
0

tp t1
1 ~ ~
Q(tp,0) = ifdﬁ/dtz[?'l(tl),?'l(tz)] (14)
0 0
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tp t ty
1 ~ ~ ~
Q3(tp,0) = g/dﬁ/dfzde([H(tl),[H(f2),7'l(f3)]]+
0 0 0

[(Fles), 17t Fleo11) - (15)

where H = —iH(t)/h, from which the evolution operator is
readily computed up to n' order, as

U(tp,0) = exp (Q](tp,O) + Qy(tp, 0) + Q3(tp, 0) + - --

+Q,,(tp,0)). (16)

The Magnus expansion has been implemented up to the 3" order
in the program as it was deemed adequate for a fast converging
Hamiltonian, but this can be easily expanded up to the n order.

iii. Subroutined QuTiP Solvers

To simulate open quantum systems (i.e. nuclear spins in a ma-
terial), we have incorporated QuTiP Quantum Toolkit in Python
[30,31] subroutines into the PULSEE solver modules. Developed as
an open-source, efficient, and highly-optimized numerical simula-
tor, this package includes different evolution equations, such as the
Schrodinger’s equation, Lindblad Master equation, Bloch-Redfield
master equation, and a Stochastic Solver. The user can choose
which one they deem most appropriate for the NMR simulation
at hand, bearing in mind that some of these solvers are resource-
intensive. The default solver invoked in PULSEE is the Lindblad
master equation. Next, to facilitate correct employment of the sub-
routines, we review the important assumptions that give the form
of the equation used by QuTiP. That is, we outline assumptions
about the physical system that have to be satisfied in order for
QuTiP’s Lindblad master equation solver routine to be applicable.

The Lindblad master equation is a phenomenological and
macroscopic formalism to describe the evolution of an open sys-
tem interacting with its environment through “collapse opera-
tors,” defined by operators that couple the system to a Marko-
vian reservoir with corresponding rates [30,31]. The equation is
trace-preserving and completely positive. If collapse operators are
absent, it simply reduces to the Schrodinger’s equation. As a gen-
eral form of a Markovian master equations, the Lindblad master
equation is applicable under the following assumptions:

1. Separability. Initially, the system and the environment are
completely uncoupled, and the total density matrix is a ten-
sor product of two parts pit(0) = p(0) ® Penv(0).

2. Born approximation - the weak coupling limit. The environ-
ment is unaffected by the system, and the total density matrix
can be written as a tensor product, pot(t) = p(t) ® Peny-

3. Markovian reservoir. Any excitations in the environment in-
duced by the system, must decay quickly compared to the
dynamics of the system itself.

4, Secular & rotating wave approximation. Fast oscillating terms
in the master equation are neglected. In addition, any terms
leading to a renormalization of the system’s energy levels are
ignored. Note that this last approximation is not necessary for
all master equations, such as the Block-Redfield master equa-
tion [59,60].

Thus, it is essential that the system modeled using the Lindblad
master equation is weakly coupled to the environment and it does
not have degenerate energy levels. In addition, although using the
sparse matrix formalism saves memory, the computation time of
the master equation grows exponentially with the number of states
[30]. Whenever the number of states exceeds 1000, it might be
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more appropriate to use QuTiP’s Monte Carlo solver that has more
efficient scaling properties [30,31].

In typical NMR/NQR simulations, the Lindblad master equation
should be more than sufficient to effectively capture experimental
results. For a more advanced use, such as microscopic modeling
of dissipation and dephasing processes in spin systems, the user
should switch to the Bloch-Redfield formalism. In this case how-
ever, the evolved density matrix might not be physical due to the
perturbative nature of the method [59,61].

In short, using QuTiP circumvents the limitation of the time-
independent direct diagonalization method. It also improves on
the Magnus expansion, which converges poorly in some interaction
regimes. What is more, QuTiP allows PULSEE to take advantage
of both phenomenological (the Lindblad Master equation) and mi-
croscopic (the Bloch-Redfield equation) to model dissipation and
properly account for dephasing, instead of an empirical decay func-
tion, such as the loss of magnetization via a function M(t, T7),
described below.

2.2. Simulating NMR observables

The PULSEE package can be used to generate and analyze typi-
cal observables measured in magnetic resonance experiments, such
as the free induction decay signal (FID). In laboratories, the FID
is the electrical signal induced in a coil wound around the sam-
ple after the electromagnetic RF pulse is switched off. This signal
is proportional to the component of the sample’s magnetization
along the axis of the coil [62]. If the coil is oriented along n, then
the FID signal will be given by:

SO =Tr[p@®) f-1 M, Tp)] t>tp (17)
where we replaced the magnetization with the spin operator I of a
single nucleus in the ensemble, since they are equal up to a scaling
factor, and we introduced an empirical functional form of the loss
of magnetization, or the decay of signal, M(t, T2), usually set to
exp(—t/T3). One can directly specify the form of the function, for
example, a stretched exponential, or pass in as many parameters
(decoherence times (T>), stretching exponents j, etc) as necessary
to mimic desired decays. In effect, our software generates a com-
plex FID whose imaginary part represents the signal induced in an
“additional” coil in-plane orthogonal to . The general complex FID
reads S(t) =Tr[p(t) I+ MC(t, Ta)].

One then typically computes its Fourier transform to obtain an
NMR/NQR spectrum. This is the main outcome of the experiment
and provides information about the interactions experienced by
the system and the energy transitions that occurred in its evo-
lution. This is shown by the expansion of the FID in its Fourier
components:

S(ty=_ (ellIn) (mlp(tp)le) exp(iwe yt) (18)
&n

where ¢, n run over the energy eigenvalues of the system, |¢),
In) are the corresponding eigenstates, and w; ; is the frequency of
transition between these two. This formula shows that the peaks
of the NMR/NQR spectrum are located at the resonance frequen-
cies we ;, and that some of these frequencies may not show up in
the spectrum if the associated transition has not occurred, or if the
detection setup (i.e. coil) is not oriented properly. In addition, com-
parison with the experimental spectrum may reveal the deviation
of the actual system from the ideal theoretical case, generating a
basis for further study.
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3. Structure and usage of the software

PULSEE is not simply a simulator of the time evolution of
nuclear spin states, but also reproduces all the main observable
features of NMR/NQR experiments. In this way, the program is a
valuable tool in experimental research because the outcomes of a
simulation are generated in a form that can be directly compared
with the results measured in a laboratory.

Numerical simulations are prone to errors due to assumptions
in approximations and in numerical absolute tolerance if pushed
beyond their intended use. In order to ensure full control over
PULSEE and a reliable reproduction of results, we have opted for a
completely independent implementation, in addition to an integra-
tion with an already-exiting framework, such as QuTiP [30,31], to
fully grasp any potential numerical artifacts. In particular, we no-
ticed that the 2" order Magnus expansion was insufficient in the
interaction (Dirac) frame, but sufficient in the rotating reference
frame (RRF), induced by Ogrrr = hwl;. By going to a higher order
in the Magnus expansion, the two pictures converged, demonstrat-
ing the necessity of being able to access and change the source-
code of the program. Moreover, there is a great benefit to incor-
porating PULSEE and QuTiP because of the relevant extra features
already developed.

Another source of error in NMR simulation software is the dis-
crepancy between simulated and measured results arising from
deviations from idealized/instantaneous pulses and the absence of
noise normally encountered in experiments. PULSEE allows both
the effect of finite pulse and the noise on observables to be in-
vestigated. Specifically, we address the effects of the pulse dura-
tion by evolving the system under the influence of the relevant
Hamiltonian for the appropriate time that corresponds to that of
the desired pulse. Such an evolution introduces noise, especially
when handling more complicated interactions. Because instanta-
neous pulses are pertinent for the QIS community, we have devel-
oped a module that allows for the simulation of idealized quantum
circuits and gates (Sect. 4.6). Furthermore, PULSEE can be deployed
to simulate field inhomogeneities, as well as distributions in dif-
ferent parameters, such as the quadrupolar coupling term, and the
Zeeman term, by averaging over multiple Hamiltonians, effectively
simulating environmental noise. This is another functional feature
which was included to assist in the design of optimal noise spec-
troscopy protocols [63-67].

3.1. Download, dependencies and launching

The software can be downloaded from the following GitHub
repository: https://github.com/vemiBGH/PULSEE

PULSEE has been written entirely in Python 3.7. One must in-
stall PULSEE by navigating to the directory where the file setup.py
is located, and by running

$ pip install -e.

The program makes wide use of many of the standard Python
modules (namely numpy, scipy, pandas, matplotlib) for
its general purposes, as well as the Quantum toolkit in Python
(QuTiP) [30]. We strongly recommend using the Anaconda dis-
tribution. Tests have been carried out using the pytest frame-
work and the hypothesis module. The software includes a GUI
which has been implemented with the tools provided by the
Python library kivy. In addition, it is highly recommended that
QuTiP’s parallel computation module is used as it dramati-
cally reduces the runtime, especially for the direct diagonalization
method, by spawning processes and fully leveraging multiple pro-
cessors on a given machine.
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The two different GUIs are launched from the directory sr-
c/pulsee by entering the following command in the terminal

$ python PULSEE CMP_GUI.py
$ python PULSEE CHEM GUI.py

The use of the GUI is strongly discouraged and only suggested as
a ‘quick-and-dirty’ modeling technique. Otherwise, one is strongly
advised to use the functions defined in the module Simulation
to write a custom simulation, as outlined in subsection 3.3. To give
more freedom to the user and appeal to a wider audience more fa-
miliar with Mathematica, we have written Jupyter notebook demos
that are easy to adapt to the system under investigation.

3.2. Modules of the software

The program consists of 6 modules. The content and role of
each module is briefly described, below:

1. Operators
This module, together with Many Body, can be considered
as a toolkit for the simulation of generic quantum systems. It
contains the definition of Python classes and functions related
to the basic mathematical objects which enter in the treat-
ment of a quantum system. Operators simulates a single
spin system, while Many Body extends to multiple spins.

2. Many Body
Among other things, tensor productandpartial trace
transform a single particle Hilbert space to a many-particle
space, and vice-versa.

3. Nuclear_Spin
Defines classes representing the spin of an atomic nucleus or
a system of nuclei.

4. Hamiltonians
Defines relevant terms of the Hamiltonian of a nuclear spin
system in a typical NMR/NQR experiments: the Zeeman and
quadrupolar interactions, full J-coupling between nuclei us-
ing the J tensor or J-coupling in the secular approximation,
isotropic chemical shift in the secular approximation, dipolar
for homonuclear and heteronuclear spin-spin interactions, hy-
perfine interaction in the secular approximation, any interac-
tion that can be represented with a tensor between two spins,
and interaction with an RF radiation pulse. Finally, the pro-
gram allows the input of a square matrix as a numpy array
that represents any predefined Hamiltonian.

5. Simulation
This is the module the user should refer to in order to imple-
ment a custom simulation. The functions defined here allow
the user to set up the nuclear system, evolve it under a se-
quence of pulses, generate the time domain response/signal,
and compute the NMR spectrum.

6. Quantum computing
Implements fundamental components of quantum circuits, in-
cluding several quantum gates, and Qubit objects, acted upon
by gates. In principle, the user may construct and manipulate
elementary quantum circuits, and extract relevant information,
such the final density matrix of the composite qubit state.

7. NMR_NQR_GUI
There are two versions of the graphical user interface (GUI)
depending on the application. The condensed matter physics
(CMP) PULSEE CMP_GUI deals only with a single-spin sys-
tem that is governed by the Zeeman & Quadrupolar interac-
tions. The second PULSEE_CHEM_GUTI extends the single-spin
system to include weaker couplings in the secular approxima-
tions by considering a generalized secondary spin. Although
the GUI provides a simple and intuitive way to perform a sim-
ulation, it has limited features regarding a custom simulation
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code that can reproduce complicated experiments involving
complex multi-pulse sequences.

3.3. Building up a simulation

The starting point of any simulation is the set up of the sys-
tem under study, which is done by calling the function nu-
clear system setup:

nuclear system setup (spin_par, quad par=None,
zeem_par=None, \

j_matrix=None, cs_param=None, Dl param=None, \
D2 param=None, hf param=None,

h tensor inter=None, \

j_sec_param=None, h userDef=None, \

initial state=‘canonical’, temperature=le-4)

This function returns three objects representing the spin system,
the unperturbed Hamiltonian, and the initial state, respectively.

The next step is to evolve the state of the system under the
action of a radiation pulse, a task carried out by the function
evolve:

evolve (spin, h unperturbed, dm initial,
solver=mesolve, \
mode=None, pulse time=0, \
picture='RRF’, RRF par={‘nu RRF’: 0,
‘theta RRF': 0,
‘phi RRF’: 0},\
n points=30, order=None, opts=None,):

The function allows the user to specify not only the features of the
pulse applied to the system, but also the reference frame in which
the evolution is computed for the AHT solver.

Once the evolved state is obtained from evolve, one can gen-
erate the FID signal associated with this state by calling the func-
tion FID_signal

FID signal (spin, h_unperturbed, dm,
acquisition time, T2=100, \
theta=0, phi=o0,
reference frequency=0, n_points=30)

The arguments of this function allow the user to set the time win-
dow of acquisition of the FID, the decoherence time T, and the
frequency and orientation of the detection coils.

Eventually, one computes the NMR/NQR spectrum from the FID
signal by passing the FID through the function fourier trans-
form signal:

fourier transform signal (signal, times,
abs=False, padding=None)

The module Simulation also includes the functions for plot-
ting the density matrix of the evolved state as well as the FID
signal and NMR/NQR spectrum.

4. Examples of execution

In this section we illustrate some noteworthy simulations per-
formed with PULSEE. In addition to being valid examples of the
execution of the code, these simulations have been chosen because
they clearly demonstrate the precision of NMR and NQR in the
control of nuclear spin degrees of freedom, which reflects their ac-
curacy in the determination of unknown nuclear interactions in a
sample under study.
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Fig. 1. Schematic of the energy spectrum and the possible transitions of a nuclear
spin 3/2. The transitions labeled with |[Am| =1 involve the exchange of a single
photon, while those labeled |Am| =2 denote a two photon process.

4.1. Selective transitions between quadrupolar states by means of
properly polarized pulses in NQR experiments

The structure of the energy spectrum of quadrupolar nuclei al-
lows for the selective excitation of its states by applying a pulse of
radiation with the proper polarization.

A first notable example is represented by the pure NQR of
a spin 3/2 nuclei whose energy levels and available transitions
are depicted in Fig. 1. This system may undergo two single pho-
ton transitions at the same frequency, namely |1/2) <> |3/2) and
|—1/2) <> |—3/2). This is in contrast with a pure NMR experiment
where all the transitions are characterized by the same variation
of the magnetic quantum number Am. These two transitions im-
ply an opposite change in the angular momentum of the system, so
that each of them can occur only under the exchange of a photon
with circular polarization (c.p.) ot and o, respectively. There-
fore, when one irradiates the system by a linearly polarized (L.p.)
resonant pulse, both transitions will be induced. In contrast, by
choosing the proper polarization of the pulse one is able to se-
lect only one of the two. The potential of circularly and, in general,
elliptically polarized RF pulses in NQR has been widely explored
[68-70].

These theoretical expectations are correctly reproduced by our
software. We simulated the pure NQR of a spin 3/2 3°Cl nuclei in
a potassium chlorate crystal (KClO3), whose gyromagnetic ratio is
y /2w =4.17 MHz|T and whose quadrupolar resonance frequency
is vg =28.1 MHz [71]. We prepared the system in the initial state
depicted in Fig. 2. Then, we performed two distinct simulations
evolving the system under the action of a 7w pulse with polar-
ization ot or o~ respectively (in a classical picture such pulses
rotate the initial nuclear magnetization by 180°, clockwise and an-
ticlockwise, respectively). The results obtained are shown in Fig. 3.
We note that the 7 pulse is defined such that its amplitude, B1,
and time duration, tp, satisfy the equation known as a central-
transition selective pulse

yaBitp =1 (19)

where « = /II+1)—m(@m+1) is a factor depending on the
transition being induced, and thus differs between the central and
satellite peaks, and y is the gyromagnetic ratio of the nucleus. For
the pulsing to be successful, the strength of the applied pulse y By
must be smaller than the quadrupolar frequency wq . If the applied
pulse is not perturbative relative to the quadrupolar energies, then
the level mixing will occur instead of a simple spin rotation.

The evolved density matrices clearly show that a pulse with
circular polarization 0% (o~) couples only with the transition
between states |1/2) < [3/2) (]—1/2) <> |—3/2)) by acting se-
lectively on the two relevant energy eigenstates to induce a full
inversion of their respective populations and conserve the total an-
gular momentum.
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Re(p)

Fig. 2. Real part of the density matrix representing the initial state of the spin 3/2
nucleus in the simulation of a pure NQR experiment. The system is prepared in a
classical distribution where the two ground states are equally populated.

Another experiment where a pulse can be designed to selec-
tively induce transitions is the NQR of a spin-1 nucleus in the
presence of an asymmetric EFG [7]. Due to the non-vanishing
asymmetry parameter, the energy eigenstates of this system are
no longer the spin eigenstates, but they read:

0) & &) =(1)*|-1)/V2 (20)

The energies of these states and the frequencies of transitions be-
tween them are displayed in Fig. 4.

What is peculiar in this system is that in order for each of the
three transitions to occur, the pulse must have a distinct linear
polarization. Calculations show that

1&+) 10)  16-)
0 1 0\ I&+)
1x=< 1 0 0 ) |0)
0 0 0/ 1&6-)
00 0 0 1
Iy=(0 0 1 =000 (21)
01 100

from which it is easy to prove that an X-, y- or z-polarized pulse
will only affect the transition &) <> |0), |€_) <> |0), or |&1) <
|&_), respectively. This behavior can be assessed by observing the
spectrum generated by each of these pulses, recalling Eq. (18).
Once the proper orientation of the detection coils is set, one is
able to visualize if a certain transition has occurred depending on
the whether the term (n|o(tp)|€) vanishes or not.

These results have been simulated in a fictitious spin 1 nu-
cleus with e2qQ /h = 1MHz and asymmetry n = 0.6, for which
the transition frequencies are vy = Vg, .0 = 0.9MHz, vy = Vg0 =
0.6MHz, and v; = vg, e, = 0.3MHz. The resulting NQR spectra
are displayed in Fig. 5.

4.2. Generation of quantum coherences in a spin 3/2 quadrupolar
nucleus

Let us consider the 3°Cl nucleus with spin 3/2 in the same
KCIO3 crystal introduced above. The previous example shows how
to induce a full inversion of the populations of two of its energy
eigenstates, say |/m=1/2) and |m+1=3/2), by means of a o
c.p.  pulse of radiation. In general, when the angle on the right-
hand side of Eq. (19) is set to a value different from ns, where n is
an integer, the final density matrix exhibits non-zero off-diagonal
elements, meaning that the evolved state includes a quantum su-
perposition of |m) and |m + 1). Such superposition states can be
deployed to probe nature of tensor multipolar orders [33,55]. In
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NMR, such elements are typically called “single quantum coher-
ences”, where “single” specifies the fact that Am =1.

In Fig. 6, we display the results of three simulated experiments
where a pulse resonant with the |1/2) <> |3/2) transition is ap-
plied and the angle in Eq. (19) is set to the values 7 /3, /2,
and 27 /3, respectively. These simulations demonstrate that it is
possible to fine-tune the amplitudes of two states linked by a
single-photon transition through the careful manipulation of the
parameters of the pulse.

4.3. Preparation of an ensemble of spin 3/2 nuclei in a pseudopure state
by means of NQR

NMR and NQR are naturally suited for the implementation
of simple quantum information processors, as they are an effi-
cient and high-precision method for manipulating nuclear spins
[18,72-75]. Nonetheless, in typical NMR/NQR experiments the sys-
tem under study is a macroscopic sample made up of a huge
number of nuclei, which makes it impossible to prepare it in a
pure state as would be required by an ordinary quantum com-
putation protocol. This problem has been addressed by following
a different strategy [9]: with a properly designed pulse sequence,
the ensemble of nuclear spins can be prepared in a pseudopure
state, i.e. a state p =al + b |y )Xy | which differs from a pure state
by a term proportional to the identity. A state of this kind is called
pseudopure because, under evolution, it behaves like a full-fledged
pure state. This property makes it the ideal starting point for any
NMR/NQR quantum computation protocol. Indeed, much effort has
been made in realizing quantum logic gates [2,15,76-84].

In what follows, we describe a simulation of the NQR protocol
aimed at realizing a 2-qubit pseudopure state in the ensemble of
35Cl spin 3/2 nuclei of a KClO3 crystal [43], whose energy levels
and available transitions have already been shown in Fig. 1. The
states of the 2-qubit computational basis correspond to the spin
ones as follows:

00) = 13/2)
01) = |1/2)
10) = |-1/2) (22)
1) = |-3/2).

Here, we remark that the simulated protocol is not aimed at im-
plementing the pseudopure state in the physical system itself. Such
a state is obtained as the average of the results of three distinct
experiments, as depicted in Fig. 7, following a common practice
employed in NMR/NQR called temporal averaging [85]. In each of
the three experiments, the system is handled in a distinct way:

1. In the first, the system is left in its original thermal equilib-
rium state.

2. In the second, the system is irradiated by a c.p. pulse with
resonant frequency vq = (Ex+3;2 — E+1/2)/h, inducing one of
the single photon transitions (|Am = 1]). The time duration of
the pulse is set to a value such that the populations of the
states linked by the transition are exchanged.

3. In the third, a c.p. pulse at half the resonance frequency is ap-
plied, yielding one of the two-photons transitions (|Am = 2|).
Again, the time duration of the pulse accounts for the ex-
change of the populations of the states linked by the transi-
tion.

If the polarization of the pulses applied in steps 2 and 3 is ap-
propriately chosen, the average of the density matrices resulting
from the three experiments will have the properties of a pseu-
dopure state belonging to the computational basis in Eq. (22). The
outcome of the simulation, illustrating the real part of the density
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Fig. 3. Real part of the simulated density matrix representing the evolved state of the spin 3/2 quadrupolar nucleus after: (a) a 7 pulse with polarization o*; (b) a 7 pulse

with polarization o ~.

‘E+>
&)

0)

Fig. 4. Scheme of the energy spectrum and the available transitions for a quadrupo-
lar nucleus of spin 1 interacting with an asymmetric EFG. The subscripts of the
transition frequencies vy/y,, refer to the direction of linear polarization of the pulse
required to induce each transition.
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Fig. 5. Spectra resulting from three distinct simulations of the NQR of a spin 1 nu-
cleus interacting with an asymmetric EFG, where different pulses have been applied
with polarization along X (a), y (b), and Z (c), respectively.

matrices representing the four pseudopure states of the computa-
tional basis of 2 qubits, is shown in Fig. 8.

4.4. NQR and NMR implementation of a CNOT gate on a couple of qubits

Implementing a CNOT gate in the system we have already dis-
cussed in subsection 4.3 is a straightforward task. That is, in a
2-qubit system with |0) and |1) as the only allowed input values
for both qubits, the CNOT gate flips the second (target) qubit from
|0) to |1) if and only if the first (control) qubit is in the |1) initial
state. Indeed, one can easily check that the action performed by a
CNOT; gate on the 2-qubit system is equivalent to that of a pulse
which yields an exchange of the populations between the states
|—1/2) and |—3/2), as illustrated in Fig. 9a. The effect of this gate
simulated by our software is depicted in Fig. 9b.

It is possible to implement an analogous operation by means
of NMR as well, but in a different nuclear system. As explained
in [18], this time the 2 qubits are encoded in 2 distinct spin 1/2
nuclei (following the convention |0) = |1/2), |1) =|—1/2)) and, in
order for them to work as a control-target qubit couple, they must
interact with each other. Thus, we assume that they are linked by
the typical J-coupling, whose contribution to the Hamiltonian is:

H;=hJi" 1P (23)

where J is the coupling constant and 19 is the z component of the
spin of the i-th nucleus. The experimental protocol for the imple-
mentation of an NMR CNOT gate employs both selective rotations
of each spin as well as the free evolution of the whole system un-
der the action of J-coupling, according to the sequence:

| I
ot = (3)! (G (5l ulg) (5) e
2/2\2/z 2/x 2] 2/y

Here, factors of the type (Ol):(i/y /- Tepresent pulses resonant with
the i-th spin which make it rotate an angle « around the axis
specified in the subscript. U (1/2]), on the other hand, stands for
the free evolution of the system for a time duration of 1/2]. We
point out that in order to be able to perform selective rotations
of one of the two spins, the nuclei’'s gyromagnetic ratios must be
appreciably different, leading to well separated gyromagnetic fre-
quencies v = —(y @ /27)Bo.

We have carried out a simulation of this protocol starting from
ideal pure input states. The outcomes match closely our expecta-
tions, i.e. the qubit is flipped since the control (first) qubit was in
the |1) initial state, as is shown in Fig. 10.

4.5. NMR probe of quantum correlations and tensor orders

As a local probe, NMR is well suited for the study of the micro-
scopic electronic spin structure in the vicinity of the nuclear spin
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Fig. 6. Results of the simulation of the NQR of 3>Cl nuclei in a KClO3 crystal where a pulse resonant with the |1/2) <> |3/2) transition is applied. The three histograms show
the real part of the density matrix of the system evolved after (a) m /3 pulse, (b) /2 pulse, and (c) 27 /3 pulse. As the angle of rotation approaches 7, the populations
of the states involved in the transition undergo a continuous exchange, and at the same time non-zero, off-diagonal elements emerge between them, meaning that the two

states are in a quantum superposition.
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Fig. 7. Population diagrams of the states to be combined through temporal averaging
in order to realize the |11) = |-3/2) pseudopure state for a spin 3/2 quadrupolar
nucleus.

(p)

Fig. 8. Outcomes of the protocol for the realization of pseudopure states in an en-
semble of spin 3/2 quadrupolar nuclei, as simulated by our software. The histograms
display the real part of the density matrices representing the four pseudopure states
of the computational basis of 2 qubits.

site through the hyperfine interaction. While directly measuring
quantum correlations between electronic spins is difficult, complex
hyperfine interactions can imprint signatures of electronic correla-
tions on the nuclear spin states. The resulting many-body nuclear
spin correlations can then be probed using the method of multiple
quantum NMR [86-88]. The main challenge with this effort is that
nuclear spin states are not pure states precluding the direct appli-
cation of standard quantum protocols, which can be addressed by

10

use of pseudo-pure states (sec. 4.3). PULSEE can be instrumental in
designing the optimal multiple quantum NMR sequence to permit
the study of quantum correlations.

Many of the theoretically identified complex quantum phases
of materials are characterized by tensor orders (e.g. ferro-octupolar
order) [33,34,89] that possess zero local susceptibility, and there-
fore, are evasive to standard experimental probes. However, the
tensor nature of the hyperfine interactions can reveal the intricate
structure of quantum orders. In this section, we illustrate ways in
which PULSEE is deployed to put forward a novel NMR method,
inspired by QIS, that allows for the engineering of pulse sequences
that can effectively probe electronic correlations and tensor orders
through the hyperfine interaction.

In order to explore the capabilities of PULSEE, we give a sim-
ple yet powerful illustration of two approaches to modeling the
hyperfine interaction. In the first, we consider a spin-1/2 nucleus
coupled to an electronic bath directly via the hyperfine interaction
(Hns = SAI). In the second, we examine two spin-1/2 nuclei in-
teracting via an effective hyperfine field, A, mediated via electrons
(M =11 AlL). The system will be modeled as two interacting spin-
1/2 particles, governed by the Hamiltonian,

—ws(1®Sz) + SAI(I), i
H=—w,(I" ®1) + (25)

—on(1 @I +IDAI? |

where I, S correspond to the nuclear/electronic spin operator, re-
spectively. The electronic Larmor precession frequency is much
greater than the nuclear precession, ws ~ 2000 wy, and the Zee-
man terms dominate over the hyperfine coupling.

The two forms of the hyperfine interactions are written for
different applications. For instance, the Hamiltonian defined in
Eq. (25)i may be useful in organic materials that exhibit very rich
phase diagrams induced by strong correlations [90]. The concepts
introduced in the study of open quantum systems [91] can be ex-
ploited to discern the nature of complex phases arising as a result
of strong correlations. An example to consider is a target system
of nuclear spins (e.g. 13C) coupled to an uncontrollable electronic
bath via the hyperfine interaction. The engineered auxiliary sys-
tem, nuclear spins interacting via the dipole-dipole interactions,
and the correlated electronic spins of the bath share an entangled
state that reflects the nature of the electronic correlations we seek
to identify. By simulating the form of expected experimental re-
sults, one may deploy PULSEE to devise effective pulse sequences
to probe the quantum orders in such correlated phases. Further-
more, Eq. (25)i can serve as a starting point for quantum control
studies [26,90,92-94].
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Fig. 9. (a) Symbolic notation of a CNOT gate operating on the state |10) (on top) and the action of the pulse which carries out the equivalent operation on the NQR version
of the 2-qubit system (at the bottom). (b) Input (on the left) and output (on the right) states of the simulated NQR CNOT; gate when the initial state is |10).
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Fig. 10. Input (on the left) and output (on the right) of the simulated NMR CNOT; gate when the initial state is set to the ideal pure state |10). The output state presents a
slight discrepancy with respect to the expected |11) state, which is thought to be a consequence of the discrete approximations taken in the simulation.

On the other hand, the Hamiltonian defined in Eq. (25)ii may
be useful in studies of mean-field electronic correlations and in
the development of the probes of tensor order [95].

Here, we demonstrate the utility of PULSEE in devising an effi-
cient protocol to probe the nature of tensor order, i.e. anisotropy of
the hyperfine tensor. We consider two spin-1/2 spins coupled via
a hyperfine interaction of the form,

~ Aaq 0 Aqc
A=| 0 Awm O (26)
AGC 0 Aaa

where A is the second-rank hyperfine tensor representation for the
antiferromagnetic phase (AFM) with symmetry plane y =0 [96].
The diagonal terms (Aq) of A dominate, giving the principal axes.
The system will be modeled as two interacting spin-1/2 particles,
governed by the Hamiltonian Eq. (25)i. Working in the Zeeman-
dominant regime, we investigate the evolution of the coherent spin
state (CSS), as we have identified these as the most sensitive to
anisotropy of the hyperfine tensor. Tuned to the nuclear spins, we
can only probe the system by sending pulses to the nucleus. In the
high-temperature limit, the thermal state of our system is given by

Othermal state ~ 01 — €557 — €y, (27)

where ¢; = ,Zi;,en = Zﬁwﬁ ~107% « 1 are the polarization fac-

tors at room temperature T, with two different deviation density
matrices for the uncorrelated electronic and nuclear spins, « is a
constant that depends on the temperature and Hamiltonian of the
system, and where #h/kp are the Planck/Boltzmann constants. We
work in units of 7= 1. To obtain the CSS for the nucleus, one can
transform the thermal state into a state of the form

0css nucleus ~ &1 — €54 — €n0, (28)

where p is the polarized state of the electron, given by u = 1) (1],
whenever the electrons are in a magnetically ordered state [96],
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and o is the deviation matrix of the nuclear spin’s CSS. The CSS
saturates the Heisenberg uncertainty relation [97] and resembles a
semiclassical spin. It is of the form

j 2j 1/2 b 9.
120, @) = Z <j N m) cos ™M 5 sin/™™ 5el(km)(ﬂ |j, m),
m=—j

(29)

where j is the nuclear spin number (j = 1/2, in our case), 6, ¢
are angles in the Bloch sphere, and |j, m) are the eigenstates of
the I; operator [97]. These two angles define the rotation oper-
ator Rgy, = elUxsine—lIycos¢) which is used to generate a rotated
spin operator. The CSS are the eigenstates of the rotated operator,
namely

(Rogl:RY,) 120, 9)) =120, ). (30)

The angles 6 = 7 /2 and ¢ = m/2 are chosen for the partic-
ular case when there is no squeezing and the squeezing pa-
rameter is unity [98,99]; thus the deviation matrix is o =
|¢( /2, /2))(¢(r /2, /2)|. These nuclear spin coherent pseu-
dopure states (NSCS) have been experimentally prepared using the
adapted strongly modulated pulse [99]. We perform a typical FID
experiment simulation to obtain the NMR spectrum by evolving
the initial state under the hyperfine Hamiltonian in Eq. (25)i us-
ing the direct diagonalization method, applying a v /2 pulse to the
nuclear spin, and then observing the FID. We have assumed that
Bo=10T and T, =50us and a 20 times longer acquisition time.
The hyperfine coupling is much weaker than the Zeeman term (on
the order of few percent of the nuclear Zeeman term) and it cre-
ates a peak splitting proportional to A4, (Fig. 11c & Fig. 12c).

We consider three different hyperfine tensors of the form de-
picted in Eq. (26), with Agc =0, Aqc = 3 Aqa, and Aqc = Aga. The
form of the spectra and the evolved density matrices are given in
Fig. 11. Using PULSEE, we have explored the sensitivity of various
nuclear spin states to the form of the hyperfine tensor. We found
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Fig. 11. Dynamics of the (a) coherent spin state (CSS) (Eq. (28)) in the high temperature limit. The system is evolved under the Hamiltonian (Eq. (25) i), a (b) 7 /2 pulse
along I is applied to the nuclear spin, (c) observing the corresponding NMR spectrum of the FID. Three simulations are given for the three different forms of the hyperfine
tensor, I fully diagonal, II off-diagonal term Ag. = f—OAau, and Il Age = %Aua. This CSS is sensitive to the anisotropy of the hyperfine tensor, acting as an effective probe of

tensor orders.

that the particular CSS (Eq. (28)) is sensitive to the anisotropy of
the hyperfine tensor. That is, the relative height of one of the peaks
in the splitting changes as a function of the strength of the off-
diagonal term Ag.. What is promising about this method is the
fairly straightforward way to implement it experimentally. Once
the correct CSS is prepared for the nucleus, the system is per-
turbed by a simple 77 /2 pulse along the appropriate axis, in this
case Iy. Our method is similar to the spin squeezing techniques of
NMR pseudo-pure states [100].

Working only with a diagonal hyperfine tensor, we show that
a CNOT gate implementation (Eq. (24)) mimics the effects of the
hyperfine tensor (Fig. 12). In essence, the CNOT gate introduces
entanglement, where the first nuclear site is the “control qubit”
and the second nuclear site is the “target qubit.”

The combination of these two experiments gives us valuable in-
formation about the hyperfine tensor by studying the simple NMR
spectrum. Firstly, we see that the central line of the Zeeman spec-
trum is split, where the splitting is given by the parameter Agq
of the hyperfine tensor. Furthermore, the application of the CNOT
gate (Eq. (24), where the last two I, pulses can be ignored, and
U =U(1/2A4q)) suppresses one of the peaks, Fig. 12f, as expected
[80,82]. Thorough investigation of the spin dynamics evolution af-
ter the application of the CNOT gate, allows us to establish the
methodology for full hyperfine tensor determination.

Thus, measurements on CSS states serve as control experiments
to sense the anisotropic nature of the hyperfine interaction. In
other words, by performing rather manageable experiments, one
may determine the nature of the hyperfine interaction, that is, the
presence of off-diagonal terms, without the need of full field rota-
tion spectroscopy [54]. Even though this simple experiment is only
tuned to the nucleus, one may envision different ways to couple to
the electronic spin [22,92], and then use PULSEE to investigate the
dynamics of the spin and the observables.
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In summary, our software allows for the simulation of complex
spin evolution, which may then be used to design the appropri-
ate pulse sequences enabling reverse engineering of the relevant
Hamiltonians of tensor orders.

4.6. Building quantum circuits module: correlated density matrices

The software supports designing quantum circuits via Qubit -
State objects in the Quantum_ computing module, and track-
ing the dynamics of a density matrix as it evolves in the circuit.
Besides being useful for quantum circuit analysis, this module is
instrumental in investigating the effects of experimental artifacts,
such as pulse imperfections. The effects of finite pulses applied in
the laboratory cannot be equated with the those of instantaneous
perfect gates. The artifacts of ‘imperfect’ pulses need to be consid-
ered when performing complex NMR pulse sequences. In order to
evaluate the errors associated with finite pulses, one may consider
the gate fidelity defined by [101]

_ Tr(oh * Pex)
Tr(pth : :O:h) Tr(,oex : /O;rx)

where py, is the theoretical density matrix, and pex is the den-
sity matrix obtained experimentally through quantum tomography
[102]. Using PULSEE, one may test finite pulses, determine the
level of additional terms in the density matrix, and determine dif-
ferent pulse sequences and their fidelity in order to achieve the
most adequate pulse train for the desired state evolution.

In Fig. 13 we illustrate the effect of the pulse artifacts on prepa-
ration of the nuclear spin coherent states (NSCS) using the average
Hamiltonian theory method. The coherent spin state for a spin-
1/2 particle whenever we use the angles § = /2 and ¢ = /2
is [¢(w/2,m/2)) = |+Y), or the ground eigenstate of the I, op-
erator. In an NMR experiment, this I, state is obtained from a

F

; (31)
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Fig. 12. Dynamics of the (a) coherent spin state (CSS) (Eq. (28)) in the high temperature limit. The system is evolved under the Hamiltonian (Eq. (25) i), and a (b) 7 /2
pulse along Iy is applied to the nuclear spin, (c) observing the corresponding NMR spectrum of the FID. The bottom row is a second experiment (II), where a (d) CNOT gate
(Eq. (24)) is applied (e) before the 7 /2 pulse, (f) after which the FID is observed. This shows that the CNOT gate can mimic the effect of the anisotropic hyperfine tensor on

the CSS.

(a) (b)

(©) (d)

Fig. 13. Effects of the pulse artifacts on the preparation of the nuclear spin coherent states (NSCS, Eq. (28)) of a combined electronic-nuclear spin system, evolved under the
second order average Hamiltonian theory mode. (a) Density matrix of initial thermal state (Eq. (27)) is shown for comparison, where ¢ is the phase. (b) Theoretical NSCS
generated by instantaneous perfect pulses from Eq. (29). NSCS prepared by applying a /2 pulse along Ix, evolved under the (c) Zeeman and (d) both Zeeman and hyperfine
Hamiltonians (Eq. (25) Aq = 0). By simulating finite NMR pulses, the evolved density matrix deviates from the theoretical one, even in the simple Zeeman case without any

noise. Nevertheless, the gate fidelities (Eq. (31)) of (c, d) are nearly unity.

thermal state following the application a 7 /2 pulse along I,. How-
ever, this assumes that the Hamiltonian which governs the system
is a simple Zeeman one, and the /2 pulse is perfect. We exam-
ine the effect of non-ideal v /2 pulse encountered when hyperfine
interaction is present. Specifically, we simulate the effects of a non-
ideal 7 /2 pulse by evolving the initial thermal state under two
different Hamiltonians (Zeeman and hyperfine) and assume that
no other noise is present in the system. Although the simulation
does not include noise, we find that the density matrices differ
when the full evolution of the pulse is considered under the dif-
ferent Hamiltonians, as depicted in Fig. 13. However, we learned
that their fidelities do not notably differ from unity. These results
demonstrate that, in certain experiments, one should examine the
density matrices and not just consider fidelities to simulate proper
time evolution of the spins.

Theoretically predicted states can be modeled using the quan-
tum computing module as a benchmark with experimentally pre-
pared density matrices. As an example of the quantum circuit
builder, consider constructing a two-qubit, “maximally-entangled”
Bell state, produced by applying a Hadamard gate to one qubit,
which creates a superposition, and then subsequently applying a
CNOT-gate, which entangles the two qubits by creating a control
and a target qubit. The gates’ matrix representations are
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1000

~ 1 (1 1 0100

H=ﬁ<1 _1> & CNOT=|o o 0 1] (32)
0010

in the computational basis. Taking the initial state as |00), one ob-
tains

i
V2
(100) +[11)),

CNOT[(FI@H)IOO)]:CNOT[ (|O)+|1))®|O)]:|

-1
V2

which is precisely the Bell basis state |d>+>. The circuit is depicted
in Fig. 14(a), and the density matrix produced in Fig. 14(b).
Taking the control qubit as A, one may check that

Tr(,o"zw)) —1/2<1,

confirming that this is indeed a correlated state [103].

(33)

(34)

5. Conclusions

PULSEE is an open-source software for the simulation of nuclear
magnetic resonance experiments on complex materials. The main



D. Candoli, LK. Nikolov, L.Z. Brito et al.
(a)

0) 271/2(10) + 1) —4—

10)

fan)
A\

— |PT)

Computer Physics Communications 284 (2023) 108598

(b)

Re(p)

Fig. 14. (a) Quantum circuit diagram of the application of a Hadamard and CNOT gate to produce a Bell state from the computational basis state |00). (b) Density matrix of

correlated Bell state |, ) =271/2(]00) 4 [11)).

purpose of this program is to provide a numerical tool for the de-
velopment of new methods of investigation of emergent properties
in complex materials inspired by the NMR/NQR protocols estab-
lished in the context of quantum information processing [29].

The software follows the principles of wide accessibility and
intuitive utilization as it is available for download from a public
GitHub repository [52], provides a GUI, Jupyter notebooks, and a
complete documentation.

The examples of execution illustrate the features of the soft-
ware, including the ability to simulate both the evolution of spin
states and the corresponding experimental observables, and high-
light the possibilities to manipulate nuclear spin states through
NMR/NQR. PULSEE enables simulations of the evolution of a single-
spin under various interactions in solids. The investigation of the
deviation of simulated results from experimental results on actual
materials, through the subsequent inclusion of different interaction
terms in the Hamiltonian, opens up an opportunity to gain valu-
able insight into the microscopic nature of correlations in quantum
materials. In that sense, our software might find its relevance in
the design of highly sensitive protocols for the study of emergent
quantum properties of materials.
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Appendix A. Form of different Hamiltonians

The full Hamiltonian of a single-spin nuclear system is given in
Eq. (1). Here we expand on terms that are less relevant for physics,
but might be useful in other disciplines, along with their secular
approximations in the Zeeman dominant regime. To start, the hy-
perfine interaction given in Eq. (5) in the secular approximation
becomes

Hur ~ ASzI; + BS;Iy, (A1)

for A = ajso + fibp(3cos26 — 1), B = 3kbp sind cos O, where ajg, is
the Fermi contact interaction constant. The chemical shift term,
Hcs, describes the local structure surrounding a nucleus, and thus
it is very sample-specific. Its general form is given by

Hes = —yhl-o - By, (A2)

where o is the 3x3 chemical shift tensor. It depends on the over-
all electrons around the nuclear site, as well as the orientation of
the sample with respect to Bg. The chemical shift in the secular
approximation is given by

Hes ~ —y hoz2(0)Bo, (A3)

where @ is the angle between the molecule and the applied field.
The dipolar Hamiltonian Hp is given by

Hp=rhbpll - D I, (A4)

= Mo}’ﬂ;zﬁ
21
constant, yp,y, are the gyromagnetic ratio of two interacting

spins, and rp1 is the average distance between the two spins. The
quantity D is the tensor that acts between the transpose of the
spin operator of the first nucleus llT and the spin operator of the
second nucleus I, and is given by

where bp is the dipolar constant, o is the magnetic

1—3sin’6cos?¢ 3sin’fsingcosg 3sind coso cosp

3sin?6singcosgp 1—3sin’@sin®¢ 3sindcosfsing |,

3sinfcosfcosg  3sinfcosé sing 1—3cos?6
(A.5)

D=

where 6 is the angle between the distance vector connecting the
two spins and the external magnetic field Bp, and ¢ is the az-
imuthal angle. The dipolar coupling can be approximated in the
Zeeman dominant regime for the homonuclear (nuclear-nuclear)
interaction, as

Hp1 ~ %70(3 cos?0 —1)[3I1,12; — It - 2], (A6)
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and for the heteronuclear interaction, as

Hpa ~ fibp (3 cos? 0 — 1) 11212, (A7)
The J-coupling is given by
H]:Zﬂﬁl] -J- I, (A.S)

where J is the J-coupling tensor. In the secular approximation, the
J-coupling becomes

H] ’&127'[}7,]112122, (A.g)

where the | constant is much smaller than the difference in the
chemical shifts of the two sites [7].
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