Nickel-Catalyzed Cross-Electrophile Coupling of 1,2,3-Benzotriazin-4(3H)-ones with Aryl Bromides

Tingzhi Lin,^a Yan-En Wang,^b Ning Cui, ^{||,a} Miaohui Li,^{||,a} Rui Wang,^{||,a} Jiahui Bai,^{||,a} YiRan Fan,^{||,a} Dan Xiong,^a Fei Xue,^c Patrick J. Walsh*,^d and Jianyou Mao,*,^a

^a Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.

^bCollege of Science, Hebei Agricultural University, Baoding 071000, P. R. China.

^cInstitute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China.

^dRoy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.

These authors contributed equally to this work.

Supporting Information Placeholder

ABSTRACT: The nickel-catalyzed cross-electrophile coupling of 1,2,3-benzotriazin-4(3H)-ones with aryl bromides to generate a diverse array of *ortho*-arylated benzamide derivatives has been developed. The reaction displayed good functional group tolerance with Zn as the reductant. The key to this transformation is the ring opening of benzotriazinones, which undergo a denitrogenative process to obtain various benzamide derivatives (29 examples, 42–93% yield). The scalability of this transformation is demonstrated.

INTRODUCTION

Benzamide derivatives are important building blocks commonly found in pesticides¹ and medications.² They are also useful precursors for the preparation of supramolecular polymers.³ In addition, benzamide derivatives act as chelating ligands that coordinate to transition metals.⁴ Due to their popularity, the development of efficient and versatile methods to synthesize *ortho*-arylated benzamide derivatives remains desirable.

The methods for *ortho*-arylation of benzamide derivatives often rely on the ability of this group to coordinate to metals. As a result, the transition-metal-catalyzed (including Fe, Ni, Pd, Ir, Ru) directed *ortho*-arylation of sp² C–H bonds has seen extensive development (Scheme 1a). A less common approach is the nickel-catalyzed denitrogenative *ortho*-arylation of benzotriazinones (Scheme 1b). In 2018, Cheng, Mannathan and their coworkers developed nickel-catalyzed denitrogenative cross-coupling reactions of 1,2,3-benzotriazin-4(3H)-ones with organoboronic reagents to provide *ortho*-arylated benzamides. Like other couplings using boronic acid derivatives, these reactions require base. The denitrogenative strategy can be applied to the preparation of isoquinolones and isoindolinones by using

various unsaturated substrates instead of boronic acids, such as alkene, ¹² alkyne¹³ and isocyanides. ¹⁴ More recently, Chatani¹⁵ and coworkers advanced a nickel-catalyzed cross-electrophile coupling reaction between benzamides bearing a 2-F or 2-Cl in the presence of base, reductant and additives (Scheme 1c). Of note, in the final stages of submission of this work, Zou¹⁶ and co-workers reported a related *ortho-alkylation* of 1,2,3-benzotriazin-4(3H)-ones (Scheme 1d).

Inspired by the elegant efforts in Schemes 1a-c, and with our interests in cross-electrophile coupling reactions, ¹⁷ we report herein the nickel-catalyzed denitrogenative cross-coupling of 1,2,3-benzotriazin-4(3H)-ones with aryl bromides under reductive conditions (Scheme 1e). This method was employed to generate a diverse array of *ortho*-arylated benzamide derivatives. The method circumvents the use of organometallic reagents and bases. This reaction not only broadens the classes of electrophiles in cross-electrophile coupling reactions but also provides a new route for the construction of *ortho*-arylated benzamides.

a) Catalyzed Ortho-Arylation of sp² C-H Bonds

$$\begin{array}{c} O \\ N \\ H \end{array} + R^2 \begin{array}{c} X \\ \hline \end{array} \begin{array}{c} Fe/Ni/Pd/Ir/Ru \\ \hline \end{array} \begin{array}{c} N \\ R^1 \\ \hline \end{array}$$

b) Ni-Catalyzed Denitrogenative ortho-Arylation

$$N^{\cdot,R^1}$$
 + R^2 N^{\cdot,R^1} + R^2 N^{\cdot,R^1}

c) Ni-Catalyzed Cross-Electrophile Coupling with C(sp²)-F and C(sp²)-Cl

d) Zou and co-workers alkylation protocol

e) This Work:

Scheme 1. Transition-Metal-Catalyzed *Ortho*-Arylation of Benzamide Derivatives

RESULTS AND DISCUSSION

Motivated by our previous studies on nickel-catalyzed crosselectrophile coupling reactions, 17a, 17b, 18 we initiated our research by choosing Ni(COD)₂/bipy as catalyst precursors, 3methylbenzo[d][1,2,3]triazin-4(3H)-one **1a** and bromobenzene 2a as model substrates. Zn powder was employed as the reductant with N,N-dimethylacetamide (DMA) as the solvent at 60 °C for 12 h. We were pleased to find that the denitrogenative orthoarylated product 3aa was produced in 56% isolated yield (Table 1, entry 1). Next, we screened different nickel sources using bipy as ligand (Table 1, entries 2–6). From these experiments, we observed that NiBr2•glyme provided the most improved yield of the denitrogenative cross-coupling product 3aa (68% yield, Table 1, entry 6). Other nickel sources [NiBr2, NiI2, NiBr₂•DME, NiCl₂(PPh₃)₂] proved less effective (Table 1, entries 2–5, for details on nickel sources and ligands screening see the Supporting Information). Based on these results, NiBr₂•glyme was used as catalyst.

We next moved to study the effect of solvent on the coupling yield (Table 1, entries 7–9). It was observed that when tetrahydrofuran (THF) was used, the cross-coupled product **3aa** was obtained in 20% isolated yield (Table 1, entry 7). Non-coordinating toluene provided **3aa** in only 17% isolated yield (Table 1, entry 8), while CH₃CN did not afford the desired cross-coupling product (Table 1, entry 9). To increase the yield of **3aa**, we next examined the impact of temperature. Increasing the temperature from 60 to 80 °C resulted in an increase in the desired product to 87% isolated yield (Table 1, entry 10). Further increasing the temperature from 80 to 100 °C, however, led to a decrease in the yield to 73% (Table 1, entry 11). It should be

noted that aryl bromides are the most suitable electrophiles in the system (for details on aryl electrophile screening see the Supporting Information). Control experiments revealed that NiBr₂•glyme and Zn powder were crucial for this reaction; no reaction occurred in their absence (Table 1, entries 12 and 13). Ultimately, our optimized conditions for this transformation were 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a, 1.0 equiv), bromobenzene (2a, 2.0 equiv), Zn powder (2 equiv), NiBr₂•glyme (10 mol %) and bipy (15 mol %) in DMA (0.5 M) at 80 °C for 12 h.

Table 1. Optimization of the Reaction Conditions^a

Entry	Ni source	Solvent	Temp (°C)	Yield ^b (%)
1	Ni(COD) ₂	DMA	60	56
2	$NiBr_2$	DMA	60	17
3	NiI_2	DMA	60	54
4	$NiBr_2 \cdot DME$	DMA	60	42
5	NiCl ₂ (PPh ₃) ₂	DMA	60	27
6	NiBr ₂ ·glyme	DMA	60	68
7	NiBr ₂ ·glyme	THF	60	20
8	NiBr ₂ ·glyme	toluene	60	17
9	NiBr ₂ ·glyme	CH ₃ CN	60	trace
10	NiBr ₂ ·glyme	DMA	80	87
11	NiBr ₂ ·glyme	DMA	100	73
12	no NiBr₂·glyme			0
13	no Zn powder			0

^aReactions were conducted on a 0.1 mmol scale using **1a** (1 equiv), **2a** (2 equiv), Ni source (10 mol %), and bipy (15 mol %), solvent (0.5 M). ^bIsolated yields. Trace means the yield was <5%.

With the optimized reaction conditions in hand (Table 1, entry 10), we next investigated the scope of aryl bromides in the cross-electrophile coupling reaction. A wide range of aryl bromides with different substituents reacted smoothly with 3methylbenzo[d][1,2,3]triazin-4(3H)-one 1a to afford the corresponding ortho-arylated benzamide derivatives in good to excellent yields (54-93%) (Table 2). As noted, the parent bromobenzene 2a reacted to give the cross-coupling product 3aa in 87% isolated yield. Aryl bromides containing electron-neutral and donating groups, such as 4-Ph, 4-'Bu, 4-OMe, 4-SMe and 3-Me exhibited good to excellent reactivities, affording 3ab-3af in 79-91% yields. In addition, this transformation is amenable to substrates bearing electronegative and electronwithdrawing groups, such as 4-F, 4-Cl, 4-CF₃ and 4-CO₂Et affording the corresponding products 3ag-3aj with excellent chemoselectivity in 76-84% yield. A more sterically hindered aryl bromide, 2-bromotoluene, was a viable coupling partner, providing the product 3ak in 93% yield. The reaction was found to be chemoselective; when an aryl bromide containing an olefin was employed in this transformation, no Heck-type products were observed and the cross-coupling product was obtained in 67% yield. To our delight, heterocyclic-containing coupling partners, including benzofuran, benzothiophene, indole, and thiophene, were tolerated under our standard conditions, generating the arylated products **3am-3ap** in 54–88% yields. Although the Zou group reported the denitrogenative alkylation reaction (Scheme 1d), we were curious if our conditions would also lead to alkyl coupling. Therefore, we checked our reaction conditions with cyclohexyl bromide and **1a** and obtained the alkylated product with 42% isolated yield.

Table 2. Substrate Scope of Aryl Bromides^a

^aReactions performed on a 0.1 mmol scale using **1a** (1 equiv), **2** (2 equiv), NiBr₂•glyme (10 mol %), bipy (15 mol %), Zn powder (2 equiv) and DMA (0.5 M) under 80 °C for 12h. ^b3.0 equiv of aryl bromide was used. ^cCyclohexyl bromide was used as electrophile.

This protocol was also successfully applied in the cross-coupling of various 1,2,3-benzotriazin-4(3H)ones with bromobenzene, providing the *ortho*-arylated benzamide derivatives **3ba-3ma** in 62–93% yield (Table 3). *N*-Aryl-substituted 1,2,3-benzotriazin-4(3H)-ones **2b** and **2c** were examined. It was found that these substrates participated in this transformation affording **3ba** and **3ca** in 87% and 86% yield, respectively.

N-Alkyl-substituted benzotriazinones **2d–2i** were also examined. Coupling partners with primary *N*-alkyl-groups coupled with bromobenzene to afford **3da–3ia** in 76 – 93% isolated yield. Secondary *N*-alkyl-substituted 1,2,3-benzotriazin-4(3H)-one was also compatible under the standard conditions, providing **3ja** in 62% yield. In addition, more challenging functionalized *N*-alkyl-substituted benzotriazinones bearing esters and ether were compatible under standard conditions, providing the corresponding products **3ka–3ma** in 67 – 72% yields.

Table 3. Substrate Scope of 1,2,3-Benzotriazin-4(3H)-ones^a

"Reactions performed on a 0.1 mmol scale using **1** (1 equiv), **2a** (2 equiv), NiBr₂•glyme (10 mol %), bipy (15 mol %), Zn powder (2 equiv) and DMA (0.5 M) under 80 °C for 12h.

To test the scalability of this transformation, 10.0 mmol of **1a** was coupled with 4-bromostyrene **2l** under the standard conditions. The cross-coupling product **3al** was isolated in 62% yield (1.47 g) (Scheme 2).

Scheme 2. Scale-up to 10.0 mmol

A plausible mechanism is advanced in Scheme 3. Initially triazine 1 reacts with L_nN^{i0} via N–N oxidative addition to form a seven-membered aza-nickelacyclic intermediate I. This step is followed by the extrusion of N_2 to produce intermediate II. The five-membered aza-nickelacycle intermediate II is proposed to be reduced to a L_nNi^1 species III that undergoes oxidative addition of the aryl bromide 2. The resulting intermediate IIV subsequently undergoes reductive elimination to afforded *ortho*-arylated benzamide derivative III and an III-Br species III. Intermediate III is converted to III by III by III powder to close the catalytic cycle.

Scheme 3. Proposed Mechanism

CONCLUSIONS

In summary, we have developed a cross-electrophile coupling reaction involving 1,2,3-benzotriazin-4(3H)-ones with aryl bromides. This method has the advantage of circumventing the use of preformed organometallic reagents, which can be air and water sensitive, and avoiding the use of base. Our method is general, scalable, and affords an array of *ortho*-arylated benzamide derivatives in 54–91% yields. We anticipate that this method could be readily adapted for use in the synthesis of fine chemicals and medicinal relevant compounds.

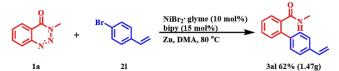
EXPERIMENTAL SECTION

General Information. All reactions were carried out under an atmosphere of dry nitrogen. Anhydrous DMA was purchased from J&K and used without further purification. Zn powder was purchased from Sigma-Aldrich (median <10 micron) and used as received. Unless otherwise stated, reagents were commercially available and used as purchased. Chemicals were obtained from Sigma-Aldrich, Acros, Innochem, Energy Chemical, TCI China or Alfa Aesar. The progress of reactions was monitored by thin-layer chromatography using TLC plates and visualized by bromocresol green solution. Flash chromatography was performed with Qingdao Haiyang flash silica gel (200–300 mesh). The NMR spectra were obtained using a Brüker 400 MHz Fourier-transform NMR spectrometer. Chemical shifts were reported in units of parts per million (ppm) downfield from tetramethylsilane (TMS), and all coupling constants were reported in hertz. The infrared spectra were obtained with KBr plates using a IS10 FT-IR Spectrometer (ThermoFisher Corporation). High resolution mass spectrometry (HRMS) data were obtained on a Waters LC-TOF mass spectrometer (Xevo G2-XS OTof) using electrospray ionization (ESI) in positive or negative mode. Melting points were measured using a WRS-1C Melt-Temp apparatus and were uncorrected. Although we have not had any issues with the 1,2,3benzotriazin-4(3H)-ones, care should always be used when handling compounds with multiple contiguous nitrogen atoms. All reactions were heated in oil baths.

General Procedure A. Synthesis of N-alkyl substituted 1,2,3-triazin-4-ones

General Procedure A: To an oven-dried microwave vial (50 mL) equipped with a stir bar (20 × 5 mm) was added 1,2,3-ben-zotriazin-4(3H)-one (6.8 mmol) and K₂CO₃ (1.41g, 10 mmol) under air atmosphere. The microwave vial was sealed with a cap containing a rubber septum and evacuated used a vacuum pump with a hose fitted with a needle that was poked through the septum. The vial was charged with N₂ by balloon. This process was repeated three times to remove most of the dioxygen. Next, 10 mL of DMF was added via syringe through the septum and the vial was cooled in an ice bath. The alkyl/aryl bromide (11 mmol) was then added to the reaction mixture at 0 °C via syringe. Once addition was complete, the vial was removed from the ice bath and allowed to warm to room temperature and stirred (~400 rpm) at room temperature for 18 h under nitrogen. After the reaction period, the resulting

colorless solution was quenched by addition of 10 mL of water via syringe through the septum and the vial opened to air. The resulting solution was extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with water, brine, dried over MgSO₄ and filtered. The resulting solution was subjected to reduced pressure and the residue was purified by flash chromatography (200–300 mesh) on silica gel to afford the corresponding product.


General Procedure B. Synthesis of N-aryl substituted 1,2,3-triazin-4-ones

General procedure B: To an oven-dried microwave vial (50 mL) equipped with a stir bar $(20 \times 5 \text{ mm})$ was added 1,2,3-benzotriazin-4(3H)-one (5.0 mmol) and phenylboronic acid (7.5 mmol) under air atmosphere. Next, anhydrous Cu(OAc)₂(5.0 mmol) and Et₃N (10.0 mmol) in DCE (30 mL) were added. The microwave vial was sealed, and stirred at ambient temperature for 2.0 h. After the reaction period, the resulting colorless solution was quenched by addition of 10 mL of water via syringe through the septum and the vial opened to air. The resulting solution was extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with water, brine, dried over MgSO₄ and filtered. The resulting solution was subjected to reduced pressure and the residue was purified by flash chromatography on silica gel (200–300 mesh) to afford the corresponding product.

General Procedure for the Synthesis of *ortho*-Arylated Benzamide Derivatives

General Procedure: To an oven-dried microwave vial (10 mL) equipped with a stir bar (10 × 5 mm) was added NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 1,2,3-benzotriazin-4(3H)-ones (1) (0.10 mmol, 1.0 equiv.), aryl bromide (2) (0.2 mmol, 2.0 equiv.) and Zn (13.1 mg, 0.2 mmol, 2 equiv.) under an nitrogen atmosphere inside a glove box at 25 °C. Next, 0.2 mL of dry DMA was added via syringe. The microwave vial was sealed with a cap containing a rubber septum and removed from the glove box. The reaction mixture was stirred (~800 rpm) at 80 °C in an oil bath for 12 h. The resulting gray solution was cooled to RT, quenched by addition of 5 drops 2M HCl via syringe through the septum and then the vial opened to air. The reaction mixture was passed through a short flash column chromatography in silica gel (200-300 mesh) and rinsed with 5 mL of ethyl acetate to afford a yellow solution. The solvent and volatile materials were removed by rotary evaporator. The crude residue was purified by flash column chromatography in silica gel to yield the corresponding product.

Scale-up Transformation to 10.0 mmol for the Synthesis of 3al

To an oven-dried microwave vial (10 mL) equipped with a stir bar (10×5 mm) was added NiBr₂·glyme (350 mg, 1.0 mmol), bipy (230 mg, 1.5 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (1.61 g, 10.0 mmol), 1-bromo-4-ethenylbenzene (21) (3.27 mL, 20 mmol) and Zn (1.31 g, 20 mmol, 2 equiv) under an argon atmosphere inside a glove box at 25 °C. Next, 20 mL of dry DMA was added via syringe. The microwave vial was sealed with a cap containing a rubber septum and removed from the glove box. The reaction mixture was stirred (~800 rpm) at 80 °C in an oil bath for 12 h. The resulting gray solution was cooled to RT, quenched by addition of 15 drops 2M HCl via syringe through the septum and then the vial opened to air. The reaction mixture was passed through a short flash column chromatography in silica gel (200-300 mesh) and rinsed with 15 mL of ethyl acetate to afford a yellow solution. The solvent and volatile materials were removed by rotary evaporator. The crude residue was purified by flash column chromatography in silica gel to obtain the corresponding product 3al with 62% yield.

N-methyl-[1,1'-biphenyl]-2-carboxamide (3aa). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (16.1 mg, 0.10 mmol), bromobenzene (2a) (21.1 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (18.4 mg, 87% yield) as a white solid. R_f = 0.5 (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.66 (d, J= 8.1 Hz, 1H), 7.49 – 7.45 (m, 1H), 7.42 – 7.39 (m, 5H), 7.38 – 7.35 (m, 2H), 5.30 (s, 1H), 2.66 (d, J= 4.9 Hz, 3H) ppm. ¹³C { ¹H} NMR (101 MHz, CDCl₃) δ: 170.3, 140.1, 139.3, 135.6, 130.1, 130.0, 128.7, 128.54, 128.52, 127.7, 127.5, 26.6 ppm. The spectroscopic data for this product match the literature data. ¹⁹

N-methyl-[1,1':4',1''-terphenyl]-2-carboxamide (3ab). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (16.1 mg, 0.10 mmol), 4-bromobiphenyl (2b) (46.6 mg, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (24.7 mg, 86% yield) as a white solid. $R_f = 0.42$ (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.68 – 7.62 (m, 5H), 7.48 (dd, J = 7.9, 6.1 Hz, 5H), 7.44 - 7.40 (m, 2H), 7.37 (t, J = 7.4 Hz, 1H), 5.38 (s, 1H), 2.70 (d, J = 4.9 Hz, 3H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ: 170.4, 140.4, 140.3, 138.9, 138.8, 135.7, 130.1, 130.0, 129.0, 128.8, 128.7, 127.8, 127.5, 127.1, 126.9, 26.7 ppm. The spectroscopic data for this product match the literature data. 19

4'-(Tert-butyl)-N-methyl-[1,1'-biphenyl]-2-carboxamide (3ac). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (16.1 mg, 0.10 mmol), 1-bromo-4-(tert-butyl)benzene (2c) (34.7 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the

product (24.1 mg, 90% yield) as a white solid. Mp: 115.8 – 116.4 °C. $R_f = 0.57$ (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.69 – 7.67 (m, 1H), 7.47 – 7.42 (m, 3H), 7.40 – 7.33 (m, 4H), 5.22 (s, 1H), 2.67 (d, J = 4.9 Hz, 3H), 1.35 (s, 9H) ppm. 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ : 170.4, 150.7, 139.2, 137.0, 135.5, 130.09, 130.07, 128.8, 128.3, 127.4, 125.5, 34.6, 31.3, 26.6 ppm. IR(neat): 2963, 2904, 2868, 1636, 1540, 1408, 838, 581 cm $^{-1}$. HRMS (ESI) m/z: [M + H] $^{+}$ Calcd for C_{18} H₂₂NO 268.1701; Found 268.1703.

4'-Methoxy-N-methyl-[1,1'-biphenyl]-2-carboxamide (*3ad*). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (16.1 mg, 0.10 mmol), 4-bromoanisole (2d) (25.0 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (22.0 mg, 91% yield) as a white solid. R_f = 0.40 (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.68 – 7.63 (m, 1H), 7.46 – 7.42 (m, 1H), 7.38 – 7.31 (m, 4H), 6.97 – 6.93 (m, 2H), 5.29 (s, 1H), 3.84 (s, 3H), 2.70 (d, J = 4.9 Hz, 3H) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ: 170.5, 159.3, 138.9, 135.5, 132.4, 130.1, 130.0, 129.7, 128.7, 127.2, 113.9, 55.2, 26.6 ppm. The spectroscopic data for this product match the literature data.²⁰

N-methyl-4'-(methylthio)-[1,1'-biphenyl]-2-carboxamide (3ae). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (16.1 mg, 0.10 mmol), 4-bromothioanisole (2e) (27.0 µL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether: EtOAc = 5:1) to give the product (20.3 mg, 79 % yield) as a white solid. $R_f = 0.41$ (Petroleum ether: EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.67 – 7.63 (m, 1H), 7.47 (td, J = 7.5, 1.5 Hz, 1H), 7.40 (dd, J = 7.6, 1.4 Hz, 1H), <math>7.37 - 7.33(m, 3H), 7.30 - 7.27 (m, 2H), 5.30 (s, 1H), 2.72 (d, J = 4.9 Hz, 3H), 2.52 (s, 3H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ : 170.3, 138.6, 138.3, 136.5, 135.6, 130.1, 130.0, 128.9, 128.7, 127.5, 126.2, 26.7, 15.5 ppm. The spectroscopic data for this product match the literature data.¹⁹

N,3'-dimethyl-[1,1'-biphenyl]-2-carboxamide (3af). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (16.1 mg, 0.10 mmol), 3-bromotoluene (2f) (24.3 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (20.5 mg, 91% yield) as a white solid. $R_f = 0.63$ (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.70 (dd, J = 7.6, 1.5 Hz, 1H), 7.48 -7.44 (m, 1H), 7.41 - 7.35 (m, 2H), 7.30 (t, J = 7.5 Hz, 1H), 7.23 - 7.17 (m, 3H), 5.21 (s, 1H), 2.68 (d, J = 4.9 Hz, 3H), 2.39(s, 3H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ : 170.3, 140.1, 139.4, 138.2, 135.5, 130.1, 130.0, 129.2, 128.8, 128.51, 128.45, 127.5, 125.7, 26.6, 21.4 ppm. The spectroscopic data for this product match the literature data.⁵

4'-Fluoro-N-methyl-[1,1'-biphenyl]-2-carboxamide (3ag). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (16.1 mg, 0.10 mmol), 4-bromofluorobenzene (2g) (22.0 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with

Petroleum ether:EtOAc = 5:1) to give the product (18.9 mg, 82 % yield) as a white solid. R_f = 0.47 (Petroleum ether:EtOAc = 5:1). 1 H NMR (400 MHz, CDCl₃) δ: 7.62 (dd, J= 7.5, 1.1 Hz, 1H), 7.47 (td, J= 7.5, 1.5 Hz, 1H), 7.43 – 7.32 (m, 6H), 5.35 (s, 1H), 2.73 (d, J= 4.9 Hz, 3H) ppm. 13 C { 1 H} NMR (101 MHz, CDCl₃) δ: 170.2, 162.4 (d, $J^1_{\text{C-F}}$ = 248.5 Hz), 138.2, 136.1 (d, $J^2_{\text{C-F}}$ = 3.5 Hz), 135.8, 130.2, 130.13, 130.06, 128.1 (d, $J^2_{\text{C-F}}$ = 91.7 Hz), 115.5 (d, $J^3_{\text{C-F}}$ = 21.5 Hz), 26.6 ppm. One resonance was not observed due to overlapping resonances. The spectroscopic data for this product match the literature data. 21

4'-Chloro-N-methyl-[1,1'-biphenyl]-2-carboxamide (3ah). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (16.1 mg, 0.10 mmol), 4-chlorobromobenzene (2h) (23.2 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (20.6 mg, 84% yield) as a white solid. R_f = 0.45 (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.64 – 7.61 (m, 1H), 7.50 – 7.45 (m, 1H), 7.44 – 7.39 (m, 2H), 7.36 (dd, J= 9.4, 6.6 Hz, 4H), 5.32 (s, 1H), 2.73 (d, J= 4.9 Hz, 3H) ppm. ¹³C { ¹H} NMR (101 MHz, CDCl₃) δ: 170.2, 138.5, 138.0, 135.9, 133.8, 130.2, 130.0, 129.8, 128.7, 128.6, 127.8, 26.7 ppm. The spectroscopic data for this product match the literature data. ¹⁹

N-methyl-4'-(trifluoromethyl)-[1,1'-biphenyl]-2-carboxamide (3ai). The reaction was performed following the General Procedure with NiBr₂ glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (16.1 mg, 0.10 mmol), 4-bromobenzotrifluoride (2i) (28.0 µL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (21.9 mg, 78% yield) as a white solid. $R_f = 0.45$ (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.60 (d, J = 8.0 Hz, 2H, 7.55 (d, J = 7.4 Hz, 1H), 7.48 - 7.42 (m, 3H),7.37 (t, J = 6.8 Hz, 1H), 7.30 (d, J = 7.5 Hz, 1H), 5.33 (s, 1H), 2.66 (d, J = 4.9 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 170.0, 143.7, 137.9, 136.0, 130.2, 130.1, 128.8, 128.4, 128.2, 125.4 (q, $J_{C-F} = 4.0 \text{ Hz}$), 124.1 (q, $J_{C-F} = 270 \text{ Hz}$), 26.7 ppm. The spectroscopic data for this product match the literature data.19

Ethyl 2'-(methylcarbamoyl)-[1,1'-biphenyl]-4-carboxylate (3aj). The reaction was performed following the General Procedure with NiBr₂ glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (16.1 mg, 0.10 mmol), 4-(ethoxycarbonyl)-1-bromobenzene (2j) (26.2 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (21.5 mg, 76% yield) as a white solid. Mp: 264.4 -266.1 °C. $R_f = 0.32$ (Petroleum ether:EtOAc = 5:1). H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta: 8.10 - 8.07 \text{ (m, 2H)}, 7.66 - 7.63 \text{ (m, 1H)},$ 7.51 - 7.47 (m, 3H), 7.46 - 7.38 (m, 2H), 5.38 (s, 1H), 4.41 (t, J = 7.1 Hz, 2H, 2.71 (d, J = 4.9 Hz, 3H), 1.42 (t, J = 7.1 Hz,3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 170.1, 166.3, 144.6, 138.3, 135.9, 130.2, 130.0, 129.7, 129.6, 128.6, 128.2, 61.1, 26.7, 14.3 ppm. One resonance was not observed due to overlapping resonances. IR(neat): 2987, 2983, 2936, 1736, 1646, 1472, 1108, 747, 659, 521 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₈NO₃ 284.1287; Found 284.1292.

N,2'-dimethyl-[1,1'-biphenyl]-2-carboxamide (3ak). The reaction was performed following the General Procedure with NiBr₂ glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol),

3-methylbenzo[d][1,2,3]triazin-4(3H)-one **(1a)** (16.1 mg, 0.10 mmol), 2-bromotoluene **(2k)** (24.1 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (21.0 mg, 93% yield) as a white solid. R_f = 0.70 (Petroleum ether:EtOAc = 5:1). 1 H NMR (400 MHz, CDCl₃) δ: 7.92 (dd, J = 7.4, 1.8 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.31 – 7.26 (m, 3H), 7.21 – 7.17 (m, 2H), 5.26 (s, 1H), 2.62 (d, J = 4.8 Hz, 3H), 2.11 (s, 3H) ppm. 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ: 168.9, 140.0, 139.0, 136.0, 134.7, 130.3, 130.32, 130.29, 129.2, 129.0, 128.1, 127.6, 126.1, 26.7, 19.9 ppm. The spectroscopic data for this product match the literature data.⁵

N-methyl-4'-vinyl-[1,1'-biphenyl]-2-carboxamide The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-methylbenzo[d][1,2,3]triazin-4(3H)-one (1a) (16.1 mg, 0.10 mmol), 1-bromo-4-ethenylbenzene (21) (32.7 µL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether: EtOAc = 5:1) to give the product (15.9 mg, 67%yield) as a colorless liquid. $R_f = 0.46$ (Petroleum ether:EtOAc = 5:1). 1 H NMR (400 MHz, CDCl₃) δ : 7.69 – 7.66 (m, 1H), 7.49 -7.45 (m, 3H), 7.42 - 7.36 (m, 4H), 6.75 (dd, J = 17.6, 10.9Hz, 1H), 5.81 (dd, J = 17.6, 0.8 Hz, 1H), 5.31 (dd, J = 10.9, 0.8 Hz, 1H), 5.25 (s, 1H), 2.70 (d, J = 5.0 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 170.3, 139.5, 138.8, 136.9, 136.2, 135.6, 130.1, 130.0, 128.8, 127.6, 126.4, 114.4, 26.7 ppm. One resonance was not observed due to overlapping resonances. IR(neat): 2962, 2954, 2864, 1636, 1409, 1318, 764, 568 cm⁻¹. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{16}H_{16}NO$ 238.1232; Found 238.1234.

2-(Benzofuran-5-yl)-N-methylbenzamide (3am). The reaction was performed following the General Procedure with NiBr₂ glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 1a (16.1 mg, 0.10 mmol), 5-bromo-1-benzofuran (2m) (39.4 mg, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (15.6 mg, 62% yield) as a white solid. Mp: $164.2 - 165.8 \,^{\circ}\text{C}$. R_f = 0.35 (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, $CDCl_3$) δ : 7.72 - 7.67 (m, 2H), 7.65 - 7.64 (m, 1H), 7.55 - 7.52(m, 1H), 7.50 - 7.46 (m, 1H), 7.42 - 7.38 (m, 2H), 7.34 - 7.31(m, 1H), 6.82 - 6.79 (m, 1H), 5.24 (s, 1H), 2.63 (d, J = 4.9 Hz, 3H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ : 170.4, 154.5, 145.7, 139.5, 135.8, 135.0, 130.5, 130.0, 128.8, 127.8, 127.4, 125.2, 121.1, 111.4, 106.7, 26.6 ppm. IR(neat): 2998, 2952, 2876, 1637, 1463, 1110, 757, 529 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₄NO₂ 252.1025; Found 252.1021.

2-(Benzo[b]thiophen-5-yl)-N-methylbenzamide (3an). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 1a (16.1 mg, 0.10 mmol), 5-bromobenzo[b]thiophene (2n) (25.8 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (15.2 mg, 57% yield) as a white solid. Mp: 180.2 – 181.3 °C. $R_f = 0.32$ (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.84 – 7.79 (m, 2H), 7.63 – 7.60 (m, 1H), 7.43 – 7.39 (m, 2H), 7.37 – 7.32 (m, 2H), 7.32 – 7.28 (m, 2H), 5.21 (s, 1H), 2.55 (d, J = 4.9 Hz, 3H) ppm. 13 C (1 H) NMR (101 MHz, CDCl₃) δ: 170.3, 139.8, 139.22, 139.15, 136.4, 135.8, 130.5, 130.1, 128.8, 127.5, 127.3, 125.1, 123.9, 123.4, 122.5, 26.6 ppm. IR(neat): 2972, 2911, 2853, 1640, 1410, 1260, 752, 552

cm $^{-1}$. HRMS (ESI) m/z: [M + H] $^{+}$ Calcd for $C_{16}H_{14}NOS$ 268.0796; Found 268.0798.

N-methyl-2-(1-methyl-1H-indol-5-yl)benzamide (3ao). The reaction was performed following the General Procedure with NiBr₂ glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 1a (16.1 mg, 0.10 mmol), 5-bromo-1-methyl-1H-indole (20) (42.0 mg, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (14.3 mg, 54% yield) as a white solid. Mp: 189.6 - 190.2 °C. $R_f = 0.32$ (Petroleum ether: EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.85 – 7.71 (m, 1H), 7.66 (d, J = 1.8 Hz, 1H), 7.49 - 7.31 (m, 4H), 7.25 (s, 1H), 7.09 (d, J = 3.2 Hz, 1H), 6.51(dd, J = 3.2, 1.0 Hz, 1H), 5.24 (s, 1H), 3.81 (s, 3H), 2.59 (d, J)= 4.9 Hz, 3H) ppm. 13 C{ 1 H} NMR (101 MHz, CDCl₃) δ : 170.5, 140.5, 136.2, 135.4, 131.3, 130.7, 129.9, 129.6, 129.0, 128.6, 126.9, 122.7, 120.8, 109.3, 101.2, 32.9, 26.6 ppm. IR(neat): 2952, 2924, 2890, 1636, 1410, 1334, 750, 560 cm⁻¹. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{17}H_{17}N_2O$ 265.1341; Found 265.1346.

N-methyl-2-(thiophen-3-yl)benzamide (3ap). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 1a (16.1 mg, 0.10 mmol), 3-bromothiophene (2p) (18.7 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether: EtOAc = 5:1) to give the product (19.1 mg, 88%yield) as a white solid. Mp: 123.0 - 123.8 °C. $R_f = 0.5$ (Petroleum ether:EtOAc = 5:1). 1 H NMR (400 MHz, CDCl₃) δ : 7.61 -7.58 (m, 1H), 7.44 - 7.40 (m, 2H), 7.38 - 7.35 (m, 3H), 7.18-7.16 (m, 1H), 5.46 (s, 1H), 2.76 (d, J = 4.9 Hz, 3H) ppm. ¹³C {¹H} NMR (101 MHz, CDCl₃) δ: 170.4, 140.5, 135.6, 133.7, 129.9, 129.7, 128.5, 128.1, 127.5, 125.9, 122.8, 26.7 ppm. IR(neat): 2957, 2924, 2852, 1640, 1543, 1325, 753, 690, 518 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₂H₁₂NOS 218.0640; Found 218.0642.

2-Cyclohexyl-N-methylbenzamide (3aq). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), **1a** (16.1 mg, 0.10 mmol), cyclohexyl bromide (**2q**) (24.6 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (9.1 mg, 42% yield) as a colorless oil. R_f = 0.82 (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.34 (d, J = 6.4 Hz, 2H), 7.25 (d, J = 7.6 Hz, 1H), 7.21 – 7.11 (m, 1H), 6.04 – 5.74 (m, 1H), 2.96 (d, J = 4.8 Hz, 3H), 1.86 – 1.72 (m, 6H), 1.47 – 1.35 (m, 4H), 1.30 – 1.19 (m, 1H) ppm. ¹³C { ¹H } NMR (101 MHz, CDCl₃) δ: 171.2, 145.5, 136.3, 129.7, 126.6, 126.5, 125.5, 40.4, 34.4, 26.7, 26.6, 26.1 ppm. The spectroscopic data for this product match the literature data. ¹⁶

N-phenyl-[1,1'-biphenyl]-2-carboxamide (3ba). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-phenylbenzo[d][1,2,3]triazin-4(3H)-one (1b) (22.3 mg, 0.10 mmol), bromobenzene (2a) (21.1 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (23.8 mg, 87% yield) as a white solid. $R_f = 0.52$ (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ: 7.86 (dd, J = 7.7, 1.8 Hz, 2H), 7.49 – 7.40 (m, 7H), 7.21 (t, J = 7.7 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H), 7.04 (t, J = 7.4 Hz, 1H), 6.96 (s, 1H) ppm. ¹³C{¹H} NMR

 $(101 \text{ MHz}, \text{CDCl}_3)$ δ : 167.1, 139.8, 139.5, 137.4, 135.2, 130.6, 130.3, 129.5, 128.9, 128.7, 128.0, 127.8, 127.0, 124.4, 119.9 ppm. The spectroscopic data for this product match the literature data.²²

N-(4-fluorophenyl)-[1,1'-biphenyl]-2-carboxamide (3ca). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 3-(4-fluorophenyl)benzo[d][1,2,3]triazin-4(3H)-one (1c) (24.1 mg, 0.10 mmol), bromobenzene (2a) (21.1 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether: EtOAc = 5:1) to give the product (25.1 mg, 86%yield) as a white solid. $R_f = 0.5$ (Petroleum ether: EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.84 (dd, J = 7.7, 1.6 Hz, 1H), 7.61 - 7.47 (m, 2H), 7.48 - 7.38 (m, 6H), 7.05 - 7.00 (m, 2H), 6.93 (d, J = 8.7 Hz, 1H), 6.94 – 6.86 (m, 2H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ : 167.2, 159.4 (d, J^4_{C-F} = 245.0 Hz), 139.7 (d, J^4_{C-F} = 38.8 Hz), 134.9, 131.8, 130.7, 130.2, 129.4, 128.9, 128.7, 128.1, 127.9, 127.0, 121.8 (d, $J_{C-F}^4 = 7.9 \text{ Hz}$), 115.4 (d, J^4_{C-F} = 22.7 Hz) ppm. The spectroscopic data for this product match the literature data.²³

N-butyl-[1,1'-biphenyl]-2-carboxamide (3da). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-butylbenzo[d][1,2,3]triazin-4(3H)-one (1d) (20.3 mg, 0.10 mmol), bromobenzene (2a) (21.1 μ L, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (19.3 mg, 76% yield) as a white solid. $R_f = 0.63$ (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.71 (d, J = 7.5 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.43 - 7.36 (m, 7H), 5.19 (s, 1H), 3.17 - 3.12 (m, 7H)2H), 1.18 - 1.10 (m, 2H), 1.03 - 0.97 (m, 2H), 0.77 (t, J = 7.2Hz, 3H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ : 169.3, 140.2, 139.2, 135.8, 130.1, 129.9, 128.8, 128.6, 128.5, 127.7, 127.5, 39.4, 30.8, 19.7, 13.6 ppm. The spectroscopic data for this product match the literature data.¹⁰

N-pentyl-[1,1'-biphenyl]-2-carboxamide (3ea). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.1 mmol), bipy (2.3 mg, 0.015 mmol), 3-pentylbenzo[d][1,2,3]triazin-4(3H)-one (1e) (21.7 mg, 0.10 mmol), bromobenzene (2a) (21.1 µL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (20.3 mg, 76% yield) as a white solid. Mp: 118.4 - 119.2 °C. $R_f = 0.56$ (Petroleum ether:EtOAc = 5:1). 1 H NMR (400 MHz, CDCl₃) δ : 7.70 (dd, J = 7.5, 1.5 Hz, 1H), 7.46 (dd, J = 7.5, 1.6 Hz, 1H), 7.42 (d, J =4.4 Hz, 5H), 7.39 - 7.35 (m, 2H), 5.21 (s, 1H), 3.16 - 3.10 (m, 2H), 1.20 - 1.12 (m, 4H), 0.98 - 0.91 (m, 2H), 0.81 (t, J = 7.3Hz, 3H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ : 169.3, 140.3, 139.3, 135.9, 130.1, 129.9, 128.8, 128.7, 128.6, 127.7, 127.6, 39.7, 28.8, 28.5, 22.2, 13.8 ppm. IR(neat): 2960, 2923, 2850, 1639, 1453, 1315, 1196, 764, 564 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₂NO 268.1701; Found 268.1697.

N-octyl-[1,1'-biphenyl]-2-carboxamide (3fa). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-hexylbenzo[d][1,2,3]triazin-4(3H)-one **(1f)** (23.1 mg, 0.10 mmol), bromobenzene **(2a)** (21.1 μ L, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (22.5 mg, 80% yield) as

a white solid. $R_f = 0.54$ (Petroleum ether:EtOAc = 5:1). 1H NMR (400 MHz, CDCl₃) δ : 7.68 (dd, J = 7.6, 1.5 Hz, 1H), 7.45 (dd, J = 7.5, 1.6 Hz, 1H), 7.41 – 7.33 (m, 7H), 5.27 (s, 1H), 3.14 – 3.09 (m, 2H), 1.29 – 1.25 (m, 2H), 1.22 – 1.12 (m, 8H), 0.98 (dd, J = 9.4, 6.7 Hz, 2H), 0.87 (d, J = 7.2 Hz, 3H) ppm. 13 C (1H) NMR (101 MHz, CDCl₃) δ : 169.2, 140.2, 139.2, 135.8, 130.0, 129.8, 128.7, 128.6, 128.5, 127.7, 127.4, 39.7, 31.6, 29.1, 29.0, 28.7, 26.6, 22.5, 14.0 ppm. The spectroscopic data for this product match the literature data. 10

N-(2-methylbutyl)-[1,1'-biphenyl]-2-carboxamide The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-(2-methylbutyl)benzo[d][1,2,3]triazin-4(3H)-one (1g) (21.7 mg, 0.10 mmol), bromobenzene (**2a**) (21.1 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (21.9 mg, 82% yield) as a white solid. Mp: 143.3 - 144.7 °C. $R_f = 0.53$ (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.70 (dd, J = 7.5, 1.6 Hz, 1H), 7.46 - 7.43 (m, 1H), 7.42 - 7.34 (m, 1H)7H), 5.24 (s, 1H), 3.08 (dd, J = 13.4, 6.1 Hz, 1H), 2.94 (dd, J = 13.4, 6.1 Hz, 1 12.6, 6.5 Hz, 1H), 1.22 (d, J = 12.5 Hz, 1H), 1.06 – 0.98 (m, 1H), 0.84 (dd, J = 14.0, 5.9 Hz, 1H), 0.73 (t, J = 7.3 Hz, 3H), 0.57 (d, J = 6.7 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 169.5, 140.3, 139.3, 135.9, 130.2, 129.9, 128.9, 128.69, 128.66, 127.8, 127.6, 45.5, 34.2, 26.7, 16.8, 11.1 ppm. IR(neat): 2960, 2923, 2850, 1639, 1453, 1315, 1196, 764, 564 cm⁻¹. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{22}NO$ 268.1701; Found 268.1707.

N-(cyclohexylmethyl)-[1,1'-biphenyl]-2-carboxamide

(3ha). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-(cyclohexylmethyl)benzo[d][1,2,3]triazin-4(3H)-one (1h) (24.3 mg, 0.10 mmol), bromobenzene (2a) (21.1 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (27.3 mg, 93% yield) as a white solid. Mp: 132.0 – 132.7 °C. $R_f = 0.70$ (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.69 (dd, J = 7.5, 1.5 Hz, 1H), 7.46 – 7.35 (m, 8H), 5.33 (s, 1H), 2.98 (t, J = 6.3 Hz, 2H), 1.61 – 1.55 (m, 3H), 1.30 - 1.25 (m, 2H), 1.13 - 1.02 (m, 4H), 0.68 - 0.57 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 169.4, 140.3, 139.2, 135.9, 130.1, 129.9, 128.8, 128.7, 128.6, 127.7, 127.5, 46.0, 37.3, 30.5, 26.2, 25.7 ppm. IR(neat): 3060, 2921, 2850, 1640, 1541, 1276, 915, 747, 698, 541 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₄NO 294.1858; Found 294.1860.

N-phenethyl-[1,1'-biphenyl]-2-carboxamide (3ia). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-phenethylbenzo[d][1,2,3]triazin-4(3H)-one (1i) (25.1 mg, 0.10 mmol), bromobenzene (2a) (21.1 μ L, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (23.2 mg, 77% yield) as a white solid. $R_f = 0.58$ (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.62 (dd, J = 7.6, 1.5 Hz, 1H), 7.42 (d, J = 16.5 Hz, 8H), 7.20 (q, J = 6.8, 5.4 Hz, 3H), 6.98 - 6.86(m, 2H), 5.40 - 5.18 (m, 1H), 3.50 - 3.37 (m, 2H), 2.50 (t, J =7.0 Hz, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 169.5, 140.1, 139.2, 138.5, 135.8, 130.1, 129.9, 128.7, 128.6, 128.5, 128.4, 127.7, 127.5, 126.3, 40.7, 34.9 ppm. One resonance was not observed due to overlapping resonances. The spectroscopic data for this product match the literature data.²⁴

N-isopropyl-[1,1'-biphenyl]-2-carboxamide (3ja). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 3-isopropylbenzo[d][1,2,3]triazin-4(3H)-one (1j) (18.9 mg, 0.10 mmol), bromobenzene (2a) (21.1 µL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (14.8 mg, 62% yield) as a white solid. Mp: 127.4 - 129.3 °C. $R_f = 0.55$ (Petroleum ether:EtOAc = 5:1). 1 H NMR (400 MHz, CDCl₃) δ : 7.74 – 7.70 (m, 1H), 7.49 - 7.43 (m, 1H), 7.43 - 7.34 (m, 7H), 4.94 (s, 1H),4.04 - 3.96 (m, 1H), 0.84 (d, J = 6.5 Hz, 6H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ: 168.4, 140.3, 139.4, 135.9, 130.0, 129.9, 128.84, 128.78, 128.6, 127.7, 127.6, 41.5, 22.1 ppm. IR(neat): 2993, 2921, 2849, 1636, 1448, 1318, 1074, 745, 576 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇NO 240.1388; Found 240.1392.

Ethyl ([1,1'-biphenyl]-2-carbonyl)alaninate (3ka). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), ethyl 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)propanoate (1k) (24.7 mg, 0.10 mmol), bromobenzene (2a) (21.1 μL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (19.9 mg, 67% yield) as a white solid. Mp: 58.0 - 59.7 °C. $R_f = 0.30$ (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.70 (dd, J= 7.6, 1.5 Hz, 1H), 7.50 – 7.35 (m, 8H), 5.86 (s, 1H), 4.56 – 4.49 (m, 1H), 4.14 - 4.16 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H), 1.10(d, J = 7.1 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ : 172.5, 168.6, 140.1, 139.8, 135.1, 130.23, 130.15, 128.7, 128.5, 127.7, 127.5, 61.3, 48.2, 17.8, 14.0 ppm. One resonance was not observed due to overlapping resonances. IR(neat): 2993, 2983, 2936, 1738, 1646, 1525, 1207, 747, 701, 521 cm⁻¹. HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{20}NO_3$ 298.1443; Found 298.1439.

2-([1,1'-Biphenyl]-2-carboxamido)ethyl benzoate (3la). The reaction was performed following the General Procedure with NiBr₂ glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg, 0.015 mmol), 2-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)ethyl benzoate (11) (29.5 mg, 0.10 mmol), bromobenzene (2a) (21.1 µL, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product (24.2 mg, 70% yield) as a colorless liquid. $R_f = 0.26$ (Petroleum ether:EtOAc = 5:1). 1 H NMR (400 MHz, CDCl₃) δ : 7.89 (dd, J= 8.3, 1.4 Hz, 2H, 7.71 (dd, J = 7.6, 1.5 Hz, 1H), 7.60 - 7.56(m, 1H), 7.50 - 7.42 (m, 4H), 7.37 (dd, J = 6.4, 1.6 Hz, 3H), 7.27 - 7.20 (m, 3H), 5.64 (s, 1H), 4.10 - 4.07 (m, 2H), 3.60 -3.56 (m, 2H) ppm. ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ : 169.6, 166.2, 139.9, 139.4, 135.4, 133.1, 130.24, 130.15, 129.6, 128.8, 128.6, 128.5, 128.3, 127.9, 127.6, 63.6, 38.7 ppm. One resonance was not observed due to overlapping resonances. IR(neat): 2955, 2920, 2888, 2848, 1716, 1656, 1645, 1532, 1274, 1071, 747, 712, 517 cm⁻¹. HRMS (ESI) m/z: [M + H] Calcd for C₂₂H₂₀NO₃ 346.1443; Found 346.1446.

N-(3-methoxypropyl)-[1,1'-biphenyl]-2-carboxamide (3ma). The reaction was performed following the General Procedure with NiBr₂·glyme (3.5 mg, 0.01 mmol), bipy (2.3 mg,

0.015 mmol), 3-(3-ethoxypropyl)benzo[d][1,2,3]triazin-4(3H)-one (**1m**) (23.3 mg, 0.10 mmol), bromobenzene (**2a**) (21.1 μ L, 0.2 mmol) and Zn (13.1 mg, 0.2 mmol, 2 equiv). The crude product was purified by flash chromatography on silica gel (eluted with Petroleum ether:EtOAc = 5:1) to give the product

(19.4 mg, 72% yield) as a colorless liquid. R_f = 0.35 (Petroleum ether:EtOAc = 5:1). ¹H NMR (400 MHz, CDCl₃) δ : 7.67 (dd, J = 7.7, 1.4 Hz, 1H), 7.46 (dd, J = 7.5, 1.5 Hz, 1H), 7.43 – 7.40 (m, 4H), 7.40 – 7.35 (m, 3H), 5.72 (s, 1H), 3.28 – 3.23 (m, 2H), 3.16 (s, 3H), 3.12 (t, J = 5.9 Hz, 2H), 1.50 – 1.44 (m, 2H) ppm. ¹³C { ¹H} NMR (101 MHz, CDCl₃) δ : 169.6, 140.4, 139.4, 136.2, 130.2, 130.0, 128.82, 128.80, 128.6, 127.8, 127.7, 71.1, 58.7, 38.1, 28.7 ppm. IR(neat): 2954, 2921, 2850, 1636, 1275, 1119, 749, 699, 521 cm⁻¹. HRMS (ESI) m/z: [M + H]⁺ Calcd for $C_{17}H_{20}NO_2$ 270.1494; Found 270.1491.

ASSOCIATED CONTENT

DATA AVAILABILITY STATEMENT

The data underlying this study are available in the published article and its online supplementary material.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Supporting Information. (Experimental details, characterization data and NMR spectra)

AUTHOR INFORMATION

Corresponding Author

Jianyou Mao – Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China; ORCID:orcid.org/0000-0003-0581-3978; Email: ias_jymao@njtech.edu.cn

Patrick J. Walsh – Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA. ORCID: orcid.org/0000-0001-8392-4150;

Email: pwalsh@sas.upenn.edu

Authors

Tingzhi Lin – Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China;

Yan-En Wang – College of Science, Hebei Agricultural University, Baoding 071000, P. R. China.

Ning Cui – Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China;

Miaohui Li – Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China:

Rui Wang – Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China:

Jiahui Bai – Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China;

YiRan Fan – Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China:

Dan Xiong – Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China;

Fei Xue – Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China.

Author Contributions

These authors contributed equally to this work. T.L. performed most of the experiments with the help of W.Y., N.C., M.L., R.W., J.B., Y.F., D.X. and F.X. The project conceived J.M. and T.L. with help from P.J.W. The project was directed by J.M. and the manuscript was written by T.L., J.M., and P.J.W.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

The authors acknowledge the National Natural Science Foundation of China (22071107), Natural Science Foundation of Jiangsu Province, China (BK20211588, BK20220328), Natural Science Research Projects of Colleges and Universities in Jiangsu Province (22KJB150005), Jiangsu Excellent postdoctoral program (287706), China Postdoctoral Science Foundation for Financial Support (2022M711596). PJW thanks the US NSF (CHE- 2154593).

REFERENCES

- 1. (a) Michelotti, E. L.; Borrell, J. I.; Roemmele, R.; Matallana, J. L.; Teixido, J.; Bryman, L. M., Preparative-Scale Synthesis of Two Metabolites Isolated from Soil Treated with Zoxium Fungicide and Kerb Herbicide. *J. Agric. Food Chem.* **2002**, *50*, 495; (b) Zhu, Y.; Zhang, H.; Wang, D.; Li, L.; Xu, H.; Li, H.; Ma, Y., Design, Synthesis and Biological Evaluation of Novel N-(4-([2,2':5',2"-Terthiophen]-5-yl)-2-methylbut-3-yn-2-yl) Benzamide Derivatives. *Chin. J. Chem.* **2015**, *33*, 268; (c) Zhang, H.; Wang, J.; Ji, Z.; Sun, X.; Tian, Q.; Wei, S.; Ji, Z., Discovery, SAR, and putative mode of action of N-benzyl-2-methoxybenzamides as potential bleaching herbicides. *Pest Manage. Sci.* **2021**, *77*, 2804; (d) Yang, Z.; Liu, Q.; Sun, Y.; Sun, X.; Chen, L.; Sun, L.; Gu, W., Synthesis, Antifungal Activity, DFT Study and Molecular Dynamics Simulation of Novel 4-(1,2,4-Oxadiazol-3-yl)-N-(4-phenoxyphenyl)benzamide Derivatives. *Chem. Biodiversity* **2021**, *18*, e2100651.
- (a) Crestey, F.; Frederiksen, K.; Jensen, H. S.; Dekermendjian, K.; Larsen, P. H.; Bastlund, J. F.; Lu, D.; Liu, H.; Yang, C. R.; Grunnet, M.; Svenstrup, N., Identification and Electrophysiological Evaluation of 2-Methylbenzamide Derivatives as Nav1.1 Modulators. ACS Chem. Neurosci. 2015, 6, 1302; (b) Ryu, H.; Ahn, J.; Choi, H. K., Novel Benzamide Derivatives: Synthesis and Bioactivity as Potent PARP-1 Inhibitors, Bull. Korean Chem. Soc. 2017, 38, 935; (c) Wilkinson, S. M.: Barron, M. L.; O'Brien-Brown, J.; Janssen, B.; Stokes, L.; Werry, E. L.; Chishty, M.; Skarratt, K. K.; Ong, J. A.; Hibbs, D. E.; Vugts, D. J.; Fuller, S.; Windhorst, A. D.; Kassiou, M., Pharmacological Evaluation of Novel Bioisosteres of an Adamantanyl Benzamide P2X7 Receptor Antagonist. ACS Chem. Neurosci. 2017, 8, 2374; (d) Vandyck, K.; Rombouts, G.; Stoops, B.; Tahri, A.; Vos, A.; Verschueren, W.; Wu, Y.; Yang, J.; Hou, F.; Huang, B.; Vergauwen, K.; Dehertogh, P.; Berke, J. M.; Raboisson, P., Synthesis and Evaluation of N-Phenyl-3-sulfamoyl-benzamide Derivatives as Capsid Assembly Modulators Inhibiting Hepatitis B Virus (HBV). J. Med. Chem. 2018, 61, 6247; (e) Liu, X.; Chen, X.; Qiu, K.; Zhang, Z., Design, synthesis, and biological evaluation of 4-methoxy-3-arylamido-N-(substitutedphenyl)benzamide derivatives as potential antiplatelet agents. Arch. Pharm. 2020, 353, 1900231.
- 3. (a) Summers, G. J.; Quirk, R. P., Anionic synthesis of aromatic amide and carboxyl functionalized polymers. Chain-end functionalization

- of poly(styryl)lithium with N,N-diisopropyl-4-(1-phenylethenyl) benzamide. *J. Polym. Sci., Part A Polym. Chem.* **1998**, *36*, 1233; (b) Percec, V.; Bera, T. K.; Glodde, M.; Fu, Q.; Balagurusamy, V. S. K.; Heiney, P. A., Hierarchical self-assembly, co-assembly, and self-organization of novel liquid crystalline lattices and superlattices from a twin-tapered dendritic benzamide and its four-cylinder-bundle supramolecular polymer. *Chem. Eur. J.* **2003**, *9*, 921; (c) Schulze, M.; Kilbinger, A. F. M., Toward large tubular helices based on the polymerization of tri(benzamide)s. *J. Polym. Sci., Part A Polym. Chem.* **2016**, *54*, 1731.
- 4. (a) Itoh, K.; Tomozane, H.; Hakira, H.; Sonda, S.; Asano, K.; Fujimura, M.; Sato, N.; Haga, K.; Kawakita, T., Synthesis and pharmacological properties of novel benzamide derivatives acting as ligands to the 5-hydroxytryptamine 4 (5-HT4) receptor. *Eur. J. Med. Chem.* 1999, 34, 1101; (b) Honda, A.; Waltz, K. M.; Carroll, P. J.; Walsh, P. J., Atropisomeric amides: Achiral ligands with chiral conformations. *Chirality* 2003, 15, 615; (c) Chen, G.; Lam, W. H.; Fok, W. S.; Lee, H. W.; Kwong, F. Y., Easily accessible benzamide-derived P,O ligands (Bphos) for palladium-catalyzed carbon-nitrogen bond-forming reactions. *Chem. Asian J.* 2007, 2, 306; (d) Kaur, M.; U Din Reshi, N.; Patra, K.; Bhattacherya, A.; Kunnikuruvan, S.; Bera, J. K., A Proton-Responsive Pyridyl(benzamide)-Functionalized NHC Ligand on Ir Complex for Alkylation of Ketones and Secondary Alcohols. *Chem. Eur. J.* 2021, 27, 10737.
- 5. Wei, Y.-M.; Wang, M.-F.; Duan, X.-F., Is Fe-catalyzed ortho C-H Arylation of Benzamides Sensitive to Steric Hindrance and Directing Group? *Org. Lett.* **2019**, *21*, 6471.
- 6. Zhao, S.; Liu, B.; Zhan, B.-B.; Zhang, W.-D.; Shi, B.-F., Nickel-Catalyzed Ortho-Arylation of Unactivated (Hetero)aryl C-H Bonds with Arylsilanes Using a Removable Auxiliary. *Org. Lett.* **2016**, *18*, 4586.
- 7. (a) Jiang, J.; Zhang, W.-M.; Dai, J.-J.; Xu, J.; Xu, H.-J., Visible-Light-Promoted C-H Arylation by Merging Palladium Catalysis with Organic Photoredox Catalysis. *J. Org. Chem.* **2017**, *82*, 3622; (b) Li, D.-D.; Yuan, T.-T.; Wang, G.-W., Palladium-Catalyzed Ortho-Arylation of Benzamides via Direct sp2 C-H Bond Activation. *J. Org. Chem.* **2012**, *77*, 3341; (c) Reddy, M. D.; Blanton, A. N.; Watkins, E. B., Palladium-Catalyzed, N-(2-Aminophenyl)acetamide-Assisted Ortho-Arylation of Substituted Benzamides: Application to the Synthesis of Urolithins B, M6, and M7. *J. Org. Chem.* **2017**, *82*, 5080; (d) Wu, Z.; Luo, F.; Chen, S.; Li, Z.; Xiang, H.; Zhou, X., Palladium-catalyzed para-selective arylation of phenols with aryl iodides in water. *Chem. Commun.* **2013**, *49*, 7653.
- 8. (a) Gao, P.; Liu, L.; Shi, Z.; Yuan, Y., Iridium(III)-catalyzed regioselective direct arylation of sp² C-H bonds with diaryliodonium salts. *Org. Biomol. Chem.* **2016**, *14*, 7109; (b) Gao, P.; Guo, W.; Xue, J.; Zhao, Y.; Yuan, Y.; Xia, Y.; Shi, Z., Iridium(III)-Catalyzed Direct Arylation of C-H Bonds with Diaryliodonium Salts. *J. Am. Chem. Soc.* **2015**, *137*, 12231.
- 9. Senthilkumar, N.; Parthasarathy, K.; Gandeepan, P.; Cheng, C.-H., Synthesis of Phenanthridinones from N-Methoxybenzamides and Aryltriethoxysilanes through RhIII-Catalyzed C-H and N-H Bond Activation. *Chem. Asian J.* **2013**, *8*, 2175.
- 10. Thorat, V. H.; Upadhyay, N. S.; Cheng, C.-H., Nickel-Catalyzed Denitrogenative ortho-Arylation of Benzotriazinones with Organic Boronic Acids: an Efficient Route to Losartan and Irbesartan Drug Molecules. *Adv. Synth. Catal.* **2018**, *360*, 4784.
- 11. Hari Balakrishnan, M.; Sathriyan, K.; Mannathan, S., Nickel-Catalyzed Denitrogenative Cross-Coupling Reaction of 1,2,3-Benzotriazin-4(3H)-ones with Organoboronic Acids: An Easy Access to Ortho-Arylated and Alkenylated Benzamides. *Org. Lett.* **2018**, *20*, 3815.
- 12. (a) Miura, T.; Morimoto, M.; Yamauchi, M.; Murakami, M., Nickel-Catalyzed Denitrogenative Annulation Reactions of 1,2,3-Benzotriazin-4(3H)-ones with 1,3-Dienes and Alkenes. *J. Org. Chem.* **2010**, *75*, 5359; (b) Yamauchi, M.; Morimoto, M.; Miura, T.; Murakami, M., Enantioselective Synthesis of 3,4-Dihydroisoquinolin-1(2H)-ones by Nickel-Catalyzed Denitrogenative Annulation of 1,2,3-Benzotriazin-4(3H)-ones with Allenes. *J. Am. Chem. Soc.* **2010**, *132*, 54.
- 13. (a) Fang, Z.-J.; Zheng, S.-C.; Guo, Z.; Guo, J.-Y.; Tan, B.; Liu, X.-Y., Asymmetric Synthesis of Axially Chiral Isoquinolones: Nickel-Catalyzed Denitrogenative Transannulation. *Angew. Chem., Int. Ed.* **2015**, *54*, 9528; (b) Miura, T.; Yamauchi, M.; Murakami, M., Synthesis of 1(2H)-Isoquinolones by the Nickel-Catalyzed Denitrogenative Alkyne Insertion of 1,2,3-Benzotriazin-4(3H)-ones. *Org. Lett.* **2008**, *10*, 3085; (c) Thorat, V. H.; Upadhyay, N. S.; Murakami, M.; Cheng, C.-H., Nickel-Catalyzed Denitrogenative Annulation of 1,2,3-Benzotriazin-4-(3H)-ones with Benzynes for Construction of Phenanthridinone Scaffolds. *Adv. Synth. Catal.* **2018**, *360*, 284; (d) Wang, H.; Yu, S., Synthesis of Isoquinolones Using Visible-Light-Promoted Denitrogenative Alkyne Insertion of 1,2,3-Benzotriazinones. *Org. Lett.* **2015**, *17*, 4272; (e) Wang, N.; Zheng, S.-C.;

- Zhang, L.-L.; Guo, Z.; Liu, X.-Y., Nickel(0)-Catalyzed Denitrogenative Transannulation of Benzotriazinones with Alkynes: Mechanistic Insights of Chemical Reactivity and Regio- and Enantioselectivity from Density Functional Theory and Experiment. *ACS Catal.* **2016**, *6*, 3496.
- 14. Miura, T.; Nishida, Y.; Morimoto, M.; Yamauchi, M.; Murakami, M., Palladium-catalyzed denitrogenation reaction of 1,2,3-benzotriazin-4(3H)-ones incorporating isocyanides. *Org. Lett.* **2011**, *13*, 1429.
- 15. Nohira, I.; Chatani, N., Nickel-Catalyzed Cross-Electrophile Coupling between C(sp²)-F and C(sp²)-Cl Bonds by the Reaction of ortho-Fluoro-Aromatic Amides with Aryl Chlorides. *ACS Catal.* **2021**, *11*, 4644. 16. Wang, F.; Tong, Y.; Zou, G., Nickel-Catalyzed, Manganese-Assisted Denitrogenative Cross-Electrophile-Coupling of Benzotriazinones with Alkyl Halides for ortho-Alkylated Benzamides. *Org. Lett.* **2022**, 24, 5741.
- 17. (a) Lin, T.; Mi, J.; Song, L.; Gan, J.; Luo, P.; Mao, J.; Walsh, P. J., Nickel-Catalyzed Desymmetrizing Cross-Electrophile Coupling of Cyclic Meso-Anhydrides. *Org. Lett.* **2018**, *20*, 1191; (b) Lin, T.; Gu, Y.; Qian, P.; Guan, H.; Walsh, P. J.; Mao, J., Nickel-catalyzed reductive coupling of homoenolates and their higher homologues with unactivated alkyl bromides. *Nat. Commun.* **2020**, *11*, 5638; (c) Guan, H.; Zhang, Q.; Walsh, P. J.; Mao, J., Nickel/Photoredox-Catalyzed Asymmetric Reductive Cross-Coupling of Racemic ^a-Chloro Esters with Aryl Iodides. *Angew. Chem., Int. Ed.* **2020**, *59*, 5172.
- 18. Cui, N.; Lin, T.; Wang, Y.-E.; Wu, J.; Han, Y.; Xu, X.; Xue, F.; Xiong, D.; Walsh, P. J.; Mao, J., Nickel-Catalyzed Reductive Coupling of γ -Metalated Ketones with Unactivated Alkyl Bromides. *Org. Lett.* **2022**, *24*, 3987.
- 19. Liu, P.; Chen, C.; Cong, X.; Tang, J.; Zeng, X., Chromium-catalyzed para-selective formation of quaternary carbon centers by alkylation of benzamide derivatives. *Nat. Commun.* **2018**, *9*, 4637.
- 20. Wang, L.; Wei, Y.-M.; Zhao, Y.; Duan, X.-F., Unified Protocol for Fe-Based Catalyzed Biaryl Cross-Couplings between Various Aryl Electrophiles and Aryl Grignard Reagents. *J. Org. Chem.* **2019**, *84*, 5176.
- 21. Shin, K.; Park, S.-W.; Chang, S., Cp*Ir(III)-Catalyzed Mild and Broad C-H Arylation of Arenes and Alkenes with Aryldiazonium Salts Leading to the External Oxidant-Free Approach. *J. Am. Chem. Soc.* **2015**, *137*, 8584.
- 22. Samanta, P. K.; Biswas, P., Palladium Catalyzed Regioselective Synthesis of Substituted Biaryl Amides through Decarbonylative Arylation of Phthalimides. *J. Org. Chem.* **2019**, *84*, 3968.
- 23. Balakrishnan, M. H.; Kanagaraj, M.; Sankar, V.; Ravva, M. K.; Mannathan, S., Synthesis of ortho-arylated and alkenylated benzamides by palladium-catalyzed denitrogenative cross-coupling reactions of 1,2,3-benzotriazin-4(3H)-ones with organoboronic acids. *New J. Chem.* **2021**, *45*, 17190.
- 24. Kurouchi, H., Diprotonative stabilization of ring-opened carbocationic intermediates: conversion of tetrahydroisoquinoline to triarylmethanes. *Chem. Commun.* **2020**, *56*, 8313.