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Teamwork and collaboration form the cornerstones
of organizational performance and success. It is im-
portant to understand how the attention allocation of
team members is linked to performance. One approach
to studying attention allocation in a team context is to
compare the scanpath similarity of two people working
in teams and to explore the link between scanpath
similarity and team performance. In this study, partic-
ipants were recruited to work in pairs on an unmanned
aerial vehicle (UAV) task that included low and high
workload conditions. An eye tracker was used to collect
the eye movements of both participants in each team.
The scanpaths of two teammates were compared in low
and high workload conditions using MultiMatch, an es-
tablished scanpath comparison algorithm. The obtained
scanpath similarity values were correlated with per-
formance measures of response time and accuracy.
Several MultiMatch measures showed significant strong
correlations across multiple dimensions, providing in-
sight into team behavior and attention allocation. The
results suggested that the more similar each team
member’s scanpath is, the better their performance.
Additional research and consideration of experimental
variables will be necessary to further understand how
best to use MultiMatch for scanpath similarity assess-
ment in complex domains.
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Introduction

Teams are the foundation of many organ-
izations and corporations, where a team is for-
mally defined as two or more people who have
precise roles and rely on one another to ac-
complish a common objective (Salas et al.,
1992). From the ancient Greeks’ army for-
mations (Goldsworthy, 1997) to flight crews
coordinating a 9,537-mile flight for nearly
19 hours (Pallini, 2020), teamwork and col-
laboration are at the core of various work en-
vironments. Researchers have studied team
performance in different setups, including avi-
ation (McNeese et al., 2018), military operations
(Gorman et al., 2020; Meslec et al., 2020), and
healthcare (Gorman et al., 2020).

A properly trained team can often achieve
better results than one person alone and lead to
a safer and more efficient system (Salas et al.,
2008). However, working in teams in data-rich
domains can also amplify the already-present
complexity of operations, especially where
human-machine interaction is involved
(McNeese et al.,, 2018). In one instance, an
unmanned aerial vehicle (UAV) crashed into the
ground, with the accident later attributed to
a lack of coordination between the operators
handling the UAV (Williams, 2000).

Therefore, understanding what factors affect
teamwork, and how this can be supported
through display design, is an important human
factors topic. This is especially important in
complex, data-rich, and data-driven domains,
where high mental workload can degrade team
performance (Funke et al., 2012; Urban et al.,
1995). Cognitive workload is defined as the
gap between one’s attentional resources and
the cognitive demands placed on users
(Wickens, 1992). Cognitive demands are typi-
cally varied by manipulating the user’s task load
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(Hancock et al., 1995) that is defined as the
number of items that one has to attend to in order
to successfully complete a task (Veltman &
Gaillard, 1996).

However, it is still not clear how best to
analyze the attention allocation of people
working in teams (Atweh et al., 2022). There is
a need for quantitative measures that can be
used in real time and at a fine-grained level of
analysis. This would allow for a better un-
derstanding of how people collaborate, which
would, in turn, lead to better design principles
for collaborative interfaces. Eye tracking is
one approach that can be used in this regard,
given that it can provide a trace of where
a person is looking—the person’s scanpath—
which, in turn, can help shed further light on
team performance (Devlin et al.,, 2020;
Faulhaber & Friedrich, 2019). Scanpath
analysis has been used in the past to assess
mental workload (Maggi et al., 2019), cog-
nitive capacity (Hayes & Henderson, 2017),
task demand (Boot et al., 2009), and breast
screening reading strategies (Chen et al.,
2018), but these methods have not been im-
plemented to assess team performance.

Thus, the overall goal of this study is to
explore whether and to what extent the
scanpath similarity of two people working
together on a task is linked to their perfor-
mance in a complex, multitasking, environ-
ment across different workloads. Scanpath
similarity was assessed using the well-known
scanpath comparison algorithm, MultiMatch
(Dewhurst et al., 2012). We hypothesized that
(1) pairs with more similar scanpaths would
also have better performance (e.g., Maurer
et al., 2018; Siirtola et al., 2019) and (2) the
aforementioned relation would be accentuated
during high workload periods. Understanding
the link between scanpath similarity and
performance can inform display design sol-
utions and training instructions that ensure that
teammates are effectively directing their at-
tention as a function of workload. To this end,
a simulator study in the context of UAV op-
erations was conducted in which participants
collaborated, working in pairs to complete
multiple tasks that are akin to multi-UAV
operations.

Background

Team Performance and
Attention Allocation

Given the importance of good teamwork,
several types of measures have been used to
analyze the performance, perceived workload,
and/or awareness of team members. Subjective
questionnaires are one popular approach to gain
insight on how operators thought they per-
formed. One example of well-known ques-
tionnaires that have been used is the NASA Task
Load Index (NASA-TLX; Hart & Staveland,
1988) that calculates workload scores based
on several scales, such as mental demand,
physical demand, temporal demand, perfor-
mance, effort, and frustration. Another com-
monly used questionnaire is the Distributed
Assessment of Team Mutual Awareness
(DATMA), which measures mental workload
and teamwork awareness (Berggren et al., 2011).
Berggren et al. (2011) used both NASA-TLX
and DATMA in their study to compare in-
dividual and team workload measures. Different
types of performance measures have also been
used for assessment, namely the response time to
complete a task and the accuracy of the task
performance. For instance, Jobidon et al. (2006)
used the mean response time to detect a fire as
a measure of team performance. Villamor and
Rodrigo (2018), on the other hand, calculated
a debugging score to assess teamwork among
programmers. However, none of these measures
provide insight into the attention allocation
strategies of each team member, which can play
an important role in understanding overall team
performance as visual attention allocation is
considered a multi-component cognitive re-
source that determines one’s ability to focus and
process information (Archibald et al., 2015).

One way to gain insight into attention allo-
cation is by using eye tracking, an infrared-based
technology that provides a trace of people’s eye
movements (Hess et al., 1998; Lin et al., 2004).
Specifically, eye tracking provides output in
terms of fixations and saccades. Fixations are
spatially stable gaze points during which time
visual processing takes place (Findlay, 2004).
Saccades are the rapid eye movements in be-
tween fixations during which no visual
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processing occurs (Yarbus, 1967). The sequence
of fixations and saccades form the scanpath of
each user and the areas that users look at on the
screen are defined as areas of interest (AOIs). In
recent years, eye tracking has been gaining in-
terest as a means to assess and improve team
performance (e.g., Daggett et al, 2017,
D’Angelo & Begel, 2017; Devlin et al., 2020).
Eye tracking provides a detailed, objective
window into visual attention allocation and can
also be used in real time (Lin et al., 2004).
Understanding what teammates are looking at
and when can provide new, previously unknown
insight into their collective performance, as
surveys, questionnaires, or debriefing strategies
cannot precisely measure scanpath trends and
their similarity.

Several eye tracking metrics have been used
in the context of team performance. For ex-
ample, pupillometry metrics have been applied
to assess cognitive workload of people working
in teams (e.g., Daggett et al, 2017). Other
metrics that have been utilized include gaze
overlap, which measures the times that several
users are viewing the same area simultaneously
(Pietinen et al., 2010). This was used by Devlin
et al. (2020) to study the link between visual
attention and pair performance during changes
in workload. The phi coefficient (®; Bakeman &
Gottman, 1997), which quantifies the lag be-
tween two time series, was also utilized by
Devlin et al. (2020) as a measure of the co-
ordination between scanpaths. In addition, cross
recurrence (or gaze coupling or overlap) analysis
has been used to measure how closely matched
teammates’ attention is, where cross recurrence
occurs in general when two fixations from dif-
ferent people’s scanpaths are within a certain
radius of each other (Cherubini et al., 2010;
Devlin et al.,, 2020; Jermann et al., 2010;
Villamor & Rodrigo, 2018). Another notable
approach is analyzing eye movement transitions
using entropy-based statistical analysis (Krejtz
et al., 2014), which can be applied to detect
individual differences in eye movement tran-
sitions between AOI (Alemdag & Cagiltay,
2018).

The proposed theoretical underpinning for
why shared cognition can improve performance
is that it improves coordination and

collaboration, which allows for more resources
to be assigned to the task being performed
(Langan-Fox et al., 2004). We thus centered our
first hypothesis to reflect the notion that shared
gaze will lead to better performance. For ex-
ample, Brennan et al. (2008) found that team
members whose gaze locations were very sim-
ilar were twice as efficient in their searching
tasks as solitary members. They were even more
efficient than members who were able to talk
together, a finding consistent with Neider et al.’s
study (2010). D’Angelo and Begel (2017) de-
veloped a system where programmers were
shown what the other was looking at while they
worked, and they found providing this shared
gaze information aids in coordination and ef-
fective communication. GazeTorch, a shared
gaze interface developed by Akkil et al. (2016),
was also found to make collaboration more
effortless. Several other studies found that
shared gaze improved performance and remote
collaboration in teleconferencing (Gupta et al.,
2016), video conferencing systems (Lee et al.,
2017), problem solving (Schneider & Pea,
2013), collaborative visual search (Siirtola
et al., 2019), and competitive and cooperative
online gaming (Maurer et al., 2018).

On the other hand, Villamor and Rodrigo
(2018) concluded that gaze recurrence alone
was not a good predictor of pair success. For
example, Miiller et al. (2013) found that shared
gaze in a puzzle solving task can induce un-
certainty and delay. Another study by Zhang
et al. (2017) concluded that shared gaze can
potentially boost collaboration but can be
impeded by factors such as trust and privacy.
This uncertainty suggests that it is still not
clear how shared attention is linked to task
performance in teams. There is a need to ex-
plore other eye tracking metrics that may be
able to better capture shared attention
allocation.

Scanpath Comparison

One such measure could be scanpath
comparison, which has not been explored to
date in the context of teams. Such metrics may
be able to provide additional insights re-
garding the link between the attention
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allocation of teams and the performance of
these teams. There are a number of algorithms
that can provide a measure of scanpath simi-
larity. ScanMatch is one notable example
(Cristino et al., 2010). It has been used to
compare the scanpaths of physics problem
solvers (Madsen et al., 2012), discover the
preferences of individuals with autism (Krol &
Kro6l, 2020), and study complex visual search
patterns (Frame et al., 2019). This method is
based on the Needleman—Wunsch algorithm
(Needleman & Wunsch, 1970) that was cre-
ated to compare biological sequences. The
ScanMatch algorithm includes two main steps:
(1) creating sequences of letters that denote the
sequence of AOIs fixated by the user and (2)
calculating similarity scores between these
sequences. The similarity score is a value
ranging between 0 and 1. The higher the score,
the more similar the scanpaths are; in other
words, two identical sequences of AOIs would
then result in a ScanMatch score of 1. Scan-
Match thus provides a single quantitative
measure of the similarity of two scanpaths.
However, ScanMatch’s dependence on AOIs
means that AOI’s size and order can greatly
affect the output (Anderson et al., 2015). In
addition, condensing scanpath similarity to
just one measure does not paint a complete or
detailed picture of what is going on; it neither
provides insight into the duration of team
member’s scanpaths and how they are related
nor in what aspects the scanpaths are similar.
This illustrates the need for a multi-
dimensional measure.

MultiMatch is one such scanpath compari-
son method that attempts to address some of the
limitations of ScanMatch. It has been used in
the literature in experiments to test memory
performance (Foulsham et al., 2012), assess
student cognitive processes (Stranc & Muldner,
2020), and study weather forecasters’ decision-
making processes (Wilson et al., 2018). Mul-
tiMatch is also notable for its robustness, as it
manages spatial noise and perturbed scanpaths
well (Dewhurst et al., 2012). In addition, the
code for calculating MultiMatch is freely
available online (Dewhurst et al., 2012). The
MultiMatch algorithm requires a number of
steps. First, the scanpath is converted into

a series of vectors, each one representing
a saccade (Dewhurst et al., 2012). The scanpath
undergoes several simplifications (Figure 1).
The first simplification consists of combining
vectors of similar directions into one. Another
simplification is amplitude based, in which
consecutive saccades that have amplitudes less
than a preset threshold are clustered into
a single vector. Next, the scanpaths are tem-
porally aligned (Dewhurst et al., 2012). Next,
the corresponding vectors are compared
(Foulsham et al., 2012). Five separate com-
parisons are performed, resulting in five
measures (shape, length, direction, position,
and duration). The results are averaged across
the number of vectors and normalized to yield
a value ranging between 0 and 1, where 1
represents perfect similarity. Each measure has
its own significance and represents a certain
spatial or temporal aspect of similarity as seen
in Table 1 (Anderson et al., 2015). Multi-
Match’s different measures allow for assessing
scanpath similarity at a more fine-grained level
than ScanMatch, and it also allows for the
comparison of scanpaths that have different
lengths (Dewhurst et al., 2012). It is important
to note that absolute scores of each MultiMatch
measure cannot be compared against each other
as each measure is calculated and normalized
differently (Dewhurst et al., 2012; Wilson et al.,
2018). Even though one downside of Multi-
Match is that the threshold needs to be carefully
selected, its present advantages were the reason
it was selected for this study.

Method
Participants

Ten pairs of undergraduate students at the
University of Virginia (20 students total)
were recruited for the study (M = 21.3 years,
SE = 0.24 years). Each pair consisted of one
male and one female who did not previously
know each other. The experiment lasted be-
tween 75 and 90 minutes and took place in
a single session. Participants were compen-
sated $10/hour for their time. This study was
approved by the University of Virginia In-
stitutional Review Board (protocol number
3480).
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Direction based simplification Amplitude based simplification

Figure 1. Tllustration of the simplification steps.

Table 1. Summary of MultiMatch Measures and Their Indications (Anderson et al., 2015; Dewhurst et al.,
2012; Wilson et al., 2018).

Measure Definition

Shape similarity

Vector difference between aligned saccade pairs
Direction similarity

Angular difference between aligned saccades
Length similarity - .

Position similarity O

(X1.¥1)
Euclidean distance between aligned fixations

Duration similarity Q

Difference in duration between aligned fixations

In all cases, a measure of 1 would indicate perfect similarity between the two scanpaths being compared.
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Figure 2. Experimental setup with the simulation
shown on two networked computers.

Experimental Design

There were two workload conditions, low and
high, that were manipulated by varying the
number of active UAVs for the primary (target
detection) task. For the low workload condition,
3-5 UAVs were active at all times, while 13—-16
UAVs were active at all times for the high
workload condition. These numbers were vali-
dated using NASA-TLX and performance
measurements (see Devlin et al. (2020) for the
full details). In each experimental condition,
pairs completed two 15-minute trials, one with
each of the two workload conditions. Pairs al-
ways completed the low workload condition
before the high workload condition. The design
of the simulation was based on the ‘Vigilant
Spirit Control Station’ the Air Force uses to
develop interfaces to control multiple UAVs
(Feitshans et al., 2008). The simulation was
developed using the Unity gaming engine and
ran on a desktop computer (28" monitor, 2560 x
1440 screen resolution; Figure 2). Participants
sat 26-28 inches from the monitor and used
a standard mouse to input responses. Pairs were
collocated, but each participant viewed separate
monitors and used separate mice to input re-
sponses. The simulation was networked so
participants could see inputs from their partner
in real time (e.g., when Participant 1 responded
to a chat message, Participant 2 could see his/her
response in real time).

Two desktop-mounted FOVIO eye trackers
with a sampling rate of 60 Hz were used to

collect point of gaze data. The average degree of
error for this eye tracker is 0.78° (SD = 0.59°).
An external microphone was also used to record
all verbal communication.

UAYV Tasks and Point Values

Each pair was responsible for completing
a primary task and three secondary tasks—that
is, four tasks total—for up to 16 UAVs. Al-
though all tasks were the pair’s responsibility,
only one participant from each pair had to
complete each task. The four tasks were as
follows:

1. Target detection task (primary task). Pairs
monitored each UAV’s video feed and indicated
whether a target—a semi-transparent cube—
was present. When a UAV was approaching
a waypoint (predetermined area of interest
denoted on the Map panel), its video feed could
become “active” (i.e., video feed became
highlighted; Figure 3). If a semi-transparent
cube appeared while the video feed was ac-
tive, the pair was instructed to press the target
button to indicate a target was present; if no
target was present, then no response was nec-
essary. UAV video feeds were active for 10
seconds and a target could appear with 4-7
seconds left in this time interval. Pairs were
instructed that the target detection task had the
highest priority among the four tasks. In the low
workload condition, one target appeared on one
of the active UAV video feeds every 10
seconds. For the high workload condition, three
targets appeared on three different active UAV
video feeds every 10 seconds.

2. Reroute task (secondary task). Pairs were
tasked to reroute a UAV when it was projected
to enter a no-fly-zone, denoted by a red square
on the Map panel (Figure 3). To reroute a UAV,
a participant clicked on a respective UAV’s
numbered square in the Reroute Menu panel to
activate the reroute menu that listed three al-
ternative route options. Participants could click
‘Preview’ to see a specific alternative’s sug-
gested route. When the UAV was not rerouted
in time (i.e., entered a no-fly-zone), it would no
longer be able to complete the remainder of the
mission. The rerouting task occurred 17 times
in each condition.
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Video Feed panel
/|

General
Health
panel

| Reroute Menu panel ]

} Chat Message panel

Figure 3. A Screenshot of the UAV simulation with panels labeled.

3. Fuel leak task (secondary task). Pairs were also
tasked with monitoring and maintaining the
overall health of each UAV. Participants used
the General Health panel, that consisted of
a health status bar and fuel level bar for each
UAV (Figure 3). One instance where a UAV
would need assistance is if it experienced a fuel
leak, that consisted of the UAV’s fuel level bar
rapidly decreasing in fuel, the color of its sealth
status bar changing from green to yellow, and
the message “FIX LEAK” appearing in the
health status bar. To stop a fuel leak, the
participant clicked on the health status bar. This
would change it back to green and stop the fuel
from decreasing as rapidly. If the leak was not
stopped in time, the UAV would reach the
“FATAL FUEL LEAK” condition and the task
could no longer be completed. A fuel
leak occurred a total of 14 times for each
condition.

4. Chat message task (secondary task). Pairs were
tasked with responding to messages from
headquarters by selecting one of two options on
the left-hand side of the chat message panel
(Figure 3). They were told to respond to as

quickly and accurately as possible. There were
19 messages in each condition.

Table 2 shows the point value associated with
each task (Devlin et al., 2019). Points were
assigned to emphasize the priority of the primary
task (i.e., target detection) as well as to convey
the severity of incorrectly or not attending to
a task (e.g., UAV flies through no-fly-zone).
Also, we informed pairs that the highest scoring
pair would earn an additional $10 to incentivize
performance. Response times for each task for
each pair were recorded as well.

Experiment Procedure

Participants read and signed the consent form
and were then briefed about the experiment’s
goals and task expectations as a pair. Participants
then independently completed a five-minute
training phase. By the end of training, partic-
ipants had to demonstrate they could achieve
70% accuracy for all tasks. We then informed the
pairs about how the simulation was networked
and provided them 3 minutes to introduce
themselves to one another and discuss anything
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Table 2. Point System for UAV Simulation.

Points Per
Response to Task Response
Correctly recognizing a target +100
Correctly recognizing a non-target +50
All secondary tasks (reroute, fuel leak, and chat message) +30
Any incorrect or lack of response (false positive or negative to target detection task, —100

UAV flies through no-fly-zone, or "FATAL FUEL LEAK" condition)

they deemed necessary. There were no re-
strictions on how the participants could interact
during these 3 minutes, that is, the experimenter
gave no guidance on what should be discussed,
so discussing team strategies before the exper-
imental portion was completely participant-
driven. Afterward, the audio recording started,
and participants completed the low workload
condition, were provided a short break, and then
completed the high workload condition. Par-
ticipants could communicate verbally with each
other during the experiment. The same tasks
appeared at both stations and the actions of each
team member were reflected on both stations,
but a participant could not see the cursor
movements of their teammate. At the conclusion
of the experiment, participants were compen-
sated for their time.

Data Analysis

After we gathered the eye tracking data
from the FOVIO eye tracker, we filtered the
datasets and removed invalid entries. The data
loss across all participants and trials was on
average 11.9% (SD = 11.2%). We detected
fixations and saccades using the code de-
veloped by Riggs Lab. This code is used to
analyze eye tracking data collected from ex-
perimental studies with participants and it
serves two main purposes: (1) filtering the eye
tracking dataset and (2) detecting fixations and
saccades based on Nystrom and Holmqvist’s
(2011) velocity-based and data-driven adap-
tive algorithm. The code, implemented in
Python, first takes the raw eye tracking files as
input, and filters out empty or invalid re-
cordings. Then, it passes the data through
a Butterworth smoothing filter and calculates

the angular velocities in preparation for the
data-driven iterative algorithm that keeps it-
erating until the absolute difference between
the newly calculated velocity threshold and the
previous one converges to less than 1°.

We then used MATLAB to calculate the
MultiMatch similarity scores for each pair of
participants (one set of scores for low workload
and another for high workload). The five
measurements were extracted for each condition
using the doComparison function, the main
algorithm of MultiMatch (Dewhurst et al.,
2012). The eye tracking data were then di-
vided into one-minute segments and the algo-
rithm was run for each segment in turn. Each
pair thus had between 10 and 14 segments to
run, and additional code was written to perform
the doComparison function in batches. This
process had to be done due to the large size of the
data files that exceeded the RAM limit available.
Note that, for our experiment, the SimplifyExcel
function in the toolbox that pre-processes the
eye tracking data was not used, as all the nec-
essary pre-processing had been done beforehand
by the event detection software.

Finally, we calculated the Pearson corre-
lation coefficients between each MultiMatch
measure (i.e., shape, length, position, di-
rection, and duration) and each of the per-
formance measures (points and response
time). This was done for low workload and
high workload separately, resulting in six
Pearson correlation coefficients (and their
associated p-value) per each low or high
workload condition. The assumptions of
normality (assessed using Shapiro-Wilks tests)
were met for all variables, and homoscedas-
ticity was checked using plots. In addition,
Welch paired t-tests were used to compare the
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Figure 4. Scatter plots displaying total points by shape similarity, length similarity, direction similarity, position
similarity, and duration similarity with best fitted lines at both low and high workloads.

performance results in low and high workload.
These tests were used since the variances of
the performance results at each workload
condition were unequal. In all cases, signifi-
cance was considered at p < .05.

Results
MultiMatch and Performance

Figure 4 shows the total points as a function
of each of the MultiMatch measures (shape,

direction, length, position, and duration) in
both low and high workload conditions, where
each point represents a team. Figure 5 shows
the response time as a function of each of the
MultiMatch measures for both workload
conditions. Both Figures 4 and 5 contain best
fitted lines for each workload condition.
Table 3 shows the correlation values
between MultiMatch values and the two
measures of performance (points and response
time).
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position similarity, and duration similarity with best fitted lines at both low and high workloads.

Workload Conditions

The mean of total points scored in the low
workload condition was 24,942 (SD = 2,003)
and for high workload it was 63,991 (SD = 7,
772). The mean response time in the low
workload condition was 2.13 (SD = 0.194) and
for high workload it was 3.11 (SD = 0.22).
Welch paired t-tests revealed significant differ-
ences in total points (#(9) = —19.24, p < .001)
and response time (#9) = —16.51, p < .001)
means between low and high workload. In

addition, the correlation coefficients of Table 3
that showed significance (i.e., MultiMatch
measures of shape, length, and duration corre-
lated with each of points and response time)
during low workload were Fisher Z transformed
(Fisher, 1915) and z-tested against the high
workload condition. In the case of points, there
was a significant difference in the means of the
two samples (z = —2.26, p = .024), while for
response time the difference was not significant
(z=1.2,p=0.22).
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Table 3. Correlation Analysis Between the Five MultiMatch Measures (Shape, Direction, Length, Position,
and Duration) and the Two Performance Measures (Total Points and Response Times) for Low and High

Workload.

Low Workload

High Workload

MultiMatch Measure Dependent Correlation p- Correlation p-
Similarity Variable Coefficient Value Coefficient Value
Shape Total points 0.26 46 0.75 <.005
Response time 0.16 0.651 —0.37 0.29
Direction Total points 0.45 0.19 0.4 0.25
Response time —0.21 0.56 -0.39 0.25
Length Total points 0.64 .048 0.81 <.005
Response time .008 0.98 —0.46 0.18
Position Total points 0.36 0.30 0.16 0.67
Response time —0.48 0.16 —0.28 0.43
Duration Total points 0.41 0.20 0.59 0.07
Response time —0.63 .005 —0.65 <.005

Values in bold represent strong significant correlations (i.e., an absolute correlation value above 0.6; Jurs et al., 1998).

Discussion

The overall goal of this experiment was to
analyze whether and to what extent the scanpath
similarity of two people working together on
a complex task was indicative of team perfor-
mance, and whether this differed during low and
high workload. We had hypothesized that: (1)
pairs with more similar scanpaths would have
better performance and (2) these performance
benefits will be accentuated during high
workload.

Hypothesis |: Pairs with more similar
scanpaths have better performance

We had predicted that a higher similarity
between participants’ scanpaths would result in
better performance. In other words, if the par-
ticipants’ attention allocation strategies were
similar in terms of location, shape, sequence,
etc., they would be assumed to be more syn-
chronized and more aware of each other’s ac-
tions. This would, in turn, enable better team
performance. This would then translate to
a positive correlation between scanpath simi-
larity and total points, and a negative correlation
between scanpath similarity and response time
(faster response times meant better perfor-
mance). This would be in line with previous
work that showed pairs with similar attention

allocation performed better as a team (e.g.,
Cherubini et al., 2010; D’Angelo & Begel,
2017), albeit without the level of detail pro-
vided by MultiMatch. The findings here could
also extend to build on the literature on gaze
sharing, that is, allowing teams to view each
other’s gaze points on their respective displays
while simultaneously completing their tasks,
which has been shown to improve performance
(Lee et al., 2017).

Our hypothesis held true for two dimensions
of the MultiMatch algorithm: length similarity
and duration similarity. For length similarity,
there was a strong (>0.6) and significant positive
correlation with total points both in low and high
workload, while for duration similarity there
was a strong negative correlation with response
time in both low and high workload. This
suggests that similarities in teammates’ saccade
lengths and fixation durations matter more than
similarities in their fixation positions. It appears
that sow teammates scan makes more of an
impact than where exactly the pair was looking,
as evidenced by the low and non-significant
correlation for position similarity. It is impor-
tant to emphasize that what matters here is not
necessarily the saccade length or fixation du-
ration of each team member per se, but rather
that these are similar for both teammates.
Similarly, the high correlation coefficients for
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length similarity and total points suggest that
similarity in saccade length indicates better team
performance as well.

Hypothesis 2: Performance benefits are
accentuated during high workload

The significant difference in performance
measures between the low and high workload
conditions confirms that performance decre-
ments did occur due to the workload manip-
ulation. We expected there would be a stronger
link between scanpath similarity and perfor-
mance during high workload, that is, more
positive correlation coefficients with total
points scored and more negative ones with
response time. This was observed for three of
the five measures: shape, length, and duration.
These measures showed higher correlation
coefficients (in absolute value) than their low
workload counterpart. The effect of workload
was also evident in the significant Fisher z-test
results and the slopes of the best fitted lines,
where the high workload slopes were greater
than their low workload counterparts for all
five MultiMatch measures (shape, direction,
position, length, and duration similarity). We
posit several explanations for these results.
First, in the more challenging high workload
condition, there is a stronger correlation be-
tween scanpath similarity and total points
scored. This may be due to the teammates
becoming more focused on the task that
modulated workload and resulted in the team
narrowing their attention allocation to the
respective AOI (as evident in Devlin et al.,
2019). This could explain why the teams had
more similar scanpaths (Wickens &
Alexander, 2009). This was true of the best
performing pairs as they had a change in their
attention allocation strategy, that is, having
a more focused strategy that resulted in more
similar scanpaths during high workload
compared to a more open-ended/free-gaze
strategy during low workload.

Second, a notably high correlation coefficient
was between shape similarity and total points
scored in the high workload condition that
indicates that team members who had more
similar scanpath shapes performed better.

Dewhurst et al. (2012) noted that shape simi-
larity has been found to be important in fields
such as visual imagery research, where fixation
order and position are not as crucial as in in-
terfaces that have very clear-cut and well-
structured AOIs, such as a website. For exam-
ple, Gbadamosi and Zangemeister (2001) used
scanpath shape to compare scanpaths when
participants were viewing an image. Given the
present testbed consisted of a complex interface
with a lot of imagery (e.g., the video feeds), this
may be the reason for the observed relation. It
seems that shape similarity is capturing a unique
and specific aspect of teammates’ scanpaths and
therefore it may be a valid indicator of team
performance in a visually data-rich environment.

Thus, it appears that shape, length, and du-
ration similarity are the aspects of MultiMatch
that are best suited to assess the performance of
teams experiencing high workload in complex
domains, much like this experiment’s simula-
tion. It could be that position and direction
similarity will be more strongly linked to per-
formance in the context of a simpler/more di-
rected task with fewer areas and targets that can
be carefully defined using AOIs.

Overall, MultiMatch appears to be a useful
and very promising tool for assessing team
attention allocation strategies and how they
related to performance especially during high
workload periods. The strong correlation of
performance with the three MultiMatch
measures (shape, length, and duration) can
help provide suggestions for interface design
and teamwork strategies in complex, multi-
tasking domains. The findings provide support
for developing training programs that teach
teammates how to coordinate their scanpaths
as a means to optimize team performance. This
could be done by showing novice teams the
scanning approach of expert teams. For ex-
ample, novices who were trained to mimic
expert’s visual patterns while reading medical
images of lungs (Dempere-Marco et al., 2002)
or chest X-rays (Litchfield et al.,2010) showed
improved performance. The findings also
provide support for design solutions that en-
courage teammates to scan a display in
a similar fashion. For example, the system
could highlight what a team member is looking
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at/scanning (e.g., a box changes color to
highlight the shared area if both users are
looking at the same lines of code; D’Angelo &
Begel, 2017). These developments would be
especially beneficial in high workload and
data-rich settings, such as emergency dis-
patching or process control.

Limitations and Future Work

Overall, our MultiMatch values were similar
to those of Foulsham et al. (2012), with the
exception of length similarity, where our values
were generally lower. By definition, length
similarity is the absolute amplitude difference of
aligned saccades, so the nature of the task and
the display layout may impact this measure. For
example, a task that involves navigating rapidly
between different sections of the screen like in
our experiment might yield different length
similarity values than a task of focusing on
a static image or object. It is thus important not
to use just one measure of MultiMatch when
assessing team performance and to always
consider a team’s context when generalizing
results. Additional studies in different contexts
are needed to improve the external validity of the
experiment. Future studies could also control
and/or analyze other aspects of team collabo-
ration, such as the communication between team
members. Another limitation of our experiment
was the small sample size of 10 teams, whereas
a larger sample size may have yielded more
significant correlations (like the marginal cor-
relation of duration with total points at high
workload that has a value of 0.59 and a p-value
of 0.07).

Future work can further explore MultiMatch
as a scanpath comparison tool by implementing
it across different types of domains and tasks, for
example, the pair programming collaboration
setup in Villamor and Rodrigo (2018). It would
be interesting to see how many of the same
conclusions hold true for different types of tasks,
contexts, and performance measures. For ex-
ample, system failures could be integrated to
investigate how teams adapt to unexpected
events and tasks. Also, the results of the current
experiment can be used to inform the design of
human-robot/artificial intelligence teams; for

instance, it would be interesting to investigate
the effect of variables like agent autonomy and
team composition (O’Neill et al., 2022) on team
performance and if the effect can be captured
using scanpath similarity measures. Further-
more, an interesting future research direction
would be to study the effect of pre-experiment
communication on the scanpath similarity and
performance of teams. In other words, if the
teammates agree to a certain strategy, such as
attending to mutually exclusive tasks on sepa-
rate parts of the screen, it would be interesting to
see if that would lead to better performance over
time. There is also merit in analyzing how the
team communication impacts scanpath similar-
ity and team performance and whether the trends
evolve over time. It would also be worth
studying the role different personalities (e.g., De
Raad, 2000) have in the currently observed
relationship between scanpath similarity and
task performance. Also, we could explore the
effect the point system had on current results,
motivating participants, and informing strategy.
Conversely, we could explore whether removing
any motivating factor would reduce the com-
petitive edge and lead to “social loafing,” that is
the decrease in efforts exerted by the individual
when working in a group setting (Liden et al.,
2004). If MultiMatch metrics could capture the
latter, this would be very informative and im-
pactful in complex, dynamic domains.
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