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Local and global measures of the shear moduli of jammed disk packings
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Strain-controlled isotropic compression gives rise to jammed packings of repulsive, frictionless disks with

either positive or negative global shear moduli. We carry out computational studies to understand the contribu-

tions of the negative shear moduli to the mechanical response of jammed disk packings. We first decompose

the ensemble-averaged, global shear modulus as 〈G〉 = (1 − F−)〈G+〉 + F−〈G−〉, where F− is the fraction of

jammed packings with negative shear moduli and 〈G+〉 and 〈G−〉 are the average values from packings with

positive and negative moduli, respectively. We show that 〈G+〉 and 〈|G−|〉 obey different power-law scaling

relations above and below pN2 ∼ 1. For pN2 > 1, both 〈G+〉N and 〈|G−|〉N ∼ (pN2)β , where β ∼ 0.5 for

repulsive linear spring interactions. Despite this, 〈G〉N ∼ (pN2)β
′

with β ′ � 0.5 due to the contributions from

packings with negative shear moduli. We show further that the probability distribution of global shear moduli

P (G) collapses at fixed pN2 and different values of p and N . We calculate analytically that P (G) is a �

distribution in the pN2 � 1 limit. As pN2 increases, the skewness of P (G) decreases and P (G) becomes a

skew-normal distribution with negative skewness in the pN2 � 1 limit. We also partition jammed disk packings

into subsystems using Delaunay triangulation of the disk centers to calculate local shear moduli. We show that

the local shear moduli defined from groups of adjacent triangles can be negative even when G > 0. The spatial

correlation function of local shear moduli C(�r) displays weak correlations for pn2
sub < 10−2, where nsub is the

number of particles within each subsystem. However, C(�r) begins to develop long-ranged spatial correlations

with fourfold angular symmetry for pn2
sub � 10−2.

DOI: 10.1103/PhysRevE.107.054903

I. INTRODUCTION

Particulate materials, such as packings of bubbles [1],

droplets [2], colloids [3], and grains [4], jam into a solidlike

state when they are compressed above jamming onset, while

the internal structure remains disordered. A distinguishing

feature of jammed solids is that they possess a nonzero shear

modulus G, in addition to a nonzero bulk modulus B [5]. Nu-

merous computational and theoretical studies have employed

the frictionless, soft-particle model [6–9], which assumes

pairwise, purely repulsive interactions between spherical par-

ticles, to study the onset of jamming in particulate materials.

Prior results have shown that at high pressures the shear mod-

ulus for jammed packings of spherical particles scales as a

power law, G ∼ pβ , where the scaling exponent β depends on

the form of the purely repulsive interaction potential, but not

on the spatial dimension [5,10,11].

In most prior studies of jammed packings of friction-

less soft particles, packings are generated by isotropically

compressing a collection of particles when the shape of the

*These authors contributed equally.

bounding box is fixed. In this compression-only protocol, the

shear modulus of a given packing can be negative and the

boundaries of the system provide the necessary shear stress to

prevent particles from flowing [10,12,13]. In contrast, a shear-

stabilized packing protocol was proposed to generate jammed

systems that are stable to shear in all directions by allowing

all degrees of freedom of the boundary to change during en-

ergy minimization [12]. The two different protocols generate

packings with different mechanical properties, resulting in the

question of whether jammed packings with negative shear

moduli should be excluded from the ensemble when using

the ensemble average to represent the shear modulus in the

large-system limit [10,12–15].

In previous studies of jammed packings generated by the

compression-only protocol, we showed that the pressure-

dependent shear modulus has two contributions [16]: (i)

continuous variations in the shear modulus with pressure

from geometrical families, and (ii) discontinuous jumps in

the shear modulus from changes in the interparticle contact

network. Geometrical families correspond to jammed pack-

ings at different pressures that are related to each other with

the same interparticle contact network. For purely repulsive

linear spring interactions [17], the shear modulus of a near
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isostatic geometrical family can be approximated as G/G0 ∼
1 − p/p0, where G0 is the shear modulus at p = 0 and p0 is

the pressure at which G = 0. Thus, G becomes negative when

p increases above p0 if the disk packing does not undergo

a particle rearrangement during the isotropic compression.

Changes in the interparticle contact networks during compres-

sion give rise to discontinuous changes in G and slope dG/d p,

which alter the pressure at which G becomes negative. Hence,

jammed packings with negative G can be considered as natural

members of the ensemble, which raises the question of how

negative shear moduli affect the power-law scaling of the

ensemble-averaged shear modulus 〈G〉.
It is well known that amorphous solids exhibit spatial

heterogeneity at the particle scale [18–22] in response to

boundary-driven deformations. Understanding these spatial

heterogeneities is essential for linking bulk mechanical prop-

erties to particle-scale interactions and motion [23–27]. In

particular, it has been shown that an affine deformation ap-

plied to an amorphous solid will give rise to strongly nonaffine

particle-scale motion to restore force balance in the sys-

tem [28–31], which makes it more difficult to define local

stress and strain for subdomains of amorphous solids. The

strongly inhomogeneous stress and strain are believed to play

a central role in controlling the anomalous acoustic excita-

tions and bulk mechanical properties of amorphous solids

[29,32–38]. However, despite its importance, it is not clear

which definitions of local stress and strain best characterize

their local structural and mechanical properties and which

should be used to connect the local to the global mechanical

response [18,19,21,39,40].

In this work, we carry out computational studies to gen-

erate jammed binary disk packings (interacting via repulsive

linear spring forces) using isotropic compression, while con-

trolling the shape of the confining box. We focus on the

mechanical response of jammed disk packings to applied

simple shear and characterize the distribution of the global

shear moduli (including both positive and negative values)

as a function of the pressure p and system size N . We also

develop a novel method to calculate the local shear moduli

g of jammed disk packings as a function of the size of the

subsystem nsub, and compare these results to those using other

methods.

We find several key results. First, we show that the separate

contributions 〈G+〉 and 〈G−〉 to the ensemble-averaged shear

modulus, 〈G〉 = (1 − F−)〈G+〉 + F−〈G−〉, where F− is the

fraction of jammed packings with G < 0, obey different scal-

ing relations with pressure p above and below pN2 ∼ 1. For

pN2 < 1, 〈|G−|〉N ∼ pN2, and (〈G+〉 − G+
0 )N ∼ (pN2)η+ ,

where G+
0 ∼ N−1 and η+ ∼ 0.75. In contrast, for pN2 > 1,

both 〈G+〉 and 〈|G−|〉 ∼ pβ , where β ∼ 0.5. We find that

the power-law scaling exponent β � 0.5 for the ensemble-

averaged shear modulus 〈G〉 since the fraction of packings

with negative shear moduli decreases strongly with increas-

ing p for pN2 > 1. Second, we show analytically that the

form for the probability distribution P (G) in the pN2 → 0

limit becomes a � distribution with shape parameter k = 0.5.

In contrast, when pN2 � 1, P (G) becomes a left-skewed

Gaussian distribution. Third, using a Delaunay triangulation

method for calculating the local shear modulus g, we show

that the shear modulus for single triangles, whose vertices

represent the centers of three nearest-neighbor disks, de-

creases linearly with pressure g ∼ g0 − λp, where g0 and

the coefficient λ depend on the triangle’s orientation. This

result is consistent with the dependence of the global shear

modulus with pressure for jammed packings within geo-

metrical families. Further, there can be an abundance of

negative local shear moduli of subsystems composed of

Delaunay triangles even for jammed packings with G > 0.

We find only weak spatial correlations in g over a wide

range of pn2
sub < 10−2, where nsub is the subsystem size.

In contrast, local shear moduli calculated by assuming that

the local strain tensor is affine possess long-ranged spa-

tial correlations with fourfold angular symmetry for all

values of pn2
sub. These results emphasize the importance

of characterizing the effects of nonaffine local strain on

the local shear modulus, elucidate the influence of neg-

ative shear moduli on the ensemble-averaged mechanical

properties of jammed disk packings, and provide promising

directions for linking their local and global mechanical re-

sponse.

The remainder of the paper is organized as follows. In

Sec. II, we introduce the purely repulsive linear spring poten-

tial for modeling the interactions between disks, the protocol

used to generate the jammed disk packings, and the methods

to calculate their local and global shear moduli. We present

our main results in Sec. III including the calculations of 〈G〉,
〈G+〉, and 〈|G−|〉 as a function of p and N and the probability

distributions and spatial correlations of the local shear mod-

uli (for different nsub) using the affine-strain and Delaunay

triangulation methods. The conclusions and promising future

research directions are provided in Sec. IV. We also include

three Appendixes. In Appendix A, we derive the stiffness

tensor for the five types of Delaunay triangles in binary disk

packings in the low-pressure limit. In Appendix B, we provide

additional data for P (G) at intermediate values of pN2. In

Appendix C, we derive the form of P (G) for disk packings

at jamming onset.

II. METHODS

A. Model system and packing generation protocol

We study the mechanical properties of jammed packings

of N frictionless disks with the same mass m in two dimen-

sions. We consider a range of system sizes, including N = 64,

128, 256, and 1024 to investigate the finite-size effects. The

disks interact via the pairwise, purely repulsive linear spring

potential,

U (ri j ) = ε

2

(

1 − ri j

σi j

)2

�

(

1 − ri j

σi j

)

, (1)

where ε is the characteristic energy scale, ri j is the separation

between the centers of disks i and j, σi j = (σi + σ j )/2 is the

average of their diameters σi and σ j , and �(·) is the Heaviside

step function. The total potential energy U = ∑

i> j U (ri j ) is

obtained by summing U (ri j ) over all distinct disk pairs that

are in contact. We focus on binary mixtures with N/2 large

and N/2 small particles and the diameter ratio of the large

to small disk, σl/σs = 1.4, which inhibits crystallization [41].
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Below, we will display the data using m, σs, and ε as the units

for mass, length, and energy, respectively.

To generate jammed packings, we first randomly placed

N disks in a square box with the side length L and peri-

odic boundary conditions in the x and y directions at initial

packing fraction φ0 = 0.83. We then perform minimization of

the enthalpy H = U + p′L2, where p′ is the target pressure

[10,42,43], using the fast inertial relaxation engine (FIRE)

minimization method [44] with a fixed square box shape. The

enthalpy minimization is terminated when the magnitude of

the total force on each disk i satisfies | �fi| < 10−14 and the

pressure satisfies |p − p′| < 10−14.

The global stress tensor of each jammed disk packing is

calculated via the virial expression:


αβ = L−2

N
∑

i> j

ri jα fi jβ , (2)

where ri jα is the α component of the separation vector �ri j =
(xi j, yi j )

T pointing from the center of disk j to the center of

disk i and fi jβ is the β component of the interparticle force

�fi j = −(dU/dri j )r̂i j on disk i from j. The pressure and shear

stress are defined as p = (
xx + 
yy)/2 and 
 = −
xy.

We first generate an ensemble of Ne ∼ 104 jammed disk

packings at low pressure p = 10−7. We then compress each

of the packings in small pressure increments �p with each

increment in pressure followed by enthalpy minimization. We

choose �p such that we have Np ≈ 103 pressure values evenly

spaced on a logarithmic scale between p = 10−7 and 10−2.

B. Calculation of global and local shear moduli

1. Global shear modulus

We calculate the global shear modulus of each packing

using the expression: G = GA − GNA [28,29], where the affine

term GA is the response to the applied affine simple shear

strain and the nonaffine term GNA gives the nonaffine response

of the system as it relaxes to a new potential energy minimum

after the applied simple shear. A simple shear increment δγ

applied to the packing at an angle θ to the x axis, as illus-

trated in Fig. 1, changes the position of disk i to (x′
i, y′

i )
T =

F (x0
i , y0

i )T, where (x0
i , y0

i )T is the original position of the disk

and

F =
[

1 − 1
2
δγ sin 2θ 1

2
δγ (1 + cos 2θ )

− 1
2
δγ (1 − cos 2θ ) 1 + 1

2
δγ sin 2θ

]

(3)

is the deformation gradient tensor. This deformation preserves

the area of the box A = L2, but changes the side lengths of

the confining box to L′ = ‖F (L, 0)T‖ and L′′ = ‖F (0, L)T‖,

where ‖(x, y)T‖ =
√

x2 + y2. The affine and nonaffine contri-

butions to the shear modulus are

GA = 1

L2

∂2U

∂γ 2
, (4a)

GNA = 1

L2
�iαM−1

iα jβ� jβ, (4b)

FIG. 1. Sketch of a simple shear deformation [Eq. (3)] applied to

a square cell (with side length L and area A = L2) at an angle θ to the

x axis. The sides of the undeformed square cell (black solid lines) are

aligned with the x and y axes. The deformed cell (blue dashed lines)

has area A and side lengths L′ = ‖F (L, 0)T‖ and L′′ = ‖F (0, L)T‖.

where Miα jβ = ∂2U
∂riα∂r jβ

is the dynamical matrix, riα is the α

component of �ri = (xi, yi )
T, and ��i = ∂2U

∂�ri∂γ
is the virtual force

incurred after a small shear strain increment.

Both the shear stress and shear modulus vary sinusoidally

with the angle θ at which the simple shear strain is applied

[10,12]:


 = 
a sin 2(θ − θS ), (5a)

G = Ga sin 4(θ − θG) + Gd , (5b)

where 
a and Ga are the amplitudes of the shear stress

and shear modulus, θS and θG are the phase shifts of the

shear stress and shear modulus, and Gd is the angle-averaged

shear modulus. The ensemble-averaged amplitude of the shear

modulus 〈Ga〉 (normalized by 〈Gd〉) reaches a plateau of 1

in the pN2 � 1 limit, whereas 〈Ga〉/〈Gd〉 ∼ 1/(pN2)κ (with

κ ∼ 0.25) tends to zero in the pN2 � 1 limit [10] as shown in

Fig. 2. Since 〈Ga〉 ∼ 〈Gd〉 and 〈Gd〉 > 0 in the pN2 � 1 limit,

G > 0 for all θ in this pressure regime. 〈Ga〉/〈Gd〉 achieves a

FIG. 2. The ensemble-averaged amplitude of the shear modulus

〈Ga〉 [normalized by 〈Gd 〉 in Eq. (5b)] plotted as a function of pN2

for several system sizes N = 64, 256, and 1024. The dashed line has

a slope of −0.25. Similar results were found in Ref. [10].
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peak value >2 near pN2 ∼ 1. In this regime, it is most likely

to obtain a disk packing with G < 0 and the system has one

extra contact on average compared to the isostatic packing. In

the pN2 � 1 limit, 〈Ga〉/〈Gd〉 tends to zero, which indicates

that the shear modulus is isotropic and G > 0 in this regime.

2. Local shear modulus

We employed two methods to calculate the local shear

moduli g of subsystems of jammed packings. In the first

method, which assumes an affine response of each subsystem,

each square system is divided into n × n smaller identical sub-

systems with an average of nsub = N/n2 disks per subsystem.

The notation 1 × 1 indicates that the subsystem corresponds

to the original jammed packing. The local virial stress tensor

for each subsystem � is


�
αβ = n2

L2

∑

i> j

ri jα fi jβ

qi j

ri j

, (6)

where qi j is the length of the portion of ri j that is inside sub-

system �. For this method, we assume that the imposed global

strain represents the local strain of all subsystems. The local

pressure and shear stress are defined as p� = (
�
xx + 
�

yy)/2

and 
� = −
�
xy. We include the effect of nonaffine particle

motion on the shear stress by calculating the shear stress after

energy minimization in response to an applied affine simple

shear strain.Thus, the local shear modulus is g�
A = d
�/dγ .

The area-weighted sum over all subsystems of the local shear

stress 
� and local shear modulus g�
A yield the global shear

stress 
 and shear modulus G.

In the second approach, we seek to more accurately char-

acterize the local strain of each subsystem. We perform

Delaunay triangulation using the disk centers as the vertices

of the triangles and define the stress and strain tensors for

each Delaunay triangle. We first apply three types of defor-

mations separately to a given jammed packing: (i) uniaxial

compression in the x direction (denoted as D1), (ii) uniaxial

compression in the y direction (D2), and (iii) simple shear with

the x axis as the shear direction and the y axis as the shear

gradient direction (D3). The deformation gradient tensors for

these three boundary deformations are

F |D1
=

[

1 − ε 0

0 1

]

, (7a)

F |D2
=

[

1 0

0 1 − ε

]

, (7b)

F |D3
=

[

1 ε

0 1

]

, (7c)

where ε is the strain amplitude of the affine deformation. After

imposing a given affine deformation to the packing (i.e., the

boundary and disk positions), the disks are moved nonaffinely

according to the nonaffine velocity [28],

d�rm

dε
= −M−1

mn
��n (8)

with the boundary held fixed. Using the updated disk positions

(x′
m, y′

m)T = F (x0
m, y0

m)T + ε d�rm

dε
from Eqs. (7) and (8), we can

calculate the deformation gradient tensor,

F
�

i

∣

∣

D
=

[

x′
12 x′

13

y′
12 y′

13

][

x0
12 x0

13

y0
12 y0

13

]−1∣
∣

∣

∣

∣

D

, (9)

for each triangle i (with vertex labels 1, 2, and 3) in a jammed

packing with a given applied deformation D. Using F
�

i |D, we

can determine the associated Green-Lagrangian strain tensor,

E
�

i

∣

∣

D
= 1

2

((

F
�

i

)T
F

�

i − I
)
∣

∣

D
, (10)

where I is the 2 × 2 identity matrix, and the difference in

the second Piola-Kirchhoff material stress tensor for triangle i

before and after the deformation,



m,�

i

∣

∣

D
= det

(

F
�

i

)(

F
�

i

)−1



�

i

(

F
�

i

)−T∣

∣

D
− 


�

i , (11)

which are used to calculate the 3 × 3 stiffness matrix of each

triangle,

Ĉ�
i =

⎡

⎢

⎣

cxxxx cxxyy cxxxy

cyyxx cyyyy cyyxy

cxyxx cxyyy cxyxy

⎤

⎥

⎦
. (12)

The nine components of Ĉ�
i can be obtained from Hooke’s

law relating stress and strain, i.e., by solving the following set

of nine equations:
⎡

⎢

⎣



m,�
ixx



m,�
iyy



m,�
ixy

⎤

⎥

⎦

D1

= Ĉ�
i

⎡

⎣

E�
ixx

E�
iyy

2E�
ixy

⎤

⎦

D1

, (13a)

⎡

⎢

⎢

⎣



m,�
ixx



m,�
iyy



m,�
ixy

⎤

⎥

⎥

⎦

D2

= Ĉ�
i

⎡

⎢

⎣

E�
ixx

E�
iyy

2E�
ixy

⎤

⎥

⎦

D2

, (13b)

⎡

⎢

⎢

⎣



m,�
ixx



m,�
iyy



m,�
ixy

⎤

⎥

⎥

⎦

D3

= Ĉ�
i

⎡

⎢

⎣

E�
ixx

E�
iyy

2E�
ixy

⎤

⎥

⎦

D3

. (13c)

In this work, since we are interested in studying the shear

modulus, we focus on the component cxyxy ≡ g�
DT .

Similar to Eq. (2), the virial stress tensor of each triangle i

is defined as


�
iαβ = 1

2

∑

m>n

rmnα fmnβ, (14)

where m and n refer to the three disks forming a given De-

launay triangle i. Note that each contacting pair of disks is

shared by two triangles and thus the stress from this contact

contributes half to each triangle. The area factor in Eq. (2)

is not included in Eq. (14) to simplify the classification of

triangle types (see Appendix A).

The virial stress and deformation gradient tensors for a

subsystem � that is composed of n� connected triangles are



� =

n�
∑

i



�

i , (15a)

F
� = 1

A�

n�
∑

i

A�
i F

�

i , (15b)
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where 

�

i , F
�

i , and A�
i are the virial stress tensor, deformation

gradient tensor, and area of triangle i, respectively, and A� =
∑n�

i A�
i . We can substitute Eqs. (15a) and (15b) into Eqs. (10),

(11), and (13) to obtain the Green-Lagrangian strain tensor

E
�
, material stress tensor 


m,�
, and the associated stiffness

tensor Ĉ� of subsystem �. In Sec. III C, we will consider a

range of subsystems with different sizes, e.g., single Delaunay

triangles, pairs of triangles that share one edge, polygons

whose vertices correspond to a disk and its Voronoi-neighbor

disks, and subsystems containing an average number of disks

nsub = 2N/n2 whose centroids are located within squares of

side length L/n.

The main difference between the affine-strain and Delau-

nay triangulation methods for determining the local shear

modulus is whether one chooses the deformation gradient ten-

sor applied to the boundary as the local deformation gradient

tensor or the F
�

that minimizes the magnitude of the non-

affine displacement for each local region. Thus, the Delaunay

triangulation method for calculating the local shear modulus

considers the effects of nonaffine particle motion on both the

shear stress and local strain.

III. RESULTS

Our results are organized into three sections. In Sec. III A,

we describe how the inclusion of jammed packings with neg-

ative shear moduli affects the pressure dependence of the

ensemble-averaged global shear modulus 〈G〉. We also show

that the global shear modulus distribution P (G) collapses with

pN2 and its form varies from a right-skewed � distribution

in the pN2 → 0 limit to a left-skewed Gaussian distribution

in the pN2 � 1 limit. In Sec. III B, we describe the results

for the distribution of the local shear moduli P (g�
A) using

the affine-strain method for decomposing the stress and strain

tensors for each subsystem. We show that the affine local

shear moduli possess long-range spatial correlations over the

full range of pn2
sub, where nsub is the size of each subsystem.

In Sec. III C, we show that the form of P (g�) differs for g�

defined using the affine and nonaffine methods. The spatial

correlations of g�
DT defined using the nonaffine method with

Delaunay triangulation are much weaker than g�
A defined using

the affine method over the full range of pn2
sub. We also show

that jammed disk packings with global shear moduli G > 0

can possess negative local shear moduli.

A. Global shear modulus

In this section, we describe the pressure and system-size

dependence of the global shear modulus probability distribu-

tion P (G) and the ensemble-averaged value,

〈G〉 = (1 − F−)〈G+〉 + F−〈G−〉, (16)

where F− is the fraction of jammed packings with negative

shear moduli, and 〈G+〉 and 〈G−〉 are the ensemble-averaged

values of the positive and negative global shear moduli, re-

spectively. First, in Fig. 3(a), we show that 〈G〉 (as well

as 〈G+〉 and 〈|G−|〉) collapse when plotted versus pN2 as

found previously [10,14]. Previous computational studies of

jammed sphere packings (with repulsive linear spring inter-

FIG. 3. (a) Ensemble-averaged positive contribution (〈G+〉, solid

symbols), absolute value of the negative contribution (〈|G−|〉, open

symbols), and total global shear modulus (〈G〉, half-filled symbols)

multiplied by N and plotted as a function of the scaled pressure

pN2 for N = 64 (black squares), 256 (red circles), and 1024 (blue

triangles). 〈G〉N is multiplied by a factor of 10 to improve visualiza-

tion. The solid and dashed lines have slopes 1 and 0.5, respectively.

The inset shows (〈G+〉 − G+
0 )N (solid symbols) and (〈G〉 − G0 )N

(half-filled symbols) as a function of pN2. For pN2 < 1, they possess

power-law scaling exponents of ∼0.75 and 1, respectively. (b) The

fraction F− (solid symbols) of jammed packings with negative shear

moduli (G < 0) plotted as a function of pN2 for the same systems in

(a). Open symbols represent the ensemble average of the difference

in the total number of contacts Nc relative to the isostatic contact

number N iso
c = 2N0 − 1, where N0 is the number of nonrattler disks

[43], plotted as a function of pN2. (c) Ensemble-averaged standard

deviation of the shear modulus, SG, scaled by N and plotted as a

function of pN2.

actions) have also emphasized that the ensemble-averaged

global shear modulus displays power-law scaling with pres-

sure, 〈G〉N ∼ (pN2)β , where β ∼ 0.5, in the large-pN2 limit

[5,14]. However, in Fig. 3(a), the scaling exponent β � 0.5

in the range 10 � pN2 � 104 [13]. According to Eq. (16),

the scaling exponent β can be larger than 0.5 if F− depends

strongly on pressure, even when both 〈G+〉 and 〈|G−|〉 scale

as (pN2)0.5 at large values of pN2 [cf. Fig. 3(a)]. In particular,

we show in Fig. 3(b) that the fraction F− of packings with

negative global shear moduli has strong pN2 dependence; it

forms a peak with F− ∼ 0.5 for pN2 ∼ 1, where the disk

packings have gained one additional contact 〈Nc − N iso
c 〉 = 1,

and falls to zero for both smaller and larger values of pN2.
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Indeed, previous studies have shown that β ≈ 0.5 for pN2 > 1

for ensembles of jammed packings that are generated using

the shear-stabilizing algorithm [10,12], which ensures that the

jammed packings possess zero residual stress and G > 0 in all

directions.

In Fig. 3(a), we show that in the low-pressure limit the

ensemble-averaged global shear modulus 〈G〉 tends to a con-

stant G0 ∼ N−1 that decreases to zero in the large-system limit

[14]. Previous studies of jammed packings of frictionless,

spherical particles have shown that (〈G〉 − G0)N ∼ (pN2)η

with η ∼ 1 for pN2 < 1. Similar scaling is shown in the inset

of Fig. 3(a). In the current studies, we show that (〈G+〉 −
G+

0 )N ∼ (pN2)η+ , where η+ ∼ 0.75, and 〈|G−|〉N ∼ pN2 in

the low-pressure limit. The difference in the power-law scal-

ing exponents for (〈G〉 − G0)N and 〈G+〉 − G+
0 )N has not

been emphasized in previous studies [10]. The difference is

caused by the presence of negative shear moduli in this regime

of pN2, and thus we expect that (〈G〉 − G0)N ∼ 〈G+〉 −
G+

0 )N ∼ (pN2)η+ will obey the same scaling relation with

η+ ∼ 0.75 < 1 for sufficiently small pN2 and F− (in the limit

of large N). Such simulations are challenging because they

require studies at successively smaller pressures and improved

force balance as the system size increases. Computational

studies focusing on the regime pN2 < 10−4 in the large-N

limit, where isostatic systems form their first additional con-

tact, will be carried out in future studies to investigate the

scaling exponents η and η+.

We have shown that the power-law scaling of the ensemble-

averaged shear modulus depends on the fraction of jammed

disk packings with negative shear moduli. We will now study

the probability distribution of global shear moduli P (G) as a

function of pressure and system size to determine the preva-

lence of G < 0. In Fig. 4, we show the shifted and normalized

distributions P (G∗) = P (G∗)SG, where

G∗ = G − 〈G〉
SG

, (17)

and SG is the standard deviation of P (G). Similar to 〈G〉, SGN

collapses for different system sizes when plotted versus pN2,

as shown in Fig. 3(c). In the pN2 � 1 limit, SG tends to a

constant SG0 ∼ N−1. For pN2 > 0.1, SGN begins to increase.

In the pN2 � 1 limit, SGN scales roughly as a power law

(pN2)ζ , where ζ ∼ 0.3.

As we found for the average values, the probability dis-

tribution P (G∗) collapses at fixed pN2 (at different values

of p and N). In the pN2 � 1 limit [e.g., pN2 = 58 in

Fig. 4(c)], P (G∗) obeys a skew-normal distribution [Eq. (B3)

in Appendix B] with negative skewness. See Table I for the

specific parameters of the skew-normal distribution that de-

scribe P (G∗) in Fig. 4(c). In contrast, in the pN2 � 1 limit,

P (G∗) obeys a � distribution with shape parameter k = 0.5

for G∗ > −〈G〉/SG and is zero for G∗ < −〈G〉/SG, as shown

in Fig. 4(a) for pN2 = 4 × 10−4 [see Eq. (B2) in Appendix B].

We now derive an expression for the probability distribu-

tion P (G) for disk packings in the pN2 � 1 limit. As shown

in Eq. (5), both the global shear modulus G and shear stress 


vary sinusoidally with the shear angle θ (defined in Fig. 1),

which implies that the relation between G and 
 is a Lis-

sajous curve [45] with an angular frequency ratio of 2. Using

FIG. 4. The probability distribution P (G∗) of shifted and nor-

malized global shear moduli, where G∗ = (G − 〈G〉)/SG and SG is

the standard deviation in G for jammed disk packings with (a) pN2 =
4 × 10−4, (b) 1, and (c) 58 and system sizes N = 64 (black squares),

256 (red circles), and 1024 (blue triangles). The solid lines in (a) and

(c) represent a � distribution with shape parameter k = 0.5 [Eq. (22)]

and a skew-normal distribution [Eq. (B3)], respectively. An interpo-

lation between these two forms [Eq. (B6)] is shown as the solid line

in (b). The parameters that specify the distributions in (b) and (c) are

given in Table I.

TABLE I. The parameters that determine the shape of the prob-

ability distributions of the global shear moduli P (G∗) in Fig. 4,

where G∗ = (G − 〈G〉)/SG, SG is the standard deviation of G, μSN

is the shape parameter of the skew-normal distribution, PSN (G∗),

and 0 � s � 1 determines the relative contribution of P� (G∗ − G∗
m )

(where G∗
m is the location of the peak in P (G∗)) and PSN (G∗) to

P (G∗) [cf. Eqs. (B2), (B3), and (B6)]. SSN
G∗ and S�

G∗ are the standard

deviations of the PSN (G∗ − Gm ) and P� (G∗) contributions to P (G∗).

P� (G∗ − G∗
m ) PSN (G∗)

Distribution G∗
m S�

G∗ 〈G∗〉SN SSN
G∗ μSN s

Fig. 4(b) −0.571 2.446 −0.184 0.503 4.314 0.665

Fig. 4(c) − − 0.0712 0.735 −1.032 0
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FIG. 5. The global shear modulus G (solid line) and shear stress


 (dashed line) plotted as a function of the shear angle θ for a given

N = 64 jammed packing in the pN2 � 1 limit. The vertical dotted

lines indicate values of the shear angle θc at which 
(θc ) = 0. At θc,

G(θc ) is a minimum, which indicates that θG − θS = π/8.

Eqs. (5a) and (5b), we find that G and 
 are related via

G(θ ) =
(

2[
(θ )]2


2
a

− 1

)

Ga sin 4(θG − θS ) + Gd

− 2
(θ )


a

√

1 − [
(θ )]2


2
a

Ga cos 4(θG − θS ). (18)

We show in Fig. 5 that at jamming onset the difference in the

phase shift between G(θ ) and 
(θ ) satisfies θG − θS = π/8

and in Fig. 6(a) we show that Ga = Gd at jamming onset.

Thus, in the pN2 � 1 limit, Eq. (18) becomes

G = 2
Ga


2
a


2. (19)

Further, in Fig. 6(b), we show that the amplitude of the

shear modulus Ga is proportional to 
2
a in the pN2 � 1 limit,

Ga = Ac

2
a , where Ac ∼ 1/p2 and 
2

a ∼ p2/N . Also, previ-

ous studies have shown that the probability distribution of the

shear stress for jammed disk packings generated by isotropic

compression is Gaussian centered on 
 = 0 [46]:

P (
) = 1

ωs

√
2π

e− 1
2

(
/ωs )2

, (20)

where ωs is the standard deviation. Using Eqs. (19) and (20),

we show in Appendix C that the probability distribution of the

global shear moduli is a � distribution with shape parameter

k = 0.5 in the pN2 � 1 limit:

P� (G) = 1

2ωs

√
πAcG

e
− G

4Acω2
s . (21)

We can now rewrite Eq. (21) in terms of the shifted and

normalized shear modulus G∗ in Eq. (17):

P� (G∗) = 1
√

π
√

1 +
√

2G∗
e− 1

2
(1+

√
2G∗ ). (22)

This expression is indicated by the solid line in Fig. 4(a).

As illustrated in Fig. 4, P (G∗) varies continuously with

pN2 from a � distribution for pN2 � 1 to a skew-normal dis-

tribution for pN2 � 1. P (G∗) at intermediate values of pN2

FIG. 6. (a) Probability distribution P (Gd , Ga ) for jammed disk

packings with N = 64 at low pressure p = 10−7. (b) Probability

distribution P (
2
a , Ga ) for jammed packings with N = 64 and p =

10−7. The dashed line obeys Ga = Ac

2
a . In both panels, the proba-

bility increases from violet to yellow.

can be approximated by a linear combination of P� (G∗ − G∗
m)

[where G∗
m is the location of the maximum of P (G∗)] and

PSN (G∗), as shown in Fig. 4(b). The best-fit parameters for

P (G∗) in Fig. 4 are listed in Table I. In Fig. 7, we show the

FIG. 7. The skewness μ3 [Eq. (23)] of the shifted and normalized

distribution of global shear moduli P (G∗) plotted versus pN2 for

N = 64, 256, and 1024.
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skewness

μ3 = 〈(G − 〈G〉)3〉
SG

3
, (23)

of P (G∗) as a function of pN2. The skewness is positive in the

pN2 � 1 limit since P (G∗) is a � distribution, it slightly in-

creases with pN2 for pN2 < 0.1, and then it decreases rapidly

for pN2 > 0.1. The skewness becomes negative and reaches

a plateau value μ3 ∼ −1.5 in the pN2 � 1 limit. In addition,

the distribution of shear moduli for G < 〈G〉 and pN2 > 0.1

possesses a power-law tail with exponent ≈ −3.5 [47].

B. Local shear moduli g�

A defined using the affine-strain method

In this section, we focus on the local shear moduli of

jammed disk packings. In particular, we investigate whether

the local shear moduli of jammed disk packings mimic the

distribution of global shear moduli. For example, do jammed

disk packings possess negative local shear moduli? We first

calculate the local shear moduli g�
A using the affine-strain

method and determine the probability distribution P (g�
A) and

spatial correlations in g�
A as a function of p and N .

1. Probability distribution of local shear moduli P (g�

A)

The affine-strain method for calculating the local shear

moduli of a jammed disk packing assumes that each of the

n × n subsystems experiences the same simple shear strain

γ . In Sec. II B 2, we defined g�
A = d
l/dγ , where the local

shear stress 
l is given by Eq. (6). The area-weighted sum

of g�
A over all subsystems yields the global shear modulus

G. In Fig. 8, we show the probability distribution of local

shear moduli P (g�
A) as a function of subsystem size nsub =

N/n2 at pN2 ≈ 0.1 and ≈104. At small values of pN2, the

maximum in P (g�
A) remains roughly unchanged as a func-

tion of subsystem size. The skewness of P (g�
A) decreases

with decreasing subsystem size due to an increasing frac-

tion of negative local shear moduli, g�
A < 0. Thus, jammed

packings with G > 0 in the pN2 � 1 can contain local re-

gions with negative local shear moduli. At large values of

pN2, the peak position shifts to smaller g�
A and P (g�

A) be-

comes more symmetric as the subsystem size decreases, as

shown in Fig. 8(b). For all values of pN2, P (g�
A) is more

symmetric than the distributions of the global shear mod-

uli. This result raises the question of whether there is a

combination of p, N , and nsub at which the probability dis-

tributions of global and local shear moduli have the same

form.

An important goal in statistical physics is to describe the

average properties of jammed solids at a given pressure p in

the infinite particle number limit, N → ∞. Obviously, it is

challenging to study extremely large, jammed packings, and

thus it would be advantageous if we could calculate the aver-

age mechanical properties of a packing in the N → ∞ limit

by averaging over an ensemble of smaller jammed packings

with N ′ � N . This question can be recast in terms of the shear

modulus: For what value of p′ and N ′ does the distribution of

shear moduli match that at different values of p and N? This

question can be asked for the global shear moduli at different

FIG. 8. The probability distribution of normalized global shear

moduli P (G/SG) and probability distribution of normalized local

shear moduli P (g�
A/Sg�

A
) obtained from the affine-strain method for

different-sized subsystems at (a) pN2 ≈ 0.1 and (b) 104 for N =
1024. The skewness μ3 of the distributions for each subsystem size

is indicated. The notation n × n indicates that we partitioned each

jammed disk packing into n × n equal-sized, square subsystems.

Note that 1 × 1 indicates that the subsystem corresponds to the

original jammed packing.

values of p, p′, N , and N ′ and for local shear moduli within

packings at a given p and N and the global shear modulus at

p′ and N ′.
To quantitatively compare two probability distributions

P1(x) and P2(x), where x = g�∗
A or G∗, we will calculate their

Jensen-Shannon divergence [48],

DJS(P1, P2) = 1
2
[DKL(P1, PM ) + DKL(P2, PM )], (24)

where PM = 1
2
(P1 + P2),

DKL(P1, PM ) =
∫

P1(x) log2

(

P1(x)

PM (x)

)

dx, (25)

and DJS(P1, P2) is bounded between 0 (when P1 =
P2) and 1 (when there is no similarity between P1

and P2).

In Fig. 9, we determine DJS between P (G∗) for jammed

disk packings at pressure p′ and system size N ′ and P (g�∗
A )

for jammed disk packings at pressure p and system size N

using subsystems with n2 = 4 and 25. For pN2 > 1, one can

identify values of p′ and N ′ for which the distribution of global

shear moduli P (G∗) matches the distribution of local shear

moduli P (g�∗
A ) obtained from jammed disk packings at p and

N . Examples of the matching pairs of distributions are shown
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FIG. 9. The Jensen-Shannon divergence DJS between the prob-

ability distribution of global shear moduli P (G∗) at pressure p′

and system size N ′ and the probability distribution of local shear

moduli P (g�∗
A ) (calculated using the affine-strain method) at pressure

p and system size N for subsystem sizes (a) n2 = 4 and (b) 25. DJS

increases, i.e., the distributions become more dissimilar, from violet

to yellow. The dashed lines correspond to the power-law scaling

p′N ′2 ∼ (pN2)ν , where ν ∼ 0.91 and 0.55 in (a) and (b), respectively.

in Fig. 10 for p′N ′2 ≈ 1.5 and 10. We find that the pairs p

and N and p′ and N ′ that yield similar distributions obey the

following scaling relation:

p′N ′2 = A(pN2)ν, (26)

where A is nearly constant over the range of subsystem and

system sizes studied. In Fig. 11, we show that the power-law

scaling exponent ν increases with increasing subsystem size

with a weak overall system-size dependent correction. Note

that the range of pN2 values over which DJS � 10−2 decreases

with increasing n2. In particular, for pN2 < 1, it is difficult

to identify pairs of p′ and N ′ and p and N at which the

distributions of local and global shear moduli are similar. The

distributions of the local and global shear moduli become

different in the pN2 � 1 limit because G > 0 for all jammed

disk packings in that limit, yet as the subsystems become

smaller, it is more likely for g�
A < 0.

FIG. 10. Probability distributions of the normalized and shifted

global P (G∗) and local shear moduli P (g�∗
A ) (calculated using the

affine-strain method) for values of p and N and p′ and N ′ that yield

similar distributions. The subsystem sizes 1 � n2 � 36 and values of

pN2 are indicated. We show p′N ′2 ≈ 1.5 and 10 in (a) and (b), which

determine the shape of P (G∗). The notation n × n indicates that we

partitioned each jammed disk packing into n × n equal-sized, square

subsystems.

2. Spatial correlations of local shear moduli g�

A

In Fig. 12, we show the spatial correlation function

of the shifted and normalized local shear moduli C(�r) =

FIG. 11. The power-law scaling exponent ν (filled symbols) in

Eq. (26) that relates pairs of pressures and system sizes that yield

matching distributions for the global and local shear moduli (i.e.

DJS � 10−2) plotted as a function of 1/n, where nsub = N/n2 is the

subsystem size. ν is only weakly dependent on system size when we

include the factor of N−0.1. The open symbols with ν = 1 correspond

to comparisons of the distributions of global shear moduli at different

values of p and N , but the same values of pN2.
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FIG. 12. Spatial correlation function C(�r/L) of the shifted and

normalized local shear moduli g�∗
A (calculated using the affine-strain

method) for jammed disk packings with n2 = 144 and pressures:

(a) pN2 = 10−1 and (b) 104. We do not display correlations for

r <
√

2L/n in the inner circular region.

〈g�∗
A (0)g�∗

A (�r)〉 (using the affine-strain method) for subsys-

tems with n2 = 144 and pressures pN2 = 10−2 and 104. Over

the full range of pN2, we find that C(�r) displays long-

range fourfold spatial correlations. Previous studies have also

found long-ranged spatial correlations in the local shear stress

in zero-temperature amorphous solids [20]. The long-range,

angle-dependent spatial correlations imply that the size of

the correlations will depend on the shape of the subsystems

that are used to calculate the local shear modulus g�
A. For

example, we have found that C(�r) is significantly different for

jammed packings decomposed into n2 square subsystems with

side lengths L/n and into n2 rectangular subsystems with side

lengths L/n2 and L.

C. Local shear moduli g�

DT defined using the Delaunay

triangulation method

In the previous section, we focused on local shear mod-

uli calculated using the affine-strain method. However, the

disks in jammed packings have significant nonaffine motion

in response to applied simple shear deformations [28–31], as

shown in Fig. 13. In this section, we characterize the local

shear moduli of jammed disk packings using the Delaunay

FIG. 13. Images that display the disk motion in an N = 1024

jammed disk packing at pN2 = 1 in response to a simple shear

deformation. (a) An affine simple shear deformation with strain

γ = 10−9 has been applied to the boundaries and all disks. (b) Non-

affine displacement field following potential energy minimization

with the boundary held fixed after the simple shear deformation

in (a). (c) Total displacement field, i.e., the sum of the affine and

nonaffine displacement fields in (a) and (b). All displacement vectors

have been scaled by a factor of 6 × 107 to improve visualization.

triangulation method to accurately define the local strain in

each subsystem. We calculate the distribution of local shear

moduli as a function of the size and shape of the subsystem,

including triangles, polygons, and squares. In addition, we

determine the spatial correlations of the local shear moduli

as a function of pN2.

1. Types of Delaunay triangles

We first consider the local shear moduli of subsystems

composed of single triangles obtained from Delaunay trian-

gulation of the disk centers in jammed disk packings. There

are several types of triangles that can be obtained from
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FIG. 14. The average difference 〈cRxyxy − c0
xyxy〉 in the stiffness

matrix components between single Delaunay triangles in jammed

disk packings and the corresponding reference triangles plotted as

a function of pressure p for each triangle type in Appendix A. Open

and filled symbols indicate N = 256 and 1024, respectively, and the

dashed lines indicate best fits to 〈cRxyxy − c0
xyxy〉 = −λp.

Delaunay triangulation of binary disk packings, and we will

classify them based on the form of the triangle stiffness matrix

[Eq. (12)]. First, we do not consider triangles formed from

three disks with no mutual contacts since they would have

zero local stress. We define triangle type 1 as triangles with

a single contact among the three disks. This triangle type can

include all possible disk size combinations since in this case

the stiffness matrix is the same for triangles with three large

disks, three small disks, two small disks and one large disk,

and two large disks and one small disk. We define triangle

type 2 as triangles with two contacts among any of the three

disks since the stiffness matrix again does not depend on the

size combinations. For triangle types 3, 4, and 5, all disks are

in contact with each other. For type 3, all three disks are the

same size. For type 4, two of the disks are small and one disk

is large. For type 5, two of the disks are large and one is small.

The triangle types are displayed in Appendix A.

The stiffness matrix depends on each triangle’s orientation.

Thus, in Appendix A, we first calculate the reference stiffness

tensor Ĉ�
i0 for each of the five triangle types in a specific

reference orientation. We then calculate the stiffness matrix

for each triangle i in jammed disk packings using Eq. (13)

and transform Ĉ�
i to the reference orientation using Ĉ�

i,R =
RĈ�

i RT, where

R =

⎡

⎢

⎢

⎣

cos2 αr sin2 αr sin 2αr

sin2 αr cos2 αr − sin 2αr

− 1
2

sin 2αr
1
2

sin 2αr cos 2αr

⎤

⎥

⎥

⎦

(27)

and αr is the rotation angle that takes triangle i from the orien-

tation in the jammed disk packing to the reference orientation

in Appendix A.

In Fig. 14, we show the ensemble-averaged xyxy compo-

nent of the difference in the stiffness tensors, Ĉ�
i,R − Ĉ�

i,0, for

triangle i in a given jammed packing and the corresponding

reference triangle as a function of pressure. (Note that when a

triangle changes type due to a particle rearrangement during

compression, we stop measurements on that particular trian-

FIG. 15. Probability distributions of the normalized global

P (G/SG) and local shear moduli P (g�
DT /Sg�

DT
) obtained via Delau-

nay triangulation for different subsystem shapes and sizes, including

single triangles, two adjacent triangles, Voronoi polygons, and

squares with n2 = 1, 4, 16, 36, 64, 100, and 144 at (a) pN2 ≈ 0.1

and (b) 104 and N = 1024. The notation n × n indicates that we

partitioned each jammed disk packing into n × n equal-sized, square

subsystems.

gle.) Similar to the pressure dependence of the global shear

modulus within geometrical families [16,17], we find that

cRxyxy − c0
xyxy = −λp decreases linearly with pressure. Similar

results are found for the other components of Ĉ�
i,R − Ĉ�

i,0.

2. Probability distribution of local shear moduli P (g�

DT )

We first show the probability distributions of the local shear

moduli [i.e., g�
DT ≡ cxyxy from Eq. (12)] from single Delau-

nay triangles in jammed disk packings (without performing

rotations to the corresponding reference triangles) in Fig. 15.

We find two key features in P (g�
DT /Sg�

DT
) for single Delaunay

triangles. First, the probability of g�
DT < 0 is small over the

full range of pN2. Second, since there are only five Delaunay

triangle types in binary disk packings, P (g�
DT /Sg�

DT
) displays

multiple distinct peaks. The peaks at large g�
DT are maintained

as pN2 increases, but the peak at small g�
DT decreases sig-

nificantly. Multiple peaks in P (g�
DT /Sg�

DT
) are still found for

g�
DT based on subsystems composed of two adjacent triangles,

whereas, P (g�
DT /Sg�

DT
) possess a single peak for g�

DT based

on Voronoi polygons or larger subsystems, such as the square

subsystems with side length L/n and n � 12.

Similar to P (g�
A/Sg�

A
) obtained using the affine-strain

method for calculating the local shear modulus, P (g�
DT /Sg�

DT
)
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FIG. 16. Probability distributions of normalized local shear mod-

uli P (g�/Sg� ) obtained using the affine-strain (filled symbols) and

Delaunay triangulation (open symbols) methods at pN2 ≈ 104 over

a range of square subsystem sizes, n2 = 4, 16, 64, and 144.

for the Delaunay triangulation method converges to P (G/SG)

as the size of the subsystem increases (i.e., square subsystems

with n2 = 1). At large pN2, P (g�
DT /Sg�

DT
) is left skewed with

μ3 < 0 for the largest subsystem sizes and μ3 increases and

becomes positive with decreasing subsystem size. In Fig. 16,

we directly compare P (g�/Sg� ) for local shear moduli cal-

culated using the affine-strain and Delaunay triangulation

methods in the pN2 � 1 limit. For small subsystems, e.g.,

n2 = 64 and 144, P (g�/Sg� ) for the two methods are sig-

nificantly different. This result stems from the fact that the

nonaffine contributions to the displacement fields play a more

significant role in the mechanical response at smaller length

scales (cf. Fig. 13). The affine-strain method for calculating

the local shear modulus does not properly characterize the

strain tensor of small subsystems, and thus does not accurately

capture g�. For sufficiently large subsystem sizes, i.e., n2 = 4

and 16, the distributions of local shear moduli obtained from

the two methods become similar.

3. Spatial correlations of local shear moduli g�

DT

In Fig. 17, we show the spatial correlation function

of the normalized and shifted local shear moduli, C(�r) =
〈g�∗

DT (0)g�∗
DT (�r)〉, for g�∗

DT calculated using the Delaunay trian-

gulation method. In contrast to C(�r) for local shear moduli

calculated using the affine-strain method, C(�r) for local shear

moduli calculated using the Delaunay triangulation method

does not possess strong spatial correlations at low pressures,

as shown in Fig. 17(a). At high pressures, e.g., p = 10−2, C(�r)

regains long-range, fourfold symmetric spatial correlations, as

shown in Fig. 17(b). In Fig. 18, we show that the fluctuations

in the spatial correlations, n�C, collapse with pn2
sub, where

�C =
√

〈(C − 〈C〉)2〉, 〈·〉 indicates a spatial average, and

nsub = N/n2 is the average number of particles in each square

subsystem with side length L/n. n�C ∼ 0.01 is constant in

the low-pressure limit. When pn2
sub � 10−2, n�C begins to

increase, reaches a peak near pn2
sub ∼ 1, and then decreases

for pn2
sub � 1. The low-pressure regime (i.e., pn2

sub � 10−2)

for which n�C is constant corresponds to the regime for

which the spatial correlation function of the local shear moduli

is short ranged.

FIG. 17. Spatial correlation function C(�r/L) of the local shear

moduli (obtained using the Delaunay triangulation method) of

jammed disk packings using square subsystems with n2 = 144 at

(a) pN2 = 10−1 and (b) 104. We do not display correlations for

r <
√

2L/n in the inner circular region.

To determine the local shear modulus, one must determine

the change in shear stress in response to a change in the

local strain. Both methods, the affine-strain and Delaunay

FIG. 18. The standard deviation �C of the spatial correlation

function of local shear moduli g�
DT (multiplied by n) plotted as a func-

tion of pn2
sub, where nsub = N/n2 is the average number of particles in

each square subsystem with side length L/n. g�
DT is calculated using

the Delaunay triangulation method.
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triangulation methods, consider the effect of nonaffine particle

motion on the shear stress by calculating the shear stress after

energy minimization in response to an applied affine simple

shear strain. The main difference between the two methods

for determining the local shear modulus is the calculation of

the local strain. The affine-strain method does not compare the

change in stress to the true local strain after energy minimiza-

tion, whereas the Delaunay triangulation method does. The

spatial correlations for the local shear moduli calculated via

the affine-strain method are long-ranged for all values of pN2,

which likely stems from the fact that the true local strain is

not used to determine the local shear modulus. In contrast, the

spatial correlations of the local shear moduli using Delaunay

triangulation to determine the local strain are short ranged for

pn2
sub � 1. The local strain in response to a small shear strain

is highly heterogeneous due to the nonaffine particle motion,

which increases near jamming onset [26].

4. Correlation between Delaunay triangle orientation and g�

DT < 0

In Fig. 15, we showed that the local shear moduli for single

Delaunay triangles are nearly all positive over the full range

of pN2. However, we find that there are a significant number

of negative local shear moduli for subsystems composed of

two or more adjacent triangles even in the pN2 � 1 limit. In

this section, we investigate whether there is a difference in the

orientation of the triangles within subsystems with positive

versus negative local shear moduli. To address this question,

we calculate the probability distribution of the rotation angle

P (αr ) of Delaunay triangles relative to the orientation of the

reference triangle types in Appendix A. As shown in Fig. 19,

type-1 triangles in subsystems composed of two adjacent tri-

angles with g�
DT > 0 are more likely to possess αr ∼ π/4 and

3π/4, which maximizes cxyxy. In contrast, the most likely

αr for type-1 triangles within subsystems of two adjacent

triangles with g�
DT < 0 correspond to αr that minimize cxyxy.

We find similar results for type-2, -4, and -5 triangles within

subsystems composed of two adjacent triangles. However, for

type-3 triangles, the stiffness tensor is independent of the

rotation angle and thus P (αr ) = 1/π is uniformly distributed

between 0 and π for type-3 triangles within subsystems com-

posed of two adjacent triangles and both positive and negative

local shear moduli [see Fig. 19(a)].

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we study the global and local shear moduli of

jammed packings composed of N repulsive, frictionless disks.

The jammed disk packings are generated via isotropic com-

pression at fixed boundary strain, and thus they can possess

either positive and negative global shear moduli. We de-

composed the ensemble-averaged global shear modulus into

contributions from packings with positive and negative global

shear moduli, 〈G〉 = (1 − F−)〈G+〉 + F−〈G−〉, where F− is

the fraction of packings with negative global shear moduli and

〈G+〉 and 〈G−〉 are the ensemble-averaged values for packings

with positive and negative global shear moduli, respectively.

We find that 〈G+〉N and 〈|G−|〉N both scale as ∼(pN2)1/2 for

pN2 > 1. Despite this, 〈G〉N ∼ (pN2)β with β � 0.5 since

F− depends strongly on pressure [13]. For pN2 < 1, we find

FIG. 19. Probability distribution of the rotation angle P (αr )

[Eq. (27)] that relates Delaunay triangles in jammed disk packings

to the reference triangle types in Appendix A for (a) type-3 and

(b) type-1 triangles within subsystems composed of two adjacent

triangles with positive (squares) and negative (circles) local shear

moduli. (c) The cxyxx , cxyyy, and cxyxy components of the stiffness ten-

sor [Eq. (12)] for type-1 triangles as a function of αr . The horizontal

dashed line in (a) corresponds to a uniform probability distribution

over the range 0 � αr � π .

that 〈|G−|〉N ∼ pN and (〈G+〉 − G+
0 )N ∼ (pN2)0.75 possess

different power-law scaling exponents.

Not only do the ensemble-averaged global shear moduli

scale with pN2, but the probability distribution of global

shear moduli P (G) collapses at fixed pN2 and different val-

ues of p and N . We showed analytically that P (G) is a �

distribution with shape parameter k = 0.5 in the pN2 � 1

limit. As pN2 increases, P (G) transitions from a � distri-

bution with positive skewness in the small pN2 limit to a

skew-normal distribution with negative skewness in the large

pN2 limit.

We also calculated the local shear moduli of jammed disk

packings g� using two distinct methods: the affine-strain and

Delaunay triangle methods. When using the affine-strain

method, we find that P (G∗) and P (g�∗
A ) possess similar

forms for pN2 > 1 and the spatial correlation function of

the local shear moduli C(�r) is long ranged with fourfold
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angular symmetry over the full range of pN2. However, the

affine-strain method does not accurately describe the strongly

nonaffine displacement fields that occur in response to applied

deformations.

In contrast, the spatial correlation function for g�
DT calcu-

lated using the Delaunay triangulation method depends on

pn2
sub, where nsub = N/n2 is the number of disks per sub-

system. In the pn2
sub � 1 limit, the standard deviation of

the spatial correlation function n�C ∼ 0.01 reaches a small

plateau value and C(�r) possesses weak spatial correlations.

The short-ranged spatial correlations for the Delaunay trian-

gulation method at low pressure are caused by the random

orientations of the triangles and the strong spatial hetero-

geneity of the nonaffine displacements [26]. n�C increases

with pn2
sub and C(�r) begins to develop long-ranged, four-

fold symmetric spatial correlations at pn2
sub > 10−2. We find

very few single Delaunay triangles that possess g�
DT < 0.

However, there is an abundance of subsystems composed of

two or more adjacent triangles that possess g�
DT < 0 and the

individual triangles within these subsystems tend to orient

in directions that minimize the components of the stiffness

tensor.

These results raise several important, open questions for fu-

ture research. First, what is the contribution of jammed pack-

ings with negative shear moduli to the ensemble-averaged

density of vibrational modes D(ω)? Will the observed power-

law scaling of D(ω) ∼ ω4 at low frequencies be affected by

packings with negative shear moduli [49,50]? Second, when

we calculate the local shear moduli using Delaunay triangula-

tion, we find that there are growing spatial correlations with

increasing pressure pn2
sub in contrast to previous work that

shows growing spatial correlations with decreasing pressure

associated with the isostatic length scale [51–53]. What is

the origin of the growing spatial correlations with increasing

pressure? Third, the ratio 〈Ga〉/〈Gd〉 → 0 in the pN2 � 1

limit, and thus in this limit there are only two elastic moduli

that characterize the mechanical response of jammed disk

packings, i.e., Gd ≡ G and the bulk modulus B. However,

over a wide range of pN2, both Ga and Gd (as well as B) are

nonzero, and thus three elastic moduli characterize the me-

chanical response of jammed disk packings [54]. Despite this,

most previous work has focused on quantifying the pressure

dependence of only two elastic moduli (G and B) of jammed

packings of spherical particles. In future work, we will charac-

terize the pressure dependence of all nontrivial components of

the stiffness tensor for jammed packings of spherical particles

over the full range of pN2. Fourth, we will correlate regions

with negative local shear moduli to soft spots [24,55,56] and

shear transformation zones [30,57,58] that occur during ap-

plied simple shear deformations [31]. Finally, we showed that

the stiffness tensors vary with the different Delaunay triangle

types for systems with short-ranged repulsive interactions,

which is likely responsible for the anisotropic mechanical re-

sponse for pN2 < 1. In future work, we will calculate the local

shear moduli of amorphous packings with long-range attrac-

tive interactions, e.g., Lennard-Jones pairwise interactions. In

this case, the stiffness tensors for the different Delaunay trian-

gle types will likely be similar, which may shift the crossover

from anisotropic to isotropic mechanical response to smaller

pressures.
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APPENDIX A: STIFFNESS TENSOR OF SINGLE

DELAUNAY TRIANGLES

We define the five types of Delaunay triangles in Fig. 20.

Type-1 triangles possess a single contact among the three

disks. This triangle type includes all possible disk size combi-

nations since the stiffness matrix is the same for single-contact

triangles with three large disks, three small disks, two small

disks and one large disk, and two large disks and one small

disk. The center-to-center separation vector for the two con-

tacting disks is parallel to the vertical axis for the reference

type-1 triangle. We define triangle type 2 as triangles with two

contacts among any of the three disks since the stiffness ma-

trix again does not depend on the size combinations. For the

reference type-2 triangle, the horizontal axis bisects the angle

αo formed by the two segments between contacting disks. For

triangle types 3, 4, and 5, all disks are in contact with each

other and the center-to-center separation vector between the

same-sized disks is parallel to the vertical axis. For type 3,

all three disks are the same size. For type 4, two of the disks

are small and one disk is large. For type 5, two of the disks

are large and one is small. The stiffness tensor Ĉ�
i0 for the

FIG. 20. Definitions of the five types of Delaunay triangles (with

unique stiffness tensors) that occur in jammed packings of bidisperse

disks. Solid lines indicate that adjacent disks are in contact, whereas

dashed lines indicate that the disks are not in contact. For triangle

type 2, the angle αo between �r12 and �r13 spans arccos(
r2
12+r2

13−r2
23

2r12r13
) <

αo � 2.2 rad. Below each triangle type, we display the corresponding

stiffness tensors Ĉ
�
i in the specific orientation shown.
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FIG. 21. The probability distribution of the global shear moduli

P (G/SG), where SG is the standard deviation in G, for jammed disk

packings over a range of pressures 10−7 � p � 10−2 and system

sizes (a) N = 64, (b) 256, and (c) 1024. The solid lines are examples

of fits of P (G) using Eq. (B6).

triangles with the reference orientation for each triangle type

are provided in Fig. 20.

APPENDIX B: VARIATION IN THE FORM

OF P (G) WITH pN2

In Fig. 21, we show the probability distribution of the

global shear moduli for jammed disk packings over a wide

range of pressures p and system sizes N . In the pN2 � 1

limit, P (G) obeys a � distribution, which is right skewed with

P (G) = 0 for G < 0,

P� (G) = 1

�(k)θ k
Gk−1e− G

θ , (B1)

where �(k) is the � function, k and θ are the shape and scale

parameters, the mean is 〈G〉 = kθ , and the variance is S2
G =

kθ2. Specifically, in Sec. III A we show that k = 1/2 in the

pN2 � 1 limit, and thus Eq. (B1) can be rewritten as

P� (G) = 2−1/4π−1/2
S

−1
G

(

G

SG

)−1/2

e
− G√

2SG . (B2)

As pN2 increases, the peak in P (G) shifts to larger values

of G, and the distribution evolves from a right-skewed �

distribution toward a left-skewed skew-normal distribution. In

the pN2 � 1 limit, we find that P (G) = PSN (G), where

PSN (G) =
2

√

1 − 2ζ 2

π

SG

φ

(
√

1 − 2ζ 2

π

G − 〈G〉
SG

+
√

2

π
ζ

)

× �

(

μSN

(
√

1 − 2ζ 2

π

G − 〈G〉
SG

+
√

2

π
ζ

))

,

(B3)

ζ = μSN√
1+μ2

SN

, μSN is the skew-normal shape parameter,

φ(x) = 1

2π
e− x2

2 , (B4)

and

�(x) = 1

2

[

1 + erf

(

x√
2

)]

. (B5)

For intermediate values of pN2, the form of P (G) can be

approximated by a linear combination of P� (G) and PSN (G):

P (G) = sP� (G − Gm) + (1 − s)PSN (G), (B6)

where 0 � s � 1, Gm corresponds to the location of the max-

imum in P (G), and P� (G) = 0 for G < Gm.

APPENDIX C: DERIVATION OF P (G)

AT JAMMING ONSET

In this Appendix, we include details of the derivation of

the form of the probability distribution of the global shear

moduli P (G) in the pN2 � 1 limit. As shown in Fig. 6(b),

the amplitude of the shear modulus is proportional to the

square of the amplitude of the shear stress at jamming onset,

Ga = Ac

2
a with proportionality constant Ac = 10−5. Thus,

Eq. (19) becomes

G = 2Ac

2. (C1)

We first obtain the cumulative distribution function F (G) and

then calculate P (G) = dF/dG. Since Ga = Gd at jamming

onset, F (G) = 0 for G < 0. For G � 0, we have

F (G) =
∫

√

G
2Ac

−
√

G
2Ac

P (
) d
 = erf

(√
G/Ac

2ωs

)

, (C2)

where erf (x) is the error function, using Eqs. (20) and (C1).

The probability distribution is obtained by differentiating

Eq. (C2) with respect to G:

P� (G) = 1

2ωs

√
πAcG

e
− G

4Acω2
s , (C3)

which is a � distribution with the shape parameter k = 0.5.
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