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Abstract—Distributed computing supports large scale and data-intensive computations with the cooperation of a multitude of parties,

each responsible for a portion of the workload. Such parties are often not fully reliable and may return incorrect results. In this article,

we address the problem of assessing the integrity of the computation results. We provide a comprehensive characterization of two

techniques, sentinels and twins, evaluating their effectiveness and synergy. Sentinels are pre-computed tasks whose result is known

apriori, and enable checking returned results against a ground truth. Twins are replicated tasks assigned to different workers, and

enable cross-checking returned results for a same task. The analysis considers many questions that arise in the design of a concrete

integrity assessment strategy and identifies the parameters that have a critical impact on the overall protection. Our model enables to

tune the integrity controls so to achieve best effectiveness. The model can be applied to a variety of scenarios and offers guidelines that

can find extensive application.

Index Terms—Distributed data computation, probabilistic integrity guarantees, sentinels, twins
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1 INTRODUCTION

DISTRIBUTED computing has become the norm for the man-
agement of large computational problems, which can be

decomposed in multiple sub-problems, each assigned to a
different device. A demonstration of the importance of
representing large-scale computations as a large number of
independent tasks is the success of modern MapReduce
architectures, like Apache Spark. A particularly important
application of this paradigm occurs when machine learning
is integrated with big data, which is arguably the topic in the
IT domain that is currently receiving the greatest attention.
A common feature of this integration is the need to extract
knowledge from large collections of data, using an approach
where initially a model is built in a training phase and then it
is applied over an extremely large number of instances in
the prediction phase, where each instance is classified. The

computational requirements of the prediction phase can be
extreme. For instance, in environmental monitoring it is
today possible to use a large number of sensors (e.g., micro-
phones and cameras) collecting large volumes of data, which
are analyzed to identify specific subjects (e.g., elephants in
the African jungle [1] or snow leopards [2]). Hospitals want
to apply image analysis techniques to large collections of
medical images. In all these cases, there is the need to process
millions or even billions of jobs, requiring the use of large
infrastructures. The motivation for outsourcing computa-
tions involving external parties (workers) can be both the
need of high-performance computational capabilities and
economic convenience.

A clear concern in such distributed outsourced scenarios
is the lack of control over the jobs’ computation and hence
the uncertainty about the correctness of results returned by
the different workers in the system. While one may assume
an overall proper behavior, the open nature of the system is
clearly vulnerable to possible misbehavior by workers,
which can be either sloppy in their operation, or - evenworse
- intentionallymisbehave (to get rewardswithout employing
needed resources), and therefore opportunistic in their
responses.

The problem is well known and recognized by the
research and industrial communities, which have devoted
attention to the development of techniques to assess integrity
of the results of computations outsourced to external parties.
A promising approach to assess integrity in contexts where
computations are not fixed and predefined (and therefore
authenticated data structures providing deterministic integ-
rity guarantees are difficult to use) relies on probabilistic
techniques. These can always be applied when each portion
of the problem assigned to a worker can be structured as a
collection of jobs, each producing a result. It is then possible
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to inject jobs against which the behavior of workers is con-
trolled. Most common probabilistic techniques either (a)
insert jobs whose result is known a-priori, alerting for viola-
tions whenever results are different from the known one, or
(b) replicate jobs to multiple workers, alerting for violations
whenever results from different workers in response to the
same replicated job differ. While the two techniques are
known and well recognized, the problem of their targeted
generation and combination, so to provide best effectiveness
for integrity guarantees, is still an open issue.

We address this problem and propose a model to reason
on the combined use of pre-computed and replicated jobs,
which we call sentinels and twins, respectively, so to provide
best effectiveness. We frame our work in the context of a
data classification problem, which allows us to capture a
variety of scenarios, and investigate different issues that
naturally arise in the application of such controls. Our
investigation produces an improved characterization of
each technique and provides a response to many questions:
What are the aspects that have an impact on the effective-
ness of sentinels and twins? How should sentinels be gener-
ated and twins be distributed among workers so to provide
best integrity guarantees? How many replicas should be
used to get the best effectiveness? When are twins more
effective than sentinels (or vice versa)? Given an application
domain, what is the combination of sentinels and twins able
to provide the best protection? The results of the investiga-
tion show the effectiveness of the two techniques when
carefully combined based on our findings. Our work repre-
sents then a reference for the application of probabilistic
techniques, supporting the realization of efficient integrity
assessment solutions for many domains.

2 SCENARIO AND BASIC CONCEPTS

Our problem is to enable a client to outsource data processing
to possibly untrusted workers in a distributed system, while
enjoying integrity guarantees on the returned results. There
can be multiple reasons for a computation result to be incor-
rect: a defect, a temporary misconfiguration, or a malicious
action by the worker (which may want to either sabotage the
computation or get the reward for computing jobswhile omit-
ting to do so). From an integrity-assessment point of view,
there is an integrity issue regardless of whether the incorrect
result has been caused by failure, malfunctioning, sloppiness,
or intentional opportunistic behavior since they all have the
effect of the worker not correctly computing the jobs assigned
to it. In our analysis, we consider the problem of detecting
misbehavior of intelligent workers, which intentionally omit
computation and behave opportunistically in their responses
to avoid being detected in their omissions. The reason for con-
sidering intentional misbehavior is to set our work in the
worst (more difficult to discover) scenario. Indeed, techniques
that are able to withstand the action of an intelligent worker
would also offer integrity guarantees when the violation is
produced by accidental anomalies. In this way, we also cover
the case of anomalies that exhibit a behavior that may other-
wise be hard to detect (e.g., when a defect produces as a result
themost common answer expected from the computation).

In our scenario, we assume workers to be computers exe-
cuting a deterministic program. For concreteness, we consider

a classification problem computing, for each data item in a
collection, the class associated with it. The consideration of a
generic classification problem allows us to capture different
application scenarios characterized by processing tasks pro-
ducing results in a finite domain of values. Common compu-
tational tasks can be considered as classification jobs with an
extremely large number of classes. For instance, the predic-
tion phase in machine learning can be seen as a classification
problem, whose goal is to classify each instance according to
the model defined in the training phase. Formally, we define
a classification problem as follows.

Definition 2.1 (Classification). Given a setD ¼ fd1; . . . ; dng
of data items and a set C ¼ fc1; . . . ; ccg of classes, a classifica-
tion is a function g : D ! C that assigns each data item di 2
D to a class ck 2 C.

A classification function g can be characterized by a prob-
ability mass function PD that describes the probability of a
data item to belong to each class in C. For concreteness, in
the paper, we refer our examples to a classification over a set
C = {c1,c2,c3,c4} of four classes and three representative
instances of probability mass function (Fig. 1). The consid-
ered distributions follow a Zipf’s law with: a ¼ 0, modeling
uniform distribution; a ¼ 1, representing the distribution of
classes known to be common in many domains; and a ¼ 7,
representative of a very skewed distribution. We focus the
initial analysis on classification jobs with a limited output
domain, because in these cases it is easier to characterize the
distribution of output values. This is not a limitation since, as
our analysis will show, the number of classes has negligible
impact on the effectiveness of the techniques, which depends
instead on the probability of the most frequent class (regard-
less of the number of classes). The results of our analysis
apply then to generic classification problems and data distri-
butions, including those with only two or an extremely large
number of classes (with this latter capturing generic compu-
tationswith a wide variety of possible results).

We assume the classification problem to be deterministic
and complete. Deterministic means that we assume a diago-
nal confusion matrix and an accuracy of 100% in the classifi-
cation process (i.e., we assume workers to be machines
running the same algorithm, in contrast to human beings
performing a task). Then, an incorrect result is due to an
incorrect (defective, sloppy, or malicious) computation. For

Fig. 1. An example of probability mass function PD: Zipf’s law with a ¼ 0
(a), a ¼ 1 (b), a ¼ 7 (c).

DE CAPITANI DI VIMERCATI ETAL.: SENTINELS AND TWINS: EFFECTIVE INTEGRITYASSESSMENT FOR DISTRIBUTED COMPUTATION 109



instance, with reference to machine learning, the execution
of a prediction job deterministically returns a class, as it
returns the deterministic result produced by the application
of the model obtained in the training phase. This holds also
when the returned result may not enjoy perfect quality. As
an example, for the problem of identification of snow leop-
ards in camera images, the model may sometime miss the
presence of the leopard, but this does not affect the deter-
minism of the model, and hence of the result of the job
execution. Completeness implies that every data item is
associated with a class in C. Note that a partial classification
problem can be made complete by simply introducing a
‘dummy’ class to which data items not of interest for the
classification will be mapped.

In the following, we refer to the computation of the clas-
sification of an individual data item as a job (short for classi-
fication job). Outsourcing of jobs to external, possibly
untrusted, workers is then formalized as an allocation func-
tion defined as follows.

Definition 2.2 (Job Allocation). Given a set D ¼ fd1; . . . ;
dng of data items on which a classification is to be computed,
and a set W ¼ fw1; . . . ; wwg of workers, an allocation is a
function v : D ! W that assigns each data item di 2 D to a
worker wk 2 W .

We use dðwÞ to denote the set of data items assigned to
worker w. For simplicity, we assume an even distribution of
jobs across workers, that is, the number of jobs assigned to
any two workers differs of at most one. Formally, 8w 2 W :
bgc � jdðwÞj � dge, with g ¼ jD j

jW j . Also, for simplicity in the
formulation, we assume the number of data items inD to be
a multiple of the number of workers, and therefore that all
workers have exactly the same workload. This is not a limi-
tation: a model with a heterogeneous assignment of jobs
would make the analysis more complex, but it would pro-
duce identical results with respect to the efficiency and
effectiveness of the integrity assessment techniques.

We use gi to denote the classification performed by a
worker wi, and gW to denote the classification performed by
all workers (i.e., the union of the classifications computed
by all the considered workers).

Our problem is then allowing the client to assess integrity
of classification gW . We distinguish between honest and lazy
workers. An honest worker correctly performs jobs assigned
to it. A lazy worker omits some of the jobs assigned to it,
returning for them a result that is freely chosen by the
worker. Lazy workers can however possibly behave oppor-
tunistically on the omitted jobs to the aim of not being dis-
covered (e.g., exploiting possible knowledge on the
classification job). For simplicity, we assume lazy workers
to be independent entities and to not communicate with
each other. The impact of collusion would only be a reduc-
tion in the effectiveness of twins (see Section 7).

3 INTEGRITY CHECKS

Our work is based on the inclusion, in the jobs to be out-
sourced, of additional jobs that will serve as checks for
integrity assessment (Fig. 2). For such additional jobs, we
consider two complementary approaches: i) insertion of
jobs whose result is known a priori; ii) replication of the

same job to different workers. These two approaches well
reflect state of the art techniques typically considered for
integrity control. Controls of the first type correspond, for
example, to sentinels and markers (e.g., [3], [4], [5], [6]), and
watermarks (e.g., [7]). Controls of the second type corre-
spond to classical replication (e.g., [8], [9]). In our work, we
refer to jobs of the first kind as sentinels and to jobs of the
second kind as twins, characterized as follows.
Sentinels. A sentinel is a data item generated ad-hoc by the
client and whose classification (i.e., job’s result) is known a
priori. In the following, when clear from the context, we
will use the term sentinel to refer interchangeably to the sen-
tinel data item or its classification job. Receiving for a senti-
nel a result different from the known classification signals
an integrity violation. Formally, a sentinel d signals an
integrity violation whenever gi(d) 6¼g(d), with v(d)=wi.
Twins. A twin is a replica of a data item whose classification
job is submitted to more than one worker. Like for sentinels,
in the following, when clear from the context, we will use
the term twin to refer interchangeably to a replicated data
item or the corresponding classification job. We will use the
term twin set to refer to a data item and its replicas. We also
note that, while for simplicity we refer to a replicated data
item, in practice there is no need to actually create a replica
of the data item, but it is sufficient to allocate the corre-
sponding job to multiple workers. Formally, allocation func-
tion v is extended to possibly assign each data item to a set
of workers (in contrast to a single one), that is, v : D !
PðWÞ. A classification job can be replicated as many times
as wished, and the identification of the optimal number of
replicas to be used is one of the contributions of this paper.
The name twin reveals the fact that, according to our analy-
sis (Section 5), best effectiveness is achieved when a twin set
has cardinality 2 (i.e., original data item plus one copy).
Receiving for twin jobs inconsistent results signals an integ-
rity violation. Formally, a twin set signals an integrity viola-
tion whenever 9wi; wk 2 vðdÞ such that gi(d) 6¼gk(d).

Clearly, to be effective, integrity checks should not be
recognizable as such by the workers, which could otherwise
go undetected in their possible misbehavior by simply per-
forming well on the jobs on which they know to be con-
trolled. For twins, allocating twin jobs to different workers,
which we consider as a good design principle for such kind
of control (as distribution of replicas to different workers
provides a natural cross-check), already guarantees such a
property. For sentinels, such a property has to be taken into
account in the generation of sentinel jobs.

The contribution of this paper is to evaluate how sentinels
and twins should be produced to be best effective and how
integrity controls should be distributed among sentinels and

Fig. 2. Inclusion of sentinels and twins in the workers’ workload. Circled
items are sentinels and twins, marks identify twin sets.
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twins so to be effective and provide the greatest integrity
guarantees. We first analyze sentinels and twins indepen-
dently, and then investigate their combination. Table 1 sum-
marizes the notation used in this paper.

4 SENTINEL ANALYSIS

We start by analyzing the effectiveness of integrity assess-
ment through sentinels. We first focus on a single worker,
which we assume to be lazy, because each sentinel controls
the behavior of one worker (the one in charge of its evalua-
tion) and its effectiveness is not influenced by the behavior
of other workers. The result of the analysis applies in gen-
eral to any of the workers. We then generalize the results to
assess the effectiveness of sentinels in the system.

The goal of our analysis on sentinels is to determine
how the number of sentinels (or, more precisely, their per-
centage with respect to the overall number of jobs assigned
to the worker) and their distribution in the different classes
affect integrity guarantees. Clearly, the amount of sentinels
affects integrity guarantees: the higher the percentage of
jobs on which a worker is checked, the lower the probabil-
ity of the worker to go undetected when omitting jobs. As
we will show in this section, also the distribution of senti-
nels in classes plays a role on the effectiveness of the con-
trol. In the following, we first evaluate the probability of a
lazy worker to go undetected by sentinels control when
omitting some of its jobs (Section 4.1). With such probabil-
ity turning to be also dependent on the distribution of sen-
tinels in classes, we then analyze possible sentinel
distribution strategies and their effectiveness (Section 4.2).
Finally, we extend this result to the whole collection of
workers (Section 4.3).

4.1 Probability Analysis

A lazy worker passes sentinels control if it performs cor-
rectly on all the sentinels, that is, if the classification
returned for all sentinels coincides with the classification
known to the client. This happens when the worker actually
performs the job or when the worker does not perform the
job but it returns a correct result for it. The probability of the
worker to go undetected (i.e., to return a correct result for
all sentinels) when omitting some of its jobs, depends then

on: 1) the probability of sentinels to fall in the omitted jobs
(since only sentinels are controlled, omission of genuine
jobs goes undetected) and 2) the probability of the result
returned for omitted sentinels to be correct. Let us then ana-
lyze each of these probabilities.
Probability of omitting sentinels. Consider a set of j jobs
comprising s sentinels and assume the worker omits o of the
jobs. The probability that os of the o omitted jobs are sentinels
(i.e., the probability of theworker to omit os of the s sentinels)
follows a hypergeometric distribution and is as follows:

p omit sentðosÞ ¼
j� s

o� os

� �
� s

os

� �
j

o

� �

The higher the number s of sentinels, the higher the prob-
ability of omitting os of them. For instance, the probability
that the worker omits 5 sentinels is: 2.72% using 20 sentinels,
18.27% using 40 sentinels, and 18.51% using 60 sentinels.
Probability of correctly guessing a job. Even when omit-
ting some sentinels, the worker could go undetected if
the result it returns for them is correct. The probability
that the worker correctly guesses the class of a sentinel
when omitting its computation depends on the strategy
adopted by the worker when selecting the classes to be
returned for omitted jobs and on the distribution of senti-
nels into classes. The assignment, by the worker, of omit-
ted jobs to classes can be modeled as a probability mass
function PO. Hence, POðciÞ is the probability that the
worker assigns class ci to an omitted job. If the worker
randomly extracts the class of the omitted job from PO,
the probability that it guesses the correct class of an omit-
ted sentinel is:

p guess sent ¼
Xc
i¼1

POðciÞ � PSðciÞð Þ

where PS describes the probability mass function of senti-
nels (i.e., their distribution) in classes. Indeed, the probabil-
ity of correctly guessing class ci to which a sentinel belongs
is the product of the probability that the worker chooses ci

for the omitted sentinel job (i.e., POðciÞ), multiplied by the
probability that ci is the correct class for it (i.e., PSðciÞ).

Table 2 illustrates the probability for a lazy worker to cor-
rectly guess the class of an omitted sentinel (p guess sent),
considering different distributions for PS (following the
Zipf’s law with a=0, a=1, and a=7) and different strategies
PO for the worker to classify omitted jobs. In particular, we
consider three possible strategies that the worker can choose
to classify omitted jobs: always in the most frequent class in
PS (i.e., PO=[1,0,0,0]), according to a uniform distribution
(i.e., PO=[0.25,0.25,0.25,0.25]), according to PS (i.e., PO=PS).
For instance, when PS is a Zipf’s with a ¼ 1 and the worker
classifies all the omitted jobs in the most frequent class,
p guess sent is 48%. The table shows that, independently
from PS , the most convenient strategy for the worker to max-
imize p guess sent consists in classifying all the omitted jobs
in one class (ideally, the most frequent in PS , which the
worker however does not know). In fact, distributing its
guesses among different classes, the worker has greater

TABLE 1
Notation

c number of classes in C
w number of workers inW
g number of genuine jobs assigned to a worker
j number of genuine and control jobs assigned to a worker
s number of sentinels assigned to a worker
stot overall number of sentinels
t number of twins assigned to a worker
T overall number of twin sets
r number of replicas in a twin set
lT number of lazy workers in a twin set
l overall number of lazy workers
o number of jobs omitted by a lazy worker
os number of sentinels omitted by a lazy worker

PD probability mass function of genuine data in classes
PS probability mass function of sentinels in classes
PO probability mass function adopted by a worker for omitted jobs
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probability of assigning a wrong class to an omitted sentinel.
This is visible in Table 2, where the first column has always
values greater than, or equal to, the ones in the other
columns.
Probability of passing sentinels control. Since the classifi-
cations of different jobs are independent events, the proba-
bility that a worker passes integrity control when omitting
os sentinels is the product of the probability of the worker to
omit os sentinels multiplied by the probability of correctly
guessing their classification. Formally, such probability is
p omit sentðosÞ � ðp guess sentÞos , with the second term
reducing to 1 when os=0 (i.e., no sentinel is omitted). There-
fore, the probability of the worker to pass sentinels control
(i.e., the probability of a worker omitting os jobs to go unde-
tected in its omissions), is the sum, over all possible values
of os, of the probabilities of the worker to pass sentinels con-
trol when omitting os sentinels. Formally:

p pass sent ¼
Xminðs;oÞ

os¼0

p omit sentðosÞ � ðp guess sentÞosð Þ

Note that the sum terminates at min(s,o) since the worker
cannot omit more sentinels than either the number of senti-
nels it has received or the number of jobs it omits.

Fig. 3 compares the values of p pass sent, varying the
number s of sentinels and the number o of omitted jobs,
obtained analytically and through 1000 Monte Carlo simula-
tions. In the simulations, we considered a worker in charge
of the classification of j ¼ 200 jobs that can be classified into
4 classes C ¼ fc1; c2; c3; c4g. The probability mass function
PD is a Zipf’s law with a ¼ 1, sentinels are distributed
according to a uniform distribution (i.e., PS is uniform), and
the worker classifies all the omitted jobs in the most fre-
quent class in PD (i.e., PO is [1,0,0,0]). As visible from the
figure, the analytical and numerical values nicely match.

4.2 Sentinels Distribution

The client can operate on two factors in injecting sentinels:
the number s of sentinels, and their distribution PS into clas-
ses. Indeed, the other parameters in the formula of
p pass sent are not under the control of the client. Clearly,
the higher the number of sentinels, the higher the probabil-
ity of the worker to hit them (i.e., the higher os) when omit-
ting jobs. The average value of os is

o�s
j , which is the average

of the hypergeometric distribution regulating p omit sent.
However, an omitted sentinel can be detected only if the
response returned for it is different from the correct one,

and here is where the distribution of sentinels into classes
comes into play.

We identify three possible strategies that the client can
use for distributing sentinels into classes.

� Genuine data distribution (PS=PD): sentinels are dis-
tributed into classes following the same distribution
as the data. The rationale behind such a strategy is to
follow cardinality of the genuine jobs in assigning
sentinels, so that each class receives a number of sen-
tinels according to its expected cardinality.

� Normalized inverse distribution of genuine data
(PS=PD

�1): sentinels are distributed into classes fol-
lowing the normalized inverse of PD. Therefore, the
most frequent class in PD is the least frequent in PS

(and vice versa). The rationale behind such a strat-
egy, working opposite to the one above, is to inject
more control with a result that is less expected.

� Uniform distribution (PS uniform): sentinels are dis-
tributed equally among classes, regardless of data
distribution. The rationale behind such a strategy is
to make any guess equally likely for correctness.

Note that a limited number of sentinels is sufficient to
provide high integrity guarantees (see Section 6.3). Hence,
the addition of sentinels is not expected to considerably
modify the data distribution of genuine values.

The effectiveness of sentinels’ control depends also on the
strategy that the lazyworker can adopt at its side. As noted in
the previous subsection, the lazy worker does not have any
convenience in distributing omitted jobs in different classes
(as its probability of correctly guessing the class would natu-
rally decrease) and its best bet is instead to consistently assign
omitted jobs to a single class. In fact, such a class would be the
one most probable according to data distribution but, since

TABLE 2
Probability p guess sent of Correctly Guessing the

Classification of a Sentinel

Fig. 3. Probability p pass sent varying the number s of sentinels (a,b) and
the number o of omitted jobs (c,d) obtained analytically (a,c) and through
Monte Carlo simulations (b,d).

112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023



only sentinel jobs are actually checked, the worker should
reason onwhat would bemost probable as a correct guess for
sentinels themselves (i.e., PS in contrast to PD). This observa-
tion implies two possible choices for the default class that a
lazyworker could assign to omitted jobs:

� the one most frequent in the data distribution, assuming
sentinels follow the same distribution as data;

� the one least frequent in the data distribution, assuming
the hypothesis above to be too obvious and therefore
cleverness at the client side in injecting control with
results that are less expected.

Fig. 4 illustrates the probability of the worker to pass
integrity controls (i.e., value of p pass sent) in the different
possible combinations of the client (PS) and worker (PO)
strategies. It is immediate to see that a possible strategy for
the client to follow a non-uniform distribution for sentinels,
opting for either the same distribution as the data or the nor-
malized inverse one, is exposed to the risk of the lazy
worker to actually succeed in its opportunistic assignment
of omitted jobs to the most frequent, or least frequent, class
of data distribution. This is well visible in Fig. 4, that shows

the high probability of the worker to go undetected in omit-
ting jobs when choosing the most frequent class (when the
client distributed sentinels with same distribution as the
data, Fig. 4a) or the least frequent class (when the client dis-
tributed sentinels with a distribution inverse to the one of
the data, Fig. 4d). Uniform distribution for sentinels instead
confirms to be resilient to possible opportunistic guesses
(Figs. 4e and 4f). Clearly, the weakness of sentinels’ distribu-
tion different from the uniform one in Fig. 4 is better visible
when the data distribution (and therefore the sentinels’ dis-
tribution) is skewed (i.e., a ¼ 7). When the data distribution
is not skewed (i.e., a ¼ 0 and a ¼ 1), data will tend to be
more uniformly distributed and therefore strategies PS=PD

(Figs. 4a and 4b) and PS=PD
�1 (Figs. 4c and 4a) for sentinels

distribution will resemble the uniform one. Intuitively, the
strength of uniform distribution for sentinels is to not make
any class (and hence correct guess for omitted jobs) more
likely to be correct than another, and therefore dismount
possible opportunistic behavior: the worker would not
know on which class it is best to bet for its omitted jobs, and
any possible strategy it could adopt would suffer from low
probability of hitting a correct guess (as visible in the first
row of Table 2, uniform distribution for sentinels being a
Zipf with a ¼ 0).

4.3 Multiple Workers

The analysis above has considered an individual worker, in
line with the fact that each sentinel controls the behavior of
a single worker. The effectiveness of sentinels control on the
overall system is simply the combination of the controls
over the different workers. The probability of possible lazy
behavior in the overall system to go undetected (i.e., the
probability that all workers pass sentinels control) is then:

p pass sentinels ¼
Yw
i¼1

p pass senti

where p pass senti is the value of p pass sent computedwith
the specific values of j jobs, s sentinels, and o omissions con-
sidered for worker wi. When the parameters are the same for
all workers, p pass sentinels reduces to ðp pass sentÞl, with l
the total number of lazy workers. In fact, p pass sent=1 for
workers that are either honest (i.e., o=0) or that receive no
sentinels (i.e., s=0).

Note that, since the client does not know nor suspect
which workers are honest and which workers are lazy, senti-
nels are uniformly distributed among all the workers. The
reason for workers to receive no sentinels might be that the
total number of sentinels assumed to be injected overall is
smaller than the number of workers. In fact, as we will see in
Section 6, even a few sentinels covering just a few workers
are sufficient and provide adequate effectiveness when com-
binedwith twins, with no need to distribute sentinels to every
singleworker.We also note that sentinels, operating indepen-
dently on different workers are by definition not exposed to
collusion. As a final remark, we note that the total number of
sentinels that may be injected might be not sufficient to cover
all the classes in the data distribution. In this case, maintain-
ing the idea of distributing sentinels as uniformly as possible
in the different classes, the best client strategy would be to
randomly select classes towhich assign sentinels.

Fig. 4. Probability p pass sent varying the number s of sentinels and the
distribution PD of genuine data, considering different distribution strate-
gies for the client and guess strategies for the lazy worker.
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5 TWIN ANALYSIS

We now analyze the effectiveness of integrity assessment
through twins. We recall that: the term twin set refers to the
set of r’s (virtual) replicas of a data item, T is the overall
number of twin sets generated by the client, and t is the
number of twins assigned to each worker. With uniform
distribution of twins to workers, we have T �r

w

� � � t � T �r
w

� �
.

For simplicity of the formulas, without loss of generality,
we assume T � r to be a multiple of the number w of workers
and hence each worker to receive t twins. (We relaxed such
an assumption in computing results for plotting curves of
our analysis and in our simulations.)

We first evaluate the probability of workers to go unde-
tected by twins control when omitting jobs (Section 5.1).
With such probability turning out to be dependent on the
replication factor and the number of twin sets, we then ana-
lyze possible strategies for twin generation and allocation
(Section 5.2). We first focus on a single twin set because
each twin set works independently for providing integrity
guarantees. We then generalize the results to the consider-
ation of multiple twin sets.

5.1 Probability Analysis

Workers to which data items in a twin set are assigned pass
integrity control by the twin set if they all return the same
result for the items in the set (twin jobs). This happens in
the following cases: 1) all workers actually perform the twin
job (and hence return the correct result for it), 2) some of the
workers omit the twin job but correctly guess its result, or 3)
all workers omit the twin job but they all return the same
result for it. Let us then analyze the probability of lazy
workers to be involved in the evaluation of a twin set and to
omit the twin. We then evaluate the probability of workers
involved in a twin set to return the same result, when some,
or all, of them are lazy.
Probability of lazy workers in the twin set. The first
parameter influencing twins effectiveness is the probability
of lazy (versus honest) workers to be involved in the evalua-
tion of a twin set. In fact, honest workers, by always return-
ing a correct response, will increase exposure of possible
misbehaviors by others. The probability of having lazy
workers in the twin set depends on the number of lazy
workers in the system and on the replication factor (i.e., the
cardinality of the twin set). With a reasoning similar to the
one followed for sentinel omissions, it is easy to see that the
probability of having lT lazy workers involved in a twin set
assuming w workers in the system, l of which are lazy, and
a replication factor of r, follows a hypergeometric distribu-
tion. Formally:

p lazyðlT Þ ¼
l

lT

� �
� w� l

r� lT

� �
w

r

� 	
Probability of omitting twins. Suppose that lT out of the r
workers in charge of evaluating a twin set are lazy. The
probability that a lazy worker omits a twin job is o

j (i.e., num-
ber of omissions divided by the number of jobs assigned to
the worker). Since omissions by different workers are inde-
pendent events, probability ðojÞi � ð1� o

jÞlT�i corresponds to

the probability that i, with 0 � i � lT , workers omit the twin
job and lT � i workers do not omit it. Given lT lazy workers,
there are lT

i


 �
possible combinations of i out of lT lazy work-

ers and therefore the probability that any subset of i lazy
workers omits the twin job in the same twin set is:

p omit twinði; lT Þ ¼ lT
i

� �
� o

j

� �i

� 1� o

j

� �lT�i

Probability of Same Classification. In the evaluation of the
probability of all workers to return the same classification, we
distinguish the case where such classification is the correct
one for the twin job from the case where it is a wrong one (but
consistently returned by all workers). The probability of a
worker to correctly guess the class of an omitted job isPc

k¼1ðPOðckÞ � PDðckÞÞ. The probability that i, with 0 � i � lT ,
workers guess the correct class of the omitted twin job is then:

p guess twinðiÞ ¼
Xc
k¼1

ðPOðckÞÞi � PDðckÞ
� 	

With a similar reasoning, the probability that i, with 0 �
i � lT , workers omitting a job return the same (but wrong)
result is:

p same wrongðiÞ ¼
Xc
k¼1

ðPOðckÞÞi � ð1� PDðckÞÞ
� 	

Table 3 illustrates the probability of workers omitting the
job to return the same class (correct for p guess twin and
wrong for p same wrong) assuming different probability
mass functions for genuine data PD and for omitted jobs PO.
Note that, in the extreme case where a twin set is assigned
to workers that are all lazy and all of them omit the job, if
workers are deterministic in their classification of omissions
(e.g., classifying all items in the most frequent class in PD),
the misbehavior will not be discovered since all workers
will be in agreement on their result (regardless of whether it
is correct or wrong). This is visible in the table where, for
PO=[1,0,0,0], p guess twin(10)+p same wrong(10)=1, regard-
less of the distribution of PD.

Table 3 is analogous to Table 2 for sentinels. Note, how-
ever, that rows in Table 2 report the distribution of sentinels
while rows in Table 3 report the distribution of data them-
selves. In fact, since twins are randomly selected in the data
population, unlike for sentinels, their distribution cannot be
regulated. For the randomness of the process, distribution
of twins can be considered to follow the distribution of the
genuine data.
Probability of passing twins control. The probability of a
twin set to show the same result from all workers and there-
fore not to signal any violation (even in the presence of lazy
workers and omissions) can be obtained by applying the
total probability theorem to the probabilities discussed
above. More precisely, it is the sum of: 1) the probability of
having all workers involved in the twin set to return the cor-
rect result, even when some workers are lazy and omit the
twin job, and 2) the probability of all workers involved in
the twin set to be lazy, to omit the twin job, and to return
the same (wrong) result. The first probability is the sum,
over all possible values of lT , of the probability of having lT
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lazy workers involved in the twin set multiplied by the
probability of i of them omitting the job to guess the correct
result (for all possible values of i). The second probability is
the product of the probability of the different events concur-
ring to it. Therefore, the probability of observing the same
result for all jobs in a twin set is:

p consistent ¼
Xminðl;rÞ

lT¼0

�
p lazyðlT Þ�

XlT
i¼0

ðp omit twinði; lT Þ � p guess twinðiÞÞ
�

þ p lazyðrÞ � p omit twinðr; rÞ � p same wrongðrÞ

Note that the sum terminates at min(l,r) since a twin set
cannot include more lazy workers than either the number of
lazy workers assumed to be part of the system or the num-
ber of replicas in the twin set. When T twin sets are used,
the probability, denoted p pass twins, of twins not to signal
any violation is:

p pass twins ¼ p consistentT

Fig. 5 compares the values obtained for p pass twins,
varying the number t of twins per worker and the number o
of omitted jobs, obtained analytically and through 1000
Monte Carlo simulations. The scenario assumes that each
worker is in charge of the evaluation of j=200 jobs, some of
which (2, 4, 10, or 20) are twins. Data are distributed accord-
ing to Zipf’s law with a=1 (i.e., PD has a=1) in 4 classes C ¼
fc1; c2; c3; c4g. Lazy workers classify the omitted jobs in the
most frequent class in PD (i.e., PO is [1,0,0,0]).

5.2 Twin Generation Strategy

The client can operate on two factors when injecting twins
control: the number of twin sets (T ) and the replication fac-
tor (r), with the two being also related to the number of
twin jobs assigned to each worker (t � w=T � r). Indeed, other
parameters in the formula of p pass twins are not under the
control of the client. Clearly, the more twins a worker
receives, the more the control to which the worker is subject.
But, assuming willingness of the client to pay a load of T �
ðr� 1Þ additional jobs (twin jobs in addition to the original
ones), is it better to have a larger T or a larger r? For

instance, would it be better to have three twins for the same
data item (T=1, r=3) or two twins of two data items (T=2,
r=2)? Each of the two strategies would bring an equal addi-
tional load to the system (two additional jobs to be allo-
cated), but which one is more effective?

Looking at the formula of p pass twins, and the depen-
dency between the variables, it is easy to see that p pass twins
decreases exponentially with the increase of the number of
twin sets T (which is larger for smaller values of r). It
decreases instead very slowlywith the increase of the number
r of replicas, as visible in Fig. 6a. The figure shows how the
probability that an omission of o=50 jobs, assuming PD with
a ¼ 1, w=100 and l=49 (i.e., just the slight majority of the
workers is honest), goes undetected, varying the additional
jobs inserted as twins (i.e., T � ðr� 1Þ) in the two extreme
cases: 1) only one twin set is considered (i.e.,T=1) while the
number of replicas varies, 2) only one additional replica per
item is considered (i.e., r=2) and the number of twin sets
varies. The figure confirms the observation above. In particu-
lar, the curve for T=1 shows an asymptotic behavior, tending
to Pmax, which is the probability of the most frequent class in
PD (Pmax=0.48 in the figure). In fact, with probability Pmax, the
jobs in the twin set belong to the most frequent class. In this
case, the workers correctly guess the class of twin jobs. Such a
correct guess then happenswith probabilityPmax.

In summary, best effectiveness is achieved by keeping
replication factor minimum (r=2) while increasing the num-
ber of twin sets (i.e., twinning different data items). Of
course, care must be taken in the allocation of twins to
workers, to guarantee that the cross-checks provided by
twins do not partition workers dividing lazy from honest
workers. Such condition can be easily ensured by assigning
at least one twin to every worker, uniformly distributing
twins between workers, and allocating twin sets to cover
different combinations of workers. Good coverage of the

TABLE 3
Probability p guess twin of Correctly Classifying a Job by 4 or 10
Workers That Omitted it, and Probability p same wrong of 10

Workers Returning the Same (Wrong) Class for the Omitted Job

Fig. 5. Probability p pass twins varying the number t of twins (a,b) and
the number o of omitted jobs (c,d) obtained analytically (a,c) and through
Monte Carlo simulations (b,d).
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different combinations provides also fine resilience against
collusion. In this respect, we note that even if a fraction 1

x of
the workers collude, only the twin sets fully covered by the
colluding group become ineffective, roughly less than 1

x2
of

the twin sets, hence leaving the lazy workers still exposed
to the control on the other twin sets touching workers out-
side the clique (see Section 7).

The effectiveness of twins depends also on the probabil-
ity mass function PD and on the strategy adopted by the
workers for classifying the omitted jobs (i.e., PO). As already
noted, since twins are selected randomly among the data
items, the client cannot dictate twin distribution into classes
as done for sentinels and, given the randomness of the pro-
cess, twins can be expected to follow the same distribution
PD as the original data. Hence, the best strategy for lazy
workers behaving opportunistically to the aim of going
undetected in twin omissions is to classify omitted jobs in
the most frequent class of the data distribution. This obser-
vation implies, unfortunately, determinism in opportunistic
behavior of lazy workers and therefore their equal classifi-
cation of omitted twin jobs that can make twin control inef-
fective when data distribution is highly skewed (as the most
frequent class of data that lazy workers assign to twin jobs
has high probability to be the correct one, hence matching
the result returned by honest workers) or where all the
workers are lazy and their omission extreme (as they will
all omit twins, consistently classifying them in the same
class). Figs. 6b and 6c illustrate the effectiveness of twins as
well as their limitations in such situations.

Fig. 6b shows p pass twins varying the number t of twins
between 0 and 60 and assuming r=2,w=10workers (4 ofwhich
are lazy), o=20 omitted jobs by each lazy worker, and j=200
jobs assigned to eachworker.While quickly effective for Zipf’s
data distributions with a=0 and a=1, twins fail to be effective
for a=7. Fig. 6c considers a scenario with w=10 workers each
in charge of 200 jobs, 10 of which are twins (with r=2 and
T=50), and the distribution of data is expressed by a Zipf’s
law with a=1. It shows how probability p pass twins changes
varying the number o of omitted jobs, assuming the number l
of lazyworkers to be 4, 7, or 10 (i.e., 40%, 70%, or 100%).Again,
while quickly effective even when the majority of workers
(70%) is lazy and their omissions extreme (i.e., approaching all
200 jobs), twins cannot help in detecting extreme omissions
(i.e., approaching all the 200 jobs) when all workers are lazy.
In this case, none of the workers would perform the work and
all of them would consistently return the most probable class
(i.e., themost frequent in the data distribution).

6 COMBINING SENTINELS AND TWINS

In the previous sections, we have discussed sentinels and
twins independently. When both techniques are used, the
overall integrity guarantee is given by their combination.
Hence, the probability of workers to pass integrity control
becomes:

p undetected ¼ p pass sentinels � p pass twins

We now investigate how the two techniques should be
used to provide best effectiveness. Our starting point is rep-
resented by the lessons learned from the analysis in the pre-
vious sections, which can be summarized with the following
three observations. First, the best strategy for the client to
maximize effectiveness of control is to distribute sentinels
uniformly among the different classes, and to use a replica-
tion factor r of 2 for twins. Second, the best strategy for
opportunistic lazy workers to maximize probability of going
undetected when omitting jobs is to classify omissions in the
most frequent class of the data distribution (i.e., the class
with probability Pmax). Third, twins are, in general, more
effective than sentinels (roughly twice as effective, since
with one additional job the behavior of two workers is con-
trolled). However, twins fall short when the data distribution
is highly skewed (i.e.,Pmax is high) given the high probability
of omitted jobs to be classified correctly. Also, twins lose
effectiveness when omissions are extreme by all workers
(since all lazy workers would return the same result for the
twin jobs assigned to themwhich they omit to compute).

With the analysis in the previous sections enabling us to
capture integrity guarantees (in terms of p undetected), our
challenge is first to determine the value of Pmax where senti-
nels take over in terms of effectiveness with respect to twins
and second to determine how to counteract extreme omis-
sions injecting some sentinels in scenarios where twins are
more effective.

6.1 Threshold Value of Pmax

The value of Pmax for which either twins or sentinels are
expected to be more effective depends on two factors: the
presence of lazy workers and the percentage of omissions.
Identifying whether the Pmax of a given scenario falls below
or above such an optimal value would require to plot the
curves of p pass sentinels and p pass twins for the given
scenario and see the value of Pmax at which one becomes
higher than the other. Considering the three observations

Fig. 6. Probability p pass twins varying the number T � ðr� 1Þ of additional jobs inserted as twins (a), the number t of twins (b), and the number o of
omitted jobs (c).
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above and some simplifying assumptions that enable ana-
lytical treatment, we obtain an analytical formula for the
derivation of the threshold value of Pmax indicating whether
twins or sentinels are more effective.

As for sentinels, where p pass sentinels ¼Qw
i¼1 p pass

senti over the different workers, we simplify p pass sent
assuming the omissions of sentinels as a sampling with
replacement. Sampling with replacement means that the
sample values are independent. In our scenario, this means
that the omission of a job does not affect subsequent omis-
sions. In other words, when we omit a job, that job is put
back in the set of jobs; subsequent omissions operate consid-
ering the complete set of jobs. Hence, we consider for each
worker the formula for one sentinel and elevate it to the num-
ber of sentinels assigned to the worker. The imprecision
introduced by the adoption of this simplification is negligible
and has the advantage that the formula exhibits a clear ana-
lytical structure. The overall product over the differentwork-
ers equates then to elevating the p pass sent for a single
sentinel to the total number of sentinels in the system, that is,
p pass sentinels ¼ p pass sentstot . For a single sentinel
(s ¼ 1), the formula for p pass sent of Section 4.1 gives us:

p pass sent ¼
X1
os¼0

ðp omit sentðosÞ � ðp guess sentÞosÞ

¼ p omit sentð0Þ þ p omit sentð1Þ � p guess sent

¼ 1� o

j
þ o

j
� 1
c
¼ 1� o

j
� 1� 1

c

� �

where p guess sent ¼ 1
c derives from injecting in the formula

of Section 4.1 the observations above about the client distrib-
uting sentinels uniformly and workers opportunistically
returning the most frequent class for omitted jobs.

As for twins, where p pass twins ¼ p consistentT , we can
rewrite the formula for p consistent applying the observa-
tions above on the replication factor (i.e., r ¼ 2) and consid-
ering opportunistic behavior by lazy workers for omitted
jobs (i.e., they consistently classify the omitted jobs in the
most frequent class of the data distribution). As a simplifica-
tion, we consider the worst case scenario of both workers
involved in the twin set to be lazy (i.e., lT=2) and, for the sin-
gle twin set, assume them to be the only workers in the sys-
tem (i.e., w=2). The exponentiation to T will take care of the
inclusion of the other workers. Basically, our simplification
assumes twin sets to operate independently (covering dis-
joint sets of pairs of lazy workers). The formula for
p consistent of Section 5.1 then becomes:

p consistent ¼

p lazyð2Þ �
X2
i¼0

ðp omit twinði; 2Þ � p guess twinðiÞÞþ

þ p lazyð2Þ � p omit twinð2; 2Þ � p same wrongð2Þ ¼

¼ 1� o

j

� �2

þ 2 � o
j
� 1� o

j

� �� 

� Pmax þ o

j

� �2

�Pmaxþ

þ o

j

� �2

1� Pmaxð Þ ¼ 1� 2 � o

j
� o

j

� �2
" #

� ð1� PmaxÞ

� 1� 2 � o
j
� 1� Pmaxð Þ

where the last approximation removes the least significant
factor since, assuming o � j, term ðojÞ2 becomes negligible.

Let us then compare the formulas obtained above to evalu-
ate when sentinels are more effective than twins, that is,
when the probability of passing sentinel controls is lower
than the one of passing twin controls (p pass sentinels <
p pass twins). Of course, comparison is to be made assuming
the same overhead for the client in terms of additional jobs to
be inserted, hence considering an equal number of sentinels
and twin sets, that is, stot ¼ T (as each of them requires an
additional job to be injected in the system). With stot ¼ T , the
exponents at both sides of the equation can be discarded and
comparison reduces to checkwhen p pass sent < p consistent,

that is, when:

1� o

j

� �
� 1� 1

c

� �
< 1� 2 � o

j

� �
� 1� Pmaxð Þ

which gives:

Pmax >
1

2
� 1þ 1

c

� �

In summary, our analysis tells us that, for each scenario,
either sentinels or twins should be used as control jobs,
depending on the value of Pmax characterizing the scenario.
When c ¼ 2, which is the lowest value c can assume, twins
(sentinels, resp.) should be used if Pmax is lower (higher,
resp.) than or equal to 0.75. As the number of classes grows
the value of Pmax at which sentinels are more effective than
twins decreases, reaching 0.50 as the number of classes
becomes very large (and hence 1

c negligible). The formula
above also tells us that when Pmax is not higher than 0.50,
twins are always more effective than sentinels.

The number of control jobs to be injected depends on
the aimed integrity guarantees, expressed in terms of
p undetected and can be simply obtained from our for-
mulas. Basically, given a client’s established threshold ",
p undetected < " can be guaranteed by employing either
T > log ð"Þ

log ðp consistentÞ twin sets or stot > log ð"Þ
log ðp pass sentÞ sentinels

(Section 6.3 will elaborate more on this). A note aside is to be
made for scenarios where twins are more effective than senti-
nels (i.e., Pmax < 1

2 � ð1þ 1
cÞ) with respect to extreme omis-

sions, which make twins lose effectiveness. Luckily, the
different nature of the two controls makes sentinels extremely
effective in such scenarios, and adding a handful of sentinels
when using twins suffices to detect extreme omissions, as we
see next.

6.2 Extreme Conditions

Extreme conditions refer to (quite unlikely) scenarios where
omissions by all the workers in the system are considerable,
approaching almost the total number of jobs.

The most extreme case where all jobs are omitted (i.e., all
workers omit all the jobs) is easy to analyze. In such a case,
p pass twins=1 (since all omissions will be classified in the
most frequent class of the data distribution). Also, since all
jobs are omitted (i.e., o=j and os=s), p pass sentinels reduces
to ð1cÞstot (i.e., p pass sent=1

c). In other words, a number of sen-
tinels stot > � log ð"Þ

log ðcÞ is sufficient to maintain p undetected <
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", guaranteed by twins, also when all workers omit all their
jobs.

The analysis of generic extreme conditions where work-
ers omit most, but not all, of their jobs is much more com-
plex. To tackle it, we consider the worst case scenario,
modeling the whole set of workers as a single worker. We
also assume workers to know the total number stot of senti-
nels and the number T of twin sets, and therefore to
be able to estimate the number �E of jobs to elaborate to
maximize the probability that their extreme omissions go
undetected. Providing protection against the worst case
scenario clearly gives the strongest protection, also main-
tained in situations where such information is not known
and workers operate independently in their opportunistic
behaviors. When workers omit most of the jobs, the omis-
sions go undetected if the workers process all the sentinels
and do not process any of the twins. The probability,
called p extreme, that, when processing only E out of the
total number J of jobs in the system while omitting the
other O ¼ J � E jobs, all the sentinels are processed and
all the twins are omitted is:

p extremeðEÞ ¼ E
stot

� 	
� stot

J


 �stot � 1� stotþ2T ð1�PmaxÞ
J

� 	E�stot

where ðstotJ Þstot is the probability of processing all the sentinels

and ð1� stotþ2T ð1�PmaxÞ
J ÞE�stot is the probability that, among

the E � stot processed jobs, twin jobs that do not fall in the

most frequent class are all omitted. The rationale is that

among the 2T twin jobs, only 2T ð1� PmaxÞ twin jobs that do

not fall in the most frequent class are effective in signaling

omissions (for twins that fall in themost frequent class, omis-

sions cannot be distinguished from processing as they pro-

duce the same result).
To determine the maximum value of p extreme, denoting

with �E the value of E reaching it, we observe that to process
as few E jobs as possible while minimizing the risk of being
detected, opportunistic lazy workers need to aim for the
lowest E such that p extremeðEÞ > p extremeðE þ 1Þ. Con-
sidering the formula of p extreme this translates to:

E

stot

� �
� stot

J

� 	stot � 1� stot þ 2T ð1� PmaxÞ
J

� �E�stot

>
E þ 1

stot

� �
� stot

J

� 	stot � 1� stot þ 2T ð1� PmaxÞ
J

� �Eþ1�stot

which corresponds to:

1 >
E þ 1

E þ 1� stot
� 1� stot þ 2T ð1� PmaxÞ

J

� �

giving:

E >
stot � J

stot þ 2T ð1� PmaxÞ � 1

Since the number stot of sentinels to be added is consider-
ably smaller than the number T of twin sets and the number
J of jobs is large (especially when compared with the total
number of sentinels and twin sets), the value �E that maxi-
mizes p extreme(E) can be approximated to �E ¼ stot �J

2T ð1�PmaxÞ .

The probability of workers to be undetected when processing
only �E jobs is then:

p extremeð �EÞ ¼
stot�J

2T ð1�PmaxÞ
stot

 !
� stot

J

� 	stot �
�
�
1� stot þ 2T ð1� PmaxÞ

J

� stot�J
2T ð1�PmaxÞ�stot

which can be then simplified applying the following steps:

� stot �J
2T ð1�PmaxÞ

stot

� 	
� ð stotJ

2T ð1�PmaxÞÞ
stot

stot!
which, using Stirling’s

approximation for the factorial at the denominator,

can be approximated as
ð stotJ
2T ð1�PmaxÞÞ

stotffiffiffiffiffiffiffiffiffi
2pstot

p ðstote Þstot

� since stot � J , ð1� stotþ2T ð1�PmaxÞ
J Þ

stot �J
2T ð1�PmaxÞ�stot �

ð1� 2T ð1�PmaxÞ
J Þ

stot �J
2T ð1�PmaxÞ which, applying rule ð1þ

y
xÞx � ey, can be approximated as e�stot .

The maximum value of p extreme can then be approxi-
mated as:

p extremeð �EÞ ¼
stotJ

2T ð1�PmaxÞ
� 	stot
ffiffiffiffiffiffiffiffiffiffiffiffi
2pstot

p stot
e


 �stot � stot
J

� 	stot � e�stot ¼

¼
stot

2T ð1�PmaxÞ
� 	stot

ffiffiffiffiffiffiffiffiffiffiffiffi
2pstot

p

The validity of this formula has been verified using simu-
lations in a variety of configurations.

For guaranteeing a probability of extreme omissions to
go undetected lower than "0 (where "0 could be equal to or
different from the " required for p undetected), the number
stot of sentinels to inject to maintain the protection guaran-
tees provided by twins can be then derived instantiating the
formula above with the Pmax of the considered scenario and
T computed as illustrated at the end of Section 6.1. Again,
as we see next, a handful of sentinels overall suffices.

6.3 Integrity Guarantees

The analysis above enables us to evaluate effectiveness of
integrity controls for realistic scenarios characterized by
large workloads. Indeed, Sections 4 and 5 considered a rela-
tively small workload (J ¼ 2000 and w ¼ 10), with the goal
to understand the behavior of the techniques, rather than
demonstrating their effectiveness. We have then evaluated
p undetected in configurations characterized by different
numbers of jobs and varying: i) the percentage of control jobs
(from 5% to 25%); ii) the percentage of omitted jobs (1%,
0.1%, and 0.01%); and iii) the probability Pmax of themost fre-
quent class (0, 0.25, and�0.50). The value ofPmax determined
also the kind (twin sets versus sentinels) of control jobs to be
injected. As we assumed a large number of classes, Pmax ¼
0:50 is the threshold where twins hand over to sentinels for
effectiveness and therefore the values exhibited for the case
Pmax � 0:50 assumes use of sentinels, noting that the case
Pmax ¼ 0:50 applies to twins as well. Also, since effectiveness
of sentinels does not depend on Pmax (given that sentinels
are uniformly distributed), the exhibited values for the case
Pmax � 0:50 hold for all Pmax > 0:50.

Tables 4 and 5 show the probability of omissions to go
undetected for two scenarios characterized by 106 and 108
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jobs, respectively, varying the different parameters. For
instance, just injecting 5% of additional control jobs pro-
vides a p undetected (i.e., the probability of omissions to
go undetected) varying from 4.59e-435 to 6.78e-218
(depending on Pmax) when omissions are up to 0.01% of
the 108 jobs. Clearly, increasing the amount of controls or
as omissions increase makes such a probability lower
(with a value of 7.96e-219349, when 25% control jobs are
added and omissions hit 1% of the jobs). Similarly, increas-
ing the overall number of jobs leads, for the same percent-
age increase in integrity cost, to an improvement in the
effectiveness of integrity verification (with 106 jobs,
p undetected varies, injecting 5% additional control jobs,
from 4.54e-05 to 6.74e-03 when omissions are up to 0.01%).
Table 6 shows the (impressively low) absolute maximum
number of jobs that workers can afford to omit while
maintaining the probability of being undetected higher
than 10�10. For instance, even when just 5% control jobs
are injected, workers will be detected with probability
greater than 1� 10�10 if omissions are more than 231, 308,
or 461 (depending on Pmax).

For evaluating the number of sentinels to be injected to
provide protection against extreme omissions when using
twins (i.e., when Pmax � 0:50), we imposed p extreme <
10�10. The number of sentinels varied from a maximum of
5 (for a scenario with 105 jobs) to just 1 (for scenarios with
1012 jobs or above). The number of sentinels was either 2
or 3 for the scenario with 106 jobs and consistently 2
for the scenario with 108 jobs, for all the configurations in
Tables 4 and 5.

7 WORKERS COLLUSION

In the previous sections we have assumed workers not to
collude. Collusion may occur if the workers appear to be
independent, but are all executing under the control of a
same party. As we will discuss in this section, the techni-
ques are resilient to collusion. Indeed, it is sufficient to take
into consideration the fact that in presence of collusion
some of the control jobs (twins) can become ineffective. Sen-
tinels, being unique, are clearly not affected by collusion,
since no worker will have a sentinel in common with
another worker. By contrast, twins are exposed to being rec-
ognized as such by colluding workers, which can agree on
the same (not computed) response to be returned for the
jobs so to go undetected in their omission. While noting
that, if the characteristic of the computation allows it, the
ability of colluding workers to recognize twins can be coun-
teracted by making twins different one from the other (e.g.,
for image recognition altering the twinned copies in some
ways without altering the result of the computation), we
assume common twins to be completely recognizable by
colluding workers. In the following, we first investigate
how the effectiveness of twins changes and then discuss
how colluding workers can be discovered.

Analysis. Assume that lC of the l lazy workers (of the total
of w workers) collude, forming a coalition. Considering a
replication factor r ¼ 2, a twin set can be recognized by the
colluding workers only if both jobs are allocated to them
(while twin sets for which at least one of the jobs is outside
the coalition cannot be recognized as such). The probability
of a twin set to be recognized as such by a coalition is then:

p twin coalition ¼
lC
2


 �
w
2


 �
corresponding to a number of twin sets TC under the control
of the coalition equal to TC ¼ T � p twin coalition. For
instance, if a coalition controls half of the workers, around
1
4-th of the twins will be controlled; this means that 3

4-ths of
the twins will still be effective.

Colluding workers can opportunistically behave on the
discovered twins by omitting them and agreeing on the
response to be returned for each twin set (while omitting
the work). The formulas in Sections 4 and 5 continue then to
hold removing, for lazy workers, the number of twinned
jobs under the control of the coalition from both the number
o of omitted jobs and the total number j of jobs. Assuming
twins to be uniformly distributed among workers, on aver-
age each colluding worker is assigned avgjobs ¼ 2TC

l twins of
the 2TC twinned data items allocated to workers in the coali-
tion. Hence, in the formalization presented in Sections 4

TABLE 4
Probability p undetected for a Scenario With 106 Jobs for
Different Pmax, and Varying the Percentage of Omissions

and of Control Jobs Injected

TABLE 5
Probability p undetected for a Scenario With 108 Jobs
for Different Pmax, and Varying the Percentage of

Omissions and of Control Jobs Injected

TABLE 6
Upper Number of Jobs That can be Omitted by
Workers With Probability of Being Detected
Below 10�10 for the Scenarios of Table 5
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and 5, o becomes, for lazy workers, max(o� avgjobs, 0) and j
becomes j� avgjobs.

Fig. 7 illustrates the probability p pass twins obtained
through 10000 Monte Carlo simulations varying the percent-
age of colludingworkers with respect to lazyworkers, assum-
ing w=100 workers of which l=49 are lazy, j=200 jobs, T=20
twin sets, r=2, and a ¼ 1. As visible from the figure,
p pass twins grows with the number of lazy workers in the
coalition. However, the growth is smooth and less than linear.

ColludingWorkers Identification. To identify colludingwork-
ers in presence of a single coalition that includes all the l lazy
workers, we exploit the possible inconsistent results returned
for twin sets that are not fully covered by colluding workers.
Indeed, inconsistent results may only happenwhen a twin set
is processed by a worker in the coalition (lazy worker) and by
a worker outside the coalition (honest worker). The basic idea
of the approach for discovering lazy workers consists in
modeling the inconsistent results returned for twin sets as a
graph G where there is a node for each worker wi in the sys-
tem, and an edge (wi,wk) iff 9d such that wi; wk 2 vðdÞ and
gi(d)6¼gk(d). Fig. 8a illustrates an example of graph modeling
a system with eight workers where, for instance, w1 and w2

return a different class for the same data item. For each edge
(wi,wk) inG, eitherwi orwj is lazy. Indeedhonestworkers com-
pute the same (correct) class, while colluding workers return
the same (non computed) class. For instance, considering the
graph in Fig. 8a, either w1 or w2 is lazy and the other one is
honest. Graph G is then bipartite and possibly composed of
different connected components.

To identify lazy workers, given graph G, the client first
computes the connected components of G. For each con-
nected component with more than one node, the nodes in
the component are partitioned in two subsets, V1 and V2, in
such a way that, for each edge (wi,wk) in the component,
wi2 V1 and wk2 V2. Finally, for each connected component
the client verifies one of the twins corresponding to one edge
in the component: the worker whose classification for the
verified twin corresponds to the classification computed by
the client is considered honest; the other one is lazy. As an
example, consider the graph in Fig. 8a. This graph includes
three connected components Gx, Gy, and Gz (Fig. 8b). The
single node in Gz is considered honest since it passes all
integrity controls. Consider now connected component Gx.
Here, the nodes are partitioned in two subsets: fw1; w3g and
fw2; w4g. The client could then verify the twin between w1 and

w2: if w1 is honest also w3 is honest (with w2 and w4 lazy), and
vice versa. Similarly, the nodes in the connected component
Gy are partitioned in two subsets, namely fw5; w7g and fw6g,
and the client only needs to verify one of the two twins inGy.
Fig. 8c illustrates a possible classification of the workers in
the graph in Fig. 8a, where honest workers are green (gray in
a b/w print-out) and lazy workers are red (bold in a b/w
print-out). After having identified lazy workers, the client
can discard the results of the jobs assigned to them, and do
not pay them for their services. The jobs in the workload of
lazy workers can be assigned to honest workers for their
evaluation.

The cost, for the client, to identify lazy workers is linear
in the number of twin sets that do not pass the integrity
check and requires to recompute a limited number of jobs
(one for each connected component in the graph). Consider-
ing our example above, the client needs to verify only two
out of the five mismatching twins.

8 EXPERIMENTS

To complete our analysis, we have performed experiments
simulating a distributed data computation environment com-
prising different (potentially lazy) workers. The distributed
data computation was controlled by a client program invok-
ing generic functions on an arbitrary number of workers ran-
domly behaving as lazy, and introducing a parameterizable
number of twins and sentinels. For the experiments, as an
instance of a distributed data computation, wewrote a C pro-
gram that identifies the lowest result of the application of a
cryptographic hash function among a set of input values.
(With respect to use in practice, we note that the computation
is analogous to the computation that is executed in the Bitcoin
network to produce the blocks in the blockchain.) More pre-
cisely, each job has as input 1000 values, and the worker has
to apply a cryptographic hash function over them and return
the value which had the smallest result. Workers behaving
lazywere assumed to opportunistically return, for an omitted
job, the lowest value in the job’s input.

We run experiments on a variety of machines (a server
with an Intel Xeon W-2135 3.7 GHz CPU with 6 physical
cores; a server with 2 Intel Xeon E5-2620 2.1 GHz CPUs and
16 physical cores; a server with 2 Intel Xeon Gold 5118 2.3
GHz CPUs and 20 physical cores). We have considered 106

jobs, each requiring 1000 computations. Jobs were distrib-
uted to w=10 workers, with each worker receiving j=105

jobs. To note here that, as our analysis has shown, effective-
ness of the control depends on the number of overall jobs
(i.e., one million for us) rather than the number of workers
and individual workload. We considered the use of one

Fig. 7. Probability p pass twins varying the percentage of colluding work-
ers (lC ) with respect to lazy workers (l) obtained through Monte Carlo
simulations.

Fig. 8. An example of graph modeling twin mismatch (a), its connected
(dotted) components (b), and its (color-coded) partitioning (c).
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sentinel and four different configurations for twins, assum-
ing 500, 1000, 2500, and 10000 twin sets, respectively. In
terms of percentage, the different configurations injected
from 0.05% to 1% twin jobs, evenly distributed across work-
ers. We then assessed the probability of workers to be unde-
tected when omitting jobs with an omitted ratio (o/j) from
0.001% to 0.18% (which corresponded to theoretical values
of p undetected distant from 0 and 1).

Fig. 9 illustrates the result of our experiments. In the
figure, the x axis reports the percentage of jobs omitted by
workers and the y axis the value of p undetected. Observa-
tions for each twin set configuration are color-coded, with the
color-coding giving the correspondence with the legend (for
b/w printout we note that the legend and the curves are in
the same order from top to bottom) For each twin set configu-
ration, the continuous line corresponds to the prediction of
the model, with the color band describing for each setup the
95% confidence interval provided by the model. The starred
points are the observations (ratios of undetected omissions)
from the experiments. Each of the 20 points in the figure has
been obtained through 1000 runs of the different configura-
tions above, with an overall execution time of more than 20
CPU-days per worker. As visible from the figure, the experi-
ments fully confirm the accuracy of the model (all stars are
aligned with the lines resulting from the theoretical analysis),
and the ability to offer high integrity guarantees with a small
additional cost.

9 RELATED WORK

Existing integrity verification techniques are usually classi-
fied in deterministic (e.g., [10], [11], [12], [13], [14], [15], [16],
[17]), and probabilistic, (e.g., [3], [8], [9], [11], [18]). Determin-
istic techniques provide integrity guarantees with full confi-
dence and are based on authenticated data structures (e.g.,
Merkle hash tree) stored at the provider’s site, but can be
used to verify the integrity of computations performed only
on data used to construct the authenticated structures.

Probabilistic techniques are more flexible than determin-
istic techniques and are based on the use of integrity checks
added to the original data. Several existing probabilistic tech-
niques are based on replication (e.g., [8], [9], [19]), on the injec-
tion of fake data into the original data collection (e.g., [4], [5],
[6], [20]), or on watermarks (e.g., [7]). Some works have ana-
lyzed the trade-off between the integrity guarantees offered
by probabilistic techniques and their overhead, by proposing

a game-theoretic framework and assuming that the same task
can be assigned to more workers (e.g., [21], [22]). The goal of
these proposals is to design a solution that provides an incen-
tive for the workers to compute the correct result. Other pro-
posals (e.g., [18], [19]) focus onMapReduce computations and
propose the adoption of a voting mechanism on the result of
replicated tasks. These works analyze how much replication
is necessary to provide a given probability of detecting integ-
rity violations. In the database context, some works (e.g., [8])
consider the combination of different probabilistic techniques
to verify the integrity of join results. They, however, focus
more on the efficient design of such integrity techniques but
do not provide an analysis of how to effectively tune their use
to achieve high-level guarantees with limited cost. Integrity
verification techniques have been also developed in the data
mining context (e.g., [20]) to support different types of com-
putations. Our work is complementary to the efforts above
and provides a novel perspective of investigation.

Our work presents similarities with, and nicely comple-
ments, solutions that permit to verify whether a worker cor-
rectly computed a function over an input (i.e., the correctness
of a single job) at limited cost (e.g., [23]).

Another line of work aims at minimizing the estimation
error when the same job is assigned (replicated) to multiple
users (e.g., [24], [25]), or at determining whether a user cor-
rectly evaluates jobs to optimize job assignment (e.g., [26],
[27]). These proposals are complementary to ours since they
aim to determine a strategy for maximizing the probability
that the results computed by users are correct. Also, they do
not consider the possibility of workers to behave opportu-
nistically in returning their results to the aim of being unde-
tected in their omissions.

10 CONCLUSIONS

Probabilistic integrity techniques allow for assessing integ-
rity of distributed computations performed by possibly
untrustworthy workers. If not carefully used, however,
such techniques can suffer from limited effectiveness. In
this paper, we have focused on two probabilistic techniques,
namely sentinels and twins, and provided a model captur-
ing their characteristics and enabling their controlled gener-
ation and injection so to provide best effective in achieving
integrity guarantees. Our model can then represent a refer-
ence for effective integrity assessment in different applica-
tion scenarios. Our findings can also enable clients to best
frame their distributed processing problem so to maximize
effectiveness of the control. For instance, with twins being
twice as effective as sentinels, an image recognition problem
with a yes/no answer where no is the most common answer,
and hence sentinels should be applied, can be transformed
into a finer-grained problem requesting workers to return,
instead of the simple no, the result of a numerical computa-
tion on the input (hence distributing the probability of the
no), thus enjoying a low Pmax and enabling the use of twins.
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[13] H. Hacig€um€uş, B. Iyer, and S. Mehrotra, “Ensuring the integrity of
encrypted databases in the database-as-a-service model,” in Proc.
17th Annu. Work. Conf. Data Appl. Secur., 2003, pp. 61–74.

[14] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic
authenticated index structures for outsourced databases,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2006, pp. 121–132.

[15] Y. Wang, Y. Shen, H. Wang, J. Cao, and X. Jiang, “MtMR: Ensur-
ing MapReduce computation integrity with Merkle tree-based
verifications,” IEEE Trans. Big Data, vol. 4, no. 3, pp. 418–431,
Sep. 2018.

[16] M. Xie, H. Wang, J. Yin, and X. Meng, “Providing freshness guar-
antees for outsourced databases,” in Proc. 11th Int. Conf. Extending
Database Technol. Adv. Database Technol., 2008, pp. 323–332.

[17] B. Zhang, B. Dong, and W. H. Wang, “CorrectMR: Authentication
of distributed SQL execution on MapReduce,” IEEE Trans. Knowl.
Data Eng., vol. 33, no. 3, pp. 897–908, Mar. 2021.

[18] W. Wei, J. Du, T. Yu, and X. Gu, “SecureMR: A service integrity
assurance framework for MapReduce,” in Proc. IEEE Annu. Com-
put. Secur. Appl. Conf., 2009, pp. 73–82.

[19] H. Ulusoy, M. Kantarcioglu, and E. Pattuk, “TrustMR: Computa-
tion integrity assurance system for MapReduce,” in Proc. IEEE Int.
Conf. Big Data, 2015, pp. 441–450.

[20] W. Wong, D. Cheung, B. Kao, E. Hung, and N. Mamoulis, “An
audit environment for outsourcing of frequent itemset mining,”
Proc. VLDB Endowment, vol. 2, pp. 1162–1172, 2009.

[21] A. Anta, C. Georgiou, M. Mosteiro, and D. Pareja, “Algorithmic
mechanisms for reliable crowdsourcing computation under
collusion,” PLoS One, vol. 10, no. 3, pp. 1–22, Mar. 2015.

[22] J. Vaidya, I. Yakut, and A. Basu, “Efficient integrity verification for
outsourced collaborative filtering,” in Proc. IEEE Int. Conf. Data
Mining, 2014, pp. 560–569.

[23] B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio:
Nearly practical verifiable computation,” in Proc. IEEE Symp.
Secur. Privacy, 2013, pp. 238–252.

[24] A. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A.
Ramesh, and J. Widom, “CrowdScreen: Algorithms for filtering
data with humans,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2012, pp. 361–372.

[25] L. Tran-Thanh, M. Venanzi, A. Rogers, and N. Jennings, “Efficient
budget allocation with accuracy guarantees for crowdsourcing
classification tasks,” in Proc. Int. Conf. Auton. Agents Multi-Agent
Syst., 2013, pp. 901–908.

[26] J. Wang, P. G. Ipeirotis, and F. Provost, “Cost-effective quality assur-
ance in crowd labeling,” Inf. Syst. Res., vol. 28, no. 1, pp. 137–158, 2017.

[27] P. Welinder and P. Perona, “Online crowdsourcing: Rating anno-
tators and obtaining cost-effective labels,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit. Workshops, 2010, pp. 25–32.

Sabrina De Capitani di Vimercati (Senior Member, IEEE) is a professor
with the Universit�a degli Studi di Milano, Italy. Her research interests
include data security and privacy. She has published more than 230
papers in journals, conference proceedings, and books. She has been a
visiting researcher with SRI International, CA, and George Mason Uni-
versity, VA.

Sara Foresti (Senior Member, IEEE) is a professor with the Universit�a
degli Studi di Milano, Italy. Her research interests include data security
and privacy. She has published more than 120 papers in journals, con-
ference proceedings, and books. She has been a visiting researcher
with George Mason University, VA. She chairs the IFIP WG 11.3 on Data
and Applications Security and Privacy.

Sushil Jajodia (Fellow, IEEE) is University professor, BDM International
professor, and the founding director of the Center for Secure Information
Systems, George Mason University, Fairfax, VA. He has authored or
coauthored seven books and more than 500 technical papers in the ref-
ereed journals and conference proceedings and edited 53 books and
conference proceedings. He is also a holder of 28 patents. He has been
a visiting professor with several Universities in France, Italy, and UK. He
is a fellow of ACM and IFIP.

Stefano Paraboschi (Member, IEEE) is a professor with the Universit�a
degli Studi di Bergamo, Italy. His research interests include focuses on
information security and privacy, Web technology for data intensive
applications, XML, information systems, and database technology. He
has been a visiting researcher with Stanford University and IBM Alma-
den, CA, and George Mason University, VA.

Pierangela Samarati (Fellow, IEEE) is a professor with the Universit�a
degli Studi di Milano, Italy. Her main research interests include data
protection, security, and privacy. She has published more than 290
papers in journals, conference proceedings, and books. She has been
a Visiting Researcher at Stanford University, CA, SRI International, CA,
and George Mason University, VA. She is a fellow of ACM and IFIP.

Roberto Sassi (Senior Member, IEEE) is a professor with the Universit�a
degli Studi di Milano, Italy. His research interests include mainly focusses
on the analysis of digital signals, with particular regard to biomedical
ones, on interdisciplinary applications, and on biometrics and privacy
protection techniques in biometric applications. The results have been
published in more than 150 publications.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Open Access funding provided by ‘Universit�a degli Studi di Milano’ within the CRUI CARE Agreement

122 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 1, JANUARY 2023




