Computers & Security 127 (2023) 103056

Contents lists available at ScienceDirect = §°s"353$§;5

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Distributed query execution under access restrictions™)

Sabrina De Capitani di Vimercati®*, Sara Foresti? Sushil Jajodia® Giovanni Livraga?,

Check for
updates

Stefano Paraboschi€, Pierangela Samarati®*

aUniversita degli Studi di Milano Via Celoria 18, Milano 20133 MI, Italy
b George Mason University, 10401 York River Road, Fairfax, VA, 22030-4422, USA
¢ Universita degli Studi di Bergamo, Viale Marconi 5, Dalmine 24044 BG, Italy

ARTICLE INFO

Article history:

Received 13 April 2022

Revised 4 August 2022

Accepted 6 December 2022
Available online 14 December 2022

Keywords:

Distributed query execution
Controlled data sharing
Authorization model
Relation profile

Cloud computing

ABSTRACT

The availability of a multitude of data sources has naturally increased the need for subjects to collaborate
for supporting distributed computations that combine different data collections for their elaboration and
analysis. Due to the quick pace at which datasets grow, often the authorities collecting and owning such
datasets resort to external third parties (e.g., cloud providers) for their storage and management. Data un-
der the control of different authorities are autonomously encrypted (using different encryption schemes
and keys) for their external storage. This makes distributed computations combining these sources dif-
ficult to support. In this paper, we propose an approach enabling collaborative computations over data
encrypted in storage, selectively involving also subjects that might not be authorized for accessing the
data in plaintext when their collaboration is considered economically convenient. We also consider the
possible adoption of trusted hardware components, to enable the evaluation of operations over plain-
text data at non-fully trusted computational providers. The experimental results confirm the economic

benefits that can be enabled by our proposal.

© 2022 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Our society and economy ever-increasingly rely on the knowl-
edge that can be generated by analysis and computations combin-
ing data produced and/or controlled by different parties. The cloud,
thanks to a variety of storage and computational providers with
different costs and performance guarantees, represents an acceler-
ator for such scenarios. Data owners can in fact outsource their
data to storage providers, making them (selectively) available for
computations with reduced management burden at their side. At
the same time, users requiring analysis can (partially) delegate ex-
pensive computations to computational providers, with clear per-

* A preliminary version of this paper appeared under the title “Distributed query
evaluation over encrypted data,” in Proc. of the 35th Annual IFIP WG 11.3 Conference
on Data and Applications Security and Privacy (DBSec 2021), Calgary, Canada, July 19-
20, 2021 (De Capitani di Vimercati et al., 2021b).

* Corresponding author.

E-mail addresses: sabrina.decapitani@unimi.it (S. De Capitani di Vimercati),
sara.foresti@unimi.it (S. Foresti), jajodia@gmu.edu (S. Jajodia),
giovanni.livraga@unimi.it (G. Livraga), parabosc@unibg.it (S. Paraboschi),
pierangela.samarati@unimi.it (P. Samarati).

https://doi.org/10.1016/j.cose.2022.103056

formance and economic benefits (De Capitani di Vimercati et al.,
2017). However, complications can arise since some of the data
can be sensitive, proprietary, or more in general subject to ac-
cess restrictions, all factors that can affect the possibility of rely-
ing on external cloud providers for data management and process-
ing (Gritzalis et al., 2021; 2019; Li et al., 2018; Xie et al., 2021).
To ensure data protection while permitting the consideration
of a large spectrum of providers for computations, a recent ap-
proach proposed a simple, yet flexible, authorization model that
enriches the traditional yes/no visibility that a subject can have
over data with a third visibility level, granting a subject visibil-
ity over an encrypted version of the data (De Capitani di Vimer-
cati et al., 2017). In this way, subjects that are economically advan-
tageous, but possibly not fully trusted for accessing data content,
may still be involved in computations by restricting them to oper-
ate on encrypted data. To enforce the authorization policy, visibility
over data is dynamically adjusted by applying encryption on-the-
fly before sending data to subjects not trusted for plaintext access.
Similarly, decryption can be applied on-the-fly when authorized
subjects need plaintext visibility for executing query operations.
The authorization model in De Capitani di Vimercati et al.
(2017) operates under the assumption that the datasets involved in
the distributed computation are stored in plaintext. This assump-

0167-4048/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cose.2022.103056
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.103056&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sabrina.decapitani@unimi.it
mailto:Sara.Foresti@unimi.it
mailto:jajodia@gmu.edu
mailto:Giovanni.Livraga@unimi.it
mailto:parabosc@unibg.it
mailto:Pierangela.Samarati@unimi.it
https://doi.org/10.1016/j.cose.2022.103056
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

tion is however viable only when data are either stored at their
owners, or outsourced at providers that are trusted to access data
in plaintext, hindering the consideration of storage providers that,
while being economically convenient, are not authorized to see the
plaintext content of the data. Intuitively, the spectrum of potential
providers that could be adopted for storing datasets could be en-
larged if data were encrypted by their owners, before outsourcing
them for storage. The joint adoption of the authorization model
in De Capitani di Vimercati et al. (2017) and of encrypted stor-
age would benefit both users requiring computations, and own-
ers wishing to make their data selectively available to others. Eco-
nomically convenient providers can then be leveraged by users for
computation, and by owners to outsource their datasets with the
guarantee that their data will not be improperly exposed in storage
or in computation. The consideration of data encrypted in storage
in collaborative computations brings however complications, since
the encryption adopted for protecting data in storage is not specif-
ically selected according to the computations to be performed and
may not support them, which could hence require additional de-
cryption and re-encryption operations.

In this paper, we build on the authorization model in De Capi-
tani di Vimercati et al. (2017) and propose a solution for collabora-
tive computations over distributed data that can be stored, in en-
crypted form, at external and possibly not fully trusted providers.
The main contributions of this paper can be summarized as fol-
lows. First, we re-define the information flows enacted by a com-
putation, necessary for authorization enforcement, based on the
possibility of some data being stored in encrypted form. Second,
we identify the need, and propose a solution for, re-encryption op-
erations, to be introduced when the encryption adopted in stor-
age (which is pre-determined by the data owner) does not support
operation execution. Third, we provide an approach for comput-
ing an economically convenient assignment of operations to sub-
jects in complete obedience of authorizations and provide an ex-
perimental evaluation demonstrating the economic benefits that
can be enabled by our approach. Finally, we discuss the integration
of trusted hardware components in our model to enable plaintext
computations within the trusted boundaries of the trusted hard-
ware made available by possibly non fully trusted providers.

The remainder of this paper is organized as follows.
Section 2 discusses related works. Section 3 introduces the rela-
tion profiles modeling information flows entailed by computations,
and presents the authorization model. Section 4 illustrates how
authorizations are compared against relation profiles to determine
when a subject is authorized for performing an operation, and
formulates the problem of determining a minimum cost assign-
ment of operations in a query plan to subjects. Section 5 presents
a heuristic approach for solving such minimum cost assignment
problem. Section 6 illustrates experimental results. Section 7 ex-
tends our model to the use of trusted hardware components.
Finally, Section 8 concludes the paper. The proofs of the theorems
are reported in Appendix A.

2. Related work

The work closest to ours is represented by the solution for
distributed query evaluation in the respect of access restrictions
proposed in De Capitani di Vimercati et al. (2017), on which our
approach builds. The model in De Capitani di Vimercati et al.
(2017) introduces the idea of specifying different visibility levels
over data, including an encrypted visibility level, to the aim of en-
abling the delegation of computations over encrypted data to non-
fully trusted subjects. This authorization model has been extended
in De Capitani di Vimercati et al. (2021a) to queries including also
set and rename operators, and to the consideration of the encryp-
tion cost in the allocation of operations to subjects. This model

Computers & Security 127 (2023) 103056

has been integrated into a real world query optimizer in Dimitrova
et al. (2019). The work in De Capitani di Vimercati et al. (2017,
2021a) is based on the assumption that base relations are stored
on the premises of the authorities owning them. Hence, base re-
lations are available in plaintext and can be selectively encrypted
on-the-fly, as needed to protect data visibility in query evaluation.
Our proposal extends such an approach to consider the more gen-
eral scenario where base relations might be stored, in encrypted
form, at an external provider that might be not authorized to know
the plaintext data. The consideration of encrypted storage has been
first investigated in De Capitani di Vimercati et al. (2021b). In this
paper, we considerably extend the work in De Capitani di Vimer-
cati et al. (2021b) by enriching its analysis, both theoretically and
experimentally, by providing advanced considerations on the prop-
erties enjoyed by candidate sets along the query plan, and by ex-
tending the proposal to the adoption of trusted hardware compo-
nents.

Techniques aimed at the management of distributed computa-
tions proposed in the literature (e.g., Alkowaileet et al., 2018; Arm-
brust et al., 2015; Kossmann, 2000; Levy et al., 1995; Rheinldnder
et al,, 2017) do not take into consideration access restrictions. In
the context of relational databases, solutions aimed at enforcing
access restrictions (e.g., view-based access control De Capitani di
Vimercati et al., 2014; Guarnieri and Basin, 2014; Rizvi et al., 2004,
access patterns Amarilli and Benedikt, 2018; Benedikt et al., 2015,
data masking Kwakye and Barker, 2016) instead do not consider
encryption for protecting confidentiality.

Recent works have addressed the problem of protecting data
confidentiality in distributed computation. The proposed solu-
tions aim at controlling (explicit and/or implicit) information
flows among subjects in the context of distributed computations
(e.g., De Capitani di Vimercati et al., 2011; Oktay et al., 2017; Sal-
vaneschi et al., 2019; Zeng et al., 2015). The approach in De Capi-
tani di Vimercati et al. (2011) regulates implicit information flows
due to joins among relations in the authorizations, and differs from
ours as it requires collaborative specification of authorizations. The
solution in Oktay et al. (2017) instead focuses on computations in
hybrid clouds, and aims at limiting leakage of sensitive information
to the public untrusted components of the clouds. The proposal
in Zeng et al. (2015) considers different join execution strategies
in distributed query evaluation, but it does not consider implicit
information flows. The approach in Salvaneschi et al. (2019) aims
at controlling information flows for enforcing privacy constraints
in operator placement for distributed query processing. This solu-
tion leverages on programming language techniques for providing
privacy while maximizing performance. On a related line of work,
in Farnan et al. (2014) the authors propose a solution aimed at pro-
tecting the confidentiality of the intents of a query to the providers
involved in the evaluation of the query itself.

The use of encryption for protecting data confidentiality,
while supporting query evaluation, has been widely studied
(e.g., Agrawal et al., 2006; Hacigiimiis et al., 2002; Popa et al.,
2011; Tu et al.,, 2013). Alternative solutions proposed the adoption
of secure multiparty computation and homomorphic encryption
(e.g., Bater et al., 2017; Chow et al., 2009). These approaches are
complementary to our work, which can rely on these techniques
for delegating the evaluation of operations in the query plan (e.g.,
conditions and/or computations over attributes) to subjects who
are authorized only for encrypted visibility over (a subset of) the
attributes involved in the delegated operation. Recently, the use
of trusted execution environments has been investigated for (dis-
tributed) computations over sensitive data (e.g. Priebe et al., 2018;
Sharma et al., 2020; Thoma et al., 2019; Vinayagamurthy et al.,
2019). These solutions require the presence of trusted hardware
components for protecting data in computations over them. Our
approach is complementary to those proposal, and is more gen-

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

o INCP,]—U
Osum(P)>0.1xsum(1) (SIL,] U
— [PC,N]—X
’\//C,Sllnl(l)ﬁl@ [LSJI] =X
- [DP,CN]—Y
JI,S]—=Y
N3:g> [|
T [NC,P]—Z
@/mm]@ [S,J1] =2
t [NDPC]—F
TINPC
COMPANY(SJI) [—=F
FLicuT(NDPC)
aF ac [LNC]>C
[L8J1]—C
[NC,]—any
[-,SJ]—any

(a) Query plan (b) Authorizations

Fig. 1. An example of a query plan (a) and of authorizations on relations FLIGHT
and ComPANY (b).

eral. In fact, our approach can leverage trusted hardware compo-
nents for enabling computations over plaintext data at untrusted
providers, but it does not require them, and is therefore applica-
ble also to more traditional scenarios that are not equipped with
trusted execution environments.

3. Relation profiles and authorizations

We consider a scenario characterized by: i) data authorities,
each owning one or more relations possibly stored at external
storage providers; ii) users, submitting queries over relations under
the control of different authorities; and iii) computational providers,
which can be involved in query evaluation. Since relations may be
stored at external providers, (a subset of) their attributes might be
encrypted by the data authority, to prevent visibility of sensitive
information by the storage provider. Queries can be of the gen-
eral form “SELECT FROM WHERE GROUP BY HAVING” and can include
joins among relations under the control of different data authori-
ties. Execution of queries is performed according to a query plan
where projections are pushed down to avoid retrieving data that
are not necessary for query evaluation. Graphically, we represent
query plans as trees whose leaf nodes correspond to projection
over the base relations of the attributes involved in the query. For
simplicity, but without loss of generality, we assume that attributes
involved the relations have different names.

Example 3.1. Consider two data authorities, a flight company and
a commercial company, with one relation each, respectively: rela-
tion FLIGHT(N,D,P,C) reports the social security Number and Date
of birth of passengers, and the Price and Class of their tickets; re-
lation CompANY(S,J,I) reports the Social security number, Job, and
Income of the company employees. These relations are stored in
encrypted form at external storage providers F and C, respectively.
We consider also three computational providers X, Y, and Z. In our
running example, we consider the following query submitted by
user U: “seLECT C, suM(P), suM(I) FROM FLIGHT JOIN COMPANY ON
N=S WHERE J='manager’ GROUP BY C HAVING SUM(P)> 0.1xsum(I)",
retrieving the classes for which the overall price of tickets bought
by managers is greater than the 10% of the summed incomes of
the buyers. Figure 1(a) illustrates a plan for the execution of the
query. For simplicity, in the figure and in the following, we denote

Computers & Security 127 (2023) 103056

a set of attributes with the sequence of the attributes composing
it, omitting the curly brackets and commas (e.g., NPC represents
{N,P,C}).

Relation profile. Besides the attributes included in its schema, a
relation resulting from a computation might also convey informa-
tion on other attributes. The information content explicitly and im-
plicitly conveyed by a (base or derived, that is, resulting from the
evaluation of a sub-query) relation is captured by the profile of the
relation. We extend the definition of relation profile in De Capi-
tani di Vimercati et al. (2017) to account for the possible encrypted
representation of attributes encrypted in storage.

Definition 3.1 (Relation Profile). Let R be a relation. The profile
of R is a 6-tuple of the form [R", R*, R RP RE R=] where: R"P,
R®, and R¥ are the visible attributes appearing in R’s schema in
plaintext (R'P), encrypted on-the-fly (R*), and encrypted in-storage
(R¥E); RP and RE are the implicit attributes conveyed by R, in plain-
text (RP) and encrypted (R®); R= is a disjoint-set data structure
representing the closure of the equivalence relationship implied by
attributes connected in R’s computation.

In the definition, R"’ corresponds to the set of plaintext at-
tributes visible in the schema of R. We then distinguish between
the visible attributes encrypted on-the-fly (R*) and the visible at-
tributes encrypted in storage (R), due to their different nature. In-
storage encryption is enforced once, independently from the query
to be answered, with an encryption scheme and a key that do not
change over time and known only to the data owner. On-the-fly
encryption is enforced at query evaluation time and both the en-
cryption scheme and the encryption key are decided by the user
formulating the query and can be shared among different parties
when different attributes need to be compared (e.g., for a join eval-
uation). Implicit components (RP, R€) keep track of the attributes
that have been involved in query evaluation for producing relation
R. Even if they do not appear in R’s schema, query evaluation has
left a trace of their values in the query results (e.g., attributes in-
volved in selection or group by operations). Note that we do not
distinguish between in-storage and on-the-fly encryption in the
implicit component of the profile. Indeed, the information leaked
by the evaluation of an operation over an encrypted attribute is
not influenced by the time at which encryption has been enforced
nor by the subject enforcing it. The equivalence relationship (R~)
keeps track of the sets of attributes that have been compared for
query evaluation (e.g., for the evaluation of an equi-join). The com-
ponent allows accounting for the fact that attributes involved in
some comparison can leak one the values of the other. In fact, even
if one of the attributes in the equivalence set has been projected
out from the relation schema, its values can still be inferred from
other (equivalent) attributes.

The profile of a base relation R has all components empty, ex-
cept R and R that contain the attributes appearing in plaintext
and encrypted in storage, respectively, in the schema of the rela-
tion. The profile of a derived relation (i.e., resulting from the eval-
uation of an operation) depends on both the operation and the
profile of the operand(s). Figures 2 and 3 illustrate the profiles re-
sulting from the evaluation of relational algebra operators (Fig. 2),
and of encryption, decryption, and re-encryption (i.e., decryption
followed by encryption with a different scheme and/or key) oper-
ations (Fig. 3), which are peculiar of our model. For each operator,
we report the general formula on the left hand side of the figures,
and an example on the right hand side of the figures. Graphically,
we represent the profile of a relation as a tag attached to the re-
lation’s node (or the node of the operator producing it in case of
a derived relation), with three components: v (visible attributes in
R and, on a light blue background, R® and R*), i (implicit at-
tributes in R? and, on a light blue background, R®), and ~ (sets of

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al. Computers & Security 127 (2023) 103056

General Formula Example
o v[R"PNA[RYNA[R"NA] S C|
° @ i|RWP R i|D|E
.8 ~R= '«:2 FG
@ ___________________________________
- N R P
nf: v[R"P|RV?|R"] v [A]B]C]
a il [pie ‘B i | DE
~|R™ "~ | FG
o v[RUP RVE R S v[A [B[C}
S| Gaord-- | RPU(R™A{a)) [RIE(BPUR)0 {a}) 5 i[ADB] .
+ “~|R™ .~ |FG
Q 5 . 3 :
3 e ————— e e SR | B eereern
Q j5 TS SRS ¢
»n “v|RYP|RV® R”E|} Sv|A|B CI
“~| R : .~ |FG
o v[RP[RY™ R v [AB C]
9 - i|RW|RI® 0A=B)-. i|[D [E
k3t | REU{a;, a;} .~ [FG, AB
2 ,,
q) ,,,,,,,,,,,,,,,,,, g S SRR don
n v[RP[RV¢|RP] v [AB] [C]
iR |REe (R)~ i[D_|B
~|R= L~ | FG
S
: RURY"
< Ri€UR’®
o
13
gl L N
g R
7 i[rP
0 -
£ ~|R>
- I T o O S ot L T
@]
o[RPURT TRIPORTE| RyPURYE]
£ | R/PUR" |Rj€URle
3 ,
o v [RPA(AULa}) [R¥A(ATTa)) R™PN(AU{a})] v [AB |
Q' |Qas@). i|[RPU(RPnA)|[RPU((RUUR™E)NA) : Oaave®) - i [AD B
o, “~|R= “~ | FG
= === N e SR
0
ol | PR
U v[R"P[RY[R™]: S v [AB C]
< i[RP|Rie : i[D [E
“~|R= : L~ |FG

Fig. 2. Profiles resulting from relational operations.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

Computers & Security 127 (2023) 103056

General Formula Example
o o[RPNA[RVCUAR™] “v [[AB[C]
2 i|RP__|[Re [A}- i[DIE
"" ~[R= L~ | FG
2 ~|R :
s ey] (e =]
-
g ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
= v|RVP|RY€ R”E‘ “w|A|B C‘
i[RP | Ri® (R.)\ i[D]B
~R= L~ | FG
g v [RPPUA|RUNA[R™\A| v[AB] C]
5 . i|R?P _|R : i[D |E
(o} L~ = ~
5 ~|R ~ | FG
s R T e
s F
Q | |
A | RUP| RV R”E‘ v A|B C‘
i|R"P | RY i|DE
~|R= ~ | FG
=
9 rr
2 . v[RP[RVCUA[R\ A| S v[A]BC
5 C DO i |me C DO o
& PR = PR
g SR =[G
o e U
o | AL e
= o [RPTRYRE v[A[B[C]
i| R'P | R i[D[E
~|R™ ~ | FG

Fig. 3. Profiles resulting from encryption, decryption, and re-encryption operations.

equivalent attributes in R~ that have been compared for R’s com-
putation). We represent encryption and decryption operations as
light blue nodes and white nodes, respectively, containing the at-
tributes to be encrypted/decrypted, attached to the operand or the
resulting relation, respectively. Re-encryption operations are repre-
sented as light blue and white nodes containing the attributes to
be re-encrypted. In the following, we illustrate those components
of relation profiles that are impacted by the evaluation of relational
algebra operators and of encryption, decryption, and re-encryption.
As it is visible from Figs. 2 and 3, projection 4 maintains in the
visible components of the resulting relation profile only the at-
tributes in A. A selection of the form og0px includes attribute a
in the implicit component of the resulting profile (plaintext or en-
crypted, depending on whether a is plaintext or encrypted for the
selection). A selection of the form Og;0pajs comparing attributes g;
and aj, inserts {a;, a;} in the equivalence set of the resulting pro-
file. Cartesian product x merges each of the components of its
operands in the resulting relation profile. Similarly, join Ba; opa;
merges each of the components of its operands and, requiring the
comparison between a; and aj, adds {a;, a;} to the equivalence set
of the resulting profile. Group by yj f(q), grouping the input rela-
tion by a set A of attributes and evaluating an aggregate function f
on an attribute a, maintains only a and attributes in A in the visi-
ble components of the resulting profile, and adds A to the implicit
(encrypted or plaintext, depending on whether A is encrypted or
plaintext) component of the resulting profile. Encryption and de-
cryption move attributes from the visible plaintext to the visible
encrypted component (and vice-versa) of the profile of the result-
ing relation. Re-encryption moves attributes from the encrypted

C1 |G
.~ |NS;PI

Osum(P)>0.1xsum(T)

: -

TNPC

Qv NPC] Fv S|
4 i ‘ COMPANY(SJT) i
FLIGHT(NDPC) | = o
QF gt - - QaC L

Fig. 4. Query plan with profiles.

in-storage component to the encrypted component. Figure 4 illus-
trates the profiles of the relations resulting from the evaluation of
the operations in the query plan in Fig. 1(a), assuming attributes
NS and PI to be decrypted for enabling computations over them.
Authorizations. Authorizations regulate data flows intended for
computations. Authorizations can specify, for each subject, whether
she has plaintext visibility, encrypted visibility, or no visibility for

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

performing computations over the attributes in the relations, and
are defined as follows.

Definition 3.2 (Authorization). Let R be a relation and S be a set
of subjects. An authorization is a rule of the form [P, E]—S, where
PCR and ECR are subsets of attributes in R such that PNE=¢, and
SeSu{any}.

Authorization [P, E]—S states that subject S can access in plain-
text attributes in P, in encrypted form attributes in E, and has no
visibility over the attributes in R\(PUE). Subject ‘any’ can be used
to specify a default authorization applying to all subjects for which
no authorization has been explicitly defined. Authorizations regu-
lating access for computation over (encrypted) attributes in rela-
tion R are defined by the data authority who owns the relation,
independently from the provider storing it. Note that the autho-
rizations of storage providers depend on whether they are to be
considered also for computations, independently from the fact that
they store a specific relation and its (encrypted or plaintext) form.
The user formulating a query is expected to have plaintext visibil-
ity over a subset of the attributes in the relational schemas, and
we assume that she is authorized for the attributes involved in the
query.

Example 3.2. Figure 1(b) illustrates an example of authorizations
regulating access to relations FLIGHT and CoMPANY of Example 3.1.
User U has plaintext visibility over a subset of the attributes of the
two relations, storage providers F and C have encrypted visibility
over the attributes in the relation they store, and encrypted visibil-
ity over some of the attributes of the other relation, computational
providers X, Y, and Z have either plaintext or encrypted visibility
over a subset of the attributes in the two relations.

Authorization verification. To be considered authorized to
view a relation, a subject needs plaintext visibility over plaintext
attributes (R and RP) and plaintext or encrypted visibility over
encrypted attributes (R, R, and R¥). Note that there is no need
to distinguish between in-storage and on-the-fly encryption for au-
thorization verification, as the information conveyed by encrypted
attributes is independent from the time at which encryption has
been applied. The subject also needs to have the same visibility
(plaintext or encrypted) over attributes appearing together in an
equivalence set. This is required to prevent subjects having plain-
text visibility on one attribute in the equivalence set and encrypted
visibility on another to be able to exploit knowledge of plaintext
values of the former to infer plaintext values of the latter.

In the following, for simplicity, we will denote with Pg (&5, re-
spectively) the set of attributes that a subject S can access in plain-
text (encrypted, respectively) according to her authorizations. The
following definition identifies subjects authorized to access a re-
lation, extending the definition in De Capitani di Vimercati et al.
(2017) to take the two kinds of encryption into consideration.

Definition 3.3 (Authorized Relation). Let R be a relation with pro-
file [R'P,R*®,R™ RP R€ R~]. A subject S € S is authorized for R iff:

1. R U RP C Ps (authorized for plaintext);
2. R® U R¥ U Re c PgUEs (authorized for encrypted);
3. V A € R=, ACPs or ACEs (uniform visibility).

Example 3.3. Consider a relation R with profile [P,C,S,_,_{IP}] and
the authorizations in Fig. 1(b). Provider Z is not authorized for R
since it cannot access P in plaintext (Condition 1); C and F are not
authorized for R since they cannot access P and S, respectively, in
any form (Condition 2); X is not authorized since it does not have
uniform visibility on P and I (Condition 3). Provider Y and user U
are instead authorized for R.

For simplicity, in the following we will use notation R; to denote
the relation resulting from the evaluation of node n; in the query

Computers & Security 127 (2023) 103056

tree plan. When clear from the context, we will use n; to denote
interchangeably the node and the corresponding relation.

4. Extended minimum cost query plan

Given a query tree plan, denoted T(N), corresponding to a query
q formulated by a user U, our goal is to determine, for each node,
a subject for its evaluation, possibly extending the query plan with
encryption, decryption, and re-encryption operations to guarantee
the satisfaction of authorizations and enable the evaluation of op-
erations.

4.1. Candidates

Given a query tree plan T(N), we first need to identify, for
each node, the subjects authorized for evaluating it (i.e., its can-
didates). Given a node n in a query tree plan, a subject S is au-
thorized for its execution if she is authorized for its operand(s)
and for its result. Indeed, S needs to access the operands of the
node for its evaluation, and the profile of the result captures all
the information directly and indirectly conveyed by the evaluation
of the operation. Starting from relations where attributes may be
encrypted for storage, it could be necessary to inject decryption
and re-encryption (i.e., decryption followed by encryption with a
different scheme and/or key) to guarantee that operations can be
evaluated when they require plaintext visibility over the involved
attributes, or they are not supported by the encryption scheme
adopted in storage, respectively. For instance, we cannot expect
different data authorities to use the same encryption scheme and
key for attributes that will be compared in an equi-join. Hence,
even if equality conditions can easily be supported over encrypted
data (e.g., using deterministic encryption), the evaluation of equi-
joins requires re-encryption of the join attributes. Besides decryp-
tion and re-encryption for enabling query evaluation, also encryp-
tion operations could be injected for enforcing authorizations: en-
cryption could enable a subject to perform an operation that she
would otherwise not be authorized to evaluate, due to the plain-
text representation in the operand relation(s) of some attributes
that she can access only in encrypted form.

Example 4.1. With reference to the query tree plan in Fig. 4, Y can
evaluate the join operation if attributes N and S are re-encrypted
using a deterministic encryption scheme with the same encryption
key. Similarly, attributes P, I, and] must be encrypted, all with the
same key, for Z to be authorized to execute the group by operation.

We observe that, if all the attributes in the schema of the
operand relation(s) appear in encrypted form, the set of subjects
that are authorized for evaluating the operation is possibly larger.
In fact, encrypted attributes are also accessible by subjects with
plaintext visibility (Definition 3.3). To determine candidates for op-
eration execution, we therefore assume that all the attributes in
the operand relation(s), but those that have to be in plaintext for
operation execution, are encrypted. Any attribute of the operand(s)
can be decrypted by the subject who is in charge for the evalua-
tion of the operation, since otherwise it would not be authorized
to evaluate it. Formally, we define candidates for the evaluation of
a node as follows.

Definition 4.1 (Candidate). Let T(N) be a query tree plan, neN be a
non-leaf node, and n;,n;eN be its left child and right child (if any),
n.Ap be the set of attributes that need to be plaintext for evaluat-
ing n, and S be a set of subjects. A subject Se§ is a candidate for
the execution of a node n iff S is authorized for:

1) n; and n;, assuming the encryption of all the visible attributes
(Definition 3.3);
2) attributes in n.Ap in plaintext;

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

v|PI|C ‘
P CcJ
=Sl
o | |1
il |CJ ‘
~|NS

[NCs PJT]

v SJq]
il |J
TINPC v o]S
FLIGHT(NDPC) NZ : i |
QF ot S Qac T
(a)
WPIET
Y Sl |Gl
"~|NS;PI
vw] o
|
" ~[NS
o NGs I
" ~|NS
Z NC Z S """ SJI‘
v ‘
C i |J :
TNPC Yo [NPC| S B
il COMPANY(SJI) | ./ ;[1
FLIGHT(NDPC) | - "
aF f E— ac S SR
(b)

Fig. 5. Extended query plan with candidates (a) and with assignees (b).

3) n, assuming the encryption of all the visible attributes in its
operand(s) (Definition 3.3).

The set of candidates for node n is denoted A(n).

Example 4.2. Figure 5(a) reports, for each node in the query tree
plan in Fig. 4, the candidates that can evaluate the operation rep-
resented by the node. In the example, we assume that: i) the se-
lection over J and the computation of the sums over I and P can
be evaluated on their encrypted in-storage representation; ii) the
evaluation of the join and of the group by clause over C require
the re-encryption of the involved attributes; and iii) the compar-
ison of sum(P) and sum(l) can be performed on plaintext values
only.

A query tree plan T(N) complemented with encryption, decryp-
tion, and re-encryption operations represents an extended query

Computers & Security 127 (2023) 103056

plan, and is denoted T'(N'). Encryption, decryption, and re-
encryption operations are inserted into the query plan to enforce
authorizations and ensure operation execution. The injection of op-
erations that change attribute visibility (i.e., encryption and de-
cryption) depends on the subject selected, among all the candi-
dates, for the execution of each operation in the query plan. To
enable the evaluation of operation at node n, which requires plain-
text visibility over encrypted attribute a, we inject decryption of
a as a child node attached to n. Similarly, to hide visibility over
plaintext attribute a to the subject in charge of evaluating n, but
which can access a only in encrypted form, we inject encryption of
a as a parent node attached to the child of n including a in its pro-
file. We note that encryption and decryption operations can always
be enforced by the subject evaluating the operation to which they
are attached (i.e., the child node where the attribute appears in
plaintext for encryption, and the parent node that requires plain-
text visibility on the attribute for decryption). For this reason, we
do not need to explicitly compute the candidates for encryption
and decryption nodes (and we do not report candidates for such
nodes in our figures). The consideration of re-encryption opera-
tions, necessary when the in-storage encryption scheme does not
support operation execution, deserves a special treatment. To en-
able the evaluation of the operation, not supported by in-storage
encryption, at node n over attribute a, we inject re-encryption of a
in the subtree rooted at n. Re-encryption is not necessarily injected
as a child of n. In fact, it might be that neither the subject evalu-
ating n nor the subject in charge of the evaluation of its operand
are authorized for it. If this is the case, re-encryption needs to be
enforced at a lower level in the query plan tree. As an example, re-
encryption of a can be injected as the parent of the leaf node rep-
resenting the base relation to which a belongs. Another difference
with respect to encryption and decryption operations, is that the
need for injecting a re-encryption operation depends on the oper-
ations in the query plan (and not on the subject to which they are
assigned), based on whether they are supported by the in-storage
encryption. For the reasons above, for re-encryption operations, it
is necessary to reason on (and hence define) the set of subjects
that can perform them. The definition of candidates therefore ap-
plies also to re-encryption nodes.

Example 4.3. Figure 5(a) illustrates an example of an extended
version of the query tree plan in Fig. 4, where attributes N, C, and
S are re-encrypted, and attributes I and P are decrypted. The de-
cryption of attributes I and P can be performed by either U or
Y, which are candidates of the selection operating on the decryp-
tion result and can access I and P in plaintext. Figure 5(a) reports,
for the two re-encryption operations, the set of candidates that are
authorized to re-encrypt the involved attributes. Note that the re-
encryption of attribute S cannot be assigned to C (to which the
selection 0j_imanager COUld be assigned), nor to X or Y (to which
the join could be assigned). Indeed, none of these subjects can ac-
cess S in plaintext (see authorizations in Fig. 1(b)). It could instead
be assigned to Z.

The sets of candidates associated with the nodes of a query tree
plan enjoy a nice monotonicity property, according to which the
candidates of a node are a subset of the candidates of its descen-
dants in the query tree plan. This property applies to all nodes rep-
resenting operations that are executed over encrypted attributes or
that need to be executed over plaintext attributes and leave a trace
of such attributes in the plaintext implicit component of the result-
ing relation profile (i.e., n.A,CRP).

The consideration of re-encryption operations introduces a lo-
cal gap in the monotonicity property. Since the subject in charge
of re-encryption must be authorized for the profile of the operand
relation, the set of candidates for a re-encryption operation is a

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

subset of the candidates of its operand node n.. However, the can-
didates of the parent n, of the re-encryption operation might not
be a subset of the re-encryption candidates. In fact, nothing can
be said on the set containment relationship between re-encryption
candidates and those of its parent np, since a candidate for re-
encryption could not be authorized for n, and vice-versa: while
a subject must be authorized for plaintext visibility on the at-
tributes to be re-encrypted to be candidate for re-encryption, n,
might not require (and its candidate might not have) plaintext vis-
ibility on these attributes. Similarly, the evaluation of n, might re-
quire plaintext visibility over attributes that do not need to be vis-
ible in plaintext for re-encryption. The profile of the result of re-
encryption is the same as the one of its operand (i.e., it does not
move attributes from the encrypted to the plaintext components
nor vice-versa). Note that the set of candidates for np is a subset
of the set of candidates for nc, since a candidate for n, needs to
have at least visibility on the relation produced by n..

Example 4.4. With reference to the extended query tree plan in
Fig. 5(a), the set of candidates for the nodes in the original query
tree plan decreases while going up in the tree. Consider the node
for the re-encryption of attribute S. The set of candidates for this
node is a subset of the set of candidates for the selection opera-
tion, child of re-encryption (i.e., {U,Z} € {C,U, X, Y, Z}). Also, the
set of candidates for the re-encryption of S is a subset of the set
of candidates for the join operation, parent of re-encryption (i.e.,
{U,z} c {U,X,Y, Z}, since only U and Z are authorized for plain-
text visibility over S).

Formally, the monotonicity property among the sets of candi-
dates is stated by the following theorem.

Theorem 4.1 (Monotonicity of the candidate set). Let T(N) be a
query tree plan and N* the set of re-encryption nodes injected into
T(N) to enable query evaluation. Vny, nyeNUN® such that nyny are

non-leaf nodes of T(N), ny is a child of ny, and ny.ApgRip:

1. A(ny)SA(ny), if ny, nyeN;
2. A(nz)SA(ny), if nyeN® and nzeN is the parent of ny.

Given a query tree plan T(N) and the candidates for each of
the nodes in N and for re-encryption operations, it is necessary to
select, for each node and re-encryption operation, a subject (cho-
sen among its candidates) in charge of the evaluation of the cor-
responding operation (i.e., the assignee A(n) of the node n rep-
resenting the operation). There can exist different possible assign-
ments that respect authorizations and permit query execution. In
the next sub-section, we discuss how to determine an authorized
assignment.

4.2. Authorized assignment and minimum cost query plan

Given a query tree plan T(N) and the set A (n) of candidates for
each node neN, our goal is to determine an assignment of nodes
to subjects taken from the corresponding set of candidates. This
can require to inject encryption, decryption, and re-encryption op-
erations in T(N) (i.e., generating an extended query plan T' (N')
for T(N)) to enforce authorizations and ensure that operations can
be computed. An assignment of nodes to subjects exists if i) each
node has at least a candidate and, ii) for each attribute a that
needs to be re-encrypted, there exists a subject who can access
a in plaintext and the other attributes in the schema of the base
relation to which a belongs in encrypted or plaintext form. Encryp-
tions are inserted to enforce authorizations and attached to the
child of the node assigned to a subject authorized for encrypted
visibility only. Decryptions are inserted to adjust attributes visi-
bility for operation evaluation, and are attached to the node re-
quiring plaintext visibility for operation evaluation. As discussed in

Computers & Security 127 (2023) 103056

Section 4.1, these operations can be performed by the same sub-
ject as that assigned to the nodes to which they are attached, and
hence the assignee of an encryption or a decryption operation is
the assignee of the node on which it operates. Re-encryption, on
the contrary, could be assigned to a different subject (as discussed
in Section 4.1, a re-encryption operation has its own candidates
and may be assigned to neither the assignee of its parent, nor to
the assignee of its child). We also note that re-encryption opera-
tions could be inserted at any point in the query plan, in the sub-
tree rooted at the node that represents the operation for which
re-encryption is needed. We recall that the need for re-encryption
of an attribute a does not depend on the choice of assignments,
but only on: i) the in-storage encryption (scheme and key) of a;
and ii) the operations to be evaluated over a for query execution.
Hence, independently from the selected assignment, if no subject
has plaintext visibility over a and encrypted (or plaintext) visi-
bility over all the other attributes in the base relation to which
a belongs, there cannot exist any authorized assignment for the
query plan. On the contrary, if such a subject exists, there is at
least an authorized assignment for the query plan. Indeed, the re-
encryption operation can be evaluated as early as when the rela-
tion leaves the storage provider.

Example 4.5. Consider attribute C of Example 3.1, which needs
to be re-encrypted for the evaluation of the GROUP BY clause in
Fig. 1(a). An authorized assignment requires a subject that can ac-
cess attributes N and P in encrypted form and C in plaintext for
re-encryption of C. Since U, X, and Z can access N and P encrypted
and C plaintext, in the worst case scenario, re-encryption of C can
be injected as a parent of the leaf node representing base relation
FLIGHT and can be assigned to one among U, X, and Z.

The existence of an authorized assignment is formalized by the
following theorem.

Theorem 4.2 (Existence of an authorized assignment). Let T(N) be
a query tree plan, S be a set of subjects, and VneN, n.A. be the set
of attributes that need to be re-encrypted for the evaluation of n and
A (n) be the set of candidates for n. If VneN, A(n)#% and, Vaen A,
there exists at least a subject SeS§ s.t. aePs and RCPsUEs, with R
the base relation to which a belongs, then there exists at least an ex-
tended query plan T' (N') of T(N) and an assignment A : N — S of
subjects to nodes in T' (N') such that:

1. A(n) = A(np), with ny the parent of n, if n is a decryption opera-
tion;

2. A(n) = A(n¢), with n the child of n, if n is an encryption opera-
tion;

3. A(n) € A(n), otherwise;

that does not violate any authorization.

We can then conclude that, if there exists a set of candidates
for each node of a query tree plan, any combination of subjects
chosen from the sets of candidates of the nodes in the query plan
can be made authorized by injecting encryption, decryption, and
re-encryption operations. Indeed, injecting re-encryption of all the
attributes encrypted in-storage as parent of leaf nodes permits to
make any assignment selected from the candidate set authorized
simply by adjusting attributes visibility with encryption/decryption
operations, as demanded by authorizations and operations eval-
uation (see De Capitani di Vimercati et al., 2017). For instance,
Fig. 5(b) illustrates an extended query plan that makes the assign-
ment on the left of each node authorized according to the autho-
rizations in Fig. 1(a).

Among the possible assignments, we expect the user formulat-
ing the query to be interested in selecting the one that optimizes
performance, economic costs, or both of them. In the considered

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

Computers & Security 127 (2023) 103056

MAIN(T(N), S)

L

to_enc_dec=()

e g

Compute_Cost(T.root) /* Step 1: pre-compute costs (Figure 7) */
insert a node client as parent of T.root assigned to the user U formulating the query
Identify_Candidates(T.root) /* Step 2: identify candidates (Figure 8) */

Compute_Assignment(T.700t) /* Step 3: compute assignment and inject re-encryption operations (Figure 9) */
Extend_Plan(T.root) /* Step 4: inject encryption/decryption operations (Figure 10) */

Fig. 6. Pseudocode of our heuristic algorithm.

cloud scenario, we expect the economic cost to be the driving fac-
tor in the choice of the candidates. The economic cost for the eval-
uation of a query includes two main factors: i) computational cost
for the evaluation of the operations in the query tree plan; and ii)
data transfer cost for the relations exchanged between subjects for
query evaluation.

The cost of query evaluation is obtained by summing the com-
putational and data transfer costs, taking into consideration also
encryption, decryption, and re-encryption operations. Formally, the
problem of computing an assignment that minimizes the cost of
query evaluation is formulated as follows.

Problem 4.1 (Minimum cost query tree plan). Let T(N) be a query
tree plan and S be a set of subjects. Determine an extended query
plan T'(¥") of T and an assignment X : N — S such that:

1.V n e N': A(n) = A(np), with np the parent of n, if n is a de-
cryption operation; A(n) = A(n¢), with n¢ the child of n, if n is
an encryption operation; A(n) € A(n), otherwise;

2.V n e N, A(n) is authorized for the profiles of n and of its
children;

3. A T”, A such that T” is an extended query plan of T and A’ an
assignment for T” such that VneN, A'(n) € A(n) and cost(T”,
M) <cost(T/, 1), with cost(T’, 1) (cost(T”, \"), resp.) the cost of
evaluating T’ with assignment A (of evaluating T” with assign-
ment A/, resp.).

The problem of computing a minimum cost query plan is hard.
We therefore propose a heuristic approach for its solution.

5. Computing assignment

In this section, we illustrate our heuristic approach for com-
puting an assignment (and the corresponding extended query tree
plan) that satisfies authorizations, while minimizing the economic
cost. For simplicity, but without loss of generality, in the descrip-
tion and in the pseudo-code, we assume all attributes in base re-
lations to be encrypted in storage. The algorithm receives as input
a query tree plan T(N) and the set S of subjects that the user is
willing to involve in query evaluation with their authorizations. It
computes an extended query tree plan and an assignment. We il-
lustrate our heuristic approach in Section 5.1 and analyze its cor-
rectness and complexity in Section 5.2.

5.1. Heuristic approach for computing a minimum cost query tree
plan

The proposed heuristics operates in four steps (see Fig. 6). The
first step, corresponding to a pre-processing, pre-computes the
computation costs which would result when assigning sub-trees
of the input query plan to each possible subject in S. The sec-
ond step identifies the set of candidates associated with the nodes
of the query plan. The third step chooses, for each operation in

the query plan, the subject (among the corresponding candidates)
in charge of its execution, and inserts re-encryption operations
as needed. The last step inserts encryption and decryption oper-
ations. The procedures corresponding to these steps are reported
in Figs. 7, 8, 9, and 10 and described in the following. In the dis-
cussion and in the procedures, given a node n, we denote with n,
its parent, and with n; and n, its left and right child, respectively.

Compute costs. Recursive procedure Compute_Cost (Fig. 7) vis-
its the query plan in post-order and pre-computes the cost of the
evaluation of the subtree rooted at n, assuming to assign the entire
subtree to subject S, for each node n in the query plan and each
subject S. The computed costs are stored in a matrix having a row
for each node of the query plan and a column for each subject.
Value comp_cost[n,S] represents the cost of evaluating the subtree
rooted at n at S. To precompute costs, the procedure performs a
post-order visit of the query plan. Starting from the leaves, for each
node n, the procedure computes comp_cost[n,S| summing the cost
of the evaluation of the subtrees rooted at the children of n at S
with the cost of evaluating n at S, for each subject S. Note that,
when visiting n, the costs comp_cost[n;,S] and comp_cost[n;,S] of
evaluating the left and right children of n at S have already been
computed. The cost of evaluating n at S is instead computed by
multiplying the estimated computational complexity of evaluating
the operation represented by n by the computational price of S.

Identify candidates. Recursive procedure Identify_Candidates
(Fig. 8) performs a post-order visit of the query tree plan to iden-
tify, for each node, the candidates for its evaluation. To this end,
for each node n, the procedure needs to compute its profile. For
leaf nodes (lines 4-6), all components are empty but n.vE, which
contains all the attributes in the schema of the base relation that
survive the first (pushed-down) projection (Section 3). The pro-
cedure then initializes the set of candidates for the leaf nodes
to the entire set S of subjects of the system (line 7): this is
done to simplify the computation of the candidates of the other
nodes in the tree (clearly, leaf nodes are assigned to the stor-
age provider storing the corresponding base relation, regardless
of the candidates identified at this step). For non-leaf nodes, ac-
cording to Definition 4.1, the procedure computes the candidates
assuming that all the attributes in the operands are encrypted,
unless demanded for the evaluation of n (lines 9-13). To com-
pute the candidates of a non-leaf node n (lines 16-22), the pro-
cedure leverages the monotonicity property among candidate sets
(Theorem 4.1) and checks, for each of the candidates of its chil-
dren, whether the subject is also a candidate for n. When the op-
erations at the child(ren) require plaintext visibility on attributes
(i.e., n.Apun;.Ap#4) and those attributes did not leave a trace in
the profile of n (i.e., n;.Apun; Apgn.ip), the algorithm searches for
candidates among all subjects. If no subject is a candidate for
n, the procedure terminates (line 23) since n cannot be evalu-
ated without violating at least an authorization. Procedure Iden-
tify_Candidates also sets variables n.TotA, (n.TotAe, resp.) to the

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

Computers & Security 127 (2023) 103056

Compute_Cost(n)

if n;#NULL then Compute_Cost(n;)
if n,#NULL then Compute_Cost(n,)
for each S€S do

[

comp_cost[n,S] = comp_cost[n;,S] + comp_cost[n,,S| + n.comp_cost-S.comp_price

Fig. 7. Pseudocode of procedure Compute_Cost.

Identify _Candidates(n)

1. if my#NULL then Identify_Candidates(n;)

2: if n,#NULL then Identify_Candidates(n,)

3: /* compute the profile of the node over its (encrypted) children */

4: if ny=n,=NULL /* n is a leaf node */

5: then n.up=n.ve= n.ip= n.ie= n.eq=0

6: n.vE=R /* all the attributes in the relation schema are encrypted */

7 A(n)=S /* any subject */

8: n.TotAp=n.TotA.=0

9: else let n.A, be the set of attributes that need to be plaintext for evaluating n
10: let n.Ac be the set of attributes that need to be (re)encrypted on-the-fly for evaluating n
11: ni=encrypt(n;—n.A,, decrypt(n.A,U n.A., n;))

12: ny=encrypt(n,—n.A,, decrypt(n.A,U n.Ac, n,))

13: Compute_Profile(n) /* compute the relation profile according to Figure 2 */
14: n.TotA,=n.A,Un;. TotA,Un,.TotA,

15: n.TotA.=n.A.Un;. TotA.Un,. TotA.

16: A(??)ZQ)

17: if ni.ApUn,.Ap,Cn.ip

18: then Cand=A(n;) UA(n,)

19: else Cand=S

20: for each SeCand do

21: if S is authorized for n;, n,, n

22: then A(n)=A(n)U{S}

23: if A(n)=0 then exit

Fig. 8. Pseudocode of procedure Identify_Candidates.

set of attributes that must be plaintext (encrypted on the fly, resp.)
for the evaluation of the subtree rooted at n (lines 8, 14-15).

Compute assignment. Recursive procedure Compute_
Assignment (Fig. 9) performs a pre-order visit of the query
tree plan. Intuitively, for each visited node, the procedure chooses
between assigning the evaluation of the node to the same subject
as its parent np (without paying any transfer cost), and moving
it to a different subject, if economically convenient. Economic
convenience is evaluated comparing the cost of evaluating the
whole subtree rooted at n at each subject S candidate of the
node (note that, as illustrated in Theorem 4.1, if a subject S is
a candidate for a node n in the original query plan, it is also a
candidate for all its descendants in the plan). To estimate the cost
of delegating the evaluation of the subtree rooted at n to S, we
consider the following cost components.

« Data transfer cost (lines 21-22) applies only when n is assigned
to a subject S different from its parent, and is the cost of trans-
ferring the relation generated by n from S to the subject in
charge of nj. Data transfer cost is computed as the product be-
tween the estimated size of the relation generated by n and
the transfer price of the subject S in charge of evaluating n (in
line with cloud market price lists, we consider only outbound
traffic).

10

« Computational cost (line 23) models the costs entailed by the
evaluation of the operations in the subtree rooted at n by
S. It is computed as the sum of the costs (pre-computed
by procedure Compute_Cost and stored in matrix comp_cost)
of evaluating all the nodes in the subtree rooted at n by
subject S.

Decryption cost (lines 24-25) is the cost of decrypting the at-
tributes that need to be plaintext (or encrypted on-the-fly) for
the evaluation of n or one of its descendants (i.e., any node in
the subtree rooted at n that S is in charge of evaluating). The
decryption cost is estimated by multiplying the decryption cost
of each attribute a by the computational price of S.
Re-encryption cost (lines 26-30) includes the cost of re-
encryption operations performed by S as well as of re-
encryption operations necessary for the evaluation of n but that
need to be delegated to a different subject since S is not autho-
rized for plaintext visibility on (a subset of) these attributes.
To keep track of the attributes that require re-encryption, we
use variable to_enc_dec, which lists the attributes that require
re-encryption for the evaluation of the ancestors of n. If S
can access a subset of the attributes in to_enc_dec in plaintext,
the algorithm assigns its re-encryption to S (lines 29-30). If
S needs to operate on an attribute a encrypted on-the-fly on
which she does not have plaintext visibility, S clearly cannot

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al. Computers & Security 127 (2023) 103056

Compute_Assignment(n)

1: Smin=NULL

2: min=+o0

3: if ny=n,=NULL /* n is a leaf node */

4: then A(n)=n.S /* storage provider for the corresponding relation */
5 if to_enc_decNR#(/* R includes attributes to be re-encrypted */

6: then att=to_enc_decNR

7: Cand=8§

8 while att£0) A Cand£0) do

9: let S€Cand be the subject with minimum (comp_price—+transf-price)
10: Cand=Cand\{S}

11: dec=attNPs

12: if dec#£0 A RC(PsUEs)

13: then insert a re-encryption node new as parent of n for dec

14: Anew)= S

15: att=att\ dec

16: if att£0

17: then exit /* at least an attribute cannot be re-encrypted without violating authorizations */

18: /* m is an internal node */

19: else if n is not a re-encryption operation

20: then for each S€A(n) do

21: if S#\(np) then cost=n.size-S.transf-price /* transfer cost */

22: else cost=0 /* no transfer cost */

23: cost = cost+comp_cost[n,S| /* computational cost */

24: for each a€(n.TotA,Un.TotA:.)"Ps do /* S decrypts the attribute */
25: cost=cost+dec_cost(a)-S.comp_price

26: for each ac(n.TotA.\'Ps) do /* need to delegate re-encrypt of a */
27: cost = cost+(dec_cost(a)+enc_cost(a))-avg_comp_price+

28: a.size(avg_transf-price+S.transf_price)

29: for each a€(to_enc_decNPg) do /* S can re-encrypt a */

30: cost=cost+(dec_cost(a)+enc_cost(a))-S.comp_price

31: if cost<min

32: then min=cost

33: Smin=>S

34: /* select the subject in charge of the evaluation of n */

35: A(n)= Smin

36: if to_enc_decPxn)#0

37: then insert a re-encrypt node new for to_enc_decN'Py(,) as parent of n
38: A(new)=A(n)

39: to_enc_dec=to_enc_dec\Px(n)

40: to_enc_dec=to_enc_decU(n.Ac\Pxn)) /* delegated re-encryption */

41: if n.Aeﬂ'Px(n)#@

42: then insert a re-encrypt node new for n.AcNPy(,) as child of n

43: A(new)=A(n)

44: if ny#NULL then Compute_Assignment(n;)
45: if n,#NULL then Compute_Assignment(n,.)

Fig. 9. Pseudocode of procedure Compute_Assignment.

decrypt a, which is then to be re-encrypted by another subject. Among the candidates for node n, procedure Com-
In this case, the algorithm estimates the cost of injecting a re- pute_Assignment selects the subject S, with minimum es-
encryption operation into the query plan, performed by a third timated cost (line 33). Depending on the chosen assignee A(n),
party authorized for it. Such a cost is estimated as the sum of the procedure injects re-encryption operations and updates vari-
the costs for encrypting and decrypting the attribute of inter- able to_enc_dec: A(n) is assigned the re-encryption of attributes

est (assuming the average computational price of the subjects in to_enc_dec that it is authorized to access in plaintext, and these
in the system), and the transfer cost for sending the relation attributes are removed from to_enc_dec (lines 36-39). Attributes
to the subject in charge of re-encryption and then back to S in n.Ae that A(n) cannot access in plaintext are instead inserted
(lines 26-28). into to_enc_dec, to push re-encryption down in the query plan

1

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

Computers & Security 127 (2023) 103056

Extend_Plan(n)

1 if m;#NULL then Extend_Plan(n;)

2: if n,#NULL then Extend_Plan(n,)

3. if n=T.root

4: then insert a decryption node new for n.veUn.vE as parent of n

5: A(new)=U

6: else if n;#ANULL AND (n.ApN(ng.vp Ung.ve))\n,.vp#£0

7: then insert a decryption node new; for (n.A,N(n;.vp Un;.ve))\n;.vp as parent of n,
8: Compute_Profile(new)

9: A(new;)=A(n)

10: if n,#NULL AND (n.A,N(ny.vp U ny.ve))\n,.op#£0

11: then insert a decryption node new, for (n.A,N(n,.vp Un,.ve))\n,.vp as parent of n,
12: Compute_Profile(new,)

13: A(new,)=A(n)

14: Compute_Profile(n)

15: if Ex(n,)n.vp#D

16: then insert an encryption node newe for EMHP)WL.vp as parent of n

17: Compute_Profile(new.)

18: A(newe)=A(n)

Fig. 10. Pseudocode of procedure Extend_Plan.

(line 40). Attributes in n.A. that A(n) can access in plaintext
are re-encrypted by A(n). To this purpose, the algorithm injects
a re-encryption operation, assigned to A(n), as a child of n
(lines 41-43). Note that A(n) can decide to decrypt the attributes
that need to be re-encrypted before evaluating n, and encrypt
them (on the fly) after the evaluation of n. Since re-encryption
operations are already assigned to a subject upon injection in the
tree, further recursive calls of procedure Compute_Assignment do
not need to operate on them (if condition, line 19).

Leaf nodes deserve a special treatment, since they do not rep-
resent operations and can only be assigned to the provider stor-
ing the corresponding base relation (lines 3-4). However, when
the visit reaches a leaf node, it is necessary to verify whether
all needed re-encryption operations have already been injected in
the tree or if any re-encryption operation has been pushed down
to the leaves. In this case, it is necessary to insert, as parent of
the leaves, a set of re-encryption operations to ensure that the
query can be executed. When visiting a leaf, the procedure checks
whether the base relation R represented by the leaf includes at-
tributes appearing in to_enc_dec (line 5). If this is the case, the
procedure checks the subjects in increasing order of computational
and transfer prices. It assigns to a subject the re-encryption of all
the attributes it can access in plaintext, in the attempt of limit-
ing encryption costs. The procedure then inserts, for each subject
S selected for a re-encryption operation, a re-encryption node as
parent of the leaf, assigned to S and operating on all the attributes
for which S has been selected (lines 6-15). Clearly, if there is an
attribute a to be re-encrypted and no subject authorized to re-
encrypt it, the entire procedure terminates (lines 16-17). We note
that the need to involve a subject for these re-encryption opera-
tions happens only if no subject assigned to the other operations
in the query plan can access in plaintext the attribute(s) that need
to be re-encrypted.

Extend plan. Recursive procedure Extend_Plan (Fig. 10) per-
forms a post-order visit of the query plan to inject encryption and
decryption operations as needed. For the root node, the proce-
dure injects a decryption of the encrypted attributes in the root
(lines 3-5). For each non-root node n, the procedure injects a de-

12

cryption node for each of n’s children if n requires plaintext visibil-
ity over attributes that are encrypted in the profiles of its children.
These decryption nodes are injected as parents of n’s children, and
are assigned to A(n) (lines 6-13). The procedure then computes
the profile of n (line 14). Lastly, the procedure injects an encryp-
tion node for the attributes that are plaintext in n’s profile but that
can only be accessed in encrypted form by the assignee A(nj) of
n’s parent np. This encryption node is injected as parent of n, and
is assigned to A(n) (lines 15-18).

Example 5.1. Considering the query tree plan and authorizations
in Fig. 1, the algorithm first visits the tree in post-order and iden-
tifies the candidates for each node (Fig. 5(a)). The algorithm then
visits the tree in pre-order and selects, for each node, the can-
didate that is more promising from an economic point of view
(Fig. 5(b)). For instance, assuming that Y is less expensive, the root
node is assigned to Y. Similarly, we assume that evaluating the
GROUP BY clause at Y is more convenient than moving it to X or
Z. However, since Y cannot access attribute C € n.A, in plaintext, C
is inserted into set to_enc_dec and its re-encryption pushed down
in the tree. Assuming that the less expensive alternative for join
evaluation is Z, since Z can re-encrypt C, a re-encryption opera-
tion for C is inserted into the tree as child of the join node. Also,
since both S and N need to be re-encrypted for the evaluation of
the join operation and Z is authorized for this operation, Z de-
crypts and re-encrypts also S and N. We note that Z can evaluate
the join over plaintext values, being authorized for such visibility,
and encrypt their values before sending the join result to Y. Finally,
we assume that the selection over J can be evaluated over the at-
tribute encrypted in storage and is then evaluated by the provider
storing relation CoMPANY (i.e., C). The third step of the algorithm
injects encryption and decryption operations as needed: in the ex-
ample, the decryption of P and I by Y for the evaluation of the root
node.

5.2. Complexity and correctness analysis

In this section, we analyze the complexity and correctness of
the algorithm in Fig. 6.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

Theorem 5.1 (Complexity). Let T(N) be a query tree plan, A be the
set of attributes in the base relations of the plan, and S be the set of
subjects. The complexity of the algorithm in Fig. 6 is O(|N|-|S|-|A|) in
time.

Our heuristic approach guarantees that, if there exists an autho-
rized assignment for the query tree plan, the algorithm finds it and
generates the corresponding extended query plan. Formally, this is
stated by the following theorem.

Theorem 5.2 (Correctness). Let T(N) be a query tree plan and S be
the set of subjects. If there exist an extended query tree plan T' (N')
of T(N) and an assignment A : N — S such that:

1. V n e N': A(n) = A(np), with np the parent of n, if n is a de-
cryption operation; A(n) = A(n¢), with nc the child of n, if n is
an encryption operation; and A(n) € A(n), otherwise;

2.V n e N, A(n) is authorized for the profile of n and of its children
(Definition 3.3);

the algorithm in Fig. 6 terminates and finds it.

6. Experimental results

To test the economic benefits brought by our approach, we per-
formed a set of experiments comparing the costs of executing its
computed extended query plans with respect to a baseline, rep-
resenting the costs of executing the original query plans at the
user side. For our experiments, we considered a set of queries that
is representative of a use-case, provided by a large manufactur-
ing company that applies data analysis to extract information from
production data combined with customers data and data provided
by external agencies. The queries operate on four relations, stored
in encrypted form at three storage providers. The query tree plans
differ in the number of relations involved (ranging from 2 to 4), in
the shape of the query plan, and in the number of nodes in the
plans (ranging from 2 to 4) corresponding to operations whose ex-
ecution requires the re-encryption of some attributes.

The cost parameters considered in the experimental evaluation
have been derived from the price lists of the major cloud providers.
The services offered by cloud providers have currently become
quite varied, with increasingly complex price lists. Still, the ma-
jor elements that contribute to the evaluation of the cost paid for
the execution of queries remain the use of computational resources
and the cost for the transfer of data, as captured by our proposal.
With respect to the use of computational resources, a clear recent
evolution is the greater flexibility in the determination of this cost:
it is still common to evaluate the cost in terms of hours of use of
a virtual machine with a given cpu/ram configuration, but some
services offer the option to pay at finer granularity, even at the
scale of the number of seconds that a given computational solu-
tion has been used. With respect to the transfer of data, the cost is
in many cases linearly associated with the size of the data trans-
mitted, often giving to customers free use of data bandwidth in-
coming into the cloud provider infrastructure. The determination
of the cost parameters in the model will then have to consider the
specific configuration and price list associated with the providers
in the considered scenario. We note that the experiments do not
focus on the absolute values, but on the ratio between the cost of
resources offered by cloud providers and the cost of the baseline.
Based on considerations from our use case and on the price lists of
the most common cloud providers on the market, we set the cost
values input to the experiments considering, as it is to be expected
in our scenarios, a relatively high cost for the direct involvement of
the user. In particular, we assumed the cpu usage and data transfer
costs of the user to range from 10 (10x) to 100 (100x) times that
of providers.

13

Computers & Security 127 (2023) 103056

User only (baseline)
1 L
100x, PP, m—
0.8 10X, PP,
100x, P U,y ==
g 10x, P U, mommmm
3 06
N
©
E
2 04
0.2
0
1 2 3 4 5
query

Fig. 11. Normalized cost for evaluating different queries with different authoriza-
tion configurations.

As for authorizations, which open the possibility of involving
external providers in query execution, we considered two autho-
rization configurations:

» P.P., where external providers are trusted for operation exe-
cution (i.e., they have at least encrypted visibility over the in-
volved attributes) as well as for re-encryption (i.e., they have
plaintext visibility over the re-encrypted attributes)

P.U,, Where external providers are trusted only for operation
execution but cannot re-encrypt data, which is hence delegated
to the user (who can then rely on providers for computation
only).

Figure 11 illustrates the economic benefits, compared to the
local execution at the user, considering the 10x and 100x cost
configurations combined with the two authorization configurations
(additional experiments considering intermediate configurations in
the 10-100 range show similar results). The figure reports the costs
in a normalized form assuming, as unitary cost for each query, lo-
cal execution at the user. The figure shows that the involvement
of cloud providers enables significant savings, since our approach
permits to partially delegate computation, when economically con-
venient. When re-encryption is required, cost savings can increase
if cloud providers can be involved, besides for computation, also
for re-encryption (P.P..). For all queries, the higher the cost ratios,
the higher the economic benefits: the already significative savings
in the 10x cost configuration (reaching 86% for q3 in the P.P, au-
thorization configuration) further increases in the 100x scenario
(reaching 95% for g, and gs in the P P, authorization config-
uration). The delegation of re-encryption operations to economi-
cally convenient providers enables larger savings (89% on average).
There are, however, significant benefits also in the P U, authoriza-
tion configuration (in our use-case, the saving obtained involving
the user for re-encryption reaches 35% for q;, with an average of
26%).

7. Integration of trusted hardware components

Our approach for enforcing authorizations is based on the dy-
namic (on-the-fly) adjustment of the visibility over data to ensure
that no information be improperly leaked to a subject involved
in a computation. Plaintext data are then encrypted before being
passed to a subject not trusted to access them in plaintext. Re-
cently, many hardware producers have developed novel platforms
equipped with trusted processor and secure storage space (e.g., In-
tel SGX), for enabling secure computation on the premises of non-

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

fully-trusted providers. With reference to our scenario, the avail-
ability of trusted hardware components permits to rely on a non-
fully trusted provider to evaluate operations over sensitive data in
plaintext, even if the computational provider is not authorized for
plaintext visibility over the involved attributes. Encryption and de-
cryption operations, in fact, would take place within the bound-
aries of the trusted hardware, and the computational provider
hosting it would not learn anything about the (plaintext) values
over which the trusted hardware works. This possibility can be rel-
evant to our problem, for example, when operations need plaintext
visibility to be executed. In the remainder of this section, we il-
lustrate how our approach can leverage the availability of trusted
hardware components that may be available at some of the com-
putational providers in S. We first discuss how the use of trusted
hardware components can be reflected in the specification of au-
thorizations. Then, we discuss the impact on candidate definition
and on profile computation.

Authorizations. Consider a provider S, equipped with a trusted
hardware component. We expect authorizations regulating access
to attributes for the trusted hardware component to be more per-
missive than the authorizations for the provider hosting it. For this
reason, given a provider S equipped with a trusted hardware com-
ponent, the trusted hardware should be treated as a different sub-
ject S, related to S but with its own authorizations. Clearly, the
authorizations of S and of its trusted component S; are not inde-
pendent. For instance, if S can access an attribute in plaintext, the
same attribute should be accessible in plaintext also to the (more
trusted) component S;. Given a relation R and the authorization
[P, E]—S regulating access for S to R, and [P, E:]->S; the autho-
rization regulating access for S; to R, we expect the following con-
ditions to hold.

1. P C B: the trusted hardware component can access in plaintext
a superset of the plaintext attributes that the provider hosting
it can access;

2. (PtUE;) C(PUE): the trusted hardware component can access a
subset of the attributes that the provider hosting it can access,
independently from their representation.

Condition 1 ensures that S; can access in plaintext at least the
same attributes accessible to S. This is in line with the fact that
S¢ is considered more trusted than S. Condition 2 ensures that S;
cannot operate on attributes for which S is not authorized. This
reflects the fact that the transmission of data to the trusted hard-
ware component is mediated by the provider hosting it. To illus-
trate, consider an attribute a such that aeP.UE; and a¢PUE (i.e.,
St is authorized to access a in plaintext or encrypted form, while S
can access a in neither plaintext nor encrypted form). Even though
S¢ is authorized to access a, the possibility for S; to be involved in
a computation over a would be prevented by the fact that, being S;
hosted at S, a would still need to pass through S to be delivered to
S¢, a possibility ruled out by the fact that S is not authorized for a
in any form. Hence, authorizing a trusted hardware component for
an attribute over which the hosting subject does not have visibility
would not bring any benefit.

Example 7.1. Consider a provider J equipped with a trusted hard-
ware component J;, and authorizations [_N]—J and [NP_]—J;.
While satisfying Condition 1, these authorizations do not satisfy
Condition 2. In particular, attribute P can be accessed only by J;.
For this reason, no relation including in its profile attribute P could
be assigned to J;, since it would disclose P also to the provider J
hosting J;, violating authorizations.

Candidates. The fact that transmission of data to the trusted hard-
ware component is mediated by the provider hosting it has an
impact on the definition of candidates. In particular, to determine
whether S; is a candidate for the evaluation of a node n of a query

14

Computers & Security 127 (2023) 103056

H; (op>100)--

[
‘ [LS]—=K
[NPC, =Ky
[

S ,,} — Ky
(b) Authorizations

(a) Operation

Fig. 12. An example of an operation assigned to a trusted hardware component (a)
and of authorizations (b).

plan, checking whether S; satisfies Definition 4.1 (like it is done
for regular subjects) is not sufficient. It is also necessary to verify
whether the flow of information passing through S, and entailed
by the evaluation of n at S, is authorized. In other words, when
checking whether S; is a candidate for n, it is also necessary to
check whether S can access the input to n (which S receives from
n’s children and passes to S; for computation) as well as the out-
put of n (which S receives from S; and passes to n’s parent). S
must be authorized for such profiles assuming that all the visible
attributes appear encrypted: trusted hardware component can de-
crypt the attributes that need to be plaintext for the evaluation of
n, and re-encrypt them when generating the result.

Example 7.2. Consider the selection over attribute P in Fig. 12(a),
and the authorizations in Fig. 12(b) for subjects H and K, and for
their hosted trusted hardware components H; and K. While being
authorized for both the input and the output profile of the selec-
tion, the trusted component K; cannot be considered a candidate
for the selection, since its hosting subject K is not authorized for
the profile of the input relation (K does not have uniform visibil-
ity over attributes N and S). Indeed, since the input relation would
be passed to K; by K, this would entail an unauthorized informa-
tion flow. On the contrary, H; is a candidate for the selection, since
exposing the input and output relations to the hosting subject H
would not entail unauthorized information flows.

Profiles. Even if S; operates on plaintext data, provider S hosting
it (as well as any cloud provider) can observe anything on the op-
erations executed by S;, thanks to the security guarantees of the
trusted hardware component. In fact, data are locally decrypted at
St, and no information can leak from it. For this reason, operations
executed at S; do not leave a plaintext trace (as it instead happens
with regular subjects when executing operations on plaintext data)
in the profile of the resulting relation. In other words, the profile
of the result of operations evaluated by trusted hardware compo-
nents are obtained assuming that the operations are evaluated over
encrypted data (even if the trusted hardware component decrypts
the attributes for computation and then re-encrypts them).

Example 7.3. Consider the selection over attribute P in Fig. 12(a)
and assume that it is assigned to trusted hardware component Hy,
which is authorized for P in plaintext. Even if H; performs the se-
lection over plaintext values, P is decrypted and re-encrypted in a
transparent way for its hosting subject H. H would in fact receive
the result of the selection after the re-encryption by H;, without
plaintext information flows. Hence, as illustrated in the figure, the
profile of the resulting relation includes P in the implicit encrypted
component, in the same way as if the selection were computed
over encrypted data.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

From the discussion above, it is clear that trusted hardware
components, while requiring some care in the specification of au-
thorizations and in the evaluation of candidates and profiles, can
successfully be integrated in our model for distributed query eval-
uation, permitting computations over plaintext data without en-
tailing unauthorized plaintext information flows.

We close this section with a consideration on the impact that
the adoption of trusted hardware components can have on the
economic cost of query evaluation since we expect such costs to
be a driving factor for delegating computations to external and
non-fully trusted subjects. The price lists applied by computa-
tional providers for using trusted hardware components tend to be
higher than the cost for using regular hardware. On the contrary,
we do not expect differences in terms of data transfer costs. We
also note that, even if the trusted and regular hardware of a sub-
ject are physically hosted on two different servers, we do not ex-
pect any data transfer cost implied by the exchange of information
between them, as data never leave the premises of the computa-
tional provider.

8. Conclusions

We proposed an approach for leveraging storage and compu-
tational providers to enable distributed query execution involv-
ing data possibly stored in encrypted form. Our solution permits
collaborative query execution, selectively involving computational
providers to reduce the cost of query execution, while ensuring
obedience of authorizations. The proposed heuristics aims at lim-
iting the economic cost of query evaluation by choosing, for each
node, the candidate that is locally more economically convenient.
The experimental evaluation confirms that our approach provides
economic advantages to users who can leverage external providers
for (distributed) query evaluation. We also investigated the in-
volvement of computational providers offering a trusted hardware
component for the evaluation of operations over sensitive data
in plaintext, relying on the security guarantees provided by the
trusted hardware component.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This work was supported in part by the Office of Naval Research
under grant N00014-20-1-2407, by the Army Research Office un-
der grant W911NF-13-1-0421, by the National Science Founda-
tion under grant CNS-1822094, by the EC under projects MARSAL
(101017171) and GLACIATION (101070141), by the Italian MUR un-
der PRIN project HOPE and by project SERICS (PE00000014) under
the NRRP MUR program funded by the EU-NGEU.

Appendix A. Proofs of theorems

Theorem 4.1 (Monotonicity of the candidate set). Let T(N) be a
query tree plan and N* the set of re-encryption nodes injected into
T(N) to enable query evaluation. Vny, nyeNUNT such that nyny are

non-leaf nodes of T(N), ny is a child of ny, and ny.ApgRLp:

1. A(ny)SA(ny), if ny, nyelN;

Computers & Security 127 (2023) 103056

2. A(nz)SA(ny), if nxeN® and n,eN is the parent of ny.
Proof. We separately prove the two conditions.

1. Assume, by contradiction, that 3SeA (ny) s.t. S¢A(ny) (ie., S is
a candidate for the parent node ny but not for the child node
ny). By Definition 4.1, S is not a candidate for ny if it is not au-
thorized for at least one among: i) the relation produced by its
children n; and n; considering all visible attributes encrypted;
ii) ny.Ap in plaintext; and iii) the relations produced by n, con-
sidering all visible attributes encrypted. We separately prove
that all these conditions contradict our hypothesis.

i) If S is not authorized for the relation produced by n; and

ny with all visible attributes encrypted (condition i)), but S
is a candidate for ny, then the profiles of n; and/or n, must
include at least an (encrypted) attribute a that S cannot ac-
cess or a pair of equivalent attributes g; and a; for which
S does not have uniform visibility. We note however that
no attribute is removed from the profile of R, by the exe-
cution of the operation represented by ny. Hence, a, a;, and
a; also belong to the profile of the ancestors of n; and n,.
To demonstrate that no attribute is removed from the pro-
file of Ry, we analyze how the components of the profile are
affected by operations. With respect to the (plaintext and
encrypted) implicit component and the equivalence compo-
nent, it is immediate to see from Figs. 2 and 3 that no oper-
ation removes attributes from these components. With re-
spect to the (plaintext and encrypted) visible component,
on the other hand, while selection o, cartesian product x,
and join > operations do not remove attributes, projec-
tion 7w and group by y operations remove attributes from
the visible component of their operand. However, the at-
tributes removed by these operations already belong to the
implicit components of the profile (from which, as already
observed, they never disappear). Indeed, since projections
are pushed down in the tree, only attributes explicitly in-
volved in operations in the query plan and those returned
by the query survive projections operating on leaf nodes.
Hence, the attributes removed by projections that do not
operate on leaf nodes, or by group by operations are at-
tributes on which some operation has been evaluated be-
fore the projections/group by. These operations include: i)
selection o, which however inserts the involved attribute(s)
in either the implicit or the equivalent component of the
result; ii) join <, which however inserts the involved at-
tributes in the equivalent component of the result. Cartesian
product (x) does not explicitly operate on any attribute, and
attributes subject to aggregations either belong to the query
result, or are involved in operations. Since no attribute can
disappear from the profile of n; and ny, all the attributes
in the visible components of the relation profiles are en-
crypted, and ny is an ancestor of n; and n, if S is not au-
thorized for n,; or for n;, S cannot be a candidate for ny.

If S is not authorized to access ny.A, in plaintext (condition

ii)), then S is also not a candidate for ny since, by hypothesis,

ny. ApCRY.

If S is not authorized for the relations produced by ny

considering all visible attributes encrypted (condition iii)),

then S cannot be a candidate for ny (condition 1) of

Definition 4.1).

Therefore, S¢A (ny) = S¢A (ny), contradicting our hypothesis.

2. Since re-encryption operations do no have effect on the profile
of its operand, the profile of Ry is the same as the profile of Ry.
Hence, condition 1) above applies between n; and ny. O

ii

=

il

=

Theorem 4.2 (Existence of an authorized assignment). Let T(N) be
a query tree plan, S be a set of subjects, and VYneN, n.Ae be the set

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

of attributes that need to be re-encrypted for the evaluation of n and
A(n) be the set of candidates for n. If VneN, A(n)#0 and, Vaen A,
there exists at least a subject SeS s.t. aePs and RCPsUEs, with R
the base relation to which a belongs, then there exists at least an ex-
tended query plan T' (N') of T(N) and an assignment A : N — S of
subjects to nodes in T' (N') such that:

1. A(n) = A(np), with np, the parent of n, if n is a decryption opera-
tion;

2. A(n) = A(nc), with n¢ the child of n, if n is an encryption opera-
tion;

3. A(n) € A(n), otherwise;

that does not violate any authorization.

Proof. We prove the existence of T' (N') and A by construction.
Given query plan T(N), we can assign each node neN to one of its
candidate A(n)eA(n), since by hypothesis A (n)#@. We then ex-
tend T(N) including the following three sets of nodes, and define
the corresponding assignments.

- N°: set of encryption nodes. For each pair of nodes n and n. in
T(N) such that n is the parent of nc in T(N) and 3{a;,...,a;} <
R? st {a;...., aj} € &, (), We insert an encryption node ne for
attributes {a;, ..., a;} as child of n and parent of nc. This makes
A(n) authorized for n. Since {a;,...,a;} <R, A(nc) is autho-
rized for {g;, ..., a;} in plaintext. Hence, setting A(ne) = A(nc)
does not violate any authorization.

N%: set of decryption nodes. For each pair of nodes n and n,
in T(W) such that n is a child of np in T(¥) and 3{a;,...,q;} €
R* s.t. {a;,...,a;} < np.Ap, we insert a decryption node ny for
attributes {a, ..., aj} as parent of n and child of njp. Since
{a;.....a;} € np.Ap, A(np) is authorized for {g;.....a;} in plain-
text. Hence, setting A(ny) = A(np) does not violate any autho-
rization.

N* set of re-encryption nodes. For each attribute a s.t. In €N,
a € n.A., we insert a re-encryption node n, for a as parent of
the leaf node representing base relation R; such that aeR}’E.
Since, by hypothesis, 3S € S such that a € Ps and R; € Ps U &s,
A (n;)#9, and the choice of any A(n;) € A(n;) does not violate
any authorization.

We conclude that there exists an extended query plan T' (N')
and an assignment A that does not violate authorizations. O

Theorem 5.1 (Complexity). Let T(N) be a query tree plan, A be the
set of attributes in the base relations of the plan, and S be the set of
subjects. The complexity of the algorithm in Fig. 6 is O(|N|-|S|-|A|) in
time.

Proof. The algorithm in Fig. 6 calls procedures: Compute_Cost
(Fig. 7), Identify_Candidates (Fig. 8), Compute_Assignment
(Fig. 9), and Extend_Plan (Fig. 10).

Procedure Compute_Cost has cost O(|N|-|S]|), since it visits the
tree T(N) (lines 1-2) and, for each node, computes the cost of eval-
uating the node at each of the subjects in S (for each loop at
line 3).

Procedure Identify_Candidates has cost O(|N|-|S]), since it vis-
its the tree T(N) (lines 1-2) and, for each node, in the worst case,
it checks each subject in S to determine whether it is a candidate
for the node (for each loop at line 20).

Procedure Compute_Assignment has cost O(|N|-|S|-|A]). In-
deed, the procedure visits the tree T(N) (lines 44-45). For each
non-leaf node (line 20), the procedure compares the costs of the
candidates for the node. In the worst case, the set of candidates
includes the whole set S of subjects (for each loop at line 19 in
Fig. 8). For each subject it then identifies and estimates the cost
of the attributes that need to be decrypted, encrypted, and re-
encrypted, respectively. We note that, in the worst case, the for

16

Computers & Security 127 (2023) 103056

each loops at lines 24, 26, and 29 consider all the attributes in
A and that no attribute is considered by more than one of the
for each loops. For each leaf node (line 3), the procedure instead
checks which of the subjects in S can be a candidate for n by ver-
ifying its privileges over the attributes in the corresponding base
relation R (while loop at line 8).

Procedure Extend_Plan has cost O(|N|) since it visits the tree
T(N) (lines 1-2) and, for each node, possibly inserts an additional
encryption/decryption node and recomputes the node profile. All
these operations have constant cost.

The complexity of the algorithm in Fig. 6 is then obtained
by summing the costs of all the invoked procedures, that is,
o(n|-|SD+0(In|-|[SD+O(|N|-|S|-|AD+O(IN]) = O(In|-|S|-|AD. O

Theorem 5.2 (Correctness). Let T(N) be a query tree plan and S be
the set of subjects. If there exist an extended query tree plan T' (N')
of T(N) and an assignment A : ' — S such that:

1. V n e N': A(n) = A(np), with n, the parent of n, if n is a de-
cryption operation; A(n) = A(n¢), with n¢ the child of n, if n is
an encryption operation; and A(n) € A(n), otherwise;

2. ¥V n e N/, A(n) is authorized for the profile of n and of its children
(Definition 3.3);

the algorithm in Fig. 6 terminates and finds it.

Proof. We first prove that the assignment produced by the al-
gorithm satisfies the conditions of the theorem (correctness), and
then show that, if such an assignment exists, the algorithm termi-
nates (termination) and finds it (completeness).

« Correctness. We separately prove Condition 1 and Condition 2 of
the theorem.

1. The algorithm in Fig. 6 «calls procedure Com-

pute_Assignment (Fig. 9) to assign a subject to each
node in the input query plan T(N). Procedure Com-
pute_Assignment performs a visit of T(N) and, for each
non-leaf node n, selects a subject S in A(n) as the assignee
of n (line 35). Indeed, A(n) is populated by procedure
Identify_Candidates, which inserts S into A(n) only if S
satisfies Definition 4.1 (lines 21-22, Fig. 8). Hence, for each
node nelN, A(n)eA(n). Procedure Compute_Assignment
also checks whether A(n) can re-encrypt: i) the attributes
that need to be re-encrypted for the evaluation of n
(line 41); and/or ii) the attributes that needed to be re-
encrypted higher in the tree but whose re-encryption had
been pushed down since the assignee of the ancestors
of node n cannot perform it (line 36). Note that, to be
considered for the re-encryption of attribute a, A(n) must
have plaintext visibility over a (lines 36 and 41) and, being
a candidate for n, A(n) is by construction a candidate for
the re-encryption of a. If, when reaching a leaf in the tree,
there exists at least an attribute a whose re-encryption has
not been assigned, the procedure determines whether there
is a subject S that can perform it and, if so, assigns the
re-encryption to S (lines 5-15).
Encryption and decryption nodes are injected by proce-
dure Extend_Plan (Fig. 10), which is executed after proce-
dure Compute_Assignment. The assignee of each encryp-
tion node is the same as its child (line 18), and the assignee
of each decryption node is the same as its parent (lines 9
and 13). Hence, the assignment computed by the algorithm
in Fig. 6 satisfies Condition 1 of the theorem.

2. For each node neN, by Condition 1 above, A(n)eA(n) and
is then authorized for the profile of n and of its children,
assuming that all the visible attributes are encrypted. Given
the assignment of operations to subjects computed by pro-
cedure Compute_Assignment, procedure Extend_Plan in-

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

serts an encryption node between n and its parent n, to
encrypt all the attributes that n, cannot access in plain-
text. Note that decryption nodes inserted by procedure Ex-
tend_Plan do not violate authorizations since they involve
only attributes in n.A, that, by Definition 4.1, any candidate
subject in A(n) can access in plaintext. Hence, the assign-
ment computed by the algorithm in Fig. 6 satisfies Condi-
tion 2 of the theorem.
« Termination. The algorithm in Fig. 6 terminates since it invokes
only procedures that terminate. Indeed, each of the procedures
invoked by the algorithm in Fig. 6 performs a visit of the query
tree plan T(N) and, for each visited node, the for, for each, and
while loops terminate, since they operate on finite sets (of at-
tributes and of subjects).
Completeness. We assume, by contradiction, that there exists
an extended query tree plan T'(N') and an assignment A
that does not violate any authorization, but the algorithm in
Fig. 6 does not find it. The algorithm can fail in computing
an assignment and the corresponding extended query tree plan
due to two reasons: i) it does not find a subject S to which a
node nelN can be assigned without violating authorizations, or
ii) it does not find a subject S that can re-encrypt an attribute
a that requires re-encryption.
We first note that, according to our assumption, A (n) # @, Vn €
N. Also, procedure Identify_Candidates (Fig. 8) identifies all the
subjects in A(n). Indeed, for a node n, the procedure checks
all the subjects in A(n;) UA(n;) (line 18) and, according to
Theorem 4.1, no other subject can be a candidate for n. We
also note that, for leaf nodes, A(n) is set to S (line 7). There-
fore, for the parents of leaf nodes (as well as for nodes that do
not satisfy Theorem 4.1) the procedure checks all the subjects
(line 19). Procedure Compute_Assignment (Fig. 9), which eval-
uates all the subjects in A(n) to choose an assignment for n
(line 20), will find an authorized assignment for n, if such an
assignment exists. Note that the choice of any candidate sub-
ject in A(n) can be made authorized by injecting encryption
over the attributes that the subject cannot access in plaintext,
as a child of n. As already discussed, this is always possible and
is enforced by procedure Extend_Plan (Fig. 10).
We note that, according to our assumption, for each attribute
a that needs to be re-encrypted, there exists a subject SeS
that is authorized to access attribute a in plaintext and all
the attributes in the corresponding base relation in encrypted
form. Since, in the worst case, procedure Compute_Assignment
(Fig. 9) evaluates each subject S in S and verifies whether S is
authorized to access a in plaintext and the corresponding re-
lation in either plaintext or encrypted form (lines 11-12), if a
subject authorized for re-encryption exists, the procedure finds
it. O

References

Agrawal, R., Asonov, D., Kantarcioglu, M., Li, Y., 2006. Sovereign joins. In: Proc. of
ICDE. Atlanta, GA, USA

Alkowaileet, W., Alsubaiee, S., Carey, M., Li, C, Ramampiaro, H., Sinthong, P,
Wang, X., 2018. End-to-end machine learning with Apache AsterixDB. In: Proc.
of DEEM. Houston, TX, USA

Amarilli, A., Benedikt, M., 2018. When can we answer queries using result-bounded
data interfaces? In: Proc. of PODS. Houston, TX, USA

Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley,].K.,, Meng, X., Kaftan, T.,
Franklin, M.J., Ghodsi, A., Zaharia, M., 2015. Spark SQL: relational data process-
ing in Spark. In: Proc. of SIGMOD. Melbourne, Australia

Bater, |, Elliott, G., Eggen, C., Goel, S., Kho, A., Duggan, J., 2017. SMCQL: secure query
processing for private data networks. PVLDB 10 (6), 673-684.

Benedikt, M., Leblay, J., Tsamoura, E., 2015. Querying with access patterns and in-
tegrity constraints. PVLDB 8 (6), 690-701.

Chow, S.S., Lee,].H., Subramanian, L., 2009. Two-party computation model for priva-
cy-preserving queries over distributed databases. In: Proc. of NDSS. San Diego,
CA, USA

17

Computers & Security 127 (2023) 103056

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S., Sama-
rati, P,, 2014. Fragmentation in presence of data dependencies. IEEE TDSC 11 (6),
510-523.

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S., Sama-
rati, P,, 2017. An authorization model for multi-provider queries. PVLDB 11 (3),
256-268.

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S., Sama-
rati, P, 2021a. An authorization model for query execution in the cloud. VLDB]
31 (3), 555-579.

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S., Sama-
rati, P,, 2021b. Distributed query evaluation over encrypted data. In: Proc. DBSec.
Calgary, Canada

De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P., 2011.
Authorization enforcement in distributed query evaluation. JCS 19 (4), 751-
794.

Dimitrova, E., Chrysanthis, P, Lee, A., 2019. Authorization-aware optimization for
multi-provider queries. In: Proc of SAC. Limassol, Cyprus

Farnan, N., Lee, A., Chrysanthis, P, Yu, T.,, 2014. PAQO: Preference-aware query opti-
mization for decentralized database systems. In: Proc of ICDE. Chicago, IL, USA

Gritzalis, D., Stergiopoulos, G., Vasilellis, E., Anagnostopoulou, A., 2021. Readiness
Exercises: Are Risk Assessment Methodologies Ready for the Cloud?. Springer
International Publishing, pp. 109-128.

Gritzalis, D., Theocharidou, M., Stergiopoulos, G., 2019. Critical Infrastructure Secu-
rity and Resilience. Springer.

Guarnieri, M., Basin, D., 2014. Optimal security-aware query processing. PVLDB 7
(12), 1307-1318.

Hacigtimiis, H., Iyer, B., Mehrotra, S., Li, C., 2002. Executing SQL over encrypted data
in the database-service-provider model. In: Proc. of SIGMOD. Madison, WI, USA

Kossmann, D., 2000. The state of the art in distributed query processing. ACM CSUR
32 (4), 422-469.

Kwakye, M.M., Barker, K., 2016. Privacy-preservation in the integration and querying
of multidimensional data models. In: Proc. of PST. Auckland, New Zealand
Levy, A.Y., Srivastava, D., Kirk, T., 1995. Data model and query evaluation in global

information systems. JIIS 5 (2), 121-143.

Li, G.,, Wuy,], Li, J., Guan, Z., Guo, L., 2018. Fog computing-enabled secure demand
response for internet of energy against collusion attacks using consensus and
ACE. IEEE Access 6, 11278-11288.

Oktay, K.Y., Kantarcioglu, M., Mehrotra, S., 2017. Secure and efficient query process-
ing over hybrid clouds. In: Proc. of ICDE. San Diego, CA, USA

Popa, R., Redfield, C., Zeldovich, N., Balakrishnan, H., 2011. CryptDB: Protecting con-
fidentiality with encrypted query processing. In: Proc. of SOSP. Cascais, Portugal

Priebe, C., Vaswani, K., Costa, M., 2018. EnclaveDB: A secure database using SGX. In:
Proc. of S&P. San Francisco, CA, USA

Rheinldnder, A., Leser, U., Graefe, G., 2017. Optimization of complex dataflows with
user-defined functions. ACM CSUR 50 (3), 38:1-38:39.

Rizvi, S., Mendelzon, A., Sudarshan, S., Roy, P.,, 2004. Extending query rewriting tech-
niques for fine-grained access control. In: Proc. of SIGMOD. Paris, France

Salvaneschi, G., Kéhler, M., Sokolowski, D., Haller, P., Erdweg, S., Mezini, M., 2019.
Language-integrated privacy-aware distributed queries. In: Proc. ACM Program.
Lang., 3, pp. 1-30. (OOPSLA)

Sharma, S., Burtsev, A., Mehrotra, S., 2020. Advances in cryptography and secure
hardware for data outsourcing. In: Proc. of ICDE. Dallas, TX, USA

Thoma, C,, Lee, A., Labrinidis, A., 2019. Behind enemy lines: Exploring trusted data
stream processing on untrusted systems. In: Proc. of CODASPY. Richardson, TX,
USA

Tu, S., Kaashoek, M., Madden, S., Zeldovich, N., 2013. Processing analytical queries
over encrypted data. PVLDB 6 (5), 289-300.

Vinayagamurthy, D., Gribov, A., Gorbunov, S., 2019. StealthDB: a scalable encrypted
database with full SQL query support. PoPETS 2019 (3), 370-388.

Xie, S., Mohammady, M., Wang, H., Wang, L., Vaidya, J., Hong, Y., 2021. A general-
ized framework for preserving both privacy and utility in data outsourcing. IEEE
TKDE. (early access)

Zeng, Q., Zhao, M., Liu, P, Yadav, P, Calo, S., Lobo,]J., 2015. Enforcement of au-
tonomous authorizations in collaborative distributed query evaluation. IEEE
TKDE 27 (4), 979-992.

Sabrina De Capitani di Vimercati is a professor at the Universita degli Studi di Mi-
lano, Italy. Her research interests are in data security and privacy. She has published
more than 210 papers in journals, conference proceedings, and books. She has been
a visiting researcher at SRI International, CA, USA, and George Mason University,
VA, USA. https://decapitani.di.unimi.it

Sara Foresti is a professor at the Universita degli Studi di Milano, Italy. Her research
interests are in data security and privacy. She has published more than 100 papers
in journals, conference proceedings, and books. She has been a visiting researcher
at George Mason University, VA, USA. She chairs the IFIP WG 11.3 on Data and Ap-
plications Security and Privacy. https://foresti.di.unimi.it

Sushil Jajodia is University Professor, BDM International Professor, and the founding
Director of the Center for Secure Information Systems, George Mason University,
Fairfax, VA, USA. He has authored or coauthored seven books and more than 450
technical papers in the refereed journals and conference proceedings and edited 44
books and conference proceedings. He is also a holder of 21 patents. He has been
a visiting professor at several Universities in France, Italy, and UK. He is a Fellow of
ACM, IEEE, and IFIP. https://csis.gmu.edu/jajodia/

http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00448-5/sbref0034
https://decapitani.di.unimi.it
https://foresti.di.unimi.it
https://csis.gmu.edu/jajodia/

S. De Capitani di Vimercati, S. Foresti, S. Jajodia et al.

Giovanni Livraga is an associate professor at the Universita degli Studi di Milano,
Italy. His research interests are in the area of data privacy and security in emerging
scenarios. His PhD thesis received the ERCIM STM WG 2015 award. He has been
a visiting researcher at SAP Labs, France and George Mason University, VA, USA.
https://livraga.di.unimi.it

Stefano Paraboschi is a professor at the Universita degli Studi di Bergamo, Italy.
His research focuses on information security and privacy, Web technology for data
intensive applications, XML, information systems, and database technology. He has

18

Computers & Security 127 (2023) 103056

been a visiting researcher at Stanford University and IBM Almaden, CA, USA, and
George Mason University, VA, USA. https://cs.unibg.it/parabosc

Pierangela Samarati is a professor at the Universita degli Studi di Milano, Italy.
Her main research interests are in data protection, security, and privacy. She has
published more than 280 papers in journals, conference proceedings, and books.
She has been a Visiting Researcher at Stanford University, CA, USA, SRI International,
CA, USA, and George Mason University, VA, USA. She is a Fellow of ACM, IEEE, and
IFIP. https://samarati.di.unimi.it

https://livraga.di.unimi.it
https://cs.unibg.it/parabosc
https://samarati.di.unimi.it

	Distributed query execution under access restrictions
	1 Introduction
	2 Related work
	3 Relation profiles and authorizations
	4 Extended minimum cost query plan
	4.1 Candidates
	4.2 Authorized assignment and minimum cost query plan

	5 Computing assignment
	5.1 Heuristic approach for computing a minimum cost query tree plan
	5.2 Complexity and correctness analysis

	6 Experimental results
	7 Integration of trusted hardware components
	8 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Proofs of theorems
	References

