
signatr : A Data-Driven Fuzzing Tool for R
Alexi Turcotte

turcotte.al@northeastern.edu
Northeastern University

Boston, MA, USA

Filip Křikava
filip.krikava@fit.cvut.cz

Czech Technical University Prague
Prague, Czech Republic

Abstract

Pierre Donat-Bouillud
donatpie@fit.cvut.cz

Czech Technical University Prague
Prague, Czech Republic

Jan Vitek
j.vitek@northeastern.edu
Northeastern University

Boston, MA, USA

1 Introduction
The fast-and-loose, permissive semantics of dynamic pro-
gramming languages limit the power of static analyses. For
that reason, soundness is often traded for precision through
dynamic program analysis. Dynamic analysis is only as good
as the available runnable code, and relying solely on test
suites is fraught as they do not cover the full gamut of pos-
sible behaviors. Fuzzing is an approach for automatically
exercising code, and could be used to obtain more runnable
code. However, the shape of user-defined data in dynamic
languages is dificult to intuit, limiting a fuzzer’s reach.

We propose a feedback-driven blackbox fuzzing approach
which draws inputs from a database of values recorded from
existing code. We implement this approach in a tool called
s ignatr for the R language. We present the insights of its
design and implementation, and assess signatr’s ability to
uncover new behaviors by fuzzing 4,829 R functions from
100 R packages, revealing 1,195,184 new signatures.

CCS Concepts: • Software and its engineering → Soft-
ware notations and tools.

Keywords: fuzzing, R, dynamic languages

ACM Reference Format:
Alexi Turcotte, Pierre Donat-Bouillud, Filip Křikava, and Jan Vitek.
2022. signatr : A Data-Driven Fuzzing Tool for R. In Proceedings of
the 15th ACM SIGPLAN International Conference on Software
Language Engineering (SLE ’22), December 06–07, 2022, Auckland,
New Zealand. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3567512.3567530

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SLE ’22, December 06–07, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9919-7/22/12.
https://doi.org/10.1145/3567512.3567530

Dynamic analysis is often the only practical way to analyse
code written in dynamic languages as the semantics of these
languages severely limits static analyses. Dynamic analysis,
however, requires both code to run and valid inputs for said
code. To draw conclusions about a code base, one could run
the existing, runnable code, e.g., tests, but such code paints
an incomplete picture as it is challenging to fully cover the
range of behaviors allowed by dynamic languages.

To increase coverage, one could make use of a fuzzer, a tool
thatexercises code by generating random inputs.Fuzz testing
has seen widespread adoption, primarily to find bugs, per-
formance pathologies, and security vulnerabilities. However,
dynamically typed languages such as Python, JavaScript, and
R pose unique challenges that revolve around the idea that
dynamic code tends to hide runtime errors. For instance, ac-
cessing a non-existent field of an object in JavaScript yields
the value undefined instead of crashing, and basic functions
in R will readily coerce values whose types do not match.
A tool that tries to run code automatically will thus have
very little to go on vis-à-vis the correctness of the code being
generated as there is no clear observable witness of an error.
On top of this, the lack of static types leaves fuzzers with
very little information about what values are expected to
begin with. Finally, it is dificult to generate complex values
automatically in dynamically typed languages; in a stati-
cally typed language like Java, the shapes of user-defined
objects can be inferred from a static class definition. In con-
trast, there is no such guide in dynamic languages, limiting
a fuzzer’s ability to generate realistic inputs.

To get around this, we propose an approach to fuzzing that
relies on an extensive database of observed values. We de-
velop a tracer that collects information about function calls
and values created during code execution, and store this in-
formation in a database with an expressive query API. Then,
we leverage this database to generate new function calls
us-ing the recorded values. This approach is implemented in
a tool called s ignatr for the R programming language.

To validate our tool, we revisit an application of dynamic
analysis, namely trace typing [2] where the goal is to guess
the signatures of library functions by observing the values

https://doi.org/10.1145/3567512.3567530
https://doi.org/10.1145/3567512.3567530
https://doi.org/10.1145/3567512.3567530

SLE ’22, December 06–07, 2022, Auckland, New Zealand Alexi Turcotte, Pierre Donat-Bouillud, Filip Křikava, and Jan Vitek

that they accept and return. We perfom that experiment on R
libraries and use the contractr type inference tool [9],
wherein function types were inferred from recorded calls in
R package test, example, and vignette code. Fuzzing 4,829 of
those R functions with our tool generated 1.2M new unique
signatures compared to the original study.

List of
R

packages

Extract
runnable

code

.R
signatr

record

.R
signatr

record

...

.R
signatr

record

signatr
sxpdb-merge

merged
SXPDB

R scripts

2 Background and Related Work

Individual
SXPDB

Related Work. One of the earliest fuzzers is Randoop,
a feedback-driven random test generation tool for Java [7],
wheresequences of method calls are generated to test classes,
and arguments are randomly generated for these calls. For
primitive values, a random value is selected from a prede-
fined, but user-extensible list; for reference types, a value is
selected at random from those which have been seen, and
if none are available then n u l l is selected. While this tech-
nique is effective at generating tests involving non-trivial
objects that are built up from a number of method calls,
data science languages like R oftern require generating re-
alistic data. QuickCheck is another interesting tool in this
space [4]. While it can generate random inputs, the strategy
for constructing inputs needs to be specified. The lack of type
information in R limits the usefulness of such approaches.
American Fuzzy Lop (AFL) is a state-of-the-art industrial
fuzzer [1]. AFL takes a program and one example file as in-
put, calls the program with the input, and then uses a variety
of heuristics to transform the input and fuzz the program.
AFL aims to find defects, while our approach aims to find
novel inputs that successfully execute.

The R Language. We present a fuzzer for R, a language
which sports an unusual mix of language features making it
a challenging target for tooling [6]:
− The lack of a static type system, so there is little to suggest

what expected arguments or return values are.
− Primitive values (booleans, integers, ...) have a separate
“NA” value indicating that data is “not available”.

− Values are automatically and silently coerced across types.
Each function may coerce parameters as it sees fit.

− Most values are vectors and can be annotated by key-value
pairs called attributes (e.g. the dim attribute turns a vec-
tor into a matrix). Attributes coupled with reflection are
the building blocks for advanced features such as object-
orientation. In R, there is no description of a shape of an
object, it is simply a value with the class attribute.

− Shared values are copied on write. A value is shared if it is
accessible from multiple variables. Thus visible side effects
are less frequent than in traditional imperative languages.

− Function arguments are evaluated lazily resulting in un-
predictable ordering of side-effects.
There has been work on a static type system for R [9]. A

simple type annotation language has been evaluated on a
corpus of 400 R packages. In Section 4, we will revisit that

Figure 1. Recording pipeline.

work and demonstrate improvements by discovering new
signatures for the previously studied functions.

3 Approach
There are two main phases to our approach: (1) recording R
code as it runs (Fig. 1); this involves capturing function argu-
ments and return values in our value database, and (2) fuzzing
by drawing inputs to functions from the database (Fig. 2).

For the recording phase, runnable code is extracted from
examples and tests in packages. This runnable code con-
sists of a set of scripts that can be run independently. Next,
the scripts are executed in parallel, and all arguments are
recorded into separate instances of our database, called the
sxpdb. Finally, all the database instances are merged into
one, in the process duplicate values are discarded. GNU par-
allel is used for orchestration [8]. Every R package hosted
on R’s main package repository (called CRAN) is required
to have runnable example scripts to show how the package
should be used, so there is a lot of code available.

As for the fuzzing phase, a list of functions to fuzz as well
as a sxpdb are taken as input. The functions are fuzzed in par-
allel. The output of the fuzzer is a list of successful function
calls, where a successful call is defined as one that generated
no warnings, errors, and did not cause R to crash. The fuzzer
relies on hooks before and after function execution: the hook
before invocation allows the fuzzer to process inputs, and the
hook after allows errors to be signalled and handled and the
return value to be processed. Concretely, the fuzzer runs the
functions using an extended R virtual machine that supports
attaching callbacks to various runtime events [5]. Users can
also plug a dynamic analysis directly into the pipeline.

Since R can crash (and does), to avoid losing results each
instance of the fuzzer consists of two processes: a worker that
fuzzes, and a supervisor that can spawn workers if neeeded.
Furthermore, the fuzzer runs isolated in a container as calling
arbitrary code could have dire consequences.

The tool consists of three standalone components: the
tracer argtracer, responsible for running code and recording
function invocation, sxpdb, the value database, and finally
generatr, the fuzzer responsible for generating inputs. They
are R packages written in a combination of R and C++.

callsfuzz signa ures

.csv.calls

.calls .csv

signatr : A Data-Driven Fuzzing Tool for R

List of

signatr capture
.calls

infer
t
call

.csv

R
functions signatr capture infer call

fuzz calls signatures

...

signatr capture infer call
merged fuzz calls signatures
SXPDB

Type
Traces signatures

Use-case specific

Figure 2. Fuzzing pipeline.

3.1 Tracer

The tracer is built on top of the aforementioned extended
virtual machine. The two runtime events we use are func-
tion exit, where all arguments are captured and stored, and a
context jump, which is necessary to keep the call stack
balanced as the interpreter uses long jumps for loop control
flow, return statements, and error handling. (On a long jump,
the exit hook is ignored, so we maintain our own version of
the call stack to capture all function exits.) When the tracer
sees a call, it only sees a pointer to a closure, and the func-
tion’s name and its package can only be found by searching
through the loaded namespaces and the symbols they con-
tain. Thus, the tracer eagerly builds an index of package and
function names when namespace functions are loaded.

Regarding performance, there is 1.2— 7.8 (3.3 on average)
slowdown when running with tracing enabled (based on the
running / tracing 3,236 R scripts recording 8M unique values
of 3GB size). This cost is mostly due to the value serialization.
The tracer is written in 600 lines of C++ code.

3.2 Database of Values

The database is hand-written to leverage domain-knowledge
of R values and optimize it for the queries supported by our
API. It is implemented in 5K lines of C++ and 1.5K lines of R.

Storage. The database stores unique values. We use XXH-
128 hashes for uniqueness in combination with a hashtable
based on RobinHood hashing1. While the hashing is fast,
we need to lower R values into a binary format. R provides
a binary serialization XDR,2 but it is costly. We also strip
the serialization of sources of non-determinism related to
character encodings. Since many values are pushed to the
database in an average recording session, we try to avoid
serialization as much as possible. For this, we use the trace
bit that is part of each value.3 If not set, the value is fresh
and we serialize it, compute its hash, store it. The trace bit is

1cyan4973.github.io/xxHash, github.com/martinus/robin-hood-hashing
2cran.r-project.org/doc/manuals/r-release/R-ints.html#Serialization-
Formats
3A bit in the C struct that represents a value, cran.r-project.org/doc/
manuals/r-release/R-ints.html#Rest-of-header.

SLE ’22, December 06–07, 2022, Auckland, New Zealand

then set to avoid repeated serialization. In spite of R’s copy-
on-write semantics, values can be modified in place before
being shared, and these values may be serialized repeatedly
to capture the updates performed by the program.

The database also stores metadata about values and their
origin. We also keep a unique id for each sequence of ar-
guments coming from the same call site. This allows us to
replay the calls as they were observed.

The database maintains tables for the hashes, runtime
metadata (e.g., how often a value was seen), static metadata,
origins, call ids, and class names. Variable length data are
stored in a combination of 2 tables, one giving an offset into
the other table which holds the size of the value and the value
itself. Origin strings and class names are interned, i.e., each
unique string is stored separately, and referred to by pointer.
Search indices are built using fast compressed bitsets [3].
The database supports all values except external pointers
(e.g. pointer to C allocated data). Environments and closures
were not stored in the database during our experiments since
they dramatically increased memory pressure.

Finally, opening the database in read mode only loads
metadata. Retrieving values from disk is done on demand,
making it possible to query larger-than-memory databases.

Queries. Values are queried based on their typeof-type
or class, on the presence of NAs, attributes, and dimensions.
The database can be queried for a random value with the
desired metadata, or can be queried by providing an existing
value along with a list of search parameters to be relaxed.

3.3 Fuzzing

The value database is at the core of our fuzzing approach,
which is similar in spirit to mutation-based fuzzing, where
valid inputs are taken and mutated to try to exercise new
functionality (rather than have inputs be randomly gener-
ated). Instead of mutating arguments to previous calls, new
argument values are selected based on previous ones.

The fuzzer generates calls to a function and chooses ar-
guments to these calls as depicted in Algorithm 1. The al-
gorithm considers how many query parameters to relax on
(numRelax), as well as all of the previously seen successful
calls to the function (succs). For each parameter, the algo-
rithm determines how to relax (this may change from one
iteration to the next), finds all values that inhabited that pa-
rameter in successful calls, chooses one value, and queries
the database for a value similar to it save for the relaxation.
If no successful calls to the function have been observed,
random values can be chosen.

The fuzzing approach itself is depicted in Algorithm 2.
First, the collection of already known calls to the function is
obtained from the database. The main idea of the approach is
to start by selecting new arguments essentially at random by
querying the database and relaxing on many parameters, and
gradually reduce the number of parameters being relaxed as

cyan4973.github.io/xxHash
github.com/martinus/robin-hood-hashing
cran.r-project.org/doc/manuals/r-release/R-ints.html#Serialization-Formats
cran.r-project.org/doc/manuals/r-release/R-ints.html#Serialization-Formats
cran.r-project.org/doc/manuals/r-release/R-ints.html#Rest-of-header
cran.r-project.org/doc/manuals/r-release/R-ints.html#Rest-of-header

SLE ’22, December 06–07, 2022, Auckland, New Zealand Alexi Turcotte, Pierre Donat-Bouillud, Filip Křikava, and Jan Vitek

the fuzzer progresses. Concretely, the number of parameters
being relaxed is reduced every tick, which is determined by
dividing the total fuzzing budget by the number of param-
eters that can be relaxed (numRelaxParams). The function
will be fuzzed for as long as the budget allows, and initially
all database parameters will be relaxed. Arguments for a
new call are generated through the approach depicted in
Algorithm 1 (getArgs), the call is performed, and the results
are saved in res. If there were no errors, warnings, or crashes,
then the successful call is added to the list of successful calls
succs and iteration continues until the budget is exhausted.

4.6% 2.3%
4.2%

17.2%

Integer

List

Logical

0.5% Others

Real

String

71.2%

Algorithm 1 Selecting Arguments for A Call

1: procedure getArgs(f ,numRelax,db,succs)
2: params ← дetParams(f)
3: for p in params do
4: � relax on numRelax params
5: relax ← pickSome(relaxParams,numRelax)
6: � get all values that p had in successful calls to f
7: seed ← дetArдsFor(p,succs)
8: � choose one at random
9: v ← pickOne(seed)

10: � sample a similar value from the database
11: arдs[p] ← sampleSimilar(v,db,relax)
12: end for
13: return arдs � the args for the new call
14: end procedure

Algorithm 2 Fuzzing

1: procedure fuzzWithDB(f ,db,budдet)
2: succs ← дetSuccessfulCalls(f ,db)
3: tick ← budдet/numRelaxParams
4: relaxThisTime ← numRelaxParams
5: i ← 1
6: while i , budдet do
7: � gradually relax on fewer params
8: i f i mod tick = 0 then
9: relaxThisTime ← relaxThisTime − 1

10: end i f
11: arдs ← дetArдs(f ,relaxThisTime,db,succs)
12: res ← call(f ,arдs)
13: � add successful call tosuccs
14: i f no warnings, errors, crashes in res then
15: succs ← succs + res
16: end i f
17: i ← i + 1
18: end while
19: return succs � the successful calls to f
20: end procedure

Figure 3. The sxpdb value type distribution

Intended Use. Tracing (Section 3.1) is costly since run-
ning large swaths of R code takes time. Thankfully, this only
needs to be done once to construct a database, which can
then be reused by the fuzzer. For simplicity, our artifact4

contains instructions to download a 10GB sample database.

4 Assessment
We used s ignatr to stress-test one of the proposed type
system for R [9]. The type system was designed empirically,
with the help of a dynamic analysis that inferred function sig-
natures from the types of values observed while running ex-
tracted code from packages. In a nutshell, a type was inferred
from each call to a function, and these types were unified
into a single function type, and the more unique successful
calls there are, the more precise the inferred signature—the
types inferred from successful calls are referred to as call
signatures. It would be therefore interesting to see how many
additional successful calls can s ignatr generate?

Experiments were run on two Ubuntu 18.04 servers with
72 core Intel Xeon 6140 2.30GHz processors and 256GB RAM.

Recording. First, we created a sxpdb for the fuzzer. For
this we used the extracted runnable code from the same cor-
pus as the original study which consists of 17,463 R scripts
containing 389.7K lines of code (excluding comments and
new lines). The database was generated in 16 hours and oc-
cupies 287.17 GB of disk space. It contains 39.4M unique
values recorded from 20.5M calls to 38.1K functions in 652
packages. Figure 3 shows the distribution of main value
types. The vast majority of values are vectors and matrices
of real numbers which is unsurprising as R is mostly used
for numerical computing. That said, many of them (47.2%)
contain attributes which is what makes them interesting, as
attributes add semantic meaning. The next big group are
lists, which can be divided into two groups, data frames
(two dimensional, column-major structure representing ob-
servations) and records. Note that 0.5% are logical vectors of
varying length, not simply true or false .

4https://github.com/PRL-PRG/sle22-signatr-artifact

https://github.com/PRL-PRG/sle22-signatr-artifact

F
un

ct
io

ns
 (

ea
ch

 li
ne

 r
ep

re
se

nt
s

on
e

fu
nc

tio
n)

signatr : A Data-Driven Fuzzing Tool for R

Fuzzing. Armed with this database, signatr fuzzed 4,829
functions from 100 packages, a subset of the original corpus,
in 19 hours. The fuzzing budget was set to 5,000, with 64
functions being fuzzed in parallel. In total, 24.1M calls were
made, and out of that, 13.9% were successful, resulting in
3,351,753 traces of 2,315 functions coming from 98 packages.
The vast majority of errors were exceptions, but in 211 cases,
the R process crashed. While the aim of this work is not bug
finding, we have investigated one such crash in str ing i 5 ,
and found that it was caused by memory corruption by large
input. The issue was reported, acknowledged and fixed.

Results. The results of fuzzing is shown in Figure 4. From
the 4,829 functions in our 100 packages corpus, the fuzzer
managed to generate call signatures for 2,189 (45.3%). In com-
parison, tracing (i.e., recording calls by running the extracted
code) covers 3,135 functions (64.9%). While the fuzzer cov-
ered fewer functions, it generated over 1.2M new unique call
signatures (on average 562.7 per function), or 105.1 times
more call signatures than tracing. Out of the 2,189 functions,
607 were covered only by fuzzing. Fuzzed signatures over-
lapped with traced ones in only 1,082 cases in 597 functions.

The reason that s ignatr failed to generate a single suc-
cessful call for 2,640 functions is because they require a very
specific shape of one or more of its arguments, or the ar-
guments depended on one-another. E.g., certain functions
from the dplyr data manipulation package required a data
frame alongside an unevaluated expression made up of col-
umn names from the data frame. Besides that, problematic
functions include those that use non-standard scoping, ma-
nipulating arguments as unevaluated expressions and evalu-
ating them in custom environments. In some cases the error
message could have been used as a feedback to the fuzzer,
but this is not easy to generalize.

Next, we looked at code coverage to see if the new call
signatures translated to more code being exercised. Using
the covr package6, we computed line coverage of R source
code for 1,342 functions using the fuzzed calls, and separately
using the traced calls. This is not all of the functions that
s ignatr managed to fuzz, as running covr on some func-
tions caused runtime errors, and also repeating certain calls
failed (both fuzzed and traced). For 294 functions, s ignatr
improved code coverage on average by 20.4% (as compared
with coverage obtained by simply running package tests,
examples, and vignettes). 1.2M new calls yielded only 20.4%
more coverage—while new code paths were explored, the
extensive polymorphism and use of coercion in R mean that
most of these new calls did not exercise new R code.

Summary. s ignatr uncovers many calls with new type
signatures, signficantly expanding on what tracing alone can
discover, particularly for polymorphic functions. Together,

5A sting processing library, one of the most downloaded package in R.
6The only tool for R code coverage, cf. https://covr.r-lib.org

SLE ’22, December 06–07, 2022, Auckland, New Zealand

tracing fuzzing

100 10 1 0 1 10 100 1,000

of unique call signatures found by tracing and fuzzing (log scale)

Figure 4. Number of unique call signatures.

existing and generated calls yields a wealth of interesting
runnable code that will be essential fot the further design of
a possible type system for the R programming language.

5 Conclusions and Future Work
Fuzzing is a useful technique for getting insights about code.
However, it is hindered by the permissive semantics of dy-
namic languages as well as the dynamic nature of how com-
plex data is defined. In this work, we proposed a fuzzing
approach that relies on a database of observed values to
provide complex and realistic inputs for functions. We im-
plement this approach in a tool called s ignatr for the R
programming language. We show that s ignatr uncovers
many new call signatures for R functions and it can be a
useful tool in a data-driven language evolution toolbox.

There are various avenues to improve the tool itself. For
instance, the fuzzing component of our approach could be en-
hanced to consider the types of default function parameters.
Further, we could expand the database with knowledge of
how values co-occur, which would add more dimensions to
how values can be selected. While this approach was imple-
mented in a tool for R, it is broadly applicable in all languages,
and the only real language-specific aspect is the set of pa-
rameters in the database. For instance, one could implement
a similar tool for object-oriented languages, where database
metadata could include object field names (e.g., JavaScript).

https://covr.r-lib.org

SLE ’22, December 06–07, 2022, Auckland, New Zealand

References
[1] AFL. 2022. American fuzzy lop. See https://lcamtuf.coredump.cx/afl/.
[2] Esben Andreasen, Colin S Gordon, Satish Chandra, Manu Sridharan,

Frank Tip, and Koushik Sen. 2016. Trace typing: An approach for
evaluating retrofitted type systems. In 30th European Conference on
Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

[3] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2016.
Better bitmap performance with roaring bitmaps. Software: practice and
experience 46, 5 (2016), 709–719.

[4] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool
for Random Testing of Haskell Programs. In Proceedings of the Fifth
ACM SIGPLAN International Conference on Functional Programming
(ICFP ’00). Association for Computing Machinery, New York, NY, USA,
268–279. https://doi.org/10.1145/351240.351266

[5] Aviral Goel and Jan Vitek. 2019. On the Design, Implementation, and
Use of Laziness in R. Proc. ACM Program. Lang. 3, OOPSLA, Article 153
(oct 2019), 27 pages. https://doi.org/10.1145/3360579

[6] Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. 2012. Eval-
uating the Design of the R Language. In ECOOP 2012 – Object-Oriented
Programming, James Noble (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 104–131.

[7] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed
random testing for Java. In Companion to the 22nd ACM SIGPLAN con-
ference on Object-oriented programming systems and applications com-
panion. 815–816.

[8] Ole Tange et al. 2011. Gnu parallel-the command-line power tool. The
USENIX Magazine 36, 1 (2011).

[9] Alexi Turcotte, Aviral Goel, Filip Křikava, and Jan Vitek. 2020. Design-
ing types for R, empirically. Proceedings of the ACM on Programming
Languages 4, OOPSLA (2020), 1–25.

A signatr demonstration
The following is a short demonstration of the basic s ignatr
functionality, i.e., how to create the value database by run-
ning R code and then how to use it for fuzzing. The tool is
packaged as an R library. It can be used both in a script or
interactively from an R REPL.

We begin by starting R (concretely, R-dyntrace version
4.0.2 which has the hooks used by the argtracer) and load-
ing signatr . In the following listings, the $ indicates shell
prompt and > denotes the R REPL.
$ R
R version 4.0.2 (2020-06-22) - - "Taking Off Again"
. . .

> l i b r a ry (s i g n a t r)

To generate a database of values, we need some code to
run. One way to get it is to extract it from an existing R
package, for example str ingr :
> extract_package_code("stringr", output_dir = "demo")
. . .
7 examples/str_detect.Rd.R examples

. . .

This will extract all the runnable snippets from the pack-
age documentation and tests into the given directory. For
example:
$ cat demo/examples/str_detect.Rd.R
. . .
f r u i t <- c("apple", "banana", "pear", "pinapple")

Alexi Turcotte, Pierre Donat-Bouillud, Filip Křikava, and Jan Vitek

s t r _ d e t ect (f r u i t , "a")
s t r _ d e t ect (f r u i t , "^a")
. . .

Next, we trace the file by executing it and recording all
the calls using the trace_f i le function:
> trace_file("demo/examples/str_detect.Rd.R", db_path = "demo.sxpdb")

status time db_size error
0 0.024 20 NA

The resulting database is stored as demo.sxpdb. In this exam-
ple, after running the str_detect.Rd.R file, the database contains
20 unique values. This can be repeated for all the other files.
To trace multiple files in parallel, one database is created per
file, which are merged using the merge_dbs function once they
are all available. This also allows us to run larger experiments
on multiple machines.

Once the database is ready,we can start fuzzing. The fuzzer
has a number of configration points, but the easiest starting
point is the quick_fuzz helper function:
> R <- quick_fuzz ("str ingr" , "str_detect", "demo.sxpdb",

budget = 100, action = " i n f e r ")

started a new runner:PROCESS ' R ' , running, pid 4157
fuzzing s t r i n gr : : : s t r _ d e t ect [======] 100/100 (100%) 39s
stopped runner:PROCESS ' R ' , running, pid 4157

The i n f e r action will use the infer_cal l_signature function
that ‘infers types for each call argument and return value
using the type annotation language proposed in Turcotte et
al. [9]. (Specifically, the contractr type inference tool provided
by the work is used.) infer_cal l_signature returns a data frame
with details for each call. In this case, the data frame includes
the inferred call signature in the resu l t column.
> p r i n t (R)
A t i b b l e : 100 x 6

args_idx error status r e s u l t time
< l i s t > <chr> <int> <chr> <drtn>

1 < int [3]> "Error i n UseMeth... 1 NA 0.0363
2 < int [3]> NA 0 (c h a r ac t e r [] , . . . 0.0351

. . .

The above listing shows a failed call (non-zero status)
with an error message, and a successful call with an inferred
signature. The args_idx column contains the indices in the
sxpdb of the values; thus, the actual argument values can be
obtained by looking up the args_idx in the sxpdb.

One advantage of using R is that we can use R’s many data
analysis functions. For example, we can look at the resulting
signatures:
> count(R, r e s u l t)
A t i b b l e : 4 x 2

r e s u l t n
<chr> <int>

1 (character[] , ^character[], double) => ^ l o g ica l [] 1
2 (character[] , character, integer) => l o g i c a l [] 1
3 (l i s t < i n t e g e r > , character[] , l i s t< i n t ege r >) => l o g i c a l [] 1
4 NA 97

This shows that in three cases, the fuzzer managed to gen-
erate a call that was successful, and the signatures of those
calls. (If you are repeating these steps, it is possible that your
results will be different since fuzzing is non-deterministic.)

https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3360579

