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We describe a family of graphs with queue-number at most 4 but unbounded stack-number.
This resolves open problems of Heath, Leighton and Rosenberg (1992) and Blankenship
and Oporowski (1999).

1. Introduction

Stacks and queues are fundamental data structures in computer science, but
which is more powerful? In 1992, Heath, Leighton and Rosenberg [28,29] in-
troduced an approach for answering this question by defining the graph
parameters stack-number and queue-number (defined below), which respec-
tively measure the power of stacks and queues for representing graphs. The
following fundamental questions, implicit in [28,29], were made explicit by
Dujmović and Wood [21]1:

• Is stack-number bounded by queue-number?
• Is queue-number bounded by stack-number?

If stack-number is bounded by queue-number but queue-number is not
bounded by stack-number, then stacks would be considered to be more pow-
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1 A graph parameter is a function α such that α(G) ∈ R for every graph G and such

that α(G1)=α(G2) for all isomorphic graphs G1 and G2. A graph parameter α is bounded
by a graph parameter β if there exists a function f such that α(G)6 f(β(G)) for every
graph G.
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erful than queues. Similarly, if the converse holds, then queues would be
considered to be more powerful than stacks. Despite extensive research on
stack- and queue-numbers, these questions have remained unsolved.

We now formally define stack- and queue-number. Let G be a graph and
let ≺ be a total order on V (G). Two disjoint edges vw,xy ∈ E(G) with
v≺w and x≺ y cross with respect to ≺ if v≺ x≺w≺ y or x≺ v≺ y≺w,
and nest with respect to ≺ if v ≺ x ≺ y ≺ w or x ≺ v ≺ w ≺ y. Consider
a function ϕ : E(G) → {1, . . . ,k} for some k ∈ N. Then (≺,ϕ) is a k-stack
layout of G if vw and xy do not cross for all edges vw,xy ∈ E(G) with
ϕ(vw) = ϕ(xy). Similarly, (≺,ϕ) is a k-queue layout of G if vw and xy do
not nest for all edges vw,xy ∈E(G) with ϕ(vw) = ϕ(xy). See Figure 1 for
examples. The smallest integer s for which G has an s-stack layout is called
the stack-number of G, denoted sn(G). The smallest integer q for which G
has a q-queue layout is called the queue-number of G, denoted qsn(G).

Figure 1. A 2-queue layout and a 2-stack layout of the triangulated grid graph H4 defined
below. Edges drawn above the vertices are assigned to the first queue/stack and edges

drawn below the vertices are assigned to the second queue/stack

Given a k-stack layout (≺,ϕ) of a graph G, for each i∈{1, . . . ,k}, the set
ϕ−1(i) behaves like a stack, in the sense that each edge vw ∈ ϕ−1(i) with
v ≺ w corresponds to an element in a sequence of stack operations, such
that if we traverse the vertices in the order of ≺, then vw is pushed onto
the stack at v and popped off the stack at w. Similarly, each set ϕ−1(i) in a
queue layout behaves like a queue. In this way, the stack-number and queue-
number respectively measure the power of stacks and queues to represent
graphs.

Note that stack layouts are equivalent to book embeddings (first de-
fined by Ollmann [34] in 1973), and stack-number is also known as page-
number, book-thickness or fixed outer-thickness. Stack and queue layouts
have other applications including computational complexity [10,11,19,26],
RNA folding [27], graph drawing in two [1,2,39] and three dimen-
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sions [15,16,18,40], and fault-tolerant multiprocessing [12,36,37,38]. See
[3,4,5,13,14,20,22,30,43,44] for bounds on the stack- and queue-number for
various graph classes.

Is stack-number bounded by queue-number?

This paper considers the first of the questions from the start of the paper.
In a positive direction, Heath et al. [28] showed that every 1-queue graph
has a 2-stack layout. On the other hand, they described graphs that need
exponentially more stacks than queues. In particular, n-vertex ternary hy-
percubes have queue-number O(logn) and stack-number Ω(n1/9−ε) for any
ε>0.

Our key contribution is the following theorem, which shows that stack-
number is not bounded by queue-number.

Theorem 1.1. For every s∈N there exists a graph G with qsn(G)64 and
sn(G)>s.

This demonstrates that stacks are not more powerful than queues for
representing graphs.

Cartesian products

As illustrated in Figure 2, the graph G in Theorem 1.1 is the cartesian
product2 Sb�Hn for sufficiently large b and n, where Sb is the star graph
with root r and b leaves, and Hn is the dual of the hexagonal grid, defined
by

V (Hn) := {1, . . . , n}2 and

E(Hn) := {(x, y)(x+ 1, y) : x ∈ {1, . . . , n− 1}, y ∈ {1, . . . , n}}
∪ {(x, y)(x, y + 1): x ∈ {1, . . . , n}, y ∈ {1, . . . , n− 1}}
∪ {(x, y)(x+ 1, y + 1): x, y ∈ {1, . . . , n− 1}}.

We prove the following:

2 For graphs G1 and G2, the cartesian product G1�G2 is the graph with vertex set
{(v1,v2) : v1 ∈ V (G1),v2 ∈ V (G2)}, where (v1,v2)(w1,w2) ∈ E(G1�G2) if v1 = w1 and
v2w2 ∈ E(G2), or v1w1 ∈ E(G1) and v2 = w2. The strong product G1�G2 is the graph
obtained from G1�G2 by adding the edge (v1,v2)(w1,w2) whenever v1w1 ∈ E(G1) and
v2w2 ∈E(G2). Note that Pupyrev [35] independently suggested using graph products to
show that stack-number is not bounded by queue-number.
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Figure 2. S9�H4

Theorem 1.2. For every s∈N, if b and n are sufficiently large compared
to s, then

sn(Sb�Hn) > s.

We now show that qsn(Sb�Hn) � 4, which with Theorem 1.2 implies
Theorem 1.1. We need the following definition due to Wood [41]. A queue
layout (ϕ,≺) is strict if for every vertex u ∈ V (G) and for all neighbours
v,w∈NG(u), if u≺ v≺w or v≺w≺u, then ϕ(uv) �=ϕ(uw). Let qsn(G) be
the minimum integer k such that G has a strict k-queue layout. To see that
qsn(Hn)� 3, order the vertices row-by-row and then left-to-right within a
row, with vertical edges in one queue, horizontal edges in one queue, and
diagonal edges in another queue. Wood [41] proved that for all graphs G1

and G2,

(1) qsn(G1�G2) � qsn(G1) + qsn(G2).

Of course, Sb has a 1-queue layout (since no two edges are nested for any
vertex-ordering). Thus qsn(Sb�Hn)�4.

Bernhart and Kainen [4] implicitly proved a result similar to (1) for stack
layouts. Let dsn(G) be the minimum integer k such that G has a k-stack
layout (≺,ϕ) where ϕ is a proper edge-colouring of G; that is, ϕ(vx) �=ϕ(vy)
for any two edges vx,vy ∈E(G) with a common endpoint. Then for every
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graph G1 and every bipartite graph G2,

(2) sn(G1�G2) 6 sn(G1) + dsn(G2).

The key difference between (1) and (2) is that G2 is assumed to be bipartite
in (2). Theorem 1.2 says that this assumption is essential, since it is easily
seen that (dsn(Hn))n∈N is bounded, but the stack number of (Sb�Hn)b,n∈N
is unbounded by Theorem 1.2. We choose Hn in Theorem 1.2 since it satisfies
the Hex Lemma (Lemma 2.4 below), which quantifies the intuition that Hn

is far from being bipartite (while still having bounded queue-number and
bounded maximum degree so that (1) is applicable).

Subdivisions

A noteworthy consequence of Theorem 1.1 is that it resolves a conjecture of
Blankenship and Oporowski [6]. A graph G′ is a subdivision of a graph G
if G′ can be obtained from G by replacing the edges vw of G by internally
disjoint paths Pvw with endpoints v and w. If each Pvw has exactly k internal
vertices, then G′ is the k-subdivision of G. If each Pvw has at most k internal
vertices, then G′ is a (6k)-subdivision of G. Blankenship and Oporowski[6]
conjectured that the stack-number of (6 k)-subdivisions (k fixed) is not
much less than the stack-number of the original graph. More precisely:

Conjecture 1.3 ([6]). There exists a function f such that for every graph
G and integer k, ifG′ is any (6k)-subdivision ofG, then sn(G)6f(sn(G′),k).

Dujmović and Wood [21] established a connection between this conjecture
and the question of whether stack-number is bounded by queue-number. In
particular, they showed that if Conjecture 1.3 was true, then stack-number
would be bounded by queue-number. Since Theorem 1.1 shows that stack-
number is not bounded by queue-number, Conjecture 1.3 is false. The proof
of Dujmović and Wood [21] is based on the following key lemma: every
graph G has a 3-stack subdivision with 1+2dlog2qsn(G)e division vertices
per edge. Applying this result to the graph G=Sb�Hn in Theorem 1.1, the
5-subdivision of Sb�Hn has a 3-stack layout. If Conjecture 1.3 was true,
then sn(Sb�Hn) would be at most f(3,5), contradicting Theorem 1.1.

Is queue-number bounded by stack-number?

It remains open whether queues are more powerful than stacks; that is,
whether queue-number is bounded by stack-number. Several results are
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known about this problem. Heath et al. [28] showed that every 1-stack
graph has a 2-queue layout. Dujmović et al. [14] showed that planar graphs
have bounded queue-number. (Note that graph products also feature heav-
ily in this proof.) Since 2-stack graphs are planar, this implies that 2-stack
graphs have bounded queue-number. It is open whether 3-stack graphs have
bounded queue-number. In fact, the case of three stacks is as hard as the
general question. Dujmović and Wood [21] proved that queue-number is
bounded by stack-number if and only if 3-stack graphs have bounded queue-
number. Moreover, if this is true, then queue-number is bounded by a poly-
nomial function of stack-number.

2. Proof of Theorem 1.2

We now turn to the proof of our main result, the lower bound on sn(G),
where G := Sb�Hn. Consider a hypothetical s-stack layout (ϕ,≺) of G,
where n and b are chosen sufficiently large compared to s as detailed below.
We begin with three lemmas that, for sufficiently large b, provide a large
sub-star Sd of Sb for which the induced stack layout of Sd�Hn is highly
structured.

For each node v of Sb, define πv as the permutation of {1, . . . ,n}2 in which
(x1,y1) appears before (x2,y2) if and only if (v,(x1,y1))≺ (v,(x2,y2)). The
following lemma is an immediate consequence of the Pigeonhole Principle:

Lemma 2.1. There exists a permutation π of {1, . . . ,n}2 and a set L1 of
leaves of Sb of size a>b/(n2)! such that πv=π for each v∈L1.

For each leaf v in L1, let ϕv be the edge colouring of Hn defined by
ϕv(xy) :=ϕ((v,x)(v,y)) for each xy∈E(Hn). Since Hn has maximum degree
6 and is not 6-regular, it has fewer than 3n2 edges. Therefore, there are fewer
than s3n

2
edge colourings of Hn using s colours. Another application of the

Pigeonhole Principle proves the following:

Lemma 2.2. There exists a subset L2⊆L1 of size c> a/s3n
2

and an edge
colouring φ : E(Hn)→{1, . . . ,s} such that ϕv=φ for each v∈L2.

Let Sc be the subgraph of Sb induced by L2 ∪{r}. The preceding two
lemmas ensure that, for distinct leaves v and w of Sc, the stack layouts of
the isomorphic graphs G[{(v,p) : p∈V (Hn)}] and G[{(w,p) : p∈V (Hn)}] are
identical. The next lemma is a statement about the relationship between the
stack layouts of G[{(v,p) : v∈V (Sc)}] and G[{(v,q) : v∈V (Sc)}] for distinct
p,q ∈ V (Hn). It does not assert that these two layouts are identical but it
does state that they fall into one of two categories.
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Lemma 2.3. There exists a sequence u1, . . . ,ud ∈L2 of length d> c1/2
n2−1

such that, for each p ∈ V (Hn), either (u1,p) ≺ (u2,p) ≺ ·· · ≺ (ud,p) or
(u1,p)�(u2,p)�·· ·�(ud,p).

Proof. Let p1, . . . ,pn2 denote the vertices of Hn in any order. Begin with
the sequence V1 :=v1,1, . . . ,v1,c that contains all c elements of L2 ordered so
that (v1,1,p1)≺ ·· · ≺ (v1,c,p1). For each i ∈ {2, . . . ,n2}, the Erdős–Szekeres
Theorem [24] implies that Vi−1 contains a subsequence Vi :=vi,1, . . . ,vi,|Vi| of

length |Vi|>
√
|Vi−1| such that (vi,1,pi)≺ ·· ·≺ (vi,|Vi|,pi) or (vi,1,pi)� ·· ·�

(vi,|Vi|,pi). It is straightforward to verify by induction on i that |Vi|>c1/2
i−1

resulting in a final sequence Vn2 of length at least c1/2
n2−1

.

For the rest of the proof we work with the star Sd whose leaves are
u1, . . . ,ud described in Lemma 2.3. Consider the (improper) colouring of Hn

obtained by colouring each vertex p∈V (Hn) red if (u1,p)≺·· ·≺ (ud,p) and
colouring p blue if (u1,p)� ·· ·� (ud,p). We need the following famous Hex
Lemma [25].

Lemma 2.4 ([25]). Every vertex 2-colouring of Hn contains a monochro-
matic path on n vertices.

Apply Lemma 2.4 with the above-defined colouring of Hn. We obtain a
path subgraph P =(p1, . . . ,pn) of Hn that, without loss of generality, consists
entirely of red vertices; thus (u1,pj)≺ ·· · ≺ (ud,pj) for each j ∈ {1, . . . ,n}.
Let X be the subgraph Sd�P of G.

Lemma 2.5. X contains a set of at least min{bd/2nc,dn/2e} pairwise cross-
ing edges with respect to ≺.

Proof. Extend the total order ≺ to a partial order over subsets of V (G),
where for all V,W ⊆ V (G), we have V ≺W if and only if v ≺ w for each
v ∈ V and each w ∈W . We abuse notation slightly by using ≺ to compare
elements of V (G) and subsets of V (G) so that, for v∈V (G) and V ⊆V (G),
v≺V denotes {v}≺V . We will define sets A1⊇ ·· · ⊇An of leaves of Sd so
that each Ai satisifies the following conditions:

(C1) Ai contains di>d/2i−1 leaves of Sd.
(C2) Each leaf v ∈ Ai defines an i-element vertex set Zi,v := {(v,pj) : j ∈

{1, . . . , i}}. For any distinct v,w∈Ai, the sets Zi,v and Zi,w are sepa-
rated with respect to ≺; that is, Zi,v≺Zi,w or Zi,v�Zi,w.

Before defining A1, . . . ,An we first show how the existence of the set An
implies the lemma. To avoid triple-subscripts, let d′ :=dn>d/2n−1. By (C2),
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the set An defines vertex sets Zn,v1 ≺·· ·≺Zn,vd′ (see Figure 3). The root r
of Sb is adjacent to each of v1, . . . ,vd′ in Sd. Thus, for each j∈{1, . . . ,n} and
each i∈{1, . . . ,d′}, the edge (r,pj)(vi,pj) is in X. Hence, (r,pj) is adjacent
to an element of each of Zn,v1 , . . . ,Zn,vd′ .

Zn,v1 Zn,v2 Zn,v3 Zn,v4 Zn,v5

(r, p3) (r, p2) (r, p4) (r, p1)

Figure 3. The sets Zn,v1 , . . . ,Zn,vd′ where n=4 and d′=5

Since Zn,v1 , . . . ,Zn,vd′ are separated with respect to ≺, if we imagine iden-
tifying the vertices in each set Zn,vi , this situation looks like a complete bi-
partite graph Kn,d′ with the root vertices L :={(r,pj) : j∈{1, . . . ,n}} in one
part and the groups R :=Zn,v1∪·· ·∪Zn,vd′ in the other part. Any linear or-
dering of Kn,d′ has a large set of pairwise crossing edges. So, intuitively, the
induced subgraph X[L∪R] should also have a large set of pairwise crossing
edges.

We formalize this idea as follows: Label the vertices in L as r1, . . . , rn so
that r1 ≺ ·· · ≺ rn. Then at least one of the following two cases applies (see
Figure 4):

1. Zn,�d′/2� ≺ r�n/2� in which case the graph between r�n/2�, . . . , rn and
Zn,1, . . . ,Zn,�d′/2� has a set of at least min{�d′/2�,�n/2�} pairwise-crossing
edges.

2. r�n/2� ≺ Z�d′/2�+1 in which case the graph between r1, . . . , r�n/2� and
Z�d′/2�+1, . . . ,Zd′ has a set of min{�d′/2�,�n/2�} pairwise-crossing edges.

Since, by (C1), d′�d/2n−1, either case results in a set of pairwise-crossing
edges of size at least min{�d/2n�,�n/2�}, as claimed.

It remains to define the sets A1 ⊇ ·· · ⊇ An that satisfy (C1) and (C2).
Let A1 be the set of all the leaves of Sd. For each i ∈ {2, . . . ,n}, assuming
that Ai−1 is already defined, the set Ai is defined as follows: For brevity, let
m := |Ai−1|. Let Z1, . . . ,Zm denote the sets Zi−1,v for each v∈Ai−1 ordered
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· · ·
Zn,1 Zn,2 Zn,�d′/2� r�n/2� r�n/2�+1 rn

· · ·

· · ·
Z�d′/2�+1 Zs+2 Z2s

r1 r2 r�n/2�

· · ·

Figure 4. The two cases in the proof of Lemma 2.5

so that Z1≺ ·· ·≺Zm. By Property (C2), this is always possible. Label the
vertices of Ai−1 as v1, . . . ,vm so that (v1,pi−1) ≺ ·· · ≺ (vm,pi−1). (This is
equivalent to naming them so that (vj ,pi−1) ∈ Zj for each j ∈ {1, . . . ,m}.)
Define the set Ai :={v2k+1 : k∈{0, . . . ,�(m−1)/2�}}={vj∈Ai−1 : j is odd}.
This completes the definition of A1, . . . ,An.

We now verify that Ai satisfies (C1) and (C2) for each i ∈ {1, . . . ,n}.
We do this by induction on i. The base case i = 1 is trivial, so now
assume that i ∈ {2, . . . ,n}. To see that Ai satisfies (C1) observe that
|Ai|= �|Ai−1|/2�� |Ai−1|/2� d/2i−1, where the final inequality follows by
applying the inductive hypothesis |Ai−1|� d/2i−2. Now it remains to show
that Ai satisfies (C2). Again, let m := |Ai−1|.

Recall that, for each v ∈Ai−1, the edge ev := (v,pi−1)(v,pi) is in X. We
have the following properties:

(P1) By Lemma 2.2, ϕ(ev)=φ(pi−1pi) for each v∈Ai−1,
(P2) Since pi−1 and pi are both red, for each v,w∈Ai−1, we have (v,pi−1)≺

(w,pi−1) if and only if (v,pi)≺(w,pi).
(P3) By Lemma 2.1, (v,pi−1)≺(v,pi) for every v∈Ai−1 or (v,pi−1)�(v,pi)

for every v∈Ai−1.

We claim that these three conditions imply that the vertex sets
{(v,pi−1) : v∈Ai−1} and {(v,pi) : v∈Ai−1} interleave perfectly with respect
to ≺. More precisely:

Claim 1. (v1,pi−1+t) ≺ (v1,pi−t) ≺ (v2,pi−1+t) ≺ (v2,pi−t) · · · ≺
(vm,pi−1+t)≺(vm,pi−t) for some t∈{0,1}.

Proof of Claim 1. By (P3) we may assume, without loss of generality,
that (v,pi−1) ≺ (v,pi) for each v ∈ Ai−1, in which case we are trying to
prove the claim for t= 0. Therefore, it is sufficient to show that (vj ,pi)≺
(vj+1,pi−1) for each j∈{1, . . . ,m−1}. For the sake of contradiction, suppose
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(vj ,pi) � (vj+1,pi−1) for some j ∈ {1, . . . ,m− 1}. By the labelling of Ai−1,
(vj ,pi−1)≺(vj+1,pi−1) so, by (P2), (vj ,pi)≺(vj+1,pi). Therefore,

(vj , pi−1) ≺ (vj+1, pi−1) ≺ (vj , pi) ≺ (vj+1, pi).

Therefore, the edges evj = (vj ,pi−1)(vj ,pi) and evj+1 = (vj+1,pi−1)(vj+1,pi)
cross with respect to ≺. But this is a contradiction since, by (P1), ϕ(evj )=
ϕ(evj+1)=φ(pi−1pi). This contradiction completes the proof of Claim 1.

We now complete the proof that Ai satisfies (C2). Apply Claim 1 and
assume without loss of generality that t=0, so that

(v1, pi−1) ≺ (v1, pi) ≺ (v2, pi−1) ≺ (v2, pi) · · · ≺ (vm, pi−1) ≺ (vm, pi).

For each j ∈ {1, . . . ,m − 2}, we have (vj+1,pi−1) ∈ Zj+1 ≺ Zj+2, so
(vj ,pi) ≺ (vj+1,pi−1) ≺ Zj+2. Therefore Zj ∪ {(vj ,pi)} ≺ Zj+2. By a sym-
metric argument, Zj∪{(vj ,pi)}�Zj−2 for each j∈{3, . . . ,m}. Finally, since
(vj ,pi) ≺ (vj+2,pi) for each odd i ∈ {1, . . . ,m}, we have Zj ∪ {(vj ,pi)} ≺
Zj+2∪{(vj+2,pi)} for each odd j∈{1, . . . ,m−2}. Thus Ai satisfies (C2) since
the sets Z1∪{(v1,pi)},Z3∪{(v3,pi)}, . . . ,Z2b(m−1)/2c+1∪(v2b(m−1)/2c+1,pi) are
precisely the sets Zi,1, . . . ,Zi,di determined by our choice of Ai.

Proof of Theorem 1.2. Let G := Sb�Hn, where n := 2s+ 1 and b :=

(n2)!s3n
2
((s+ 1)2n)2

n2−1
. Suppose that G has an s-stack layout (ϕ,≺). In

particular, there are no s+ 1 pairwise crossing edges in G with respect

to ≺. By Lemmas 2.1 to 2.3, we have a> b/(n2)! = s3n
2
((s+1)2n)2

n2−1
and

c > a/s3n
2
> ((s+ 1)2n)2

n2−1
and d > c1/2

n2−1
> (s+ 1)2n. By Lemma 2.5,

the graph X, which is a subgraph of G, contains min{bd/2nc,dn/2e}=s+1
pairwise crossing edges with respect to ≺. This contradiction shows that
sn(G)>s.

3. Reflections

We now mention some further consequences and open problems that arise
from our main result.

Nešetřil, Ossona de Mendez and Wood [33] proved that graph classes
with bounded stack-number or bounded queue-number have bounded ex-
pansion; see [32] for background on bounded expansion classes. The con-
verse is not true, since cubic graphs (for example) have bounded expansion,
unbounded stack-number [31] and unbounded queue-number [42]. However,
prior to the present work it was open whether graph classes with polyno-
mial expansion have bounded stack-number or bounded queue-number. It
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follows from the work of Dvořák, Huynh, Joret, Liu and Wood [23, The-
orem 19] that (Sb�Hn)b,n∈N has polynomial expansion. So Theorem 1.2
implies there is a class of graphs with polynomial expansion and with un-
bounded stack-number. It remains open whether graph classes with polyno-
mial expansion have bounded queue-number. See [14,17] for several examples
of graph classes with polynomial expansion and bounded queue-number.

Our main result also resolves a question of Bonnet, Geniet, Kim,
Thomassé and Watrigant [7] concerning sparse twin-width; see [7,8,9] for the
definition and background on (sparse) twin-width. Bonnet et al. [7] proved
that graphs with bounded stack-number have bounded sparse twin-width,
and they write that they “believe that the inclusion is strict”; that is, there
exists a class of graphs with bounded sparse twin-width and unbounded
stack-number. Theorem 1.2 confirms this intuition, since the class of all
subgraphs of (Sb�Hn)b,n∈N has bounded sparse twin-width (since Bonnet
et al. [7] showed that any hereditary class of graphs with bounded queue-
number has bounded sparse twin-width). It remains open whether bounded
sparse twin-width coincides with bounded queue-number.

Finally, we mention some more open problems:

• Recall that every 1-queue graph has a 2-stack layout [28] and we proved
that there are 4-queue graphs with unbounded stack-number. The fol-
lowing questions remain open: Do 2-queue graphs have bounded stack-
number? Do 3-queue graphs have bounded stack-number?
• Since Hn⊆P�P where P is the n-vertex path, Theorem 1.1 implies that

sn(S�P �P ) is unbounded for stars S and paths P . It is easily seen
that sn(S�P ) is bounded [35]. The following question naturally arises
(independently asked by Pupyrev [35]): Is sn(T�P ) bounded for all trees
T and paths P? We conjecture the answer is “no”.

Acknowledgement. Thanks to Édouard Bonnet for a helpful comment.
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[22] V. Dujmović and D. R. Wood: Graph treewidth and geometric thickness parame-
ters, Discrete Comput. Geom. 37 (2007), 641–670.
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[32] J. Nešetřil and P. Ossona de Mendez: Sparsity, vol. 28 of Algorithms and Com-
binatorics, Springer, 2012.
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