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ABSTRACT

Resolving an open question from 2006 [4], we prove the existence of
light-weight bounded-degree (1+¢€)-spanners for unit ball graphs in
the metrics of bounded doubling dimension, and we design a simple
O(log™ n)-round distributed algorithm in the LOCAL model for
finding such spanners using only 2-hop neighborhood information.
We further study the problem in the two dimensional Euclidean
plane and we propose a construction with similar properties that has
alow-intersection property as well. Lastly, we provide experimental
results that confirm the performance of our algorithms.
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1 INTRODUCTION

Given a collection of points V in a metric space with doubling
dimension d, the weighted unit ball graph (UBG) on V is defined as
a weighted graph G(V, E) where two points u,v € V are connected
if and only if their metric distance ||uv|| < 1. The weight of the
edge uo of the UBG is |luv|| if the edge exists. Unit ball graphs
in the Euclidean plane are called unit disk graphs (UDGs) and are
frequently used to model ad-hoc wireless communication networks,
where every node in the network has an effective communication
range R, and two nodes are able to communicate if they are within
a distance R of each other.

The necessity of a connected and energy-efficient topology for
high-level routing protocols led researchers to develop many span-
ning algorithms for ad-hoc networks and in particular, UDGs. But
the decentralized nature of ad-hoc networks demands that these
algorithms be local instead of centralized. In these applications, it
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is important that the resulting topology is connected, has a low
weight, and has a bounded degree, implying also that the number
of edges is linear in the number of vertices.

Spanner construction has been the topic of many studies in both
centralized and distributed settings [1, 3, 5, 6, 9, 11]. The best known
result for the case of unit ball graphs in the distributed setting
belongs to Damian, Pandit, and Pemmaraju [4], where they design
a distributed algorithm for UBGs lying in d-dimensional Euclidean
space. Their algorithm runs in O(log™ n) rounds of communication,
where n is the number of vertices, and produces a (1 + €)-spanner
of the UBG, that has constant bounds on its maximum degree and
lightness, with the lightness being defined as the weight of the
spanner divided by the weight of the minimum spanning tree on
the same point set. They used the so-called leapfrog property to
prove the constant lightness bound on the weight of the spanner,
which does not hold for doubling spaces in general. Instead, they
showed that the lightness of their spanner in doubling spaces would
be bounded by O(log A), where A is the ratio of the length of the
longest edge to the length of the shortest edge in the UBG.

Apart from being a generalization of the Euclidean space, the
importance of the spaces of bounded doubling dimension comes
from the fact that a small perturbation in the pairwise distances
does not affect the doubling dimension of the point set by much,
while it can change their Euclidean dimension significantly, or the
resulting distances might not even be embeddable in Euclidean
metrics at all [2].

Since the work of [4] in 2006, it has remained open whether UBGs
in doubling spaces possess lightweight bounded-degree (1 + ¢€)-
spanners and whether they can be found efficiently in a distributed
model of computation. In this paper, we resolve this long-standing
open question and we present centralized and distributed algo-
rithms for finding such spanners.

We resolve this question by proving the existence of light-weight
bounded-degree (1 + €)-spanners of unit ball graphs in the spaces
of bounded doubling dimension. We provide a centralized as well
as a distributed construction for building such spanners, both of
which have constant bounds on the maximum degree and the light-
ness. Furthermore, our distributed spanner can be built locally in
O(log™ n) rounds of communication, where n is the number of ver-
tices. In the full version of the paper [7], we modify this construction
for the two dimensional Euclidean plane in order to have a linear
number of edge intersections in total, implying a constant average
number of edge intersection per node. We also provide experimen-
tal results on random point sets in the two dimensional Euclidean
plane that confirm the efficiency of our distributed construction.
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2 CENTRALIZED CONSTRUCTION

In this section we propose our centralized construction for a light-
weight bounded-degree (1 + €)-spanner for unit ball graphs in a
metric of bounded doubling dimension. Later in section 3 we use
this centralized construction to design a distributed algorithm that
delivers the same features.

It is worth mentioning that the greedy spanner would be a (1+¢)-
spanner of the UBG if the algorithm stops after visiting the pairs of
distance at most 1, and it even has a weight of O(1)w(MST), but as
we mentioned earlier, there are metrics with doubling dimension 1
in which its degree may be unbounded.

To construct a lightweight bounded-degree (1+¢)-spanner of the
unit ball graph, we start with the spanner of [10], called APPROXIMATE-
GREEDY, which is returns a spanner of the complete graph. It is
proven in [12] that APPROXIMATE-GREEDY has the desired prop-
erties, i.e. bounded-degree and lightness, for complete weighted
graphs in Euclidean metrics, but as stated in [8], the proof only
relies on the triangle inequality and packing argument which both
work for doubling metrics as well. Therefore, we may safely assume
that APPROXIMATE-GREEDY finds a light-weight bounded-degree
(1 + €)-spanner of the complete weighted graph defined on the
point set. The main issue is that the edges of length more than 1
are not allowed in a spanner of the unit ball graph on the same
point set. Therefore, a replacement procedure is needed to substi-
tute these edge with edges of length at most 1. Peleg and Roditty
[13] introduced a refinement process which removes the edges of
length larger than 1 from the spanner and replaces them with three
smaller edges to make the output a subgraph of the UBG. The main
issue with their approach is that it can lead to vertices having un-
bounded degrees in the spanner, therefore missing an important
feature. Here, we introduce our own refinement process that not
only replaces edges of larger than 1 with smaller edges and makes
the spanner a subgraph of the unit ball graph, but also guarantees
a constant bounded on the degrees of the resulting spanner.

Algorithm 1 A centralized spanner construction.

Input. A unit ball graph G(V, E) in a metric with doubling
dimension d.
Output. A light-weight bounded-degree (1 + €)-spanner of G.

1: procedure CENTRALIZED-SPANNER(G, €)
2 € «—€/36

3 S « APPROXIMATE-GREEDY(V, €’)
4 R«

5 for e = (u4,0) in S do
6 if |e| > 1 then

7 Remove e from S

8 if |e| € (1,1 +€’] then

9 if A(x,y) € E that |jux|| < ¢’ and |joy|| < ¢’ then
10: if A(x’,y’) € R that |lux’|| < 2¢’ and |joy’|| <
2¢’ then
11:

12:

S—SU{(xy}
R RU{(xy)}
return S

We prove that the output S of Algorithm 1 is a light-weight
bounded-degree (1 + €)-spanner of the unit ball graph G.
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THEOREM 2.1 (CENTRALIZED SPANNER). Given a weighted unit
ball graph G in a metric of bounded doubling dimension and a constant
€ > 0, the spanner returned by CENTRALIZED-SPANNER(G,€) is a (1+¢€) -
spanner of G and has constant bounds on its lightness and maximum
degree. These constant bounds only depend on € and the doubling
dimension.

3 DISTRIBUTED CONSTRUCTION

In this section we propose our distributed construction for finding a
(1+ €)-spanner of a unit ball graph using only 2-hop neighborhood
information. The spanner returned by our algorithm has constant
bounds on its maximum degree and its lightness. This is the first
light-weight distributed construction for unit ball graphs in dou-
bling metrics, to the best of our knowledge.

We propose Algorithm 2 which has a preprocessing step of find-
ing a maximal independent set I of G. This can be done using the
distributed algorithm of [14] in O(log* n) rounds. We refer to this
algorithm by MAXIMAL-INDEPENDENT. Then the LocAL-GREEDY
subroutine is run on every vertex w € I to find a (1 + €)-spanner
Sy of the 2-hop neighborhood of w, denoted by N?(w). At the
final step, every w € I sends its local spanner edges to the cor-
responding endpoints of every edge. Symmetrically, every vertex
listens for the edges sent by the vertices in I and once a message
is received, it stores the edges in its local storage. In other words,
the final spanner is the union of all these local spanners. We use
the centralized algorithm of section 2 for every local neighborhood
N?(w) to guarantee the bounds that we need.

Algorithm 2 The localized greedy algorithm.

Input. A unit ball graph G(V, E) in a metric with doubling
dimension d and an € > 0.
Output. A light-weight bounded-degree (1 + €)-spanner of G.

1: procedure DISTRIBUTED-SPANNER(G, €)

2 Find a maximal independent set I of G using [14]

3 Run LocAL-GREEDY on the vertices of G

4: function LocAL-GREEDY(vertex w)

5 Retrieve A2 (w), the 2-hop neighborhood information of w
6 if wisin I then

7 S,y < CENTRALIZED-SPANNER(N?(w), €)

8 for e = (4,0) in Sy, do

9 Send e to u and v

10: Listen to incoming edges and store them

We show that the spanner returned by Algorithm 2 possesses the
desired properties. The round complexity follows from the round
complexity of [14], and the stretch-factor and the degree bounds
follow from the corresponding bounds on the centralized spanner,
with some adjustments that are explained in the full version of the
paper [7]. The weight bound however requires more attention.

In order to bound the lightness of the output, we assume that
€ < 1 and we make a few comparisons. First, for any w € I we
compare the weight of S,, to the weight of the minimum span-
ning tree on A’?(w). Then we compare the weight of the minimum
spanning tree on N'2(w) to the weight of the minimum Steiner tree
on N3 (w), where the required vertices are N?(w) and 3-hop ver-
tices are optional. Finally, we compare the weight of this minimum
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Steiner tree to the weight of the induced subgraph of CENTRALIZED-
SPANNER(G, €) on the subset of vertices N3 (w), which later implies
that the overall weight of S,,s is bounded by a constant factor of
the weight of the minimum spanning tree on G.

COROLLARY 3.1. 0(S,,) = O(1)w(MST(N?(w)))

Next we compare w(MST(N?(w))) to the weight of the mini-
mum Steiner tree of N3(w) on the required vertices N (w).

LEMMA 3.2. Define T~ to be the optimal Steiner tree on the set of
vertices N (w), where only vertices in N*(w) are required and the
rest of them are optional. Then

w(MST(N?(w))) < 20(T)

We then compare the weight of 7~ to the weight of induced
subgraph of CENTRALIZED-SPANNER(G, €) on the subset of vertices
N3(w). The main observation here is that when e < 1 the induced
subgraph of the centralized spanner on N (w) would be a feasible
solution to the minimum Steiner tree problem on A3 (w), with the
required vertices being the vertices in A’2(w). This will imply that
the weight of the induced subgraph is at least equal to the weight
of the minimum Steiner tree.

LEMMA 3.3. Let S* be the output of CENTRALIZED-SPANNER(G, €)
and let S, be the induced subgraph of S* on N3 (w). Then

o(T) < w(S5)

Proor. We prove that for € < 1, S}, forms a forest that connects
all the vertices in A’?(w) in a single component. So S%, is a feasible
solution to the minimum Steiner tree problem on the set of vertices
N3 (w) with required vertices being N%(w). Thus (7)) < w(S%).

Now we just need to prove that the vertices in N?(w) are con-
nected in Sj,. Let u be an i-hop neighbor of w and v be an i + 1-hop
neighbor of w for some w € I and i = 0, 1. Assume that (u,v) € E.
It is enough to prove that u and v are connected in Sj,. In order to
do so, we observe that there is a path of length at most (1 + €) ||uo||
between u and v in S*. We show that this path is contained in
N3(w) and we complete the proof in this way, because (S, is
nothing but the induced subgraph of S* on A’3(w).

Assume, on the contrary, that there is a vertex x ¢ N3 (w) on
the (1 + €)-path between u and v. This means that x is not a 1-hop
neighbor of any of u and v, because otherwise x would have been
in N3(w). So |lux|| > 1 and ||ox|| > 1. Thus the length of the path
would be at least |[ux|| + |[xv]| > 2 = (1+¢€) > (1 + €)||uv|| which
is a contradiction. O

PROPOSITION 3.4. The spanner returned by DISTRIBUTED-SPANNER
has a weight of O(1)w(MST).

Proor. By Corollary 3.1, Lemma 3.2, and Lemma 3.3,
o(Sw) = 0()w(Sy,)
Summing up together these inequalities for w € I,

w(output) = O(1) Z w(S%)
wel
But we recall that every vertex, and hence every edge of S*, is
repeated O(1) times in the summation above, so

w(output) = 0(1)w(S*) = 0(1)w(MST(G))

59

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Therefore we have all the ingredients to prove Theorem 3.5.

THEOREM 3.5 (DISTRIBUTED SPANNER). Given a weighted unit ball
graph G with n vertices in a metric of bounded doubling dimension
and a constant € > 0, the algorithm DISTRIBUTED-SPANNER(G ,€) runs
in O(log" n) rounds of communication and returns a (1 + €)-spanner
of G that has constant bounds on its lightness and maximum degree.
These constant bounds only depend on € and the doubling dimension.

4 CONCLUSION

In this paper we resolve an open question from 2006 and we prove
the existence of light-weight bounded-degree (1 + €)-spanners
for unit ball graphs in the spaces of bounded doubling dimension.
Moreover, we provide a centralized construction and a distributed
construction that finds a spanner with these properties in O(log* n)
rounds of communication. In the full version of the paper [7], we
adjust these algorithms for the case of unit disk graphs in the two
dimensional Euclidean plane, and we present the first centralized
and distributed constructions for a light-weight bounded-degree
(1 + €)-spanner that also has a linear number of edge intersections
in total. We also propose our experimental results on random point
sets in the two dimensional Euclidean plane, to ensure that our
theoretical bounds are also supported by enough empirical evidence.
Our results show that our construction performs efficiently with
respect to the maximum degree, size, and total weight.
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