
29 

Fréchet Distance for Uncertain Curves 

KEVIN BUCHIN , TU Dortmund, Germany 

CHENGLIN FAN , Sorbonne Université, France 

MAARTEN LÖFFLER , Utrecht University, The Netherlands 

ALEKSANDR POPOV , TU Eindhoven, The Netherlands 

BENJAMIN RAICHEL , University of Texas at Dallas, USA 

MARCEL ROELOFFZEN , TU Eindhoven, The Netherlands 

In this article, we study a wide range of variants for computing the (discrete and continuous) Fréchet distance 

between uncertain curves. An uncertain curve is a sequence of uncertainty regions, where each region is a 

disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each 

region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and 

upper bound Fréchet distance, which are the minimum and maximum Fréchet distance for any realisations 

of the curves. 

We prove that both problems are NP-hard for the Fréchet distance in several uncertainty models, and that 

the upper bound problem remains hard for the discrete Fréchet distance. In contrast, the lower bound (dis- 

crete [ 5 ] and continuous) Fréchet distance can be computed in polynomial time in some models. Furthermore, 

we show that computing the expected (discrete and continuous) Fréchet distance is #P-hard in some models. 

On the positive side, we present an FPTAS in constant dimension for the lower bound problem when ∆/ δ

is polynomially bounded, where δ is the Fréchet distance and ∆ bounds the diameter of the regions. We also 

show a near-linear-time 3-approximation for the decision problem on roughly δ -separated convex regions. 

Finally, we study the setting with Sakoe–Chiba time bands, where we restrict the alignment between the 

curves, and give polynomial-time algorithms for the upper bound and expected discrete and continuous 

Fréchet distance for uncertainty modelled as point sets. 
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1 INTRODUCTION 

In this article, we investigate the well-studied topic of curve similarity in the context of the bur- 
geoning area of geometric computing under uncertainty. Classical algorithms in computational 
geometry typically assume the input point locations are known exactly; however, in recent years, 
there has been a concentrated effort to adapt these algorithms to uncertain inputs, which can 

more faithfully model real-world inputs. The need to model such uncertain inputs is perhaps no 
more clear than for the location data of a moving object obtained from physical devices, which 

is inherently imprecise due to issues such as measurement error, sampling error, and network la- 
tency [ 49 , 52 ]. Moreover, to ensure location privacy, one may purposely add uncertainty to the data 
by adding noise or reporting positions as geometric regions rather than points. (See the survey by 

Krumm [ 42 ] and the references therein.) 
Here we consider both the continuous and discrete Fréchet distance for uncertain curves. Given 

the preceding applications, our uncertain input is given as a sequence of compact regions, from 

which a polygonal curve is realised by selecting one point from each region. Our goal is to find, 
for a given pair of uncertain curves, the upper bound, the lower bound, and the expected Fréchet 
distance, where the upper (respectively, lower) bound Fréchet distance is the maximum (respec- 
tively, minimum) distance over any realisation. For the expected Fréchet distance, we assume a 
probability distribution is provided that describes how each vertex on a curve is chosen from the 
compact region. 

1.1 Previous Work 

Geometric Computing Under Uncertainty . The two most common models of geometric uncertainty 

are the locational model [ 43 ] and the existential model [ 53 , 57 ]. In the existential model, the loca- 
tion of an uncertain point is known, but the point may not be present; in the locational model, we 
know that each uncertain point exists, but not its exact location. 

In this article, we consider the locational model. Each uncertain point is a set of potential loca- 
tions. We call an uncertain point indecisive if the set of potential locations is finite, or imprecise if 
the set is not finite but is a convex region. A realisation of a set of uncertain points is a selection 

of one point from each uncertain point. The goal is typically to compute the realisation of a set 
of uncertain points that minimises or maximises some quantity (e.g., area, distance, perimeter) of 
some underlying geometric structure (e.g., convex hull, MST). A large number of minimisation 

and maximisation variants for imprecise points can be found in the thesis of Löffler [ 43 ] and other 
works [ 41 , 44 , 46 ]. For indecisive points, such problems are often called colour-spanning problems , 
as each indecisive point can be viewed as a colour and the goal is to select a point of each colour to 
minimise or maximise some quantity [ 1 , 7 , 23 , 30 ]. Besides finding tight upper and lower bounds 
for various measures, there have also been studies on visibility [ 22 ], imprecise terrains [ 27 , 35 ], 
and Voronoi diagrams [ 51 ] and Delaunay triangulations [ 15 , 45 , 55 ]. 

By assigning a probability distribution to uncertain points, one can also consider the expectation 

or distribution of various measures [ 2 , 4 , 21 , 39 , 48 ]. Finally, imprecision has also been studied 
from a movement perspective, with the focus on the imprecision between measurements [ 19 ] 
and how imprecision grows and shrinks as time passes and new location information becomes 
available [ 29 ]. 
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Fréchet Distance . Computing the Fréchet distance between two precise curves can be done in 

near-quadratic time [ 3 , 6 , 12 ], and assuming the strong exponential time hypothesis, it cannot 
be computed or even approximated well in strongly subquadratic time [ 9 , 18 ]. However, for sev- 
eral restricted versions, the Fréchet distance can be calculated faster, for example, for c-packed 
curves [ 26 ], when the edges are long [ 36 ], or when the alignment of curves is restricted [ 11 , 47 ]. 
Many variants of the problem have been considered: Fréchet distance with shortcuts [ 20 , 25 ], weak 

Fréchet distance [ 6 ], discrete Fréchet distance [ 3 , 28 ], Fréchet gap distance [ 31 ], Fréchet distance 
under translations [ 10 , 33 ], and more. 

There are also numerous applications of different variants of Fréchet distance in common curve 
and trajectory analysis tasks, such as clustering [ 13 , 14 ] or curve simplification [ 54 , 56 ]. 

Fréchet Distance Under Uncertainty . There has been surprisingly little work incorporating uncer- 
tainty in curve and trajectory analysis. Buchin and Sijben [ 21 ] have studied the discrete Fréchet 
distance for uncertain points modelled by a probability distribution. However, their problem is 
quite different from our variant: they show how to compute the distance distribution for a fixed 
coupling between the two curves and then solve the problem of finding the optimal coupling that 
achieves a given Fréchet distance. We look at the problem with the different order of quantifiers: 
we know how to compute the Fréchet distance between two curves and want to find ‘optimal’ 
realisations yielding a certain distance. 

Previously, Ahn et al. [ 5 ] considered the lower bound problem as we define it for the discrete 
Fréchet distance, giving a polynomial-time algorithm for uncertain points modelled by balls or 
hyperrectangles in constant dimension. The authors also gave efficient approximation algorithms 
for the discrete upper bound Fréchet distance for uncertain inputs, where the approximation factor 
depends on the spread of the region diameters or how well separated they are. Subsequently, Fan 

and Zhu [ 32 ] showed that the discrete upper bound Fréchet distance is NP-hard for uncertain 

inputs modelled as thin rectangles. To our knowledge, we are the first to consider either variant 
for the continuous Fréchet case, and the first to consider the expected Fréchet distance. 

Subsequently to this work, Buchin et al. [ 16 ] have studied the lower and upper bound prob- 
lems in 1D, as well as obtained some results for the weak Fréchet distance. They have obtained 
stronger results showing NP-hardness of the upper bound problem for indecisive points and points 
modelled with intervals (or line segments), both for the discrete and the continuous Fréchet dis- 
tance. For the lower bound problem, they show a polynomial-time algorithm when uncertainty 

is modelled with intervals—essentially, a setting where we prove NP-hardness in 2D—thus de- 
lineating the point where the problems become difficult. Finally, Buchin et al. [ 17 ] also studied 
the related problem of curve simplification under uncertainty, showing how to obtain a minimal- 
length subsequence of an uncertain curve that has a small distance to the original curve, no matter 
the realisation. 

1.2 Our Contributions 

In this article, we present an extensive study of the Fréchet distance for uncertain curves. We 
provide a wide range of hardness results and present several approximations and polynomial-time 
solutions to restricted versions. We are the first to consider the continuous Fréchet distance in the 
uncertain setting, as well as the first to consider the expected Fréchet distance. 

On the negative side, we present a plethora of hardness results (Table 1 ; details follow in Sec- 
tion 3 ). The hardness of the lower bound case is curious: although the discrete Fréchet distance on 

imprecise inputs [ 5 ] and, as we prove, continuous Fréchet distance on indecisive inputs both permit 
a simple dynamic programming solution, the continuous Fréchet distance problem on imprecise 
input has just enough (literal) wiggle room to show NP-hardness by reduction from SubsetSum . 
Buchin et al. [ 16 ] explore this in 1D and find a similar dichotomy for the weak Fréchet distance. 
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Table 1. Hardness Results for the Decision Problems in This Article (in 2D) 

Indecisive Imprecise 
Disks Line Segments

Discrete Fréchet distance 
LB Polynomial [ 5 ] Polynomial [ 5 ] Polynomial [ 5 ] 
UB NP-complete NP-hard NP-hard 
Exp #P-hard — #P-hard 

Fréchet distance 
LB Polynomial — NP-hard 
UB NP-complete NP-hard NP-hard 
Exp #P-hard — —

Ahn et al. [ 5 ] solve the lower bound problem for disks, but their algorithm extends to the indecisive curves as 

well as line segment imprecision. 

We complement the lower bound hardness result by two approximation algorithms (Section 4 ). 
The first is an FPTAS for general uncertain curves in constant dimension when the ratio be- 
tween the diameter of the uncertain points and the lower bound Fréchet distance is polynomi- 
ally bounded. The second is a 3-approximation for separated imprecise curves but uses a simpler 
greedy approach that runs in near-linear time. 

The NP-hardness of the upper bound by a reduction from CNF-SAT is less surprising but requires 
a careful setup and analysis of the geometry to then extend it to a reduction from #CNF-SAT to 
the expected (discrete or continuous) Fréchet distance under the uniform distribution. However, 
by adding the common constraint that the alignment between the curves needs to stay within a 
Sakoe–Chiba [ 50 ] band of constant width (see Section 5 for definition and results), we can solve 
these problems in polynomial time for indecisive curves. Sakoe–Chiba bands are frequently used 
for time-series data [ 8 , 40 , 50 ] and trajectories [ 11 , 24 ], when the alignment should (or is expected 
to) not vary too much from a certain ‘natural’ alignment. 

2 PRELIMINARIES 

In this section, we introduce the notation relevant to the rest of this article, as well as recall the 
definitions of the (discrete) Fréchet distance. 

2.1 Curves 

Denote [ n] ≡ {1 , 2 , . . . , n}. Consider a sequence of d-dimensional points π = 〈 p 1 , p 2 , . . . , p n 〉 . A 

polygonal curve π is defined by these points by linearly interpolating between the successive 
points and can be seen as a continuous function: π ( i + α ) = ( 1 − α )p i + αp i+1 for i ∈ [ n − 1] and 
α ∈ [0 , 1] . The length of such a curve is the length of the sequence, |π | = n. Where we deem im- 
portant to distinguish between points that are a part of the curve and other points, we denote the 
polygonal curve by π = 〈 π1 , π2 , . . . , πn 〉 . We denote the concatenation of two sequences π and σ
by π � σ ; this also naturally defines concatenation of polygonal curves. We denote a subsequence 
from vertex i to j of π as π [ i : j] ≡ 〈 p i , p i+1 , . . . , p j 〉 . Finally, p � q (or simply pq) denotes the line 
segment between points p and q. We can generalise this notation: 

⊔ 

i ∈ [ n ] 
p i ≡ p 1 � p 2 � · · · � p n ≡ 〈 p 1 , p 2 , . . . , p n 〉 ≡ π . 

2.2 Metrics Definitions 

Given two points x , y ∈ R 
d , denote their Euclidean distance by ‖ x − y‖ . For two compact sets 

X , Y ⊂ R 
d , denote their distance by ‖ X − Y ‖ = min x ∈ X ,y∈ Y ‖ x − y‖ . Throughout the article, we 

treat the dimension d as a small constant. 
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Fig. 1. Left: Discrete Fréchet distance, where an optimal coupling is shown in dashed red lines. Right: Fréchet 
distance, where the dashed green lines indicate specific values for an optimal alignment ϕ1 , ϕ2 . 

Let Φn denote the set of all reparametrisations of length n, defined as continuous non-decreasing 
functions ϕ : [0 , 1] → [1 , n] , where ϕ (0 ) = 1 and ϕ (1 ) = n. Given a pair of curves π and σ of 
lengths n and m, respectively, and corresponding reparametrisations ϕ1 ∈ Φn and ϕ2 ∈ Φm , define 
width ϕ1 ,ϕ2 (π , σ ) = max t ∈[0 ,1] ‖π (ϕ1 (t )) − σ (ϕ2 (t ) ) ‖. We call the pair (ϕ1 , ϕ2 ) an alignment. 

The width represents the maximum distance between two points traversing the curves from 

start to end according to ϕ1 and ϕ2 (which allow varying speed, but no backtracking). The Fréchet 
distance d F (π , σ ) is defined as the minimum possible width over all such traversals: 

d F ( π , σ ) = inf 
ϕ1 ∈Φn ,ϕ2 ∈Φm 

width 
ϕ1 ,ϕ2 

( π , σ ) = inf 
ϕ1 ∈Φn ,ϕ2 ∈Φm 

max 
t ∈[0 ,1] 

‖π ( ϕ1 ( t )) − σ ( ϕ2 ( t ) ) ‖. 

The discrete Fréchet distance d dF (π , σ ) is defined similarly, except that we do not traverse edges 
of the curves but must jump from one vertex to the next on either or both curves. We define 
a valid coupling as a sequence c = 〈 (p 1 , q 1 ), . . . , (p r , q r )〉 of pairs from [ n] × [ m] , where (p 1 , q 1 ) = 
( 1 , 1 ), ( p r , q r ) = (n, m), and, for any i ∈ [ r − 1] , we have (p i+1 , q i+1 ) ∈ {(p i + 1 , q i ), (p i , q i + 1 ), (p i +
1 , q i + 1 )}. Let C be the set of all valid couplings on curves of lengths n and m; then 

d dF (π , σ ) = inf 
c ∈C 

max 
s ∈[ | c | ] 

‖π (p s ) − σ (q s )‖, 

where c s = (p s , q s ) for all s ∈ [ | c | ] . Both distances are illustrated in Figure 1 . 

Computing the Discrete Fréchet Distance . We recall the standard dynamic programming ap- 
proach by Eiter and Mannila [ 28 ]. The algorithm is deduced in a standard manner from the 
following recursion: 

d dF (π [1 : i + 1] , σ [1 : j + 1] ) = max ( ‖π ( i + 1 ) − σ (j + 1 )‖, 
min ( d dF ( π [1 : i] , σ [1 : j] ), 

d dF (π [1 : i + 1] , σ [1 : j] ), 

d dF (π [1 : i] , σ [1 : j + 1] ) ) ) . 

In other words, the discrete Fréchet distance is the maximum of the distance of the newly added 
element in the coupling and the value that was considered best previously. Due to the coupling re- 
strictions, there are only three possible subproblems that we need to consider, and we may choose 
the best of them, thus obtaining the preceding recursion. It is straightforward to turn it into a 
dynamic program. 

Table 2 gives the distance matrix and the computation of the discrete Fréchet distance for the 
example of Figure 1 . Each cell of the table on the right shows the value of the discrete Fréchet 
distance so far; the final result can be read out from the top right corner of the table, and the 
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Table 2. Distance Matrix and Computation of discrete Fréchet Distance 
for the Example of Figure 1 

4 
√ 

10 
√ 

5 2 

2 
√ 

2 
√ 

2 3 2 
√ 

5 √ 

5 1 
√ 

10 5 

2 
√ 

2 
√ 

13 4 
√ 

2 

4 
√ 

10 
√ 

5 
√ 

5 

2 
√ 

2 2 3 2 
√ 

5 √ 

5 2 
√ 

10 5 

2 2 
√ 

13 4 
√ 

2 

Left: Distance matrix on vertices. Right: Dynamic program for the discrete Fréchet 

distance, filled from the bottom left corner. Rows correspond to points from the 

left trajectory and columns to points from the right trajectory. The optimal path is 

marked in grey. 

Fig. 2. Left: Visualisation of the Fréchet distance. Right: Free-space diagram for the threshold ε = 2 . 15 . One 
can draw a monotonous path (in green) from the lower left corner to the upper right corner of the diagram, 
so the Fréchet distance between the trajectories is below the threshold. 

coupling that yields this result can be read from the sequence of grey cells. Notice that the table 
shows the same coupling as Figure 1 . 

Given two trajectories of length n and m in two dimensions, this approach takes Θ(mn) time to 
run. More recently, Agarwal et al. [ 3 ] presented an algorithm that computes the discrete Fréchet 
distance in time O ( mn log log n / log n ) in two dimensions, for m ≤ n. However, it is rather complex and 
does not help the intuition about the problems discussed in this article, so we will not go into fur- 
ther detail. The decision version of the problem can be solved in a similar fashion, but propagating 
Boolean values instead. 

Computing the Fréchet Distance . One can use a similar approach to solve the decision version 

of the Fréchet distance problem, except now we have free and blocked areas within each cell of 
the table rather than simply having a Boolean value in each cell. The resulting table is called a 
free-space diagram. On polygonal curves, each cell becomes an intersection of an ellipse with the 
cell, with the inside of the ellipse being free. The answer to the problem is True if and only if there 
is a monotone path from the bottom left corner to the top right corner of the free-space diagram. 
A free-space diagram for the example of the two polygonal curves of Figure 1 is shown in Figure 2 . 

Algorithmically, this can be checked by keeping the open intervals on the edges of the cells (i.e., 
the white segments on cell borders shown in Figure 2 ). The algorithm then runs in time Θ(mn). 
For further details, the reader is invited to consult the work by Alt and Godau [ 6 ] or previous work 

on the same topic [ 34 ]. 
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Fig. 3. Left: Trajectory data. Centre: Polygonal curve on the data. Right: Imprecise curve with disks as im- 
precision regions and the real curve. 

2.3 Uncertainty Model 

An uncertain point is commonly represented as a compact region U ⊂ R 
d . Usually, it is a finite 

set of points, a disk, a rectangle, or a line segment. The intuition is that only one point from this 
region represents the true location of the point; however, we do not know which one. A realisation 
p of such a point is one of the points from the region U . When needed, we assume the realisations 
are drawn from U according to a known probability distribution P . We denote the diameter of 
any compact set (e.g., an uncertain point) U ⊂ R 

d by diam (U ) = max p,q∈U ‖ p − q‖ . An indecisive 

point is a special case of an uncertain point: it is a set of points U = { p 1 , . . . , p k } , with each point 
p i ∈ R 

d for i ∈ [ k] . Similarly, an imprecise point is a compact convex region U ⊂ R 
d . We will often 

use disks or line segments as such regions. Note that a precise point is a special case of an indecisive 
point (set of size one) and an imprecise point (disk of radius zero). 

2.4 Uncertain Curves and Distances 

Define an uncertain curve as a sequence of uncertain points U = 〈 U 1 , . . . , U n 〉 . A realisation 
π � U of an uncertain curve is a polygonal curve π = 〈 p 1 , . . . , p n 〉 , where each p i is a realisa- 
tion of the corresponding uncertain point U i . We denote the set of all realisations of an uncer- 
tain curve U by Real (U ) (Figure 3 ). In a probabilistic setting, we write π � P U to denote that 
each point of π gets drawn from the corresponding uncertainty region independently according to 
distribution P . 

For uncertain curves U , V , define the upper bound, the lower bound, and the expected dis- 

crete Fréchet distance (and extend to the continuous Fréchet distance d max 
F , d min 

F , d 
E (P ) 

F using d F ) 
as follows: 

d max 
dF ( U , V ) = max 

π� U,σ� V 
d dF ( π , σ ), d max 

F ( U , V ) = max 
π� U,σ� V 

d F ( π , σ ), 

d min 
dF ( U , V ) = min 

π� U,σ� V 
d dF ( π , σ ), d min 

F ( U , V ) = min 
π� U,σ� V 

d F ( π , σ ), 

d 
E (P ) 

dF 
( U , V ) = E π� P U,σ� P V [ d dF ( π , σ )] , d 

E (P ) 

F ( U , V ) = E π� P U,σ� P V [ d F ( π , σ )] . 

If the distribution is clear from the context, we write d E 
F and d E 

dF 
. The preceding definitions also 

apply if one of the curves is precise, as a precise curve is a special case of an uncertain curve. 
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3 HARDNESS RESULTS 

In this section, we first discuss the hardness results for the upper bound and the expected value of 
the continuous and discrete Fréchet distance for indecisive and imprecise curves. We then demon- 
strate hardness of finding the lower bound continuous Fréchet distance on imprecise curves. 

3.1 Upper Bound and Expected Fréchet Distance 

We present proofs of NP-hardness and #P-hardness for the upper bound and the expected Fréchet 
distance for both indecisive and imprecise curves by showing polynomial-time reductions from 

CNF-SAT (satisfiability of a Boolean formula) and #CNF-SAT (its counting version). We consider 
the upper bound problem for indecisive curves and then illustrate how the construction can be 
used to show #P-hardness for the expected Fréchet distance (both discrete and continuous). We 
then illustrate how the construction can be adapted to show hardness for imprecise curves. All 
our constructions are in two dimensions. 

3.1.1 Upper Bound Fréchet Distance: Basic Construction. Define the following problem. 

Problem 3.1 (Upper Bound Discrete Fréchet). Given two uncertain curves U and V and a 
threshold δ ∈ R 

+, decide if d max 
dF 

(U , V ) > δ . 

We can similarly define its continuous counterpart, using d max 
F instead. 

Problem 3.2 (Upper Bound Continuous Fréchet). Given two uncertain curves U and V and 
a threshold δ ∈ R 

+, decide if d max 
F (U , V ) > δ . 

We first give some extra definitions to make the proofs clearer. Suppose we are given a CNF-SAT 

formula C with 

C = 

∧ 

i ∈ [ n ] 
C i , C i = 

∨ 

j ∈ J ⊆[ m ] 

x j ∨ 
∨ 

k ∈ K ⊆[ m ] \ J 
¬ x k for all i ∈ [ n] . 

Here, n and m are the number of clauses and variables, respectively, and x j for any j ∈ [ m] is a 
Boolean variable. Such a variable may be assigned ‘true’ or ‘false’; an assignment is a function a : 
{ x 1 , . . . , x m } → { True , False } that assigns a value to each variable, a (x j ) = True or a (x j ) = False 
for any j ∈ [ m] . We denote by C[ a ] the result of substituting x j �→ a (x j ) in C for all j ∈ [ m] . As an 

aid to the reader, the problem we reduce from is as follows. 

Problem 3.3 (CNF-SAT). Given a CNF-SAT formula C , decide if there is an assignment a such that 
C[ a ] = True . 

We pick some value 0 < ε < 0 . 25 . 1 Construct a variable curve, where each variable corre- 
sponds to an indecisive point with locations (0 , 0 . 5 + ε ) and (0 , −0 . 5 − ε ); the locations are in- 
terpreted as assigning the variable True and False . Any realisation of the curve corresponds to a 
variable assignment. 

Intuitively, one curve encodes the variables, and the other encodes the structure of the formula. 
We define a variable gadget on a variable curve to encode the value of a Boolean variable, and 
we define assignment gadgets on the other curve to encode the literals x and ¬ x occurring in 

the formula. The gadgets interact with each other, so if a literal is true, the distance is large. The 
assignment gadgets have positions for ‘true’, ‘false’, and ‘do not care’ values, the latter being used 
to skip a variable unused in a clause. We repeat the construction for each variable on both curves 
with some synchronisation enforcement, constructing a variable clause gadget and an assignment 

1 This range is determined by the relative distances in the construction. 
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Fig. 4. Illustration of the gadgets used in the basic construction. Assignment gadgets are repeated to make 
up assignment clause gadgets; they are repeated to make up the clause curve. Variable gadgets are repeated 
to make up the variable clause gadget; it is prepended and appended by (0 , 0 ) to make up the variable curve. 

clause gadget, so the distance is large if the clause is satisfied by setting the variables in a specific 
way. Finally, we construct the full variable curve and the clause curve. Here the goal is that we have 
a single copy of variables that can be assigned True or False , and we can choose which clause we 
want to align with them. The other clauses are caught by extra points on the variable curve so as 
to not affect the distance. Some clauses are not satisfied and will yield a small distance, whereas 
others are satisfied and yield a large distance; therefore, since we can choose the clause freely, we 
only get large distance between full curves if all clauses give a large distance, so all are satisfied, 
and so is the formula. Finding the upper bound Fréchet distance now corresponds to finding the 
realisation of the points that achieves the large distance, or finding the truth assignment of the 
variables that satisfies the formula. We show the locations used by the gadgets and their nesting 
in Figure 4 . We show an example construction for a specific formula and a realisation in Figure 5 , 
showing also the possible alignment options between the clause curve and the variable curve and 
the resulting distances. Next, we define the gadgets formally level by level and prove that the 
distances are correct. 

Literal Level . Define a variable gadget, where an indecisive point corresponds to a variable and 
is followed by a precise point far away, to force synchronisation with the other curve: 

VG j = {(0 , 0 . 5 + ε ), (0 , −0 . 5 − ε )} � (2 , 0 ). 

Consider a specific clause C i of the formula. We define an assignment gadget AG i, j for each 

variable x j and clause C i depending on how the variable occurs in the clause: 

AG i, j = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

( 0 , −0 . 5 ) � ( 1 , 0 ) if x j is a literal of C i , 
( 0 , 0 . 5 ) � ( 1 , 0 ) if ¬ x j is a literal of C i , 
( 0 , 0 ) � ( 1 , 0 ) otherwise. 

Note that if the assignment x j = True makes the clause C i true, then the first precise point of the 
corresponding assignment gadget appears at distance 1 + ε from the realisation corresponding to 
setting x j = True of the indecisive point in VG j . 
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Fig. 5. Realisation of VC for the assignment x 1 = True , x 2 = True , x 3 = False and CC for the formula C = 

(x 1 ∨ x 3 ) ∧ (¬ x 1 ∨ x 2 ∨ ¬ x 3 ) ∧ (x 1 ∨ ¬ x 2 ). We show the variable curve, and three times the clause curve, 
since we have three feasible options for matching the curves, corresponding to the three clauses. The other 
clauses are matched to (0 , 0 ) and are collapsed to a point in the figure. Note that C = True with the given 
variable assignment. Also note that we can choose any of C 1 , C 2 , C 3 to couple to VC ; we always get the 
bottleneck distance of 1 + ε , as all three are satisfied, so here d dF ( VC , CC ) = 1 + ε . 

We now show the relation between the gadgets. To do so, we introduce the one-to-one coupling 
as a valid coupling c = 〈 (p 1 , q 1 ), . . . , (p r , q r )〉 , where the coupling is restricted to (p s+1 , q s+1 ) = 
(p s + 1 , q s + 1 ) for all s ∈ [ r − 1] . Necessarily, such a coupling only exists for curves of equal length. 

Lemma 3.4. Suppose we are given a clause C i and a variable x j that both occur in a CNF-SAT 
formula C , and we restrict the set of valid couplings C to only contain one-to-one couplings. We only 
get the discrete Fréchet distance equal to 1 + ε if the realisation of VG j we pick corresponds to the 
assignment of x j that ensures the clause C i is satisfied; otherwise, the discrete Fréchet distance is 1. In 
other words, if we consider π � VG j that corresponds to setting a (x j ), then 

d dF (π , AG i, j ) = 

{ 
1 + ε if assigning x j satisfies C i , 
1 otherwise. 

Proof. First of all, observe that as we only consider one-to-one couplings, the second points of 
both gadgets must be coupled; the distance between them is ‖ ( 2 , 0 ) − ( 1 , 0 )‖ = 1 . Thus, the discrete 
Fréchet distance between the curves must be at least 1. 
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Now consider the possible realisations of VG j . Say that we pick the realisation (0 , 0 . 5 + ε ) � 
(2 , 0 ), which corresponds to assigning a (x j ) = True . If x j is a literal of C i , so C i [ a ] = True , then 

by construction we know that AG i, j is ( 0 , −0 . 5 ) � ( 1 , 0 ). Since we consider only the one-to-one cou- 
plings, we must couple the first points together, yielding the distance ‖ (0 , 0 . 5 + ε ) − (0 , −0 . 5 )‖ = 
1 + ε > 1 , so the discrete Fréchet distance in this case is 1 + ε , and indeed we picked the assignment 
that ensures that C i is satisfied. If instead ¬ x j is a literal of C i , so C i [ a ] = False , then we know 

that AG i, j is ( 0 , 0 . 5 ) � ( 1 , 0 ), and it is easy to see that, as ‖ (0 , 0 . 5 + ε ) − (0 , 0 . 5 )‖ = ε < 1 , we get 
the discrete Fréchet distance of 1, and that we picked an assignment that does not ensure that C i 

is satisfied. 
A symmetric argument can be applied when we consider the realisation (0 , −0 . 5 − ε ) � (2 , 0 ) for 

VG j : if ¬ x j is a literal of C i , then we get the discrete Fréchet distance of 1 + ε and we picked an 

assignment that surely satisfies C i . 
Finally, consider the case when AG i, j = ( 0 , 0 ) � ( 1 , 0 ). This implies that assigning a value to x j 

has no effect on C i (i.e., a literal involving x j does not occur in C i ), so neither assignment (and nei- 
ther realisation of VG j ) would ensure that C i is satisfied. Also observe that ‖ (0 , 0 . 5 + ε ) − (0 , 0 )‖ = 
‖ (0 , −0 . 5 − ε ) − (0 , 0 )‖ = 0 . 5 + ε < 1 , so both realisations yield the discrete Fréchet distance of 1. 

So, we can conclude that we get the distance 1 + ε if and only if the partial assignment of a value 
to x j ensures that C i is satisfied; otherwise, we get the distance 1. �

Clause Level . We can repeat the construction, yielding a variable clause gadget and an assignment 
clause gadget: 

VCG = (−2 , 0 ) � 
⊔ 

j ∈ [ m ] 

VG j , ACG i = (−1 , 0 ) � 
⊔ 

j ∈ [ m ] 

AG i, j . 

Consider the Fréchet distance between the two gadgets. Observe that coupling a synchronisation 

point from one gadget with a non-synchronisation point in the other yields a distance larger than 

1 + ε , whereas coupling synchronisation points pairwise and non-synchronisation points pairwise 
will yield the distance at most 1 + ε . So, we only consider one-to-one couplings—that is, we couple 
point i on one curve to point i on the other curve, for all i . 

Now, if a realisation corresponds to a satisfying assignment, then for some x j we have picked 
the realisation that is opposite from the coupled point on the clause curve, yielding the bottleneck 

distance of 1 + ε . If the realisation corresponds to a non-satisfying assignment, then the synchro- 
nisation points establish the bottleneck, yielding the distance 1. So, we can clearly distinguish 

between a satisfying and a non-satisfying assignment for a clause. It is crucial now that we show 

the following. 

Lemma 3.5. Given a CNF-SAT formula C containing some clause C i and m variables x 1 , . . . , x m , 
consider curves α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for arbitrary precise curves α1 , α

′ 
1 , α2 , α

′ 
2 with 

| α1 | = k and | α2 | = l . If an optimal coupling between α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for any 
realisation of VCG has a pair (k + 1 , l + 1 ), then there is an optimal coupling that has pairs (k +
s , l + s ) for all s ∈ [2 m + 1] —that is, there is an optimal coupling that is one-to-one for any realisation 
of VCG . 

Proof. Observe that both gadgets have exactly 2 m + 1 points. Suppose the optimal coupling 
Opt has a pair (k + 1 , l + 1 ), so it couples the first points of VCG and ACG i . If Opt is already 

one-to-one for all s ∈ [2 m + 1] , there is nothing to be done. Suppose now that it is one-to-one 
until some 1 ≤ r < 2 m + 1 , so it has pairs (k + s , l + s ) for all s ∈ [ r ] , but it does not have a pair 
( k + ( r + 1 ), l + ( r + 1 ) ) . Then one of the following cases occurs: 
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• r = 2 q + 2 is even; then we know that the point (2 , 0 ) in VG q+1 is not coupled to the point 
(1 , 0 ) in AG i,q+1 , but the preceding indecisive point is coupled to the assignment point. 
Then either (2 , 0 ) is coupled to an assignment point, with the distance at least 2, or (1 , 0 ) is 

coupled to an indecisive point, yielding the distance of 
√ 

1 + (0 . 5 + ε ) 2 > 1 . If we eliminate 
that pair and instead couple (2 , 0 ) to (1 , 0 ), we will still have a valid coupling and obtain 

the distance of 1 on this pair; thus, the new coupling is not worse that the original one, and 
so it is also an optimal coupling that is one-to-one for all s ∈ [ r + 1] . 

• r = 2 q + 1 is odd; then we know that the indecisive point in VG q+1 is not coupled to the 
assignment point in AG i,q+1 , but the preceding (2 , 0 ) and (1 , 0 ) (or (−2 , 0 ) and (−1 , 0 )) are 
coupled. Then either Opt has a pair of the indecisive point and (1 , 0 ), or it has a pair of the 
assignment point and (2 , 0 ). (The cases for (−1 , 0 ) and (−2 , 0 ) are symmetrical.) In either 
case, we want to eliminate that pair from the coupling and instead add the pair of the 
indecisive point and the assignment point, yielding a valid coupling that is one-to-one for 
all s ∈ [ r + 1] . To complete the proof for this case, we need to show that such a coupling 
is optimal. 

Consider the first possible coupling. The distance between the indecisive point and (1 , 0 ) 

is 
√ 

1 + (0 . 5 + ε ) 2 , whereas the distance between the indecisive and the assignment point 
is ε , 0 . 5 + ε , or 1 + ε . As ε < 0 . 25 , note that 

0 . 25 + ε > 2 ε 

1 + 0 . 25 + ε + ε 2 > 1 + 2 ε + ε 2 

1 + (0 . 5 + ε ) 2 > (1 + ε ) 2 

√ 

1 + (0 . 5 + ε ) 2 > 1 + ε, 

so our change to the optimal coupling will replace a pair with a pair of lower distance, so 
the new coupling is at least as good as the original one, and thus optimal. 

Now consider the second coupling. The distance between the assignment point and (2 , 0 ) 
is at least 2, and 2 > 1 + ε > 0 . 5 + ε > ε , so again our change yields an optimal coupling. 

By induction on r , we conclude that the statement of the lemma holds. �

We can now use the two previous results to show the following. 

Lemma 3.6. Given a CNF-SAT formula C containing some clause C i and m variables x 1 , . . . , x m , 
construct curves α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for arbitrary precise curves α1 , α

′ 
1 , α2 , α

′ 
2 with 

| α1 | = k and | α2 | = l . If some optimal coupling between α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for any 
realisation of VCG has a pair (k + 1 , l + 1 ) and d dF (α1 , α2 ) ≤ 1 and d dF (α

′ 
1 , α
′ 
2 ) ≤ 1 , then the discrete 

Fréchet distance between the curves is 1 + ε for realisations of VCG that correspond to satisfying 
assignments for C i , and 1 for realisations that do not. In other words, if π � VCG corresponds to an 
assignment a and we only consider the restricted couplings, then 

d dF (α1 � π � α ′ 1 , α2 � ACG i � α ′ 2 ) = 
{ 

1 + ε if C i [ a ] = True , 
1 otherwise. 

Proof. First of all, since some optimal coupling between α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for 
any realisation of VCG has a pair (k + 1 , l + 1 ), we can use Lemma 3.5 to find an optimal coupling 
Opt that is one-to-one on the subcurves corresponding to the gadgets. That means that we can, 
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essentially, split the curves, if we consider only such restricted couplings: 

d dF (α1 � π � α ′ 1 , α2 � ACG i � α ′ 2 ) = max ( d dF ( α1 , α2 ) , d dF (π , ACG i ) , d dF (α
′ 
1 , α
′ 
2 )) 

= max ( 1 , d dF ( π , ACG i ) ) , 

where the last equality follows from the fact that d dF (π , ACG i ) ≥ 1 , since the first points are in a 
coupling and have the distance 1, and from the assumption that d dF (α1 , α2 ) ≤ 1 and d dF (α

′ 
1 , α
′ 
2 ) ≤ 1 . 

Note that here we do not restrict the coupling on α1 , α2 and α ′ 1 , α
′ 
2 . 

To obtain the end result, we need to consider the distance between π and ACG i under a one-to- 
one coupling. Using Lemma 3.4 , it is easy to see that if we have a (x j ) = True for some variable x j 
and x j is a literal in C i , then C i [ a ] = True , and d dF (π , ACG i ) = 1 + ε ; similarly, if a (x j ) = False for 
some variable x j and ¬ x j is a literal in C i , then C i [ a ] = True , and d dF (π , ACG i ) = 1 + ε . If there is 
no such x j , then C i [ a ] = False and d dF (π , ACG i ) = 1 . We conclude that the lemma holds. �

Formula Level . Next, we define the variable curve and the clause curve as follows: 

VC = ( 0 , 0 ) � VCG � ( 0 , 0 ), CC = 

⊔ 

i ∈ [ n ] 
ACG i . 

Observe that the synchronisation points at (−2 , 0 ) and (−1 , 0 ) ensure that for any optimal coupling 
we match up VCG with some ACG i as described before. Also note that all the points on CC are 
within distance 1 from (0 , 0 ). Therefore, we can always pick any one of n clauses to couple to VCG , 
and couple the remaining points to (0 , 0 ); the bottleneck distance will then be determined by the 
distance between VCG and the chosen ACG i . 

Now consider a realisation of VCG . If the corresponding assignment does not satisfy C , then 

we can synchronise VCG with a clause that is false to obtain the distance of 1. If the assign- 
ment corresponding to the realisation satisfies all the clauses, we must synchronise VCG with a 
satisfied clause, which yields a distance of 1 + ε . We show the following important property of 
our construction. 

Lemma 3.7. Given a CNF-SAT formula C with n clauses and m variables, construct the curves VC 

and CC as defined earlier and consider a realisation (0 , 0 ) � π � (0 , 0 ) of curve VC , corresponding to 
some assignment a . Then, under no restrictions on the couplings except those imposed by the definition, 

d dF ( ( 0 , 0 ) � π � (0 , 0 ), CC ) = 

{ 
1 + ε if C[ a ] = True , 
1 if C[ a ] = False . 

In other words, the discrete Fréchet distance is 1 + ε if the realisation corresponds to a satisfying as- 
signment, and is 1 otherwise. 

Proof. We can show this by proving that the premises of Lemma 3.6 are satisfied. 
First of all, note that all the points of CC are within distance 1 from (0 , 0 ). Furthermore, note 

that we can always give a coupling with the distance at most 1 + ε : couple (0 , 0 ) to (−1 , 0 ) from 

ACG 1 , then walk along realisation of VCG and ACG 1 in a one-to-one coupling, and then couple 
the remaining points in CC to (0 , 0 ). As all the points of CC are within distance 1 from (0 , 0 ) and as 
this is otherwise the construction of Lemma 3.6 , this coupling yields the discrete Fréchet distance 
of at most 1 + ε for any realisation of VC . Therefore, any coupling that has pairs further away than 

1 + ε cannot be optimal. Observe that the only point within that distance from (−2 , 0 ) is (−1 , 0 ). 
Therefore, we only need to consider couplings that couple the first point of realisation of VCG to 
the first point of some ACG i as possibly optimal. Thus, for each of the n couplings we get, we can 

apply Lemma 3.6 . There are two cases to consider: 
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• There is some gadget ACG i with the distance 1 to π under the one-to-one coupling. Then 

we can choose that gadget to couple to π and couple all the other points in CC to (0 , 0 ) 
at the beginning or at the end of VC as suitable. As all the points of CC are within dis- 
tance 1 from (0 , 0 ), this coupling will yield distance 1; as lower distance is impossible, this 
coupling is optimal, so then d dF ( ( 0 , 0 ) � π � (0 , 0 ), CC ) = 1 . Observe that by our construc- 
tion, this situation corresponds to the case when C i [ a ] = False , by Lemma 3.6 , and so 
indeed C[ a ] = False . 

• The distance between any gadget ACG i and π under the one-to-one coupling is 1 + ε . Then, 
no matter which gadget we choose to couple to π , we will get the distance of 1 + ε , so in 

this case d dF ( ( 0 , 0 ) � π � (0 , 0 ), CC ) = 1 + ε . Note that, by our construction, this means that 
C i [ a ] = True for all i ∈ [ n] ; therefore, indeed C[ a ] = True . 

As we have covered all the possible cases, we conclude that the lemma holds. �

We illustrate the gadgets of the construction in Figure 4 . We also show an example of the cor- 
respondence between a Boolean formula and our construction in Figure 5 . 

3.1.2 Upper Bound Discrete Fréchet Distance on Indecisive Points. 

Theorem 3.8. The problem Upper Bound Discrete Fréchet for indecisive curves is NP-complete. 

Proof. First of all, observe that if two realisations of lengths n and m are given as a certificate for 
a ‘Yes’-instance of the problem, then one can verify the solution by computing the discrete Fréchet 
distance between the realisations and checking that it is indeed larger than the threshold δ . The 
computation can be done in time Θ(mn), using the algorithm proposed by Eiter and Mannila [ 28 ]. 
Therefore, the problem is in NP. 

Now suppose we are given an instance of CNF-SAT —that is, a CNF-SAT formula C with n clauses 
and m variables. We construct the curves VC and CC , as described previously, and get an instance 
of Upper Bound Discrete Fréchet on curves VC and CC with the threshold δ = 1 . If the answer 
is ‘Yes’, then we also output ‘Yes’ as an answer to CNF-SAT ; otherwise, we output ‘No’. 

Using Lemma 3.7 , we see that if there is some assignment a such that C[ a ] = True , then for the 
corresponding realisation the discrete Fréchet distance is 1 + ε , and the other way around, if for 
some realisation we get the distance 1 + ε , then by our construction all the clauses are satisfied 
and C[ a ] = True ; thus, d max 

dF 
( VC , CC ) = 1 + ε . However, if there is no such assignment a , then for 

any assignment a there is some C i with C i [ a ] = False , yielding C[ a ] = False , and also for any 

realisation of VC there is some gadget ACG i that yields the discrete Fréchet distance of 1; thus, 
d max 

dF 
( VC , CC ) = 1 . Therefore, the formula C is satisfiable if and only if d max 

dF 
( VC , CC ) > 1 , and so 

our answer is correct. 
Furthermore, observe that the curves have 2 m + 2 and 2 mn + n points, respectively, and so the 

instance of Upper Bound Discrete Fréchet that gives the answer to CNF-SAT can be constructed 
in polynomial time. Thus, we conclude that Upper Bound Discrete Fréchet for indecisive curves 
is NP-hard; combining it with the first part of the proof shows that it is NP-complete. �

3.1.3 Upper Bound Fréchet Distance on Indecisive Points. We use the same construction as for 
the discrete Fréchet distance. To do the same proof, we need to present arguments for the con- 
tinuous case that lead up to an alternative to Lemma 3.7 . For the arguments to work, we need to 
further restrict the range of ε to be [0 . 12 , 0 . 25 ). 

Consider the construction drawn in Figure 6 . The key points here are that (0 , 0 . 5 + ε ) is far from 

any point on the clause curve, and that (2 , 0 ) is only close enough to (1 , 0 ). We can present a lemma 
similar to Lemma 3.4 . 
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Fig. 6. Construction for ε = 0 . 15 . The shaded red area shows the points within distance 1 from the segment 
( 0 , −0 . 5 ) � ( 1 , 0 ). Observe that (0 , 0 . 5 + ε ) is outside that region, and that (1 , 0 ) is the only red point within 
distance 1 from (2 , 0 ). 

Lemma 3.9. Given a clause C i and a variable x j that both occur in the CNF-SAT formula C , we 
only get the Fréchet distance equal to (1 + ε ) · 2 / √ 5 if the realisation of VG j we pick corresponds to the 
assignment of x j that ensures the clause C i is satisfied; otherwise, the Fréchet distance is 1. In other 
words, if we consider π � VG j that corresponds to setting a (x j ), then 

d F ( π , AG i, j ) = 

{ 
( 1 + ε ) · 2 √ 

5 
if assigning x j satisfies C i , 

1 otherwise. 

Proof. Consider the possible realisations of VG j . Suppose we pick the realisation (0 , 0 . 5 + ε ) � 
(2 , 0 ), which corresponds to assigning a (x j ) = True . If x j is a literal in C i , so C i = True , then by 

construction we know that AG i, j is ( 0 , −0 . 5 ) � ( 1 , 0 ). As noted in Figure 6 , the distance between 

(0 , 0 . 5 + ε ) and any point on (0 , −0 . 5 ) � (1 , 0 ) is larger than 1. To be more specific, the distance be- 
tween the point (x , y) and the line defined by (x 1 , y 1 ) � (x 2 , y 2 ) can be determined using a standard 
formula as 

d = 
|x (y 2 − y 1 ) − y (x 2 − x 1 ) + x 2 y 1 − x 1 y 2 | 

√ 

(x 2 − x 1 ) 2 + (y 2 − y 1 ) 2 
. 

In our case, we get 

d = 
|0 − (0 . 5 + ε ) · (1 − 0 ) − 1 · 0 . 5 − 0 | 

√ 

(1 − 0 ) 2 + (0 + 0 . 5 ) 2 
= 

2 · (1 + ε ) 
√ 

5 
. 

As the point (0 , 0 . 5 + ε ) must be aligned with some point on AG i, j , the Fréchet distance we get in 

this case cannot be smaller than d . Furthermore, it is easy to see that the point (0 , 0 . 5 + ε ) is the 
furthest point from AG i, j ; thus, we get that Fréchet distance is exactly d . 

However, if ¬ x j is a literal in C i , then by construction we know that AG i, j is ( 0 , 0 . 5 ) � ( 1 , 0 ). As 
noted in Figure 6 , the distance between (2 , 0 ) and any point on ( 0 , 0 . 5 ) � ( 1 , 0 ) is at least 1, with 

the smallest distance achieved at (1 , 0 ). It is clear that this is the furthest pair of points on the two 
gadgets in this case; thus, we get the Fréchet distance of 1. 

A symmetric argument can be applied when we consider the realisation (0 , −0 . 5 − ε ) � (2 , 0 ) for 
VG j : if ¬ x j is a literal in C i , then we get the Fréchet distance of d and we picked an assignment that 
satisfies C i ; in the other case, we get that C i is not necessarily satisfied and the Fréchet distance 
is 1. 

Finally, consider the case when AG i, j = ( 0 , 0 ) � ( 1 , 0 ). Again, this implies that assigning a value 
to x j has no effect on C i , so neither assignment (and neither realisation of VG j ) would ensure 
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that C i is satisfied. Also observe that both realisations give rise to curves that are entirely within 

distance 1 of ( 0 , 0 ) � ( 1 , 0 ), yielding the Fréchet distance of 1. �

We can now naturally get a lemma similar to Lemma 3.6 . 

Lemma 3.10. Given a CNF-SAT formula C containing some clause C i and m variables x 1 , . . . , x m , 
construct curves α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 for arbitrary precise curves α1 , α

′ 
1 , α2 , α

′ 
2 with 

| α1 | = k and | α2 | = l . If some optimal alignment ϕ1 , ϕ2 between α1 � VCG � α ′ 1 and α2 � ACG i � α ′ 2 
for any realisation of VCG has some value t such that ϕ1 (t ) = k + 1 and ϕ2 (t ) = l + 1 and d F (α1 , α2 ) ≤
1 and d F (α

′ 
1 , α
′ 
2 ) ≤ 1 , then the Fréchet distance between the curves is (1 + ε ) · 2 / √ 5 for realisations of 

VCG that correspond to satisfying assignments for C i , and 1 for other realisations. In other words, if 
π � VCG corresponds to assignment a and we only consider the restricted alignments, then 

d F (α1 � π � α ′ 1 , α2 � ACG i � α ′ 2 ) = 
{ 
(1 + ε ) · 2 √ 

5 
if C i [ a ] = True , 

1 otherwise. 

Proof. First of all, observe that as we traverse VCG , we need to align (2 , 0 ) with (1 , 0 ) to obtain 

an optimal alignment. Therefore, essentially, the traversal can be split into m parts, each of which 

corresponds to traversing VG j and AG i, j at the same time for all j ∈ [ m] . We can use Lemma 3.9 to 
note that if some variable x j is assigned a value that makes the clause C i satisfied, then the Fréchet 
distance becomes (1 + ε ) · 2 / √ 5 ; if that is not the case for any variables, then we can traverse the 
entire curve, as well as α1 and α ′ 1 by linearly interpolating our position between the vertices of the 
cur ves and other wise using the alignment derived from the coupling of the discrete case, while 
staying within distance 1 of the other curve, yielding the Fréchet distance of 1. The distance also 
cannot be smaller than 1 due to aligning (2 , 0 ) and (1 , 0 ). �

Although this proof is a bit less formal than that of Lemma 3.6 , its validity should be sufficiently 

clear from the geometric considerations described earlier in this section. 
Now we can provide a lemma that mirrors Lemma 3.7 . 

Lemma 3.11. Given a CNF-SAT formula C with n clauses and m variables, construct the curves VC 

and CC as defined earlier and consider a realisation (0 , 0 ) � π � (0 , 0 ) of curve VC , corresponding to 
some assignment a . Then 

d F ( ( 0 , 0 ) � π � ( 0 , 0 ), CC ) = 

{ 
( 1 + ε ) · 2 √ 

5 
if C[ a ] = True , 

1 if C[ a ] = False . 

In other words, the Fréchet distance is (1 + ε ) · 2 / √ 5 if the realisation π corresponds to a satisfying 
assignment, and is 1 otherwise. 

Proof. First of all, observe that any point of CC is within distance 1 of (0 , 0 ); furthermore, 
when starting to traverse π , we must match (−2 , 0 ) with (−1 , 0 ) in an optimal alignment. Thus, the 
premise of Lemma 3.10 is satisfied, and, using reasoning similar to that of Lemma 3.7 , we observe 
that an optimal alignment chooses one of the clauses to traverse in parallel with the variable curve, 
and so if there is a clause that is not satisfied, then we get the Fréchet distance of 1, and if all of 
them are satisfied, then all of them yield the Fréchet distance of (1 + ε ) · 2 / √ 5 . �

Finally, we can show the main result. 

Theorem 3.12. The problem Upper Bound Continuous Fréchet for indecisive curves is 
NP-complete. 

Proof. First of all, observe that if two realisations of lengths n and m are given as a certificate 
for a ‘Yes’-instance of the problem, then one can verify the solution by checking that the Fréchet 
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distance between the realisations is larger than the threshold δ . The computation can be done in 

time Θ(mn), using the algorithm proposed by Alt and Godau [ 6 , 34 ]; so the problem is in NP. 
Now suppose we are given an instance of CNF-SAT —that is, a CNF-SAT formula C with n clauses 

and m variables. We construct the curves VC and CC , as described previously, and get an instance 
of Upper Bound Continuous Fréchet on curves VC and CC with the threshold δ = 1 . If the 
answer is ‘Yes’, then we also output ‘Yes’ as an answer to CNF-SAT ; otherwise, we output ‘No’. 

Using Lemma 3.11 , we can see that if there is an assignment a such that C[ a ] = True , then for the 
corresponding realisation the Fréchet distance is (1 + ε ) · 2 / √ 5 , and the other way around, if for some 
realisation we get the distance (1 + ε ) · 2 / √ 5 , then by our construction all the clauses are satisfied 
and C[ a ] = True ; thus, d max 

F ( VC , CC ) = (1 + ε ) · 2 / √ 5 . However, if there is no such assignment a , 
then for any assignment a there is some C i with C i [ a ] = False , yielding C[ a ] = False , and also 
for any realisation of VC there is some gadget ACG i that yields the Fréchet distance of 1; thus, 
d max 

F ( VC , CC ) = 1 . Therefore, the formula C is satisfiable if and only if d max 
F ( VC , CC ) > 1 , and so 

our answer to the CNF-SAT instance is correct. 
Furthermore, as before, the instance of Upper Bound Discrete Fréchet that gives the answer 

to CNF-SAT can be constructed in polynomial time. Thus, we conclude that Upper Bound Con- 
tinuous Fréchet for indecisive curves is NP-hard; combining it with the first part of the proof 
shows that it is NP-complete. �

3.1.4 Expected Fréchet Distance on Indecisive Points. We show that finding the expected dis- 
crete Fréchet distance is #P-hard under the uniform distribution by providing a polynomial-time 
reduction from #CNF-SAT —that is, the problem of finding the number of satisfying assignments 
to a CNF-SAT formula. Define the following problem and its continuous counterpart. 

Problem 3.13 (Expected Discrete Fréchet). Find d 
E (U ) 

dF 
(U , V ) for uncertain curves U , V . 

Problem 3.14 (Expected Continuous Fréchet). Find d 
E (U ) 

F (U , V ) for uncertain curves U , V . 

The main idea is to derive an expression for the number of satisfying assignments in terms of 

d 
E (U ) 

dF 
( VC , CC ). This works, since there is a one-to-one correspondence between Boolean variable 

assignment and a choice of realisation of VC , so counting the number of satisfying assignments 
corresponds to finding the proportion of realisations yielding large Fréchet distance. We can es- 
tablish the result for Expected Continuous Fréchet similarly. 

Theorem 3.15. The problems Expected Discrete Fréchet and Expected Continuous Fréchet 
for indecisive curves are #P-hard. 

Proof. Suppose we are given an instance of the #CNF-SAT problem—that is, a CNF-SAT for- 
mula C with n clauses and m variables. Denote the (unknown) number of satisfying assignments 
of C by N . We can construct the curves VC and CC in the same way as previously. We then get 
an instance of Expected Discrete Fréchet on indecisive curves under the uniform distribution. 
Assuming we solve it and get d 

E (U ) 

dF 
( VC , CC ) = μ, we can now compute N : 

N = (μ − 1 ) · 2 
m 

ε 
. 

N is then the output for the instance of #CNF-SAT that we were given. Clearly, construction of 
the curves can be done in polynomial time, and so can the computation of N ; hence, the reduction 

takes polynomial time. 
We still need to show that the result we obtain is correct. For each assignment, there is exactly 

one realisation of the curve VC . Furthermore, as we choose the realisation of each indecisive point 
uniformly and independently, all the realisations of VC have equal probability of 2 −m . There are 
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N satisfying assignments, and each of the corresponding realisations yields the discrete Fréchet 
distance of 1 + ε . In the remaining 2 m − N cases, the distance is 1. Using the definition of expected 
value, we can derive 

μ = d 
E (U ) 

dF 
( VC , CC ) = N · 2 −m · (1 + ε ) + (2 m − N ) · 2 −m · 1 = 1 + N · ε 

2 m 
. 

Then it is easy to see that indeed N = (μ − 1 ) · 2 m 

ε 
. So, we get the correct number of satisfying 

assignments, if we know the expected value under the uniform distribution. Therefore, Expected 

Discrete Fréchet for indecisive curves is #P-hard. 
One can derive a very similar formula to show that Expected Continuous Fréchet is also 

#P-hard for indecisive curves. We can use almost the same reduction as for the discrete case, so 
given an instance of #CNF-SAT (CNF-SAT formula C with n clauses and m variables), we construct 
the two curves, solve Expected Continuous Fréchet to obtain the value of μ, and compute 

N = 2 m · ( μ − 1 ) ·
√ 

5 

2 ( 1 + ε ) −
√ 

5 

as the output for #CNF-SAT . To show that the output is correct, note that 

μ = 2 −m · N · 2 
√ 

5 
· (1 + ε ) + 2 −m · (2 m − N ) · 1 = 1 + 2 −m · N ·

( 
2 
√ 

5 
(1 + ε ) − 1 

) 

, 

so we can express N as 

N = 2 m · ( μ − 1 ) ·
√ 

5 

2 ( 1 + ε ) −
√ 

5 
. 

Again, the reduction is correct and can be done in polynomial time, so Expected Continuous 
Fréchet for indecisive curves is #P-hard. �

We use the uniform distribution; however, we only need to compute the probability of picking 
a realisation that corresponds to a satisfying assignment, N · 2 −m above. If we can do so for a dif- 
ferent distribution, then the rest of the proof does not require modifications to show #P-hardness. 

3.1.5 Upper Bound Discrete Fréchet Distance on Imprecise Points. Here we consider imprecise 
points modelled as disks and as line segments; the results and their proofs turn out to be very 

similar. We denote the disk with the centre at p ∈ R 
d and radius r ≥ 0 as D (p, r ). We denote the 

line segment between points p 1 and p 2 by S (p 1 , p 2 ). 

Disks . We use a construction very similar to that of the indecisive points case, except now 

we change the gadget containing a non-degenerate indecisive point so that it contains a non- 
degenerate imprecise point, for all j ∈ [ m] : 

VG j = D ( ( 0 , 0 ), 0 . 5 + ε ) � (2 , 0 ). 
Essentially, the two original indecisive points are now located on the points realising the diameter 
of the disk. 

We can reuse the proof leading up to Theorem 3.8 , if we can show the following. 

Lemma 3.16. Suppose d max 
dF 

( VC , CC ) = ν . If one considers all the realisations π of VC that yield 
d dF (π , CC ) = ν , then among them there will always be a realisation that only places the imprecise 
point realisations at either (0 , 0 . 5 + ε ) or (0 , −0 . 5 − ε ). 

Proof. First of all, note that the points ( 2 , 0 ) and ( 1 , 0 ) are still in the curves in the same quality 

as before, so they must be coupled, and hence the lowest discrete Fréchet distance achievable with 

any realisation is 1. 
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Now consider a realisation of an imprecise point. Suppose that all the clause assignment points 
for that imprecise point are placed at (0 , −0 . 5 ). Then geometrically it is obvious that the distance 
is maximised by placing the realisation at (0 , 0 . 5 + ε ); if there is a realisation that achieves the best 
possible value ν without doing this, then we can move this point and still get ν . 

Suppose that some clause assignment points are at (0 , −0 . 5 ) and some at (0 , 0 . 5 ). As the real- 
isation comes from the disk of radius 0 . 5 + ε , there is no realisation that is further than 1 away 

from both assignment points; therefore, to maximise the distance, we have to choose one of the 
two locations and then the previous case applies. 

So, it is clear that, from an arbitrary optimal realisation, moving to the (correct) indecisive point 
realisation will still yield an optimal realisation for the maximum discrete Fréchet distance; thus, 
the statement of the lemma holds. �

Line Segments . We change the gadget to be, for all j ∈ [ m] , 

VG j = S ( ( 0 , −0 . 5 − ε ), (0 , 0 . 5 + ε )) � (2 , 0 ). 
Again, the two original indecisive points are now located on the ends of the segment; moreover, 
the segment is a strict subset of the disk. 

We can state a similar lemma. 

Lemma 3.17. Suppose d max 
dF 

( VC , CC ) = ν . If one considers all the realisations π of VC that yield 
d dF (π , CC ) = ν , then among them there will always be a realisation that only places the imprecise 
point realisations at either (0 , 0 . 5 + ε ) or (0 , −0 . 5 − ε ). 

Proof. Since the line segments include these points and are subsets of the disks, the statement 
of Lemma 3.16 immediately yields this result. �

So, now we can state the following for both models. 

Theorem 3.18. The problem Upper Bound Discrete Fréchet for imprecise curves modelled as 
line segments or as disks is NP-hard. 

Proof. As shown in Lemma 3.16 and Lemma 3.17 , for the same CNF-SAT formula, the upper 
bound discrete Fréchet distance on indecisive and imprecise points is equal for our construction. 
So, trivially, Upper Bound Discrete Fréchet is NP-hard for imprecise curves. �

3.1.6 Upper Bound Fréchet Distance on Imprecise Points. We use exactly the same construction 

as in the previous section. The argument here follows the previous ones very closely, so we can 

immediately state the following theorem. 

Theorem 3.19. The problem Upper Bound Continuous Fréchet for imprecise curves modelled 
as line segments or as disks is NP-hard. 

Proof. Note that we can apply exactly the same argument as the one in Lemma 3.16 and 
Lemma 3.17 to reduce this problem to the one on indecisive points. Then, we can apply the same 
argument as in the proof of Theorem 3.18 to conclude that the problem is NP-hard. �

3.1.7 Expected Discrete Fréchet Distance on Imprecise Points. We can also consider the value of 
the expected Fréchet distance on imprecise points. We show the result only for points modelled as 
line segments; in principle, we believe that for disks a similar result holds, but the specifics of our 
reduction do not allow for clean computations. 

We cannot immediately use our construction: we treat subsegments at the ends of the impreci- 
sion segments as True and False , but we have no interpretation for points in the centre part of a 
segment. So, we want to separate the realisations that pick any such invalid points. To that aim, we 
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Fig. 7. The curve FG j hops between (0 , 0 ) and (1 , 0 ) for every variable x k (in black) except when k = j; in the 
latter case, the curve goes to ( 0 , 0 . 5 ), ( 0 , −0 . 5 ), and back to (1 , 0 ) (in green). Consider the line segment on the 
variable curve representing x j (in red). As a consequence, for any realisation of the variable clause gadget 
such that the realisation of x j falls within S ( ( 0 , −0 . 5 ), (0 , 0 . 5 )), the gadget FG j can be aligned with VCG to 
obtain Fréchet distance 1. 

introduce extra gadgets to the clause curve that act as clauses but catch these invalid realisations, 
so each of them yields the distance of 1. Now we have three distinct cases: realisation is satisfying, 
non-satisfying, or invalid. For every j ∈ [ m] , define 

FG j = ( −1 , 0 ) � 
⊔ 

k ∈[ j−1] 

(

( 0 , 0 ) � ( 1 , 0 ) 
)

� ( 0 , 0 . 5 ) � ( 0 , −0 . 5 ) � ( 1 , 0 ) � 
⊔ 

k ∈ [ m ] \ [ j] 

(

( 0 , 0 ) � ( 1 , 0 ) 
)

. 

So, we define a clause gadget that ignores all the variables except for x j and then features both 

‘true’ and ‘false’ for x j . The intuition is that any realisation corresponding to the invalid state of a 
variable will be close to both (0 , 0 . 5 ) and (0 , −0 . 5 ), and every other variable value is close to (0 , 0 ), 
so aligning the gadget FG j with the variable curve will yield a small Fréchet distance if x j is in an 

invalid state. See also Figure 7 . We then define the clause curve as 

CC = 

⊔ 

i ∈ [ n ] 
ACG i � 

⊔ 

j ∈ [ m ] 

FG j . 

We can now choose to couple one of the FG clauses to the variable curve. As before, due to the 
synchronisation points, we can never get the Fréchet distance below 1. If one of the realisations x j 
of the segments falls into the interval [ (0 , −0 . 5 ), (0 , 0 . 5 )] , then it will be not further away than 1 
from both the corresponding points on FG j ; all the other points, being in the middle at (0 , 0 ), are 
guaranteed to be at most 0 . 5 + ε < 1 away from their coupled point. So, the one-to-one coupling 2 

will yield the discrete Fréchet distance of 1; thus, the optimal discrete Fréchet distance in this case 
is 1. Therefore, we only need to consider the situations when all the realisations happen to fall in 

either the interval ( ( 0 , 0 . 5 ), (0 , 0 . 5 + ε )] or [ (0 , −0 . 5 − ε ), (0 , −0 . 5 )). We will treat the first interval 
as True and the second interval as False . Denote the number of satisfying assignments by N . To 
find the expression for the expected discrete Fréchet distance, we need to consider three cases: 

• At least one realisation of m variables falls within the y-interval [ −0 . 5 , 0 . 5] . Note that the 
realisation on each segment is uniform and independent of other segments. Under the 

2 Technically, it is one-to-one on all points except the realisation corresponding to x j ; that one has to be coupled to both 

(0 , 0 .5 ) and (0 , −0 .5 ) in FG j . 
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uniform distribution, we get 

Pr [ at least one realisation from [ −0 . 5 , 0 . 5] ] = 1 −
∏ 

j ∈ [ m ] 

2 ε 

1 + 2 ε 
= 1 −

( 
2 ε 

1 + 2 ε 

) m 

. 

Note that in each such case, we get the discrete Fréchet distance of 1, as discussed before. 
• All realisations fall outside the y-interval [ −0 . 5 , 0 . 5] , and they correspond to a non- 

satisfying assignment. Each specific non-satisfying assignment corresponds to picking val- 
ues on the specific interval, either ( ( 0 , 0 . 5 ), (0 , 0 . 5 + ε )] or [ (0 , −0 . 5 − ε ), (0 , −0 . 5 )), so 

Pr [ specific assignment ] = 
∏ 

j ∈ [ m ] 

ε 

1 + 2 ε 
= 

( 
ε 

1 + 2 ε 

) m 

. 

There are 2 m − N such assignments, and each of them contributes the value of 1. 
• All realisations fall outside the y-interval [ −0 . 5 , 0 . 5] , and they correspond to a satisfying 

assignment. Again, the probability of getting a particular assignment is ( ε / 1 + 2 ε ) m , and there 
are N such assignments. Now they contribute values distinct from 1; still, the optimum is 
contributed by one of the new clauses, and then it will be defined by the realisation closest 
to (0 , 0 ). This is shown in the following lemma. 

Lemma 3.20. Consider some realisation π � VC where each value can be interpreted either as True 
or False and the corresponding assignment satisfies the formula. Pick j such that the subcurve of π
realising VG j contains the point closest to (0 , 0 ), at location (0 , 0 . 5 + ε 

′ ) or (0 , −0 . 5 − ε ′ ) for some 
ε ′ > 0 . Then the optimal coupling establishes a coupling between π and FG j , and the discrete Fréchet 
distance is d dF (π , CC ) = 1 + ε ′ . 

Proof. First of all, note that we still have to couple the synchronisation points and we cannot 
have discrete Fréchet distance below 1. So, we need to consider only the couplings of π with the 
gadgets of CC . Note that if we couple FG j to π , we get discrete Fréchet distance of 1 + ε ′ . Recall that 
we consider only satisfying assignments, so, if we consider an arbitrary subcurve ACG i , then there 
is some variable x � that satisfies the corresponding clause, and so the realisation of that variable 
is 1 + ε ′′ away from the corresponding assignment point. Therefore, such a coupling will yield the 
discrete Fréchet distance of 1 + ε ′′ ≥ 1 + ε ′ . Finally, it is easy to see that choosing some FG k with 

k � j will also yield some distance 1 + ε ′′ ≥ 1 + ε ′ . So, the statement of the lemma holds. �

So, here we need to find E [ min j ∈ [ m ] (1 + ε 
′ 
j )] with ε ′ j sampled uniformly from (0 , ε] ; we can 

rephrase this to 1 + ε · E [ min j ∈ [ m ] u j ] with u j sampled uniformly from (0 , 1] . It is a standard result 
that the minimum now is geometrically distributed, so we get E [ min j ∈ [ m ] u j ] = 1 / 1 +m , and hence 
the expected contribution is 1 + ε / 1 +m . 

We can bring the three cases together to find 

d 
E (U ) 

dF 
( VC , CC ) 

= 1 ·
( 

1 −
(

2 ε 

1 + 2 ε 

)m 
) 

+ 1 · (2 m − N ) ·
(

ε 

1 + 2 ε 

)m 

+

(

1 +
ε 

1 +m 

)

· N ·
(

ε 

1 + 2 ε 

)m 

= 1 + N · ε m+1 

(1 +m) · (1 + 2 ε ) m 
. 

So, if we were to compute d 
E (U ) 

dF 
( VC , CC ) = μ, then the number of satisfying assignments is 

N = ( μ − 1 ) · ( 1 +m) · ( 1 + 2 ε ) m 

ε m+1 
. 
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This is easy to compute in polynomial time, and our construction can still be done in polynomial 
time; hence, the result follows. 

Theorem 3.21. The problem Expected Discrete Fréchet for imprecise curves modelled as line 
segments under the uniform distribution is #P-hard. 

We have stated the results for the uniform distribution; however, we conjecture that this con- 
struction could work for some other distributions. The requirements are that we need to be able 
to compute the probabilities of falling into each region; that all realisations are equiprobable, or 
we have some other way to compute the probability of getting a satisfying realisation; and that 
we can compute E [ min j ∈ [ m ] u j ] under the appropriate distribution of u j . 

3.2 Lower Bound Fréchet Distance 

In this section, we prove that computing the lower bound continuous Fréchet distance is NP- 
hard for uncertainty modelled with line segments. This contrasts with the algorithm for indecisive 
curves, given in Section 4.1 , and with the algorithm previously suggested by Ahn el al. [ 5 ] for the 
discrete Fréchet distance. Unlike the upper bound proofs, this reduction uses the NP-hard problem 

Subset-Sum . We consider the following problems. 

Problem 3.22 (Lower Bound Continuous Fréchet). Given an uncertain curve U with m ver- 
tices, a polygonal curve σ with n vertices, and a threshold δ > 0 , decide if d min 

F (U , σ ) ≤ δ . 

Problem 3.23 (Subset-Sum). Given a set S = {s 1 , . . . , s n } of n positive integers and a target integer 
τ , decide if there exists an index set I such that 

∑ 

i ∈I s i = τ . 

As a polygonal curve is an uncertain curve, proving Problem 3.22 is NP-hard implies the corre- 
sponding problem with two uncertain curves is also NP-hard. 

3.2.1 An Intermediate Problem. We start by reducing Subset-Sum to a more geometric inter- 
mediate curve-based problem. 

Definition 3.24. Let α > 0 be some value, and let π = 〈 π1 , . . . , π2 n+1 〉 be a polygonal curve. We 
call π an α-regular curve if for all i ∈ [2 n + 1] , the x-coordinate of πi is i · α . Let Y = {y 1 , . . . , y n } 
be a set of n positive integers. Call π a Y -respecting curve if 

(1) For all i ∈ [ n] , π passes through the point ( ( 2 i + 1 / 2 ) α , 0 ) . 
(2) For all i ∈ [ n] , π either passes through the point ( ( 2 i − 1 / 2 )α , 0 ) or ( ( 2 i − 1 / 2 ) α , −y i ) . 

Intuitively, Definition 3.24 requires π to pass through ( ( 2 i + 1 / 2 ) α , 0 ) as it reflects the y- 
coordinate about the line y = 0 (Figure 8 ). Thus, if the curve also passes through ( ( 2 i − 1 / 2 ) α , 0 ) , 
the two reflections cancel each other. If it passes through ( ( 2 i − 1 / 2 ) α , −y i ) , the following lemma 
argues that y i shows up in the final vertex height. 

Lemma 3.25. Let π be a Y -respecting α-regular curve, and let I be the subset of indices such that π
passes through ( ( 2 i − 1 / 2 )α , −y i ) for all i ∈ I . If π1 = (α , 0 ), then π2 n+1 = ( ( 2 n + 1 )α , 2 

∑ 

i ∈I y i ). 

Proof. For j ∈ [ n] , let I j = {i ∈ I | i ≤ j}, and let βj = 
∑ 

i ∈I j y i , where β0 = 0 . We argue by in- 

duction that π2 j+1 = ( ( 2 j + 1 ) α , 2 βj ) , thus yielding the lemma statement when j = n. For the base 
case, j = 0 , the statement becomes π1 = (α , 0 ), which is true by assumption of the lemma. 

Assume that π2 j−1 = ( ( 2 j − 1 ) α , 2 βj−1 ) . Suppose that j � I . In this case, since π is Y - 
respecting, it passes through points ( ( 2 j − 1 / 2 )α , 0 ) and ( ( 2 j + 1 / 2 ) α , 0 ) . This implies π2 j = 

( 2 jα , −2 βj−1 ) and π2 j+1 = ( ( 2 j + 1 )α , 2 βj−1 ) = ( ( 2 j + 1 ) α , 2 βj ) . Now suppose that j ∈ I . In this case, 
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Fig. 8. Passing through ( ( 2 i − 1 / 2 ) α , 0 ) does not change the height, and passing through ( ( 2 i − 1 / 2 ) α , −y i ) 
adds 2 y i . 

it must pass through points ( ( 2 j − 1 / 2 )α , −y j ) and ( ( 2 j + 1 / 2 ) α , 0 ) . This implies π2 j = (2 jα , 2 βj−1 −
2 · (2 βj−1 + y j )) = (2 jα , −2 (βj−1 + y j )) and π2 j+1 = ((2 j + 1 )α , 2 (βi−1 + y j )) = ((2 j + 1 ) α , 2 βj ) . See 
Figure 8 . �

The following corollary is needed in the next section and follows from Lemma 3.25 . 

Corollary 3.26. For a set Y = { y 1 , . . . , y n } , let M = 
∑ n 

i= 1 y i . For any vertex πi of a Y -respecting 
α-regular curve, its y-coordinate is at most 2 M and at least −2 M . 

Problem 3.27 (RR-Curve). Given a set Y = {y 1 , . . . , y n } of n positive integers, a value α = α (Y ) > 

0 , and an integer τ , decide if there is a Y -respecting α-regular curve π = 〈 π1 , . . . , π2 n+1 〉 such that 
π1 = (α , 0 ) and π2 n+1 = ((2 n + 1 ) α , 2 τ ) . 

By Lemma 3.25 , Subset-Sum immediately reduces to the preceding problem by setting Y = S . 
Note that for this reduction, it suffices to use any positive constant for α ; however, we allow α to 
depend on Y , as this is ultimately required in our reduction to Problem 3.22 . 

Theorem 3.28. For any α (Y ) > 0 , RR-Curve is NP-hard. 

3.2.2 Reduction to Lower Bound Fréchet Distance. Let α , τ , Y = { y 1 , . . . , y n } be an instance 
of RR-Curve . In this section, we show how to reduce it to an instance ( δ , U , σ ) of Prob- 
lem 3.22 , where the uncertain regions in U are vertical line segments. The main idea is to use 
U to define an α-regular curve, and to use σ to enforce that it is Y -respecting. Let M = 

∑ n 
i= 1 y i . 

Then U = 〈 V 1 , . . . , V 2 n+1 〉 , where V i is a vertical segment whose horizontal coordinate is i · α
and whose vertical extent is the interval [ −2 M , 2 M ] . By Corollary 3.26 , we have the following 
simple observation. 

Observation 3.29. The set of all Y -respecting α-regular curves is a subset of Real (U ). 

Thus, the main challenge is to define σ to enforce that the realisation is Y -respecting. To that 
end, we first describe a gadget forcing the realisation to pass through a specified point. 

Definition 3.30. For any point p = (x , y) ∈ R 
2 and value δ > 0 , let the δ -gadget at p, denoted by 

g δ (p), be the curve (x , y) � (x , y + δ ) � (x , y − δ ) � (x , y + δ ) � (x , y) . See Figure 9 (a). 

Lemma 3.31. Let p = (x , y) ∈ R 
2 be a point, and let S be any line segment. If d F ( S, g δ ( p)) ≤ δ , then 

S must pass through p. 
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Fig. 9. Depiction of gadgets g δ ( p), lcg δ ( p), and ucg δ ( p). Dashed circles represent zero-area points; the red 
(blue) square represents the starting (ending) point. 

Proof. In order, g δ (p) visits the points (x , y + δ ) , (x , y − δ ) , and (x , y + δ ) . Let a = (a x , a y ), 
b = (b x , b y ), c = (c x , c y ) be the points from S which get aligned with these respective points under 
an optimal Fréchet alignment. If the Fréchet distance is at most δ , then b y ≤ y ≤ a y , c y . If S has a 
positive slope with respect to the order along S , then also c y ≥ b y ≥ a y , so we have a y = b y and 
so a = b. However, if a = b, then this point must be p itself, as p is the only point with distance 
at most δ from both (x , y + δ ) and (x , y − δ ) . If S has a negative slope, then c y ≤ b y ≤ a y , so now 

b y = c y and b = c , and again this must be point p. Finally, if S is horizontal, then a = b = c = p, as 
this is the only point on a horizontal segment aligned with both (x , y + δ ) and (x , y − δ ) . �

For our uncertain curve to be Y -respecting, it must pass through all the points of the form 

( ( 2 i + 1 / 2 ) α , 0 ) . This condition is satisfied by placing a δ -gadget at each such point, as follows from 

Lemma 3.31 . The second condition for a curve to be Y -respecting is that it passes through ( ( 2 i −
1 / 2 ) α , 0 ) or ( ( 2 i − 1 / 2 ) α , −y i ) . This condition is much harder to encode and requires putting several 
δ -gadgets together to create a composite gadget. 

Definition 3.32. For any point p = (x , y) ∈ R 
2 and value δ > 0 , let p l 

δ
= (x − δ/ 2 , y ) and p r 

δ
= (x +

δ/ 2 , y). Define the δ -lower composite gadget at p , denoted lcg δ (p ), to be the curve g δ (p ) � p r δ � 
g δ (p ) � p l δ � p 

r 
δ
. See Figure 9 (b). Define the δ -upper composite gadget at q, denoted ucg δ (q), to be 

the curve g δ (q) � q l δ � g δ (q). See Figure 9 (c). Define the δ -composite gadget of p and q, denoted 
cg δ (p, q), to be the curve lcg δ (p) � ucg δ (q). 

To use the composite gadget, we centre the lower gadget at height −y i and the upper gadget 
directly above it at height zero. As the two gadgets are on top of each other, ultimately, we require 
our uncertain curve to go back and forth once between consecutive vertical line segments; we 
have the following key property. 
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Fig. 10. On the left, λi . On the right, the two possible solutions with Fréchet distance at most δ . The top 
(respectively, bottom) corresponds to an α-regular curve passing through q (respectively, p). 

Lemma 3.33. Let p = (p x , −p y ) and q = (p x , 0 ) be points in R 
2 . Let π = 〈 a, b, c, d〉 be a three- 

segment curve such that b x > p x + δ and c x < p x − δ . If d F ( π , cg δ ( p, q)) ≤ δ , then 

(1) the segment ab must pass through p, 
(2) the segment cd must pass through q, and 
(3) the segment bc must either pass through p or through q. 

Proof. Recall from Definition 3.32 that cg δ ( p, q) = g δ ( p) � p r δ � g δ (p) � p 
l 
δ
� p r 

δ
� g δ (q) � 

q l 
δ
� g δ (q), and that the gadgets g δ (p) and g δ (q) lie entirely on the vertical line at p x = q x . Thus, 

as b x > p x + δ and c x < p x − δ , each occurrence of g δ (p) or g δ (q) in cg δ (p, q) must map either 
entirely before or after b, and similarly entirely before or after c . 

Moreover, as cg δ (p, q) starts with g δ (p) and b x > p x + δ , this implies that a maps to p and g δ (p) 
maps to a subsegment of ab, which by Lemma 3.31 implies that ab passes through p. Similarly, as 
cg δ (p, q) ends with g δ (q) and c x < q x − δ , cd passes through q. 

Finally, the portion of cg δ (p, q) that maps to the segment bc must contain a point on the vertical 
line at p x = q x (since b x > p x + δ and c x < p x − δ ). By the construction of cg δ (p, q), this point 
must lie on one of the (middle) g δ (p) or g δ (q) gadgets. As we already argued, such gadgets must 
map entirely to one side of b or c , so Lemma 3.31 implies that bc must pass through p or q. �

As bc shares an endpoint with ab and cd , the following corollary is immediate. It is used later 
to argue that while our uncertain curve goes back and forth between consecutive vertical lines, it 
defines an α-regular curve. See Figure 10 used for Theorem 3.36 . 

Corollary 3.34. If d F ( π , cg δ ( p, q)) ≤ δ , then either ab and bc are on the same line, or cd and bc 
are on the same line. 

The following lemma acts as a rough converse of Lemma 3.33 . 

Lemma 3.35. Let p = (p x , −p y ) and q = (p x , 0 ) be points in R 
2 , with p y ≤ δ/ 4 . Let π = 〈 p, b, c, q〉 

be a curve such that p x + δ < b x ≤ p x + 1 . 1 δ , p x − 1 . 1 δ ≤ c x < p x − δ , and −δ/ 2 ≤ b y , c y ≤ δ/ 2 . If bc 
passes through either p or q, then d F ( π , cg δ ( p, q)) ≤ δ . 
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Proof. Recall that cg δ ( p, q) = g δ ( p) � p r δ � g δ (p) � p 
l 
δ
� p r 

δ
� g δ (q) � q l δ � g δ (q). First, ob- 

serve that all the points on the prefix g δ (p ) � p r δ of cg δ (p , q) are at most δ away from p, and 

thus can all be mapped to the starting point of π . Similarly, all points on the suffix q l 
δ
� g δ (q) of 

cg δ (p, q) are at most δ away from q, and thus can all be mapped to the ending point of π . Thus, it 

suffices to argue that d F (π , σ ) ≤ δ , where σ = p r 
δ
� g δ (p) � p l δ � p 

r 
δ
� g δ (q) � q l δ . 

It is easiest to describe the rest of the mapping in a similar manner—that is, as an alternating 
sequence of moves, where we stand still at a single point on one curve while moving along a con- 
tiguous subcurve from the other curve, and then switching curves. We now describe this sequence, 
which differs based on whether bc passes through p or q. Ultimately, the mappings are valid, since 
for each move, all points on the subcurve have distance at most δ to the fixed point on the other 
curve. Thus, we now simply describe the moves without reiterating this property (distance at most 
δ ) which is validating each move. 

First, suppose that bc passes through p, in which case π = 〈 p, b, p, c, q〉 . In this case, we first map 

the prefix 〈 p, b, p〉 of π to p r 
δ
. Next, we map the prefix p r 

δ
� g δ (p) � p l δ of σ to p. Then we map the 

suffix 〈 p , c , q〉 of π to p l 
δ
. Finally, we map the suffix p l 

δ
� p r 

δ
� g δ (q) � q l δ of σ to q. 

Now suppose that bc passes through q, in which case π = 〈 p, b, q, c, q〉 . In this case, we first map 

the prefix p r 
δ
� g δ (p) � p l δ � p 

r 
δ

of σ to p. Next, we map the prefix 〈 p, b, q〉 of π to p r 
δ
. Then we map 

the suffix p r 
δ
� g δ (q) � q l δ of σ to q. Finally, we map the suffix 〈 q, c, q〉 of π to q l 

δ
. �

Theorem 3.36. Lower Bound Continuous Fréchet (Problem 3.22 ) is NP-hard, even when the 
uncertain regions are all equal-length vertical segments with the same height and the same horizontal 
distance (to the left or right) between adjacent uncertain regions. 

Proof. To prove NP-hardness, we give a reduction from RR-Curve , which is NP-hard by 

Theorem 3.28 . Let α (Y ), τ , Y = {y 1 , . . . , y n } be an instance of RR-Curve . For the reduction, we 
set δ = 4 M , where M = 

∑ n 
i= 1 y i . Note that Theorem 3.28 allows us to choose how to set α (Y ), and 

in particular we set α = 2 . 1 δ = 8 . 4 M . (More precisely, the properties we need are that α > 2 δ and 
δ ≥ 4 M .) We now describe how to construct U and σ . 

Let V = {V 1 , . . . , V 2 n+1 } be a set of vertical line segments where all upper (respectively, lower) 
endpoints of the segments have height 2 M (respectively, −2 M), and for all i , the x-coordinate 
of V i is iα . Let U = 〈 U 1 , . . . , U 4 n+1 〉 be the uncertain curve such that U 4 n+1 = V 2 n+1 , and for 
all i ∈ [ n] , U 4 i−3 = V 2 i−1 , U 4 i−2 = V 2 i , U 4 i−1 = V 2 i−1 , and U 4 i = V 2 i . For i ∈ [2 n + 1] , define the 
points z i = (iα , 0 ), and for i ∈ [ n] , define q i = ( ( 2 i − 1 / 2 ) α , 0 ) , q ′ i = ( ( 2 i +

1 / 2 ) α , 0 ) , and p i = ( ( 2 i −
1 / 2 ) α , −y i ) . For a given value i ∈ [ n] , consider the curve λi = z 2 i−1 � cg δ (p i , q i ) � z 2 i � g δ (q ′ i ) (see 
Figure 10 (a)). Let s = (α , 0 ) and t = ( ( 2 n + 1 ) α , 2 τ ) . Then the curve σ is defined as 

σ = g δ (s ) � λ1 � λ2 � · · · � λn � g δ (t ). 

First, suppose there is a curve π ′ = 〈 π ′ 1 , . . . , π ′ 4 n+1 〉 � U such that d F (π
′ , σ ) ≤ δ . Let π = 

〈 π1 , . . . , π2 n+1 〉 be the curve such that π2 n+1 = π
′ 
4 n+1 , and for all i ∈ [ n] , π2 i−1 = π4 i−3 and π2 i = π4 i . 

We argue that π is an α-regular Y -respecting curve with π1 = s and π2 n+1 = t . 
Observe that π is α-regular, as by the definition of U , πi is a point on the vertical segment 

V i . Additionally, as σ begins (respectively, ends) with g δ (s ) (respectively, g δ (t )), by Lemma 3.31 , 
π1 = π

′ 
1 = s (respectively, π2 n+1 = π

′ 
4 n+1 = t ). Thus, it remains to argue that π is Y -respecting. To 

that end, consider the portion λi of σ for some i . 
First, consider the gadget g δ (q 

′ 
i ) from λi lying between z 2 i and z 2 i+1 . By our choice of α , this 

gadget is strictly more than δ away from both V 2 i and V 2 i+1 , and so the portion of π ′ aligned with 

g δ (q 
′ 
i ) must lie between π ′ 4 i = π2 i and π ′ 4 i+1 = π2 i+1 . Thus, by Lemma 3.31 , π must pass through 

q ′ i . 
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Now consider the gadget cg δ (p i , q i ) = lcg (p i ) � ucg (q i ) from λi lying between z 2 i−1 and z 2 i . 
This gadget is strictly more than δ away from both V 2 i−1 and V 2 i , implying both that the portion of 
π ′ aligned with cg δ (p i , q i ) lies between π ′ 4 i−3 and π ′ 4 i , and that all three segments in the subcurve 
from π ′ 4 i−3 to π

′ 
4 i must in part map to cg δ (p i , q i ). Thus, by Lemma 3.33 , π ′ 4 i−3 π

′ 
4 i−2 passes through 

p i , and π ′ 4 i−1 π
′ 
4 i passes through q i . By Corollary 3.34 , either π ′ 4 i−2 = π

′ 
4 i or π

′ 
4 i−3 = π

′ 
4 i−1 , and thus 

π ′ 4 i−3 π
′ 
4 i = π2 i−1 π2 i passes through either p i or q i (see Figure 10 (b)). Thus, π is Y -respecting. 

Now suppose that there is an α-regular Y -respecting curve π = 〈 π1 , . . . , π2 n+1 〉 such that π1 = s 

and π2 n+1 = t . Let int (p i ) be the intersection with V 2 i of the line through π2 i−1 and p i , and let int (q i ) 
be the intersection with V 2 i−1 of the line through π2 i and q i . Let π ′ = 〈 π ′ 1 , . . . , π ′ 4 n+1 〉 be the curve 
such that π ′ 4 n+1 = π2 n+1 , and for all i ∈ [ n] , π ′ 4 i−3 = π2 i−1 , π ′ 4 i−2 = int (p i ), π

′ 
4 i−1 = ρ, and π ′ 4 i = π2 i , 

where ρ = π2 i−1 if π passes through q i and ρ = int (q i ) if π passes through p i . See Figure 10 (b). 
Let mid (S ) be the midpoint of a line segment S . Observe that by construction, mid (π ′ 4 i−3 π

′ 
4 i−2 ) = 

p i , mid (π ′ 4 i−1 π
′ 
4 i ) = q i , and mid (π ′ 4 i−2 π

′ 
4 i−1 ) = p i (respectively, q i ) if π passed through q i (respec- 

tively, p i ). Let γi = 〈 p i , π ′ 4 i−2 , π ′ 4 i−1 , q i 〉 , which by the previous argument is a subcurve of π ′ . 
To argue that d F (π

′ , σ ) ≤ δ , we now describe how to walk along the curves π ′ and σ so that 
at all times the distance between the positions on the respective curves is at most δ . Note that γi 
satisfies the conditions of Lemma 3.35 , implying that d F ( cg δ (p i , q i ), γi ) ≤ δ , and thus for all i , we 
can map cg δ (p i , q i ) to γi . For the other parts of the curves, first observe that with the exception 

of the cg δ (p i , q i ) gadgets, σ is x-monotone—that is, as we walk along it, the x-coordinate never 
decreases. Moreover, with the exception of the γi portions, π ′ is x-monotone. Finally, observe that 
cg δ (p i , q i ) and γi have the same starting and ending points, and π ′ and σ both start at s and end at 
t . Thus, with the exception of the cg δ (p i , q i ) and γi portions, we can map all points from σ with a 
given x-coordinate to the point on π ′ with the same x-coordinate. It is easy to verify that this maps 
points between the curves that are at most δ apart. First, as π ′ is identical to π outside of the γi , and 
since π is Y -respecting, π ′ passes through s , t , and q ′ i for all i . Thus, the mapping stands still on π ′ 

at these respective points as σ executes the g δ (s ), g δ (t ), and g δ (q 
′ 
i ) gadgets. The vertical distance 

elsewhere between the curves is at most 4 M by Corollary 3.26 , and by construction 4 M ≤ δ . �

4 ALGORITHMS FOR LOWER BOUND FRÉCHET DISTANCE 

In the previous section, we showed that the decision problem for d min 
F is hard, given an uncertain 

curve with line-segment-based imprecision model and a polygonal curve. Interestingly, the same 
problem is solvable in polynomial time for indecisive curves. This result highlights a distinction 

between d min 
F and d max 

F and between the different uncertainty models. To tackle d min 
F with general 

uncertain curves, we develop approximation algorithms. 

4.1 Exact Solution for Indecisive Curves 

The key idea is that we can use a dynamic programming approach similar to that for computing 
the Fréchet distance [ 6 ] and only keep track of realisations of the last indecisive point considered 
so far. (Note that one can also reduce the problem to the Fréchet distance between paths in DAG 

complexes, studied by Har-Peled and Raichel [ 38 ], but this yields a slower running time.) We present 
the approach for an indecisive and a precise curve, and then generalise it to two indecisive curves. 

4.1.1 Indecisive and Precise. Consider the setting with an indecisive curve U = 〈 U 1 , . . . , U m 〉 
with m points and a precise curve σ = 〈 q 1 , . . . , q n 〉 with n points; each indecisive point has k
possible realisations, U i = { p 1 i , . . . , p k i } . We want to solve the decision problem ‘Is the lower bound 

Fréchet distance between the curves below some threshold δ?’, so d min 
F (U , σ ) ≤ δ? 

Consider the free-space diagram for this problem; suppose U is positioned along the horizontal 
axis and σ along the vertical axis. Just as for the precise curve Fréchet distance, we are interested 
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in the reachable intervals on the cell boundary, since the free space in the cell interior is convex; 
however, now we care about the different realisations of the points, so we get a set of reachable 
boundaries instead of a single cell boundary. We can adapt the standard dynamic program to deal 
with this problem. We propagate reachability column by column. An important aspect is that we 
only need to make sure that a reachable point is reachable by a monotone path in the free-space 
diagram induced by some valid realisation; we do not need to remember which one, since we never 
return to the previous points on the indecisive curve, and we also do not care about the realisations 
that yield a distance higher than δ—a significant deviation from the upper bound Fréchet distance. 

First of all, define Feas (i, �) to be the feasibility column for the realisation p � i of U i . This is a 
set of intervals on the vertical cell boundary line in the free-space diagram, corresponding to the 
subintervals of one curve within distance δ from a point on the other curve. It is computed exactly 

the same way as for the precise Fréchet distance—it depends on the distance between a point and a 
line segment and gives a single interval on each vertical cell boundary. We can compute feasibility 

for the right boundary of all cells in a column for a given realisation, thus obtaining Feas (i, �). 
Consider the standard dynamic program for computing the Fréchet distance on precise curves. 

Represent it so that it operates column by column, grouping propagation of reachable intervals 
between vertically aligned cells. Call that procedure Prop (R), where R is the reachability column 
for point i and the result is the reachability column for point i + 1 on one of the curves. Again, the 
reachability column is a set of intervals on a vertical line, indicating the points in the free-space 
diagram that are reachable from the lower left corner with a monotone path. 

Define Reach (i, s ) to be the reachability column induced by p s i , where a point is in a reachability 

interval if it can be reached by a monotone path for some realisation of the previous points. Then 

we compute 

Reach ( i + 1 , �) = Feas ( i + 1 , �) ∩ 
⋃ 

� ′ ∈[ k] 

Prop ( Reach (i, � ′ ) ) . 

So, we iterate over all the realisations of the previous column, thus getting precise cells, and simply 

propagate the reachable intervals as in the precise Fréchet distance algorithm. For the column 

corresponding to U 1 , we set one reachable interval of a single point at the bottom for all realisations 
p s 1 for which ‖p s 1 − q 1 ‖ ≤ δ . 

We now show correctness of this approach. 

Lemma 4.1. For all i > 1 , 

Reach (i, �) = 

{

y 
���� ∃ p � 1 1 , . . . ,p 

� i−1 
i−1 

[
d F 

(

(
⊔ 

j ∈[ i−1] 
p 
� j 
j 

)

� p � i , σ [1 : �y �] � σ (y ) 
)

≤ δ

]}
. 

So, for any point inside a reachability interval, there is a realisation that defines a free-space diagram 

and a monotone path through that diagram to this point. 

Proof. We show this by induction on i . To compute Reach (2 , �) for any fixed � ∈ [ k] , we start 
from a single point in the bottom left corner of the free space for the realisations of U 1 that are 
close enough to q 1 , and we propagate the reachability through the resulting precise free-space 
column. Clearly, the statement holds in this case; if some realisation of U 1 is too far from q 1 , then 

the reachability column is correctly empty. 
Now assume the statement holds for Reach (i, � ′ ) for all � ′ ∈ [ k] . Note that all the values that we 

add to Reach (i + 1 , �) for some fixed � are feasible, since we explicitly take the feasibility column 

and intersect it with the propagated reachability. Furthermore, any point y in Reach (i + 1 , �) comes 
as a result of propagation from some Reach (i, � ′ ) for some � ′ . So, there is at least one point y ′ in the 

reachability column i for realisation p � 
′ 

i from which there is a monotone path to y. Since we know 

there was a realisation up to that point of the two curves that enables a monotone path from the 
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start of the free space diagram to y ′ , and since point U i+1 is independent from the previous points, 
and since we have a fixed valid realisation for points U i and U i+1 that enables the continuation of 
the monotone path from y ′ to y, we conclude that the statement holds for the column i + 1 . �

Therefore, querying the upper boundary of all reachability intervals for U m will give us the 
answer to the decision problem. 

Now we analyse the complexity of the reachability column. A particular right cell boundary is 
entirely reachable if the bottom of the cell is reachable; combined with the feasibility interval, we 
get one reachability interval per cell. Furthermore, if a cell is only reachable from the left, since 
we consider monotone paths, each realisation of the previous points induces a reachable interval 
of [ y ′ , 1] for some 0 ≤ y ′ ≤ 1 if you assume the boundary coordinate range to be [0 , 1] ; therefore, 
taking a union of such intervals still gives us at most one reachability interval per cell. So, in 

the worst case, we store Θ(mk ) intervals. To propagate, we consider all combinations of the two 
successive indecisive points for all cells, yielding the running time of Θ(mnk 2 ). 

Furthermore, observe that we can also store a realisation of the previous point on the indecisive 
curve with the interval that corresponds to the lowest reachable point on the current interval. If 
we then store all the reachability columns, we can later backtrack and find a specific curve that 
realises the Fréchet distance below the threshold δ . This increases the storage requirements to 
Θ(mnk ); the running time stays the same. We summarise the results next. 

Theorem 4.2. Given an indecisive curve U = 〈 U 1 , . . . , U m 〉 , where each indecisive point has k 
options, U i = { p 1 i , . . . , p k i } , a precise curve σ = 〈 q 1 , . . . , q n 〉 , and a threshold δ > 0 , we can decide if 
d min 

F ( U , σ ) ≤ δ in time Θ( mnk 2 ) in the worst case, using Θ(mk ) space. We can also report the reali- 
sation of U realising the Fréchet distance at most δ , using Θ(mnk ) space instead. Call the algorithm 

that solves the problem and reports a fitting realisation Decider (δ , U , σ ). 

4.1.2 Indecisive and Indecisive. Now consider the setting where instead of σ we are given curve 
V = 〈 V 1 , . . . , V n 〉 with k options per indecisive point, V i = { q 1 i , . . . , q k i } . We can adapt the algorithm 

of the previous section by propagating in column-major order, but cell by cell. 
A cell boundary now depends on three indecisive points, so there are k 3 options per bound- 

ary to consider. We now store the possibilities for m − 1 right cell boundaries, k 3 realisations per 
boundary, and a single horizontal boundary, with also k 3 options. So, we use Θ(mk 3 ) storage. 

Whenever we propagate to one further cell, we need to find the reachability for the top and the 
right boundary of the cell based on the left and the lower boundary of the cell. We again go over all 
the combinations of the realisations of the points that define the cell, yielding k 4 possible precise 
cells to consider. We aggregate the values as before, as for both the top and the right boundary 

only three points matter. 
Since we solve the same problem as in the previous section and never have to revisit a previously 

considered point, it should be clear that this approach is correct. However, now we take Θ(k 4 ) time 
per cell, so in the worst case we need Θ(mnk 4 ) time to complete the propagation. 

Theorem 4.3. Given two indecisive curves U = 〈 U 1 , . . . , U m 〉 and V = 〈 V 1 , . . . , V n 〉 , where each 
indecisive point has k options, U i = { p 1 i , . . . , p k i } and V i = { q 1 i , . . . , q k i } , and a threshold δ > 0 , we can 
decide if d min 

F (U , V ) ≤ δ in time Θ(mnk 4 ) in the worst case, using Θ(mk 3 ) space. 

4.2 Approximation by Grids 

Given a general uncertain curve U and a polygonal curve σ , in this section we show how to find a 
curve π � U such that d F ( π , σ ) ≤ ( 1 + ε ) d min 

F (U , σ ) . This is accomplished by carefully discretis- 
ing the regions, in effect approximately reducing the problem to the indecisive case, for which we 
then can use Theorem 4.2 . 
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For simplicity, assume the uncertain regions have constant complexity. Throughout the section, 
we assume d min 

F (U , σ ) > 0 , justified by the following lemma. 

Lemma 4.4. Let U be an uncertain curve with m vertices and σ a polygonal curve with n vertices. 
Then one can determine whether d min 

F (U , σ ) = 0 in O (mn) time. 

Proof. Observe that if for some j, σj lies on the segment σj−1 σj+1 , then d F (σ , σ
′ ) = 0 , where 

σ ′ = 〈 σ1 , . . . , σj−1 , σj+1 , . . . , σn 〉 . So we can assume that no vertex of σ lies on the segment between 

its neighbours, as otherwise we can remove that vertex and get the same result in terms of the 
Fréchet distance. Thus, at every vertex σ turns, implying that if there exists π � U such that 
d F (π , σ ) = 0 , then for all j, σj must be aligned with some πi . 

This observation leads to a simple decision procedure. Define 

s (j ) = {i ∈ [ m] | d F (π [1 : i] , σ [1 : j] ) = 0 }, 
so a set of indices on σ that yield the zero Fréchet distance between the correspondent pre- 
fix curves. Then we can go through σ one vertex at a time, maintaining s (j ), and ultimately 

d min 
F (U , σ ) = 0 if and only if m ∈ s (n). 
Initially, s (1 ) = {i ∈ [ m] | ∀k ∈ [ i] : σ1 ∈ U k }, which is easy to test and compute. For j > 1 , s (j ) 

can be computed from s (j − 1 ) as follows. Let Stab j (k ) be the set of indices i > k such that there 
exist points p k+1 , . . . , p i−1 , appearing in order along σj−1 σj , where p � ∈ U � for all k < � < i . (Note 
that we always have k + 1 ∈ Stab j ( k ).) So, Stab j ( k ) is the set of indices i of uncertainty regions, 
starting from k + 1 , such that all the regions between k and i are stabbed by the segment σj−1 σj in 

the correct order. Then we have 

s (j ) = {i | σj ∈ U i ∧ i ∈ Stab j ( k ) with k = max 
�<i 
{� ∈ s ( j − 1 )} } . 

From this definition of s (j ), it is easy to see that it can be computed in O (m) time given s (j − 1 ), 
and thus the total time required is O (mn). In particular, if s (j − 1 ) is non-empty, then let z be 
the minimum value in s (j − 1 ). We now incrementally loop over values of i , where initially i = 

z + 1 , and add i to s (j ) if σj ∈ U i and i ∈ Stab j (z). Note that in constant time per iteration, we 
can maintain sufficient information to determine if i ∈ Stab j (z), as we describe further. If at any 

iteration i = z ′ + 1 for z ′ ∈ s (j − 1 ), we forget Stab j (z) (as we no longer need to stab those regions) 
and start maintaining and checking Stab j (z 

′ ). 
Note that the intersection of any U � with σj−1 σj is a constant number of intervals along σj−1 σj . 

Then Stab j (k ) can be computed incrementally as follows. First, let p k+1 be the earliest point of 
σj−1 σj ∩ U k+1 . For some i > k + 1 , let p i be the earliest point of σj−1 σj ∩ U i , which is at least as far 
along σj−1 σj as p i−1 (if it exists). If such p i exists, then we know that i ∈ Stab j (k ). Maintaining this 
information indeed takes constant time per iteration. �

4.2.1 Decision Procedure. An algorithm is a (1 + ε )-decider for Problem 3.22 , if when 

d min 
F (U , σ ) ≤ δ , it returns a curve π � U such that d F ( π , σ ) ≤ ( 1 + ε )δ , and when d min 

F (U , σ ) > 

(1 + ε )δ , it returns False (in between either answer is allowed). In this section, we present a (1 + ε )- 
decider for Problem 3.22 . We make use of the following standard observation. 

Observation 4.5. Given a curve π = 〈 π1 , . . . , πn 〉 , call a curve σ = 〈 σ1 , . . . , σn 〉 an r -perturbation 
of π if ‖πi − σi ‖ ≤ r for all i ∈ [ n] . Since ‖πi − σi ‖, ‖πi+1 − σi+1 ‖ ≤ r , all points of the segment σi σi+1 
are within distance r of πi πi+1 . For segments, this implies that d F (πi πi+1 , σi σi+1 ) ≤ r , which implies 
that d F (π , σ ) ≤ r by composing the mappings for all i . 

The high-level idea is to replace U with the set of grid points it intersects; however, as our 
uncertainty regions may avoid the grid points, we need to include a slightly larger set of points. 
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Fig. 11. An example of the sets from Definition 4.6 . The region U is shown in blue, and Thick (U , r ) is in 
orange. The grid points of GT r (U ) are in blue, and the corresponding set of expanded r -grid points EG r (U ) 

are in red. 

Definition 4.6. Let U be a compact subset of R 
d . We now define the set of points EG r (U ) which 

we call the expanded r -grid points of U (Figure 11 ). Let B ( 
√ 

d r ) denote the ball of radius 
√ 

d r , centred 

at the origin. Let Thick ( U , r ) = U ⊕ B ( 
√ 

d r ), where ⊕ denotes the Minkowski sum. Let G r denote 
the regular grid of side length r , and let GT r (U ) denote the subset of grid vertices from G r that fall 
in Thick (U , r ). Finally, we define 

EG r (U ) = {p | p = arg min 

q∈U 
‖q − x ‖ for x ∈ GT r (U ) }. 

In the following observation, we use the terms defined previously. 

Observation 4.7. For any x ∈ U , there is a point p ∈ EG r (U ) such that ‖p − x ‖ ≤ 2 
√ 

d r . 

Proof. For any point x ∈ U , let д be its nearest grid point in G r . Since ‖x − д‖ ≤
√ 

d r , we 

know that д ∈ Thick ( U , r ) = U ⊕ B ( 
√ 

d r ). So let p be the point in U which is closest to д; thus, 

p ∈ EG r (U ). Therefore, ‖ x − p‖ ≤ ‖ x − д‖ + ‖д − p‖ ≤
√ 

d r +
√ 

d r = 2 
√ 

d r . �

Lemma 4.8. There is a (1 + ε )-decider for Problem 3.22 in d dimensions with running time O (mn ·
(1 + ( ∆/ εδ ) 2 d ) ) , for 0 < ε ≤ 1 and constant d , where ∆ = max i ∈ [ m ] diam (U i ) is the maximum diameter 
of an uncertain region. 

Proof. It helps with the analysis if εδ < ∆. To ensure this, we first do the following. Select 
an arbitrary curve x � U . Now using the standard O (mn) time exact decider for the Fréchet 
distance [ 6 ], query whether d F ( x , σ ) ≤ ( 1 + ε )δ . If the decider returns d F ( x , σ ) ≤ ( 1 + ε )δ , then 

we can return x as our solution. Otherwise, d F ( x , σ ) > ( 1 + ε )δ , and we next query whether 
d F (x , σ ) ≤ ∆ + δ . By Observation 4.5 and the triangle inequality, d F (x , σ ) ≤ ∆ + d min 

F (U , σ ). Thus, 

if the decider returns ∆ + δ < d F (x , σ ) , then δ < d min 
F (U , σ ) , and so we return False . Otherwise, 

the two decider calls tell us that (1 + ε ) δ < d F (x , σ ) ≤ ∆ + δ , implying εδ < ∆. 
Let r = εδ/ 2 

√ 
d , and for any U i of U , let E i = EG r (U i ) denote the expanded r -grid points of U i , as 

defined in Definition 4.6 . Consider the indecisive curve U 
′ 
= 〈 E 1 , . . . , E m 〉 . We call the algorithm 

Decider ( ( 1 + ε )δ , U 
′ , σ ) of Theorem 4.2 and return whatever it returns—that is, if it returns a 

curve, then we return that curve, and if it returns that d min 
F ( U 

′ , σ ) > ( 1 + ε )δ , then we return that 

d min 
F ( U , σ ) > ( 1 + ε )δ . 

First, observe that E i ⊆ U i , and thus d min 
F (U , σ ) ≤ d min 

F (U 
′ , σ ). So if d min 

F (U , σ ) > (1 + ε )δ , 

then the decider must return d min 
F ( U 

′ , σ ) > ( 1 + ε )δ , as desired. Now suppose that d min 
F (U , σ ) ≤
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δ . In this case, we argue that our algorithm outputs a curve π ′ � U such that d F (π
′ , σ ) ≤

(1 + ε )δ . It suffices to argue that there exists some curve π ′ � U 
′ such that d F ( π

′ , σ ) ≤ ( 1 +
ε )δ , as then Theorem 4.2 guarantees the decider outputs a curve (which is in Real (U ), as 
it is a superset of Real ( U 

′ )). So let π = 〈 π1 , . . . , πm 〉 be the curve in Real (U ) realising the 
lower bound Fréchet distance to σ—that is, d F (π , σ ) = d 

min 
F (U , σ ). Let π ′ = 〈 π ′ 1 , . . . , π ′ m 〉 be 

the curve such that π ′ i = min x ∈E i ‖ x − πi ‖ . Note that by Observation 4.7 , we have ‖πi − π ′ i ‖ ≤
2 
√ 

d r for all i . Thus, π ′ is a 2 
√ 

d r -perturbation of π as described in Observation 4.5 , and so 

d F (π , π
′ ) ≤ 2 

√ 

d r = εδ . As the Fréchet distance satisfies the triangle inequality, we therefore have 
d F (π

′ , σ ) ≤ d F (π , σ ) + d F (π , π
′ ) ≤ δ + εδ = (1 + ε )δ . Thus, as π ′ � U 

′ , when our algorithm calls 
Decider ( ( 1 + ε )δ , U 

′ , σ ), it returns a curve. 
For the running time, recall we first spent O (mn) time to ensure εδ < ∆, in which case we must 

bound the number of points in each E i . By Definition 4.6 , for all i , the number of points in E i is 
bounded by the number of grid points in the region Thick (U i , r ). This region is the Minkowski sum 

of a compact set of diameter at most ∆ with a radius 
√ 

d r ball, so its diameter is at most ∆ + 2 
√ 

d r . 
Recall that d is a constant; thus, the number of grid points and hence |E i | is 

O 

( 
(

∆ + 2 
√ 

d r 

r 

)d 
) 

= O 

( 
(

2 
√ 

d ∆

εδ
+ 2 
√ 

d 

)d 
) 

= O 

( 
(

∆

εδ
+ 1 
)d 
) 

= O 

( 
(

∆

εδ

)d 
) 

. 

Thus, by Theorem 4.2 , the call to Decider takes time O (mn( ∆/ εδ ) 2 d ), which bounds the total time 
of our algorithm. �

4.2.2 Optimisation. 

Theorem 4.9. Let U be an uncertain curve with m vertices, σ a polygonal curve with n vertices, 
and δ = d min 

F (U , σ ). Then for any 0 < ε ≤ 1 , there is an algorithm which returns a curve π � U 

such that d F ( π , σ ) ≤ ( 1 + ε )δ , whose running time is O (mn( log (mn) + ( ∆/ εδ ) 2 d )) for constant d , where 
∆ = max i ∈ [ m ] diam (U i ) is the maximum diameter of an uncertain region. 

Proof. Fix an arbitrary curve x � U . First, we compute the Fréchet distance between x and 
σ . If d F (x , σ ) ≥ ∆ + ∆/ ε , then we return x as our solution. Intuitively, this means that the Fréchet 
distance is large when compared to the diameter of the uncertain regions, and so any realisation 

we can pick works as a (1 + ε )-approximation. To see why this is valid, let ˆ π � U be an optimal 
solution—that is, d F ( ̂  π , σ ) = d min 

F (U , σ ). Note that x is a ∆-perturbation of ˆ π , and thus by the 
triangle inequality and Observation 4.5 , 

d F (x , σ ) ≤ d F (x , ˆ π ) + d F ( ̂  π , σ ) ≤ ∆ + d F ( ̂  π , σ ). 

If ∆ + ∆/ ε ≤ d F (x , σ ) , then plugging in the preceding inequality implies that ∆ ≤ ε · d F ( ̂  π , σ ), which 

in turn implies that 

d F (x , σ ) ≤ ∆ + d F ( ̂  π , σ ) ≤ (1 + ε ) · d F ( ̂  π , σ ). 

So suppose that d F ( x , σ ) < ( 1 + 1 / ε )∆, in which case 

d min 
F ( U , σ ) = d F ( ̂  π , σ ) ≤ d F ( x , σ ) + d F ( ̂  π , x ) < 

(

1 +
1 

ε 

)

∆ + ∆ = 

(

2 +
1 

ε 

)

∆ = γ . 

Let GridDecider (U , σ , ε ′ , δ ) denote the (1 + ε ′ )-decider of Lemma 4.8 , which correctly returns 
either False (which implies d min 

F (U , σ ) > δ ) or a curve in Real (U ) with the Fréchet distance at 
most (1 + ε ′ )δ to σ . We perform a decreasing exponential search using GridDecider . Specifically, 
starting at i = 0 , we call GridDecider (U , σ , ε / 4 , γ/ (1 + ε / 4 ) i ). If GridDecider returns a curve (i.e., 
True ), we increment i by 1 and repeat, and otherwise if GridDecider outputs False , we return 
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the curve from iteration i − 1 . (Note that GridDecider cannot return False when i = 0 , as this 
would imply that d min 

F (U , σ ) > γ .) 
Let j denote the index when the algorithm stops. So we know that GridDecider (U , σ , ε / 4 , γ/ (1 +

ε / 4 ) j ) returned False , and GridDecider (U , σ , ε / 4 , γ/ (1 + ε / 4 ) j−1 ) returned a curve π � U such that 
d F ( π , σ ) ≤ ( 1 + ε / 4 ) · γ/ (1 + ε / 4 ) j−1 . Therefore, 

γ

(1 + ε / 4 ) j 
< d min 

F ( U , σ ) ≤ d F ( π , σ ) ≤ ( 1 + ε / 4 ) 
γ

(1 + ε / 4 ) j−1 
= 

γ

(1 + ε / 4 ) j−2 
, 

which implies that 

d F ( π , σ ) ≤
(

1 +
ε 

4 

)2 

d min 
F ( U , σ ) = 

(

1 +
ε 

2 
+

ε 2 

16 

)

· d min 
F ( U , σ ) < ( 1 + ε ) · d min 

F (U , σ ). 

As for the running time, by Lemma 4.8 , the time for the i-th call to GridDecider is 

O 

( 

mn 

(

(1 + ε / 4 ) i ∆

εγ

)2 d 
) 

= O 

( 

m n 

(

(1 + ε / 4 ) i ∆

ε (2 + 1 / ε )∆

)2 d 
) 

= O 

( 

m n 

(

1 +
ε 

4 

)2 di 
) 

. 

Recall that δ = d min 
F (U , σ ) and j is the index the last time GridDecider is called. By the preced- 

ing argument, δ ≤ γ/ (1 + ε / 4 ) j−2 , which implies that j − 2 ≤ log 1 +ε / 4 ( 
γ/ δ ). Recall that d is a constant; 

as GridDecider is called j + 1 times, and the running times for the calls to GridDecider form an 

increasing geometric series, the total time for all calls to GridDecider is 

O 

( 

mn 

(

1 +
ε 

4 

)2 d ·
(

3 +log 1 + ε 4 
( γ/ δ ) 

)

) 

= O 

( 

mn 

(

1 +
ε 

4 

)6 d (

1 +
ε 

4 

)2 d ·log 1 + ε 4 ( 
γ/ δ ) 
) 

= O 

( 

mn 

(

1 +
ε 

4 

)2 d ·log 1 + ε 4 ( 
γ/ δ ) 
) 

= O 

( 

mn 

(

γ

δ

)2 d ·log 1 + ε 4 (1 +
ε / 4 ) 
) 

= O 

( 

mn 

(

γ

δ

)2 d 
) 

= O 

( 

mn 

(

(2 + 1 / ε )∆

δ

)2 d 
) 

= O 

( 

m n 

(

∆

εδ

)2 d 
) 

. 

As it takes O ( mn log ( mn)) time to initially compute d F (x , σ ) using the algorithm of Alt and Go- 
dau [ 6 ], the total running time is O (mn( log (mn) + ( ∆/ εδ ) 2 d ) ) . �

If the polygonal curve σ is replaced with an uncertain curve V , it is easy to see that by dis- 
cretising both U and V , the same analysis gives an algorithm to compute d min 

F (U , V ). The only 

difference now is that we must use Theorem 4.3 instead of Theorem 4.2 , yielding the following. 

Corollary 4.10. Let U and V be uncertain curves with m and n vertices, respectively, and δ = 
d min 

F (U , V ). Then for any 0 < ε ≤ 1 , there is an algorithm returning curves π � U and σ � V such 

that d F ( π , σ ) ≤ ( 1 + ε )δ , whose running time is O (mn( log (mn) + ( ∆/ εδ ) 4 d )) for constant d , where ∆
is the maximum diameter of an uncertain region. 

4.3 Greedy Algorithm 

Here we argue that there is a simple 3-decider for Problem 3.22 , running in near-linear time in the 
plane. Roughly speaking, the idea is to greedily and iteratively pick πi ∈ U i so as to allow us to 
get as far as possible along σ . Without any assumptions on U , this greedy procedure may walk 

too far ahead and get stuck. Thus, in this section, we assume that consecutive U i are separated, so 
as to ensure optimal solutions do not lag too far behind. Here we also assume that U i are convex 
(i.e., imprecise) and have constant complexity, as it simplifies certain definitions. Throughout this 
section, let U = 〈 U 1 , . . . , U m 〉 be an uncertain curve and let σ = 〈 σ1 , . . . , σn 〉 be a polygonal curve. 

Definition 4.11. Call U γ -separated if for all i ∈ [ m − 1] , ‖U i −U i+1 ‖ > γ and each U i is convex. 
Define an r -visit of U i to be any maximal-length contiguous portion of σ ∩ ( U i ⊕ B ( 2 r )) which 
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intersects U i ⊕ B (r ), where ⊕ denotes the Minkowski sum. If U is γ -separated for γ ≥ 4 r , then 

any r -visit of U i is disjoint from any r -visit of U j for i � j, in which case define the true r -visit of U i 

to be the first r -visit of U i which occurs after the true r -visit of U i−1 . (For U 1 , it is the first r -visit.) 

Lemma 4.12. If U is γ -separated for γ ≥ 4 r , then for any curve π � U and any reparametrisations 
f and д such that width f ,д (π , σ ) ≤ r , πi must map to a point on the true r -visit of U i for all i . 

Proof. First, note that since width f ,д (π , σ ) ≤ r , πi must map to a point in an r -visit of U i , and 
thus we only need to prove it is the true r -visit. 

We prove the claim by induction on i . For i = 1 , the claim holds, as π1 must map to σ1 , and σ1 is 
in the first r -visit of U 1 , which is its true r -visit. 

Now suppose the claim holds for i − 1 . πi must map to a point on an r -visit of U i , and by the 
induction hypothesis, this visit must happen after the true r -visit of U i−1 on σ . Moreover, as U is 
4 r -separated, the first point in U i ⊕ B (r ) of the first r -visit of U i that occurs after the true r -visit 
of U i−1 (i.e., true r -visit of U i ) must map to a point x on πi−1 πi . Note, however, that as both x 

and πi map to points in U i ⊕ B (r ), the portion of σ that the segment xπi maps to must lie within 

U i ⊕ B (2 r ) (i.e., the same r -visit). Therefore, all of xπi is mapped to the true r -visit of U i , completing 
the proof. �

For two points α and β on σ , let α ≤ β denote that α occurs before β , and for any points α ≤ β, 

let σ (α , β ) denote the subcurve between α and β . 

Definition 4.13. The δ -greedy sequence of σ with respect to U , denoted gs (U , σ , δ ), is the longest 
possible sequence α = 〈 α1 , . . . , αk 〉 of points on σ , where α1 = σ1 , and for any i > 1 , αi is the point 
furthest along σ such that ‖αi −U i ‖ ≤ δ and d F ( αi−1 αi , σ ( αi−1 , αi )) ≤ 2 δ . 

Observation 4.14. For any i ≤ k , let α i = 〈 α1 , . . . , αi 〉 be the i-th prefix of gs (U , σ , δ ). Then 
d F ( α

i , σ ( α1 , αi )) ≤ 2 δ , and α i � U 
i ⊕ B (δ ), where U 

i ⊕ B (δ ) = 〈 U 1 ⊕ B (δ ), . . . , U i ⊕ B (δ )〉 . 
Lemma 4.15. If U is 10 δ -separated and d min 

F (U , σ ) ≤ δ , then gs (U , σ , δ ) has length m and αm = 

σn . 

Proof. Let gs (U , σ , δ ) = α = 〈 α1 , . . . , αk 〉 . Let opt = 〈 opt 1 , . . . , opt m 〉 be any curve in Real (U ) 

such that d F ( opt , σ ) = d 
min 
F (U , σ ). Throughout this proof, we fix a mapping realising d F ( opt , σ ) 

and let βi be the point on σ which opt i maps to under this mapping. For the curve α , we fix 
the mapping which is the composition of the maps realising d F ( αi−1 αi , σ ( αi−1 , αi )) ≤ 2 δ , and, in 

particular, αi on α maps to αi on σ . 
We prove by induction that for i ≤ m, αi exists and βi ≤ αi . For i = 1 , we have α1 = 

β1 = σ1 . So assume that αi−1 exists. By Observation 4.14 , α i−1 � U 
i−1 ⊕ B (δ ), and, moreover, 

d F ( σ ( α1 , αi−1 ), α i−1 ) ≤ 2 δ . Since U is 10 δ -separated, U 
i−1 ⊕ B (δ ) is 8 δ -separated, and thus by 

Lemma 4.12 , αi−1 is on the true 2 δ -visit of U i−1 ⊕ B (δ ) by the prefix curve σ (α1 , αi−1 ). Observe 
that the true 2 δ -visit of U i−1 ⊕ B (δ ) by the prefix curve σ (α1 , αi−1 ) is a subset of the true 2 δ - 
visit of U i−1 ⊕ B (δ ) by σ , and thus αi−1 is on the true 2 δ -visit of U i−1 ⊕ B (δ ) by σ . We also have 
that opt � U ⊕ B (δ ), as U j ⊂ U j ⊕ B (δ ) for all j, so by Lemma 4.12 , βi−1 and βi are on the true 
2 δ -visit of U i−1 ⊕ B (δ ) and U i ⊕ B (δ ). In particular, this implies that βi−1 ≤ αi−1 ≤ βi , as the true 
2 δ -visits of U i−1 ⊕ B (δ ) and U i ⊕ B (δ ) are disjoint. Thus, some point x on the segment opt i−1 opt i 
must map to αi−1 . Note that d F ( x opt i , σ ( αi−1 , βi )) ≤ δ . As ‖x − αi−1 ‖ ≤ δ , d F (x opt i , αi−1 opt i ) ≤ δ , 
and so by the triangle inequality for the Fréchet distance, d F ( αi−1 opt i , σ ( αi−1 , βi )) ≤ 2 δ . Since 
‖βi − opt i ‖ ≤ δ , βi is a possible choice for αi , and thus αi exists and βi ≤ αi . Finally, since αi 
exists for all i ≤ m, α = gs (U , σ , δ ) has length m, and moreover, since βm ≤ αm and βm = σn , we 
conclude that αm = σn . �
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The following lemma is the only place where we require the points to be in R 
2 . The proof uses 

a result from Guibas et al. [ 37 ]. 

Lemma 4.16. For U and σ in R 
2 , where U is 10 δ -separated, gs (U , σ , δ ) is computable in time 

O (m + n log n). 

Proof. Given αi from gs (U , σ , δ ), we describe how to compute αi+1 , if it exists. Let σj be the 
smallest-index vertex such that αi < σj . Let 〈 D j , . . . , D n 〉 be the sequence of 2 δ -radius disks, where 
D l is centred at σl . Observe that for αi+1 to be able to lie on σz σz+1 , for any z ≥ j, we first require 
that d F ( αi αi+1 , σ ( αi , αi+1 )) ≤ 2 δ , which occurs if and only if there exist points p j , . . . , p z that ap- 
pear in order along αi αi+1 such that p l ∈ D l . Clearly, such points are necessary, but they are also 
sufficient, as d F (p l p l+1 , σl σl+1 ) ≤ 2 δ . (As αi and αi+1 lie on σ , the same holds for αi σj and σz αi+1 .) 
gs (U , σ , δ ) also requires that αi+1 lie within distance δ of U i+1 . This is equivalent to requiring that 
σz σz+1 intersects U i+1 ⊕ B (δ ). As both σz σz+1 and U i+1 ⊕ B (δ ) are convex regions, their intersec- 
tion is convex—that is, a single subsegment of σz σz+1 . Let S i+1 (z) denote this segment, which we 
can compute in constant time, as U i+1 is a constant-complexity convex region. Note that αi+1 may 

lie on the same segment of σ as αi (i.e., z = j − 1 ), which is an easier case, as no disks need to be 
intersected and d F ( αi αi+1 , σ ( αi , αi+1 )) ≤ 2 δ holds. 

Given a sequence of k equal-radius disks 〈 D 1 , . . . , D k 〉 , say that a line � stabs the disks if for all 
j ≤ k , there exists a point p j ∈ � ∩ D j such that the p j appear in order along �. Guibas et al. [ 37 ] 
give an O (k log k )-time algorithm that determines the set of all stabbing lines. As follows from the 
description of our problem, their algorithm can be used to determine αi+1 given αi by restricting 
the stabbing line to first pass through αi and requiring it to intersect S i+1 (k ) at the end. 

We now sketch the necessary changes. Their algorithm inserts the disks in order, maintaining 
three objects—the support hull, the limiting lines, and the line stabbing wedge. The support hull 
consists of a pair of upper and lower concave chains that all stabbers must pass between, and the 
limiting lines represent the largest and the smallest slope stabbers. The wedge is the set of all points 
p such that there is a stabber that passes through p after passing through the required points from 

the disks. To modify their approach for our setting, we require the stabber to initially pass through 

αi . This actually simplifies the problem by joining and collapsing the chains of the support hull, 3 

and thus we can focus on the wedge. After j insertions, the wedge boundary consists of O (j ) pieces 
from the disks, flanked by the limiting lines. These ordered boundary pieces are stored in a binary 

tree to facilitate logarithmic time updates when a new disk is inserted, and we can simply reuse 
this structure to determine the intersection of the wedge with S i+1 (j ). 

By Definition 4.13 , the line segment σz σz+1 that αi+1 lies on must have z be as large as possible. 
Thus, we run the preceding incremental procedure, where in the j-th round we check for inter- 
section with S i+1 (j ). If no such intersection is found before we reach the end of σ or the wedge 
becomes empty, then αi+1 does not exist. Otherwise, αi+1 is defined. However, the rounds which 

have intersection with S i+1 (j ) need not be contiguous; thus, care is needed to determine the last 
such intersection efficiently. 

Let k be the largest index such that αk is defined. By Observation 4.14 , for any i ≤ k , we have 
d F ( α

i , σ ( α1 , αi )) ≤ 2 δ and α i � U 
i ⊕ B ( δ ). Since U is 10 δ -separated, U 

i ⊕ B (δ ) is 8 δ -separated, 
and so by Lemma 4.12 , αi must be in the true 2 δ -visit of U i ⊕ B (δ ) by σ (α1 , αk ). Thus, when com- 
puting αi , we only need to consider vertices from σ which occur after αi−1 and before the end of 
the true 2 δ -visit of U i ⊕ B (δ ). If n i is the number of such vertices, it therefore takes O (1 + n i log n i ) 

time to compute αi with the preceding algorithm. Moreover, as the true 2 δ -visits for U i ⊕ B (δ ) and 

3 Alternatively, one can enforce the condition by defining an initial zero-radius disk D 0 at αi , and indeed the referenced 

work [ 37 ] considers stabbers for more general collections of convex objects. 
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U j ⊕ B (δ ) for i � j ≤ k are disjoint, any vertex of σ contributes to at most two counts n i , as we have 
α j ∈ U j ⊕ B (δ ), and we may process vertices from α j to the end of U j ⊕ B (δ ) twice; thus, 

∑ 

i n i ≤ 2 n. 

Therefore, the total running time is O (m + n log n) +
∑ k 

i= 1 O (1 + n i log n i ) = O (m + n log n), where 
the leading O (m + n log n) term accounts for the time to determine if αk+1 does not exist for 
k < m. �

Theorem 4.17. Let U be 10 r -separated for some r > 0 . There is a 3-decider for Problem 3.22 in the 
plane with the running time O (m + n log n) that works for any query value 0 < δ ≤ r . 

Proof. Compute gs (U , σ , δ ). If it has length m, then let π = 〈 π1 , . . . , πm 〉 be any curve in 

Real (U ) such that ‖πi − αi ‖ ≤ δ for all i . If this occurs and if αm = σn , we output π as our so- 
lution, and otherwise we output False . Thus, the running time follows from Lemma 4.16 . 

Observe that if we output a curve π , then d F (π , σ ) ≤ 3 δ , using the triangle inequality: 

d F (π , σ ) ≤ d F (π , α ) + d F (α , σ ) ≤ δ + 2 δ = 3 δ . 

Thus, we only need to argue that when d min 
F (U , σ ) ≤ δ , a curve is produced, which is immediate 

from Lemma 4.15 . �

It is also possible to turn this procedure into a 9-approximation algorithm for d min 
F . Suppose we 

are given a 10 r -separated uncertain curve. We can use decreasing exponential search with a factor 
of 3, starting with δ = r . Suppose that for δ = r , we get True ; eventually, we switch to False . Let 
the last True value be x ; then 3 x must be True , and x / 3 and x / 9 must be False . Note that at most 
one value of δ can fall into the interval with the uncertain answer of the 3-decider. Then we know 

that d min 
F (U , σ ) ≤ 3 x and d min 

F (U , σ ) > 3 · x / 9 = x / 3 . Let δ ′ = 3 x be the returned distance, then 

d min 
F (U , σ ) ≤ δ ′ < 9 d min 

F (U , σ ), so δ ′ is a 9-approximation to the lower bound Fréchet distance. 

5 ALGORITHMS FOR UPPER BOUND AND EXPECTED FRÉCHET DISTANCE 

As shown in Section 3.1 , finding the upper bound and the expected discrete and continuous Fréchet 
distance is hard even for simple uncertainty models. However, restricting the possible couplings 
or alignments between the curves makes the problem solvable in polynomial time. In this section, 
we use indecisive curves. Define a Sakoe–Chiba time band [ 50 ] in terms of reparametrisations of 
the curves: for a band of width w and all t ∈ [0 , 1] , if ϕ1 (t ) = x , then ϕ2 (t ) ∈ [ x −w, x +w] . In the 
discrete case, we can only couple point i on one curve to points i ±w on the other curve. 

5.1 Upper Bound Discrete Fréchet Distance: Precise and Indecisive 

First of all, let us discuss a simple setting. Suppose we are given a curve σ = 〈 q 1 , . . . , q n 〉 of n
precise points and U = 〈 U 1 , . . . , U n 〉 of n indecisive points, each of them having � options, so for 
all i ∈ [ n] we have U i = { p 1 i , . . . , p � i } . We would like to answer the following decision problem: ‘If 
we restrict the couplings to a Sakoe–Chiba band of width w , is it true that d max 

dF 
(U , σ ) ≤ δ for some 

given threshold δ > 0 ?’ So, we want to solve the decision problem for the upper bound discrete 
Fréchet distance between a precise and an indecisive curve. 

In a fully precise setting, the discrete Fréchet distance can be computed using dynamic pro- 
gramming [ 28 ]. We create a table where the rows correspond to vertices of one curve, say σ , and 
columns correspond to vertices of the other curve, say π . Each table entry (i, j ) then contains a 
True or False value indicating if there is a coupling between π [1 : i] and σ [1 : j] with maximum 

distance at most δ . We use a similar approach. 
Suppose we position U to go horizontally along the table and σ to go vertically. Consider an 

arbitrary column in the table, and suppose that we fix the realisation of U up to the previous 
column. Then we can simply consider the new column � times, each time picking a different reali- 
sation for the new point on U , and compute the resulting reachability. As we do this for the entire 
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Fig. 12. Left: An indecisive and a precise curve. Middle: Distance matrix. ‘T T’ in the bottom left cell means 

‖1 − 1 a ‖ ≤ δ and ‖1 − 1 b ‖ ≤ δ . Right: Computing the reachability matrix, column by column. Note two 
reachability vectors for the second column. 

column at once, we can ensure consistency of our choice of realisation. This procedure will give us 
a set of binary reachability vectors for the new column, each vector corresponding to a realisation. 
The reachability vector is a Boolean vector that, for the cell (i, j ) of the table, states whether for a 
particular realisation π of U [1 : i] the discrete Fréchet distance between π and σ [1 : j] is below 

some threshold δ . 
An important observation is that we do not need to distinguish between the realisations that 

give the same reachability vector: once we start filling out the next column, all we care about is 
the existence of some realisation leading to that particular reachability vector. So, we can keep a 
set of binary vectors corresponding to reachability in the column. 

This procedure was suggested for a specific realisation. However, we can also repeat this for 
each previous reachability vector, only keeping the unique results. As all the realisation choices 
happen along U , by treating the table column-by-column we ensure that we do not have issues 
with inconsistent choices. Therefore, repeating this procedure n times, we fill out the last column 

of the table. At that point, if any vector from the last column has False in the top cell, then there 
is some realisation π � U such that d dF (π , σ ) > δ , and hence d max 

dF 
(U , σ ) > δ . 

In more detail, we use two tables: the distance matrix D, where cell (i, k, j ) is True if and only if 
‖p k i − q j ‖ ≤ δ , and the dynamic program, referred to as the reachability matrix R. First of all, we 
initialise the distance matrix D and the reachability of the first column for all possible locations 
of U 1 . Then we fill out R column-by-column. We take the reachability of the previous column and 
note that any cell can be reached either with a horizontal step or with a diagonal step. We need to 
consider various extensions of the curve U with one of the � realisations of the current point; the 
distance matrix should allow the specific coupling. Assume we find that a certain cell is reachable; 
if allowed by the distance matrix, we can then go upwards, marking the cells above the current 
cell reachable, even if they are not directly reachable with a horizontal or a diagonal step. Then 

we just remember the newly computed vector; we make sure to only add distinct vectors. The 
computation is illustrated in Figure 12 ; the pseudocode is given in Algorithm 1 . 

Correctness . We use the following loop invariant to show correctness. 

Lemma 5.1. Consider column i . Every reachability vector of this column corresponds to at least one 
realisation of U [1 : i] and the discrete Fréchet distance between that realisation and σ [1 : min (n, i +

w )] , and every realisation corresponds to some reachability vector. 

Proof. The statement is trivial for the first column: we consider all � possible realisations of U 1 

and compute reachability of cells (1 , 1 ) to (1 , 1 +w ) in a straightforward way. 
Now suppose the statement holds for column i . As follows from the recurrence establishing the 

discrete Fréchet distance, the reachability of column i + 1 only depends on the distance matrix for 
column i + 1 and the reachability of column i . We consider every possible extension of U [1 : i] 
to U [1 : i + 1] , as for every reachability vector of column i , we consider all � options from the 

ACM Transactions on Algorithms, Vol. 19, No. 3, Article 29. Publication date: July 2023. 



29:38 K. Buchin et al. 

ALGORITHM 1 : Finding the time-banded upper bound discrete Fréchet distance on an indecisive and a 

precise curve. 

distance matrix for column i + 1 . Thus, we only consider valid realisations for column i + 1 , and 
we consider all of them from the point of view of reachability. �

Running Time . First of all, populating the distance matrix takes time Θ(�nw ). A call to Propa- 
gate takes Θ(w ) time, so initialisation of the first column of the reachability matrix takes Θ(�w )

time. Note that, at any further point, we may have at most 2 2 w+1 distinct reachability vectors; for 
each of them, we make � calls to Propagate , taking Θ(4 w �w ) time per column, so over all the 
columns we need Θ(4 w �wn) time. If we assume that adding an element to the set takes amor- 
tised constant time, then the previous value dominates. Finally, the check at the end takes Θ(4 w )

time. So, overall the algorithm runs in time Θ(4 w �nw ). This agrees with our hardness result: for 
a small fixed-width time band, we get the running time of Θ(�n), whereas if we set w = n − 1 to 
compute the unrestricted distance, the algorithm runs in exponential time—Θ(4 n �n 

2 ). We can also 
only store vectors that dominate in terms of False values, as we are interested in the worst case. 
This improvement reduces the running time by a factor of 

√ 
w . 
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Theorem 5.2. Problem Upper Bound Discrete Fréchet restricted to a Sakoe–Chiba time band of 
width w on a precise curve and an uncertain curve comprised of indecisive points with � options, both 
of length n, can be decided in time Θ(4 w �n 

√ 
w ) in the worst case. 

5.2 Upper Bound Discrete Fréchet Distance: Indecisive 

Now we extend our previous result to the setting where both curves are indecisive, so instead of σ
we have V = 〈 V 1 , . . . , V n 〉 , with, for each j ∈ [ n] , V j = { q 1 j , . . . , q � j } . Suppose we pick a realisation 

for curve V —then we can apply the algorithm we just described. We cannot run it separately 

for every realisation; instead, note that the part of the realisation that matters for column i is the 
points from i −w to i +w , since any previous or further points are outside the time band. So, we 
can fix these 2 w + 1 points and compute the column. We do so for each possible combination of 
these 2 w + 1 points. 

Lemma 5.3. Any reachability vector we store in column i corresponds to some realisation of the 
subcurves U [1 : i] and V [1 : min (i +w, n)] , and every such realisation has the resulting reachability 
vector stored in column i . 

Proof. First of all, consider the statement for column 1. Clearly, we consider all possible reali- 
sations of both subcurves, so the statement holds. 

Now, as we move from column i to column i + 1 , we fix the realisation of points i + 1 −w to 
i + 1 +w on curve V and consider all the vectors stemming from the possible values of point i −w ; 
as in Lemma 5.1 , we cover all realisations of curve U . 

As for curve V , note that we, again, only need the reachability from the previous column and 
the distance matrix from the current column, so the points before i + 1 −w do not play a role for 
the consistency between the two, and thus they can be ignored. 

So, we only get reachability vectors corresponding to valid realisations, and we do not miss any, 
as required. �

The running time is now Θ(4 w � 2 w+1 nw ), as we consider all combinations of the 2 w + 1 relevant 
points on V with � options per point. For small constants w and �, we get Θ(n); for w = n − 1 , we 
get Θ(4 n n 

2 � 2 n−1 )—exponential time in n. As in the previous algorithm, we can store the Boolean 

vectors more efficiently, reducing the running time by a factor of 
√ 
w . 

Theorem 5.4. Suppose we are given two indecisive curves of length n with � options per indecisive 
point. Then we can decide whether the upper bound discrete Fréchet distance restricted to a Sakoe–
Chiba band of width w is below the threshold in time Θ(4 w � 2 w+1 n 

√ 
w ). 

5.3 Expected Discrete Fréchet Distance 

To compute the expected discrete Fréchet distance with time bands, we need two observations: 

(1) For any two precise curves, there is a single threshold δ where the answer to the decision 

problem changes from True to False —a critical value. That threshold corresponds to the 
distance between some two points on the curves. 

(2) We can modify our algorithm to store associated counts with each reachability vector, 
obtaining the fraction of realisations that yield the answer True for a given threshold δ . 

We can execute our algorithm for each critical value and get the cumulative distribution function 

P ( d dF ( π , σ ) > δ ) for π , σ � U U , V . As explained in the rest of this section, using the fact that the 

cumulative distribution function is a step function, we compute d E 
dF 

. 
Consider first the setting of one precise and one indecisive curve. Previously, we stored the 

reachability vectors in a set; instead, we can store a counter with each reachability vector so that 
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ALGORITHM 2 : Finding the time-banded upper bound discrete Fréchet distance on two indecisive curves. 

every time we get an element that is already stored, we increment the counter. We cannot use the 
improvement that would allow us to discard some vectors, as that would eschew the count, and 
we are not interested in the worst possible result now. We can implement a similar mechanism in 

the setting of two indecisive curves. Moreover, we can propagate the count through the algorithm 

and in the end find the counts associated with answers True and False to the decision problem. 
So, if we store the count of realisations that give us a certain reachability vector, we essentially 

obtain, for some value of δ , 

P ( d dF ( π , σ ) > δ ) when π , σ � U U , V . 

For any realisation, there is a specific value of δ—a critical value —that acts as a threshold between 

the answers True and False for that realisation, since if we fix the realisation, we just compute the 
regular discrete Fréchet distance. Note that that threshold must be a distance between some two 
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points on different curves. In the case of a precise and an indecisive curve, there are �n(2 w + 1 )
such distances with the time band of width w ; in the case of two indecisive curves, there are 
� 2 n(2 w + 1 ) such distances. Therefore, if we run our algorithm for each of these critical values 
and record the counts of True and False for each threshold, we obtain the complete cumulative 
distribution function P ( d dF ( π , σ ) > δ ) for π , σ � U U , V . 

Then we can simply find, under the time band restriction, 

d 
E (U ) 

dF 
( U , V ) = 

∫ ∞ 

0 

P π , σ� U U, V ( d dF ( π , σ ) > δ ) d δ . 

For any realisation the answer may change from True to False only at one of the critical values. 
So, the distribution of True and False only changes at a finite set of critical values and is constant 
between them; therefore, P ( d dF ( π , σ ) > δ ) is a step function. Hence, finding the integral of interest 
amounts to multiplying the value of P ( d dF ( π , σ ) > δ ) by the distance between two successive 
values of δ that match, and summing all the results—that is, to finding the area under the step 

function by summing up the areas of the rectangles that make it up. 
So, clearly, under the time band restriction, we can run one of our algorithms either �n(2 w +

1 ) or � 2 n(2 w + 1 ) times to obtain the expected discrete Fréchet distance. We show the details in 

Algorithm 3 for the two settings. We summarise this result as follows. 

Theorem 5.5. Suppose we are given an indecisive curve U and a precise curve σ of length n with � 
options per indecisive point and we want to compute the expected discrete Fréchet distance constrained 
to a Sakoe–Chiba band of width w . Then we can run ExpTBDFDIndPr (U , σ , w ) to obtain the result 
in time Θ(4 w � 2 n 

2 w 
2 ) in the worst case. 

Proof. First of all, note that from the preceding discussion it immediately follows that the 
algorithm is correct. In the worst case, every δ that we have to add to E will be distinct, so we 
have �n(2 w + 1 ) insertions, taking in total Θ(� nw log � nw ) time. Then we run CntTBDFDIndPr 

once per value in E, and its running time is the same as that of TBDFDIndPr , so here we take time 
Θ(� nw · 4 w � nw ) in the worst case, as claimed. �

We can formalise the result similarly for the other setting. 

Theorem 5.6. Suppose we are given two indecisive curves U and V of length n with � options 
per indecisive point and want to find the expected discrete Fréchet distance when constrained to a 
Sakoe–Chiba band of width w . Then we can run ExpTBDFDIndInd (U , V , w ) to obtain the result in 
time Θ(4 w � 2 w+3 n 

2 w 
2 ) in the worst case. 

Proof. Again, note that from the preceding discussion, it immediately follows that the algo- 
rithm is correct. In the worst case, we have � 2 nw insertions, taking in total Θ(� 2 nw log �nw ) time. 
Then we run CntTBDFDIndInd once per value in E, and its running time is the same as that of 
TBDFDIndInd , so here we take time Θ(� 2 nw · 4 w � 2 w+1 nw ) in the worst case, as claimed. �

5.4 Upper Bound Continuous Fréchet Distance 

We can adapt our time band algorithms to handle the continuous Fréchet distance. Instead of the 
Boolean reachability vectors, we use vectors of free space cells, introduced by Alt and Godau [ 6 , 
34 ]. We now need to store reachability intervals on cell borders. The number of these intervals is 
limited: for any cell, the upper value of the interval is determined by the distance matrix, yielding 
at most � 2 values; the lower value of the interval is determined by the distance matrix or by one 
of the cells from the same row, yielding exponential dependency on w . However, the algorithm is 
still polynomial time in n. 
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ALGORITHM 3 : Finding the time-banded expected discrete Fréchet distance on an indecisive and a precise 

curve and two indecisive curves. 

In more detail, one could adapt the algorithms for the upper bound discrete Fréchet distance to 
the case when either both curves are indecisive or one is precise and one is indecisive, and we are 
interested in the decision problem for the Fréchet distance and not the discrete Fréchet distance. 
Since we are going column-by-column, we would need to store the reachability intervals on the 
vertical border of each cell. 

It is simpler to see how this would work in the setting of a precise and an indecisive curve: each 

column now is a column of a free-space diagram, and we only need to store the intervals on the 
right side of the column. As we progress to the next column, we need to consider all the options 
from the previous column, so we need to run the same algorithm, except we store and process 
vectors of free-space intervals instead of True and False . One other distinction is that we do not 
consider diagonal steps—for the Fréchet distance, doing so would not be meaningful, as the path 
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Fig. 13. Reachability adjustments. Left: Although the dotted interval is free according to the distance matrix, 
only the solid interval is reachable from the cell on the left with a monotone path, assuming the entire cell on 
the left is free. Right: The entire interval that is marked as free according to the distance matrix is reachable 
with a monotone path from the cell below, assuming the cell below is free. 

is continuous, and the diagonal step is not distinguishable from a horizontal step followed by a 
vertical step, if such situation occurs. 

In particular, we now take the intervals stored in the distance matrix and compute reachability 

based on the previous column: if a cell can be reached horizontally from the previous cell, then the 
lower bound of the interval in this cell may need to go up, since we can only use monotone paths. 
Propagate will now take the intervals that correspond to the distance matrix and the precomputed 
reachability and make the following adjustment: if a cell is reachable from below, then the entire 
interval on the right is actually reachable. Figure 13 presents an example of both cases. 

Other than that, the algorithm is exactly the same; clearly, we can make the same adjustments 
to the algorithm handling two indecisive curves. 

Notice that we now do not have at most 2 2 w+1 vectors per column, since we store intervals 
instead of Boolean values, and they can be more varied. However, the number of values is still 
limited: for any cell, the upper value of the interval is determined by the distance matrix, so there 
can be at most � or � 2 values for the two settings. The lower value of the interval is determined 
by the distance matrix or by one of the cells from the same row; these may have at most � or � 2 

values each, and there are at most 2 w of them, so per cell we can have at most Θ(�w ) or Θ(� 2 w )

lower interval values and Θ(�) or Θ(� 2 ) upper interval values, instead of just two possible values 
in the discrete case. Note that for an interval, we only pick one of the possible lower bound values, 
and a lower bound value ultimately comes from the distance between some pair of points; addi- 
tionally, we pick one upper bound value, giving us Θ(� 2 w ) and Θ(� 4 w ) possible unique intervals. 
We also need to modify the set operations, for example, by enumerating the possible boundaries 
and storing intervals as pairs of indices; adding a vector to a set would then take O (w + log �w )

time. The running time changes accordingly, replacing 4 w with (� 2 w ) 2 w+1 and replacing 4 w � 2 w+1 

with (� 4 w ) 2 w+1 , but, importantly, we still have linear dependency on n, so the running time is 
polynomial for fixed w and �. 

5.5 Expected Continuous Fréchet Distance 

We can, of course, again store the associated counts with the vectors of intervals in the algorithm. 
As we look at the final cell, we can sum up the counts associated with the cases where the upper 
right corner of this cell is reachable, and so we can find the proportion of True to False for a 
particular threshold δ . 

We can find the critical values; now they follow in line with those discussed by Alt and Godau [ 6 , 
34 ]. The number of the critical values is different: case 1, where we look at the start and end 
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points, now yields Θ(� 2 ) events; case 2, where we look at two neighbouring cells, so at the distance 
between a segment and a point, yields Θ(� 3 nw ) events; and case 3, where we look at the distance 
between a segment and two points, yields Θ(� 4 nw 

2 ) events. 
Otherwise, we can run Algorithm 3 on the new critical values, calling instead the counting ver- 

sion for the continuous Fréchet distance. This way, we can compute the expected Fréchet distance 
restricted to a Sakoe–Chiba band in time polynomial in n for fixed w and �. 

Theorem 5.7. Suppose we are given two indecisive curves of length n with � options per indecisive 
point. Then we can decide the upper bound Fréchet distance and compute the expected Fréchet distance 
restricted to a Sakoe–Chiba band of fixed width w in time polynomial in n. 

6 CONCLUSION 

In this article, we studied the upper bound, the lower bound, and the expected Fréchet distance 
under various uncertainty models. We conclude that it is NP-hard to decide if the upper bound 
is below a given threshold in all the models we consider; as the follow-up work [ 16 ] shows, also 
in 1D. This seems to translate to #P-hardness for computing the expected Fréchet distance un- 
der the uniform distribution. We do not have reason to believe that the variants of the expected 
Fréchet distance not covered in Table 1 are easier. The lower bound problem presents an interest- 
ing tradeoff, though: although the problem of deciding whether the lower bound is below a given 

threshold is still NP-hard for the continuous Fréchet distance for uncertain points modelled as 
line segments, the problem becomes tractable when either the uncertainty regions or the distance 
measure (or both) are discrete. We conjecture that the continuous Fréchet distance for uncertain 

points modelled as disks (or other continuous regions) is no easier than for line segments. 
In future work on the topic, it would be helpful to understand where exactly the divide lies 

(i.e., what kind of uncertainty models make the problem simpler); we can also ask whether the 
problem is fixed-parameter tractable when parametrised by the number of allowed movement 
directions (two in 1D, anywhere in 2D). One could also generalise the expected Fréchet distance to 
other distributions and uncertainty models, ideally formulating simple conditions on the input to 
achieve a result. Finally, it would be interesting to see any approximation algorithms for the upper 
bound Fréchet distance. 
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