
Brief Announcement: Distributed Lightweight Spanner
Construction for Unit Ball Graphs in Doubling Metrics

David Eppstein

eppstein@uci.edu

University of California, Irvine

Irvine, USA

Hadi Khodabandeh

khodabah@uci.edu

University of California, Irvine

Irvine, USA

ABSTRACT
Resolving an open question from 2006 [4], we prove the existence of

light-weight bounded-degree (1+𝜖)-spanners for unit ball graphs in
the metrics of bounded doubling dimension, and we design a simple

O(log∗ 𝑛)-round distributed algorithm in the LOCAL model for

finding such spanners using only 2-hop neighborhood information.

We further study the problem in the two dimensional Euclidean

plane andwe propose a constructionwith similar properties that has

a low-intersection property as well. Lastly, we provide experimental

results that confirm the performance of our algorithms.
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1 INTRODUCTION
Given a collection of points 𝑉 in a metric space with doubling

dimension 𝑑 , the weighted unit ball graph (UBG) on 𝑉 is defined as

a weighted graph𝐺 (𝑉 , 𝐸) where two points 𝑢, 𝑣 ∈ 𝑉 are connected

if and only if their metric distance ∥𝑢𝑣 ∥ ≤ 1. The weight of the

edge 𝑢𝑣 of the UBG is ∥𝑢𝑣 ∥ if the edge exists. Unit ball graphs

in the Euclidean plane are called unit disk graphs (UDGs) and are

frequently used to model ad-hoc wireless communication networks,

where every node in the network has an effective communication

range 𝑅, and two nodes are able to communicate if they are within

a distance 𝑅 of each other.

The necessity of a connected and energy-efficient topology for

high-level routing protocols led researchers to develop many span-

ning algorithms for ad-hoc networks and in particular, UDGs. But

the decentralized nature of ad-hoc networks demands that these

algorithms be local instead of centralized. In these applications, it
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is important that the resulting topology is connected, has a low

weight, and has a bounded degree, implying also that the number

of edges is linear in the number of vertices.

Spanner construction has been the topic of many studies in both

centralized and distributed settings [1, 3, 5, 6, 9, 11]. The best known

result for the case of unit ball graphs in the distributed setting

belongs to Damian, Pandit, and Pemmaraju [4], where they design

a distributed algorithm for UBGs lying in 𝑑-dimensional Euclidean

space. Their algorithm runs in O(log∗ 𝑛) rounds of communication,

where 𝑛 is the number of vertices, and produces a (1 + 𝜖)-spanner
of the UBG, that has constant bounds on its maximum degree and

lightness, with the lightness being defined as the weight of the

spanner divided by the weight of the minimum spanning tree on

the same point set. They used the so-called leapfrog property to

prove the constant lightness bound on the weight of the spanner,

which does not hold for doubling spaces in general. Instead, they

showed that the lightness of their spanner in doubling spaces would

be bounded by O(logΔ), where Δ is the ratio of the length of the

longest edge to the length of the shortest edge in the UBG.

Apart from being a generalization of the Euclidean space, the

importance of the spaces of bounded doubling dimension comes

from the fact that a small perturbation in the pairwise distances

does not affect the doubling dimension of the point set by much,

while it can change their Euclidean dimension significantly, or the

resulting distances might not even be embeddable in Euclidean

metrics at all [2].

Since the work of [4] in 2006, it has remained openwhether UBGs

in doubling spaces possess lightweight bounded-degree (1 + 𝜖)-
spanners and whether they can be found efficiently in a distributed

model of computation. In this paper, we resolve this long-standing

open question and we present centralized and distributed algo-

rithms for finding such spanners.

We resolve this question by proving the existence of light-weight

bounded-degree (1 + 𝜖)-spanners of unit ball graphs in the spaces

of bounded doubling dimension. We provide a centralized as well

as a distributed construction for building such spanners, both of

which have constant bounds on the maximum degree and the light-

ness. Furthermore, our distributed spanner can be built locally in

O(log∗ 𝑛) rounds of communication, where 𝑛 is the number of ver-

tices. In the full version of the paper [7], wemodify this construction

for the two dimensional Euclidean plane in order to have a linear

number of edge intersections in total, implying a constant average

number of edge intersection per node. We also provide experimen-

tal results on random point sets in the two dimensional Euclidean

plane that confirm the efficiency of our distributed construction.
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2 CENTRALIZED CONSTRUCTION
In this section we propose our centralized construction for a light-

weight bounded-degree (1 + 𝜖)-spanner for unit ball graphs in a

metric of bounded doubling dimension. Later in section 3 we use

this centralized construction to design a distributed algorithm that

delivers the same features.

It is worth mentioning that the greedy spanner would be a (1+𝜖)-
spanner of the UBG if the algorithm stops after visiting the pairs of

distance at most 1, and it even has a weight of O(1)𝜔 (𝑀𝑆𝑇 ), but as
we mentioned earlier, there are metrics with doubling dimension 1

in which its degree may be unbounded.

To construct a lightweight bounded-degree (1+𝜖)-spanner of the
unit ball graph, we start with the spanner of [10], calledApproximate-

Greedy, which is returns a spanner of the complete graph. It is

proven in [12] that Approximate-Greedy has the desired prop-

erties, i.e. bounded-degree and lightness, for complete weighted

graphs in Euclidean metrics, but as stated in [8], the proof only

relies on the triangle inequality and packing argument which both

work for doubling metrics as well. Therefore, we may safely assume

that Approximate-Greedy finds a light-weight bounded-degree

(1 + 𝜖)-spanner of the complete weighted graph defined on the

point set. The main issue is that the edges of length more than 1

are not allowed in a spanner of the unit ball graph on the same

point set. Therefore, a replacement procedure is needed to substi-

tute these edge with edges of length at most 1. Peleg and Roditty

[13] introduced a refinement process which removes the edges of

length larger than 1 from the spanner and replaces them with three

smaller edges to make the output a subgraph of the UBG. The main

issue with their approach is that it can lead to vertices having un-

bounded degrees in the spanner, therefore missing an important

feature. Here, we introduce our own refinement process that not

only replaces edges of larger than 1 with smaller edges and makes

the spanner a subgraph of the unit ball graph, but also guarantees

a constant bounded on the degrees of the resulting spanner.

Algorithm 1 A centralized spanner construction.

Input. A unit ball graph 𝐺 (𝑉 , 𝐸) in a metric with doubling

dimension 𝑑 .

Output. A light-weight bounded-degree (1 + 𝜖)-spanner of 𝐺 .
1: procedure Centralized-Spanner(𝐺 , 𝜖)
2: 𝜖 ′ ← 𝜖/36
3: 𝑆 ← Approximate-Greedy(𝑉 , 𝜖 ′)
4: R← ∅
5: for 𝑒 = (𝑢, 𝑣) in 𝑆 do
6: if |𝑒 | > 1 then
7: Remove 𝑒 from 𝑆

8: if |𝑒 | ∈ (1, 1 + 𝜖 ′] then
9: if ∃(𝑥,𝑦) ∈ 𝐸 that ∥𝑢𝑥 ∥ ≤ 𝜖 ′ and ∥𝑣𝑦∥ ≤ 𝜖 ′ then
10: if �(𝑥 ′, 𝑦′) ∈ 𝑅 that ∥𝑢𝑥 ′∥ ≤ 2𝜖 ′ and ∥𝑣𝑦′∥ ≤

2𝜖 ′ then
11: 𝑆 ← 𝑆 ∪ {(𝑥,𝑦)}
12: 𝑅 ← 𝑅 ∪ {(𝑥,𝑦)}
13: return S

We prove that the output 𝑆 of Algorithm 1 is a light-weight

bounded-degree (1 + 𝜖)-spanner of the unit ball graph 𝐺 .

Theorem 2.1 (Centralized Spanner). Given a weighted unit

ball graph𝐺 in ametric of bounded doubling dimension and a constant

𝜖 > 0, the spanner returned byCentralized-Spanner(𝐺 ,𝜖) is a (1+𝜖)-
spanner of𝐺 and has constant bounds on its lightness and maximum

degree. These constant bounds only depend on 𝜖 and the doubling

dimension.

3 DISTRIBUTED CONSTRUCTION
In this section we propose our distributed construction for finding a

(1+ 𝜖)-spanner of a unit ball graph using only 2-hop neighborhood

information. The spanner returned by our algorithm has constant

bounds on its maximum degree and its lightness. This is the first

light-weight distributed construction for unit ball graphs in dou-

bling metrics, to the best of our knowledge.

We propose Algorithm 2 which has a preprocessing step of find-

ing a maximal independent set 𝐼 of 𝐺 . This can be done using the

distributed algorithm of [14] in O(log∗ 𝑛) rounds. We refer to this

algorithm by Maximal-Independent. Then the Local-Greedy

subroutine is run on every vertex 𝑤 ∈ 𝐼 to find a (1 + 𝜖)-spanner
𝑆𝑤 of the 2-hop neighborhood of 𝑤 , denoted by N2 (𝑤). At the
final step, every 𝑤 ∈ 𝐼 sends its local spanner edges to the cor-

responding endpoints of every edge. Symmetrically, every vertex

listens for the edges sent by the vertices in 𝐼 and once a message

is received, it stores the edges in its local storage. In other words,

the final spanner is the union of all these local spanners. We use

the centralized algorithm of section 2 for every local neighborhood

N2 (𝑤) to guarantee the bounds that we need.

Algorithm 2 The localized greedy algorithm.

Input. A unit ball graph 𝐺 (𝑉 , 𝐸) in a metric with doubling

dimension 𝑑 and an 𝜖 > 0.

Output. A light-weight bounded-degree (1 + 𝜖)-spanner of 𝐺 .
1: procedure Distributed-Spanner(𝐺 , 𝜖)
2: Find a maximal independent set 𝐼 of 𝐺 using [14]

3: Run Local-Greedy on the vertices of 𝐺

4: function Local-Greedy(vertex𝑤 )

5: RetrieveN2 (𝑤), the 2-hop neighborhood information of𝑤

6: if 𝑤 is in 𝐼 then
7: S𝑤 ← Centralized-Spanner(N2 (𝑤), 𝜖)
8: for 𝑒 = (𝑢, 𝑣) in S𝑤 do
9: Send 𝑒 to 𝑢 and 𝑣

10: Listen to incoming edges and store them

We show that the spanner returned by Algorithm 2 possesses the

desired properties. The round complexity follows from the round

complexity of [14], and the stretch-factor and the degree bounds

follow from the corresponding bounds on the centralized spanner,

with some adjustments that are explained in the full version of the

paper [7]. The weight bound however requires more attention.

In order to bound the lightness of the output, we assume that

𝜖 ≤ 1 and we make a few comparisons. First, for any 𝑤 ∈ 𝐼 we

compare the weight of S𝑤 to the weight of the minimum span-

ning tree onN2 (𝑤). Then we compare the weight of the minimum

spanning tree onN2 (𝑤) to the weight of the minimum Steiner tree

on N3 (𝑤), where the required vertices are N2 (𝑤) and 3-hop ver-

tices are optional. Finally, we compare the weight of this minimum
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Steiner tree to the weight of the induced subgraph of Centralized-

Spanner(𝐺 , 𝜖) on the subset of verticesN3 (𝑤), which later implies

that the overall weight of S𝑤s is bounded by a constant factor of

the weight of the minimum spanning tree on 𝐺 .

Corollary 3.1. 𝜔 (S𝑤) = O(1)𝜔 (𝑀𝑆𝑇 (N2 (𝑤)))

Next we compare 𝜔 (𝑀𝑆𝑇 (N2 (𝑤))) to the weight of the mini-

mum Steiner tree of N3 (𝑤) on the required vertices N2 (𝑤).

Lemma 3.2. Define T to be the optimal Steiner tree on the set of

vertices N3 (𝑤), where only vertices in N2 (𝑤) are required and the
rest of them are optional. Then

𝜔 (𝑀𝑆𝑇 (N2 (𝑤))) ≤ 2𝜔 (T )

We then compare the weight of T to the weight of induced

subgraph of Centralized-Spanner(𝐺 , 𝜖) on the subset of vertices

N3 (𝑤). The main observation here is that when 𝜖 ≤ 1 the induced

subgraph of the centralized spanner on N3 (𝑤) would be a feasible

solution to the minimum Steiner tree problem on N3 (𝑤), with the

required vertices being the vertices in N2 (𝑤). This will imply that

the weight of the induced subgraph is at least equal to the weight

of the minimum Steiner tree.

Lemma 3.3. Let S∗ be the output of Centralized-Spanner(𝐺 , 𝜖)

and let S∗𝑤 be the induced subgraph of S∗ on N3 (𝑤). Then
𝜔 (T ) ≤ 𝜔 (S∗𝑤)

Proof. We prove that for 𝜖 ≤ 1, S∗𝑤 forms a forest that connects

all the vertices inN2 (𝑤) in a single component. So S∗𝑤 is a feasible

solution to the minimum Steiner tree problem on the set of vertices

N3 (𝑤) with required vertices being N2 (𝑤). Thus 𝜔 (T ) ≤ 𝜔 (S∗𝑤).
Now we just need to prove that the vertices in N2 (𝑤) are con-

nected in S∗𝑤 . Let 𝑢 be an 𝑖-hop neighbor of𝑤 and 𝑣 be an 𝑖 + 1-hop
neighbor of𝑤 for some𝑤 ∈ 𝐼 and 𝑖 = 0, 1. Assume that (𝑢, 𝑣) ∈ 𝐸.
It is enough to prove that 𝑢 and 𝑣 are connected in S∗𝑤 . In order to

do so, we observe that there is a path of length at most (1 + 𝜖)∥𝑢𝑣 ∥
between 𝑢 and 𝑣 in S∗. We show that this path is contained in

N3 (𝑤) and we complete the proof in this way, because 𝜔 (S∗𝑤) is
nothing but the induced subgraph of S∗ on N3 (𝑤).

Assume, on the contrary, that there is a vertex 𝑥 ∉ N3 (𝑤) on
the (1 + 𝜖)-path between 𝑢 and 𝑣 . This means that 𝑥 is not a 1-hop

neighbor of any of 𝑢 and 𝑣 , because otherwise 𝑥 would have been

in N3 (𝑤). So ∥𝑢𝑥 ∥ > 1 and ∥𝑣𝑥 ∥ > 1. Thus the length of the path

would be at least ∥𝑢𝑥 ∥ + ∥𝑥𝑣 ∥ > 2 ≥ (1 + 𝜖) ≥ (1 + 𝜖)∥𝑢𝑣 ∥ which
is a contradiction. □

Proposition 3.4. The spanner returned by Distributed-Spanner

has a weight of O(1)𝜔 (𝑀𝑆𝑇 ).

Proof. By Corollary 3.1, Lemma 3.2, and Lemma 3.3,

𝜔 (S𝑤) = O(1)𝜔 (S∗𝑤)
Summing up together these inequalities for𝑤 ∈ 𝐼 ,

𝜔 (output) = O(1)
∑
𝑤∈𝐼

𝜔 (S∗𝑤)

But we recall that every vertex, and hence every edge of S∗, is
repeated O(1) times in the summation above, so

𝜔 (output) = O(1)𝜔 (S∗) = O(1)𝜔 (𝑀𝑆𝑇 (𝐺))

□

Therefore we have all the ingredients to prove Theorem 3.5.

Theorem 3.5 (Distributed Spanner). Given a weighted unit ball

graph 𝐺 with 𝑛 vertices in a metric of bounded doubling dimension

and a constant 𝜖 > 0, the algorithm Distributed-Spanner(𝐺 ,𝜖) runs

in O(log∗ 𝑛) rounds of communication and returns a (1 + 𝜖)-spanner
of 𝐺 that has constant bounds on its lightness and maximum degree.

These constant bounds only depend on 𝜖 and the doubling dimension.

4 CONCLUSION
In this paper we resolve an open question from 2006 and we prove

the existence of light-weight bounded-degree (1 + 𝜖)-spanners
for unit ball graphs in the spaces of bounded doubling dimension.

Moreover, we provide a centralized construction and a distributed

construction that finds a spanner with these properties in O(log∗ 𝑛)
rounds of communication. In the full version of the paper [7], we

adjust these algorithms for the case of unit disk graphs in the two

dimensional Euclidean plane, and we present the first centralized

and distributed constructions for a light-weight bounded-degree

(1 + 𝜖)-spanner that also has a linear number of edge intersections

in total. We also propose our experimental results on random point

sets in the two dimensional Euclidean plane, to ensure that our

theoretical bounds are also supported by enough empirical evidence.

Our results show that our construction performs efficiently with

respect to the maximum degree, size, and total weight.
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