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ABSTRACT

Iris recognition is a widely used biometric technology that has high accuracy and reliability in well-controlled
environments. However, the recognition accuracy can significantly degrade in non-ideal scenarios, such as off-angle iris
images. To address these challenges, deep learning frameworks have been proposed to identify subjects through their off-
angle iris images. Traditional CNN-based iris recognition systems train a single deep network using multiple off-angle iris
image of the same subject to extract the gaze invariant features and test incoming off-angle images with this single network
to classify it into same subject class. In another approach, multiple shallow networks are trained for each gaze angle that
will be the experts for specific gaze angles. When testing an off-angle iris image, we first estimate the gaze angle and feed
the probe image to its corresponding network for recognition.

In this paper, we present an analysis of the performance of both single and multimodal deep learning frameworks to identify
subjects through their off-angle iris images. Specifically, we compare the performance of a single AlexNet with multiple
SqueezeNet models. SqueezeNet is a variation of the AlexNet that uses 50x fewer parameters and is optimized for devices
with limited computational resources. Multi-model approach using multiple shallow networks, where each network is an
expert for a specific gaze angle. Our experiments are conducted on an off-angle iris dataset consisting of 100 subjects
captured at 10-degree intervals between -50 to +50 degrees. The results indicate that angles that are more distant from the
trained angles have lower model accuracy than the angles that are closer to the trained gaze angle. Our findings suggest
that the use of SqueezeNet, which requires fewer parameters than AlexNet, can enable iris recognition on devices with
limited computational resources while maintaining accuracy. Overall, the results of this study can contribute to the
development of more robust iris recognition systems that can perform well in non-ideal scenarios.
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1. INTRODUCTION

Biometric recognition has found wide-ranging applications, including security systems, access control, and surveillance.
Among the various biometric modalities, iris recognition stands out for its remarkable accuracy and dependability in
identifying individuals. Typically, iris recognition systems acquire images of the iris, which is a unique and stable
biometric characteristic, and utilize computer algorithms to extract and compare features to facilitate identification. For
example, at certain airports, passport control officers use iris recognition cameras to verify the passengers' credentials [1].
However, this requires the iris recognition system to be operated under limited conditions.

The traditional iris recognition method involves several steps to identify a person based on their iris pattern. First, a digital
camera captures an image of the iris, which is then isolated from the rest of the image using image processing techniques.
The iris is then normalized to correct for any distortion caused by the camera or the viewing angle. Next, unique features
of the iris, such as the texture of the iris stroma and the radial pattern of the iris furrows, are extracted and used to create a
template that represents the iris. The template is then compared to a database of stored templates to identify the person.
Finally, a decision is made about the identity of the person based on the similarity between the templates, using a threshold
to determine whether the new iris image matches any of the stored templates. The traditional iris recognition setup only
allows for accurate identification when the subjects are facing the camera. Despite its high accuracy in controlled
environments, iris recognition can be significantly affected by non-ideal scenarios, such as off-angle iris images [2]. While
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Figure 1: Sample frontal and off-angle iris images captured at different angles (a) +50°, (b) 0°, and (c) -50°.

it is effective in identifying subjects with less than 20° gaze difference, its accuracy reduced at steeper gaze angles,
possibly due to the difference in the elliptical shape of the irises between frontal and non-frontal gaze angles [3].

Off-angle iris images pose a significant challenge to iris recognition as the angle of deviation from the frontal view can
introduce inconsistencies in the iris texture, resulting in reduced recognition accuracy as shown in Figure 1. To address
this issue, various approaches have been proposed and investigated in biometrics research. One approach involves using
3D reconstruction of the iris to estimate its orientation and align it to a frontal view. Another approach uses generative
models to synthesize frontal view iris images from off-angle views, trained on a large dataset of frontal view iris images
using deep neural networks. Alternatively, a multi-view representation of the iris can be employed, where images of the
iris are captured from multiple angles and combined into a single representation. This technique can match off-angle iris
images to frontal view templates using a combination of similarity scores from different angles. Overall, recognizing off-
angle iris images is an active and challenging area of research in biometrics, and various techniques are being developed
to enhance recognition accuracy and reliability.

Recent research has introduced deep learning frameworks as a potential solution to the challenge of recognizing off-angle
iris images, especially Convolutional Neural Networks (CNNs). CNNs are specifically designed for image classification
tasks and can be trained on a large dataset of labeled iris images to classify new images into specific individuals [4]. During
training, the CNN learns to extract relevant features from the iris images using convolutional and pooling layers, and the
learned features are then passed through fully connected layers to produce the final classification output. CNN-based iris
recognition frameworks can learn discriminative features that are specific to individual irises, even under challenging
conditions such as occlusion and variations in lighting. Additionally, CNNs can be trained to recognize off-angle iris
images, which traditional iris recognition methods struggle with. Studies have shown high recognition accuracies using
CNNs for iris recognition, with some achieving state-of-the-art performance on benchmark datasets. However, further
improvements are necessary to reduce computational costs and increase robustness to noisy and low-quality images.

This paper presents an investigation of the performance of single and multimodal deep learning frameworks for the
identification of subjects through their off-angle iris images. In traditional CNN-based iris recognition systems, a single
deep network is trained using multiple off-angle iris images of the same subject to extract gaze-invariant features. However,
this approach may not be adequate for recognizing off-angle images that differ significantly from the training set. To
address this limitation, multiple shallow networks are trained for each gaze angle, which function as experts for specific
gaze angles. During testing, an off-angle iris image is used to estimate the gaze angle, which is then used to identify the
corresponding network for recognition. The contribution of this paper is to analyze the effects of gaze angle on CNN-
based off-angle iris recognition and compare the recognition performance of single and multimodal CNN models.

The remainder of this paper is structured as follows. Section 2 offers a comprehensive review of previous research in off-
angle iris recognition, including a description of the traditional methodology used for identifying subjects and an
explanation of the architecture of traditional CNNs. Section 3 outlines our proposed single-modal and multi-modal CNN
models, describing their training pipelines and the composition of their neural network layers. In Section 4, we present and
analyze the results of our experiments. Finally, Section 5 provides a conclusion and suggestions for further research.



2. RELATED WORKS

Traditional iris recognition systems have been developed to authenticate the identity of a subject. The methodology for
these systems was that it required the user to look at the iris camera. The traditional iris recognition setup only allows for
accurate identification when the subjects are facing the camera. While this was effective in correctly identifying the subject,
it was inconvenient to subjects because it required them to stand still. Despite its high accuracy in controlled environments,
iris recognition can be significantly affected by non-ideal scenarios, such as off-angle iris images. Off-angle iris recognition
is a challenging problem in biometrics, and there have been several approaches proposed in the literature to address this
issue. This section reviews the most relevant works on off-angle iris recognition using deep learning frameworks.

Advancements in the field of neural networks have led to the development and application of complex deep learning
architectures, including Convolutional Neural Networks (CNNSs), in various research areas and practical uses. An initial
work in utilizing a deep learning framework to extract iris texture features for recognition was DeeplrisNet [5]. Unlike
traditional iris recognition systems that utilize Gabor filters to transform iris texture to binary iris codes, DeeplrisNet
extracts features from a normalized iris image, with matching performed in the final fully connected layer by comparing
Euclidean distances between subjects. Liu et al. [6] proposed a CNN with nine layers that enhances recognition
performance by learning pairwise filters from diverse sources. To improve periocular biometrics in visible spectrum
images, Proenca and Neves [7] proposed deep-PRWIS using a CNN framework based on AlexNet, which excludes the iris
and sclera from the periocular region through artificial sampling to improve recognition performance given the various
degradation factors for these ocular structures present in visible spectrum images. Zhao and Kumar [8] presented a study
to enhance recognition performance for the periocular region by proposing a semantics-assisted CNN that trains multiple
deep networks to learn additional semantic information from the periocular region, such as ethnicity and gender, with
recognition performance improved through combining extra information and output features from the network. While
these studies have improved recognition performance for ocular and periocular structures, they focus solely on frontal
angle images and do not address challenges associated with identifying off-angle images.

This study builds upon our previous work in [9], which tackled the issue of performance degradation in off-angle images
resulting from differences in gaze angle. In our previous study, we presented deep learning frameworks based on
convolutional neural networks (CNNs) to enhance the recognition accuracy of off-angle iris, ocular, and periocular
biometric modalities. We compared the performance of popular CNN architectures such as AlexNet, GoogLeNet, and
ResNet50 for off-angle biometrics. Our research demonstrated that including the ocular and periocular region along with
the iris resulted in improved recognition results for off-angle images. To achieve this, we trained a single deep network
using multiple off-angle iris images of the same subject to extract gaze-invariant features. However, the large size of this
network may not be feasible for devices with limited computational resources. To address this, we proposed a multi-model
approach using multiple shallow networks, where each network specializes in recognizing iris images at a specific gaze
angle. So, we can use smaller, lightweight shallow networks for off-angle iris recognition while achieving high accuracy.

3. METHODOLOGY

This section describes the proposed approach for off-angle iris recognition using both single-modal and multi-modal CNN
models and we compare the performance of two CNN models: AlexNet and SqueezeNet. We first briefly describe AlexNet
and SqueezeNet. Second, we will introduce the transfer learning technique to employ the pre-trained models. Then, we
will introduce the details of single and multi-model deep network frameworks. We present an analysis of the performance
of both single and multimodal deep learning frameworks to identify subjects through their off-angle iris images.
Specifically, we compare the performance of a single AlexNet with multiple SqueezeNet models.

The AlexNet [10] is a convolutional neural network (CNN) model comprised of a combination of layers to enable object
identification. The model consists of five convolutional layers, multiple max-pooling layers, and three fully connected
layers where it contains 61 million parameters. Its size in MATLAB is 227 MB. Each layer in the network applies various
filters of different sizes to the outputs of the preceding layer, which is then passed through a rectified linear unit (ReLU)
activation function and a max-pooling layer. The ReLU function is a simple and non-linear function that sets all negative
input values to zero, allowing positive values to pass through unaltered. The max-pooling layer reduces the feature map's
spatial dimensions while preserving critical features. Additionally, the model employs dropout layers to prevent overfitting
during training by randomly blocking certain features and setting them to zero when passing to the next layer. The final
convolutional layer's output is flattened and fed into the fully connected layers, ultimately outputting class probabilities
using a softmax function.



SqueezeNet is a convolutional neural network (CNN) architecture that is optimized for devices with limited computational
resources. Compared to traditional CNN models like AlexNet, SqueezeNet has a significantly smaller number of
parameters (1.24 million), which makes it more efficient in terms of memory usage and processing speed [11]. Its size in
MATLAB is 5.2 MB. SqueezeNet uses Fire modules, which consist of a combination of 1x1 and 3x3 convolutional filters.
The 1x1 filters are used in the squeeze layer, which reduces the number of input channels to the following expand layer
by 9x. The expand layer then uses a combination of 1x1 and 3x3 filters to increase the number of output channels.
SqueezeNet also uses pooling layers between certain Fire modules to ensure that the activation map size is at least 1x1.
The ReLU activation function is used for Fire and squeeze layers. Additionally, SqueezeNet also uses a concept called
bypass connections to preserve information from earlier layers and prevent information loss during training.

The AlexNet and SqueezeNet are trained on the ImageNet dataset that has more than 1.2 million labeled images in 1,000
different classes. Due to the limited number of iris images for each subject, we use the transfer learning technique instead
of training deep models from scratch. Transfer learning allows for the leveraging of knowledge and expertise gained from
a pre-trained model by using its pre-trained weights, which were obtained by training the model on large datasets. To
employ transfer learning, the last fully connected layer is initially replaced with a new fully-connected layer that has the
same number of neurons as the number of subjects in the iris dataset. Finally, the model is trained using the iris dataset.

Traditional CNN-based iris recognition systems utilize a single deep neural network to extract gaze-invariant features for
recognizing iris patterns. These systems are trained on multiple off-angle iris images of the same subject to ensure that the
extracted features are invariant to gaze angle. During the training process, the single-modal network such as AlexNet is
trained with iris images from all gaze angles to enable it to classify the subject's identity from any given test image captured
at any gaze angle. This approach aims to create a robust iris recognition system that is not affected by variations in the
gaze angle. However, it is required to use a deeper network to learn the texture variations in the off-angle iris images
compared with the only frontal iris images. As an alternative approach, we propose using multiple shallow networks such
as SqueezeNet that are trained for each gaze angle that serve as experts for specific gaze angles. When testing an off-angle
iris image, we first estimate the gaze angle and feed the probe image to its corresponding network for recognition.

The first step for the multi-modal approach is gaze estimation to predict the gaze angle of the subject given an input image.
In our previous study [12], we developed a CNN-based gaze estimation model using pre-trained AlexNet model to estimate
the gaze angle of iris image with 94% accuracy. The model was re-trained via transfer learning to satisfy this use case’s
requirements. Five convolutional layers were used, along with three fully connected layers and a softmax layer. The
training dataset of the original experiment used was the same dataset that we are using for this experiment. As a second
step in multi-model approach, we trained multiple shallow SqueezeNet networks for each gaze angle. After the gaze angle
estimation, we feed the iris image to corresponding CNN-based iris recognition network and use their classification result.

4. EXPERIMENTAL SETUP AND RESULTS

Our study was conducted using an off-angle iris dataset that includes approximately 10,000 images from around 100
subjects captured by an IDS-UI-3240ML-NIR camera sensitive to near-infrared light. These images were of both the left
and right eyes of the subjects and were taken at angles ranging from -50° to 50° with 10° increments. The images were
captured by a horizontally moving camera to capture all angles, capturing 10 iris images per step, resulting in a total of 10
frontal and 100 off-angle iris images per subject. Example images from each angle can be viewed in Fig. 2. Additional
details regarding our off-angle iris dataset are available in [13].

We employed the MATLAB integrated development environment and an Nvidia GeForce RTX 2080 SUPER with a 16GB
memory to train the SqueezeNet, AlexNet, and Resnet50 CNN models. The initial step in the training process involves
processing the images in the dataset using the image datastore library. This library enables the loading of each image
dynamically from the dataset directory and parsing of the image attributes based on the file naming conventions.
Subsequently, the training and validation datasets are created for the CNN models. The pre-trained model is used to train
the single-modal and multi-modal CNN models during the training process. In the experiments, the models are customized
by replacing the fully connected layer, SoftMax layer, and classification layer with the remaining three layers. For the
AlexNet models, the learning drop rate, learning drop period, initial learning rate, max epoch, and minibatch size are set
to 0.2, 5, 10-4, 60, and 6, respectively. We use the stochastic gradient descent (SGDM) optimizer. For the single-modal
and multi-modal SqueezeNet models, the convolutional layer conv10 has a [1,1] stride with the output number matching
the number of subjects. Moreover, the classification layer is replaced, which employs the output of conv10.
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Figure 2. Example images from off-angle iris databases, (a)-50° angle, (b)-40° angle, (c)-30° angle, (d)-20° angle, (e)-
10° angle, (f) 0° angle, (g) 10° angle, (h) 20° angle, (i) 30° ang le, (j) 40° angle, (k) 50° angle.

To train the single-modal model, the training dataset was chosen as a subset image of the original dataset from all training
gaze angles, where one image per gaze angle was used from each subject. The remaining images of the dataset became
part of the validation dataset. For the multi-modal models that classified subjects, the training dataset was a subset of
images that were taken at a specific gaze angle, while the validation dataset was made up of the remaining images not used
for training. To evaluate the performance of the single-modal models, the accuracy for each gaze angle is calculated. We
also evaluated the recognition performance using the ROC curves.

In our first set of experiments, we evaluated the performance of SqueezeNet and AlexNet with frontal training and off-
angle testing. To train both models, only frontal iris images were used for training and other gaze angles were used for the
test to assess the trained models. Fig 3 shows the classification accuracy of AlexNet and SqueezeNet models for iris images
at different gaze angles. The x-axis represents the off-angle gaze angle in degrees, ranging from -50 to 50 degrees, while
the y-axis represents the classification accuracy of the models. As shown in Fig. 3, the results suggest that both models are
capable of accurately classifying subjects based on their frontal iris images, but their performance decreases as their gaze
angles increase. Based on the results, AlexNet outperforms SqueezeNet especially for off-angle iris images when networks
trained with frontal images. The main reason is that AlexNet is a deeper model with more layers and more trainable
parameters than SqueezeNet. It allows AlexNet to learn more complex features and patterns from the input data. In contrast,
SqueezeNet is designed to be a more lightweight model with a smaller memory footprint, and its use of smaller
convolutional kernels may limit its ability to learn complex patterns in the input data.
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Figure 4. The accuracies of the multi-modal SqueezeNet models. all training images per gaze angle

In the second set of experiments, we aimed to investigate the recognition performance of SqueezeNet when trained with
images from off-angle views and tested with other off-angle views. Each experiment involved training the model with
images from only one gaze angle between -50 and 50 degrees. Fig. 4 displays the recognition accuracy of SqueezeNet
trained with a subset of images captured at different gaze angles and evaluated on images from both the trained gaze angles
and additional off-angle gaze angles. Each line in the graph represents the accuracy of the model that was trained at a
specific gaze angle. The x-axis and y-axis represent the trained and evaluated gaze angles, respectively, with values ranging
from -50 to 50 degrees.

Our results showed that as the evaluated gaze angle deviated further from the trained gaze angle, the classification accuracy
decreased. Specifically, when the trained gaze angle was -50 degrees and the evaluated angle was 50 degrees, the accuracy
dropped to 2%. graph demonstrates that the performance of the model is affected by both the trained gaze angle and the
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Figure 5. Receiver Operator Characteristic (ROC) curves for (a) SqueezeNet, (b) AlexNet, and (c) ResNet50 where a
single model trained with multiple off-angle iris images from different gaze angles. (d) Multi-model SqueezeNet.

evaluated gaze angle. Generally, the accuracy was higher when the evaluated angle was closer to the trained angle, and
the accuracy decreased as the deviation between the two angles increased. This is due to the difference in the appearance
of the iris region in the input images. The iris texture appears differently when viewed from different angles, and when the
system is trained on images captured from a specific angle, it learns to recognize iris features from that viewpoint. Thus,
when the system is tested on images captured from different angles, it may fail to recognize iris features accurately, leading
to a decrease in performance. Moreover, the model achieved better accuracy when evaluating angles that were closer to
the trained gaze angle. These results showed that multi-model SqueezeNet may show high performance when off-angle
iris images tested with their corresponding model with similar gaze angle.

In the third set of experiments, we investigated the recognition performance of a single model trained with multiple off-
angle iris images captured from different gaze angles. To assess the impact of network depth on recognition performance,
we utilized three different network architectures: SqueezeNet, AlexNet, and ResNet50. Fig. 5(a-c) displays the receiver
operator characteristic (ROC) curves for these models, illustrating the true positive rate (TPR) and false positive rate (FPR)
for various threshold values. A ROC curve closer to the upper left corner of the graph indicates better performance. Our
results reveal that SqueezeNet exhibits the lowest recognition performance, while ResNet50 demonstrates the highest
recognition performance due to its deeper network architecture. AlexNet performs better than SqueezeNet but not as well
as ResNet50. These findings suggest that a deep network is better equipped to learn the differences in the appearance of
the iris region in off-angle images, which is essential for accurate recognition. Overall, the ROC curves provide a



quantitative and visual evaluation of the recognition performance of the different network architectures, emphasizing the
significance of network depth in achieving accurate recognition of off-angle iris images using single model.

As an alternative approach to using a single deep network for off-angle iris recognition, we propose using multiple shallow
networks such as SqueezeNet, each trained for a specific gaze angle, serving as experts for recognizing images from that
angle. When presented with an off-angle iris image, we first estimate the gaze angle and then feed the probe image to the
corresponding expert network for recognition. To evaluate the recognition performance of this approach, we trained 11
SqueezeNet networks, each acting as an expert for a specific gaze angle. Fig. 5(d) displays the recognition performance
analysis of the Multi-model SqueezeNet using an ROC plot. Our results showed similar recognition performance for off-
angle iris images compared to using a single deep network trained on multiple off-angle iris images. This highlights the
potential for using multiple shallow networks as a viable alternative to a single deep network for off-angle iris recognition.

5. CONCLUSION

In this study, we investigated the recognition performance of deep learning models for off-angle iris images. We performed
three sets of experiments using SqueezeNet, AlexNet, and ResNet50 to evaluate the impact of network depth on
recognition performance. Our results showed that a deeper network such as ResNet50 achieved the best recognition
performance, while a shallow network such as SqueezeNet performed the worst. We also observed that the recognition
performance of a model decreased as the evaluated gaze angle deviated further from the trained gaze angle. To address
this issue, we proposed a multi-model approach using multiple shallow networks, where each network is an expert for a
specific gaze angle. Overall, our study highlights the importance of network depth and gaze angle variation in off-angle
iris recognition. Our findings suggest that a deep network is better suited for learning the differences in the appearance of
the iris region in off-angle images, while a shallow network can serve as an expert for a specific gaze angle. Our proposed
multi-model approach can be an effective solution for off-angle iris recognition, offering similar performance compared
to a single deep network. Future research can explore the use of other deep learning models and more sophisticated network
architectures to further improve the recognition performance of off-angle iris images.
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