
Photonic Interconnect Based Neural Network
Simulator

Andy Wolff, Kyle Shiflett, and Avinash Karanth
School of Electrical Engineering and Computer Science, Ohio University

Email: {aw415517, ks117713, karanth}@ohio.edu

Abstract—This paper introduces a photonic interconnect simulator that supports architecture simulation and design on a large
enough scale to facilitate design-space exploration of optical neural networks on a C++ implementation with PyTorch integration.

I. INTRODUCTION

Photonic hardware accelerators offer advantages in bandwidth, and power consumption for implementation of large-scale
computing systems [1]. This property makes them attractive for implementation of architectures such as neural networks which
benefit from increased parallelism and bandwidth. A significant challenge to designing photonic systems is a lack of tools
oriented towards designing scalable photonic interconnect based architectures. There certainly exist tools that are capable of
simulating photonics [2], but a tool specifically designed with the scalability and the abstraction needed to design and explore a
system quickly and accurately has yet to exist. In order to perform a full design-space exploration, a tool for photonic simulation
must be simple enough to allow for rapid creation and adjustment of test architectures, and allow for encapsulation of portions
of a system in order to simplify larger, system scale design choices and simulations. The photonic network simulator must
implement different photonic devices and circits while retaining accuracy in signals, losses, latency, and power consumption.
In this paper, we introduce a simulator built in C++ that is capable of simulating photonic components, and enables users to
create layers of abstraction in order to simulate larger and more complicated systems easily without sacrificing accuracy.

II. SIMULATOR DESIGN

The most important part of the simulator is the optical signal implementation. Optical signals are represented as a complex
PyTorch tensor whose elements correspond to a particular wavelength. Signals are stored as an array of independent, non-
interacting wavelengths of light. A combination of different wavelengths in a signal can allow for complicated signal patterns
when examining total power over time. By using complex numbers, a single element can provide both phase and magnitude
information for a particular wavelength. The set of wavelengths represented within the simulation is readily configurable and
modifications to wavelength parameters take effect for the entire system. Propagation of signals over time is handled by running
the simulation as a sequence of time steps, with both the duration of the time step and the total time for the simulation as
configurable. Each time step every component takes the inputs at each of their ports and produces the corresponding output.

Components of the circuits can be modeled by separating them into discrete component blocks [4]. Components are
represented as C++ child classes of a broader component parent class. This parent class, and the environment connected
to it, automatically implements some basic component functionality, such as handling for the number of ports, managing
of links to other components, and automatically adding the component to the simulation environment on creation. Placing
components in container classes allows most simple pieces of an optical design to be created in single line of code. Many
simple components, such as the Y-branch can be represented with a matrix multiplication [3]. These models take input signals
as a vector and operate on both phase and magnitude through matrix multiplication.

All linear algebra performed in the simulator is implemented within PyTorch. This allows utilization of the GPU for tensor
manipulation, accelerating the simulator significantly. Combining PyTorch with conventional multithreading allows for as high a
utilization of hardware as possible, decreasing the time required for simulation. Additionally, if all of the simulated wavelengths
operate independently, as is typically the case for optical simulation, the simulation can be divided amongst multiple machines
with the same simulation programmed, but a different portion of the wavelength set.

III. APPLICATIONS

The task of combining preexisting components to form new ones is straightforward. With optical couplers and waveguides,
one may implement a ring resonator. The resulting resonator is then wrapped in a new resonator class. This resonator class can
map the linking functions so that this new composite component behaves in simulation construction as any lone component
does. Many of these resonators are then linked together to form a grid, and combined with another class implementing a
Mach-Zehnder interferometer in order to implement a single multiply and accumulate operation as in Figure 1. This is moved
a step further by wrapping the multiply and accumulate implementation into yet another container. This new implementation

This research was partially supported by NSF grants CCF-1513606, CCF-1703013 and CCF-1901192.

P7

978-1-6654-8655-2/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 S
ili

co
n

Ph
ot

on
ic

s C
on

fe
re

nc
e

(S
iP

ho
to

ni
cs

) |
 9

78
-1

-6
65

4-
86

55
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SI
PH

O
TO

N
IC

S5
59

03
.2

02
3.

10
14

19
62

Authorized licensed use limited to: The George Washington University. Downloaded on July 14,2023 at 17:19:36 UTC from IEEE Xplore. Restrictions apply.

(a)
(b)

Fig. 1. (a) Optical dot product circuit (b) Matrix multiplication implementation of a Y-branch component, and pseudocode for Y-branch constructor

(a)
(b)

Fig. 2. (a) Simulated power frequency diagram for optical dot product, using 4 channels (b) Total simulated output power. The result of the optical
dot product

has an added support in that the number of inputs for a multiply and accumulate is variable, and the class is constructed so
that the number of input and output channels can be set at construction. This allows for creation of many different versions
of this implementation quickly, allowing for determining its efficiency and testing its parameters much more quickly than if
one attempted to construct many different implementations of this architecture by hand. Critically, the process of creating new
combined components does not have to change as more and more levels of abstraction are added. At a system level, this allows
users to place subsystems into black-box components after they are implemented once, allowing for larger and larger systems
without making the simulator more unwieldy.

The optical dot product implementation was placed within the simulator and the results compared to that of another simulator,
Optsim, with the same system as in Figure 2. In both cases, the distribution of power per wavelength, and then the total
optical power for all wavelengths was taken in Watts. In each case there is some loss due to the way resonators function for
every resonator that a signal passes. The power distribution is nearly identical. Numerically, the only significant difference in
simulation results was that the resolution of wavelengths was slightly different, giving a slight change in the exact wavelength
with the peak power.The final results for the optical dot product are identical up to 4 significant figures. The small difference
in the exact value is likely due to compounded small rounding operations due to the limitations of floating point precision.

IV. CONCLUSIONS

This paper introduced a scalable photonic hardware simulator in order to create a photonic simulator compatible with larger
photonic neural network designs. An optical matrix multiplication was implemented, the power overhead was computed, and
the results of the simulation were compared to the results of similar optical simulator, and found to be comparable.

REFERENCES

[1] E. M. et al., “Optical interconnect system integration for ultra-short reach applications,” Intel Technology J., vol. 8, no. 2, pp. 115–128, May 2004.
[2] F. Laporte, J. Dambre, and P. Bienstman, “Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the

deep-learning framework PyTorch,” Sci. Rep., vol. 9, no. 1, p. 5918, Apr. 2019.
[3] Z. Lin and W. Shi, “Broadband, low-loss silicon photonic y-junction with an arbitrary power splitting ratio,” Opt. Express, vol. 27, no. 10, pp.

14 338–14 343, May 2019. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-27-10-14338
[4] D. Melati, F. Morichetti, A. Canciamilla, D. Roncelli, F. M. Soares, A. Bakker, and A. Melloni, “Validation of the building-block-based approach for the

design of photonic integrated circuits,” Journal of Lightwave Technology, vol. 30, no. 23, pp. 3610–3616, 2012.

P7

Authorized licensed use limited to: The George Washington University. Downloaded on July 14,2023 at 17:19:36 UTC from IEEE Xplore. Restrictions apply.

