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ABSTRACT: Using benzaldehydes, NaN(SiMe3)2 and N-acylpyrroles, an operationally simple tandem method to produce a wide 
array of 3,4-dihydroisoquinolones is presented (37 examples, yields up to 98%). A unique feature of this method stems from the 
sequential aminobenzylation of aldehydes and transamidation of the corresponding N-(trimethylsilyl)imines in one-pot.  In this 
process, three new bonds are generated (one C–C and two C–N bonds). 

3,4-Dihydroisoquinolones are common scaffolds found 
widely in naturally occurring alkaloids1 and pharmaceuticals 
(Scheme 1).2-4 Compounds containing 3,4-
dihydroisoquinolone cores exhibit a variety of biological ac-
tivities, such as anti-HIV,5 antidepressant,6 anticancer,7 antiox-
idant,8 anti-thrombotic,9 and antibacterial properties.10 They 
are also known as EZH2 inhibitors,11 PARP inhibitors,12 and 
cyclin-dependent kinase inhibitors.13 Consequently, the devel-
opment of efficient methods for the synthesis of this important 
N-heterocycle core has attracted much attention. 
Traditional approaches to access 3,4-dihydroisoquinolones 

mainly rely on intramolecular cyclization of activated amide 
or amide precursors, including carbamates,14-16 isocynates,17, 18  
ureas,19 and azidoamides.20, 21 However, most of these methods 
suffer from limited substrate scope resulting from the use of 
strongly acidic conditions. Recently, significant effort has 
been devoted to the preparation of 3,4-dihydroisoquinolones, 
with representative methods including: (1) palladium cata-
lyzed carbonyl insertion (Scheme 2a);22-24 (2) oxidation of 
cyclic amines (Scheme 2b);25-27 and (3) [4+2] cycloaddition of 
activated arylamides with alkenes via transition metal cata-

lyzed C–H activation (Scheme 2c).28-30 Despite substantial 
progress, most of these methods still leave room for improve-
ment to address the use of prefunctionalized substrates, expen-
sive metal catalysts and ligands, the need for excess oxidants, 
or tedious procedures. The development of greener and more 
practical methods for the synthesis of 3,4-
dihydroisoquinolones, therefore, remains in demand. 
Scheme 1. Representative biologically active compounds 
containing 3,4-dihydroisoquinolone cores.  
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Our team has a long-standing interest in Brønsted base 
[MN(SiMe3)2, M = Li, Na, K, and Cs] promoted functionaliza-
tion of weakly acidic C–H bonds in toluene derivatives.31-33 As 
shown in Scheme 2d, we advanced an MN(SiMe3)2 mediated 
C–N and C–C bond-forming process by reaction of 
MN(SiMe3)2 with aryl aldehydes to generate N-TMS imines. 
The MN(SiMe3)2 simultaneously acts as base in the deprotona-
tion of toluene derivatives weakly acidic C(sp3)−H bonds. The 
resulting benzylic organometallic reacts with the N-TMS 
imine to give an amine after hydrolysis. Other groups have 
used different bases in related strategies,34-38  including use of 
enantioenriched ligands for the base by the Kobayshi group. 
Scheme 2. Methods for the synthesis of 3,4-
dihydroisoquinolones and relevant prior studies.  

 
In combination with reversible toluene deprotonation, we 

have examined different electrophiles, including methyl esters, 
Weinreb amides, and N-acyl pyrroles to make ketones 
(Scheme 2e).39, 40 It is well known that the carbonyl group of 
N-acyl pyrroles is significantly more electrophilic than those 
of standard amides,41 because the lone pair of the pyrrole ni-
trogen is also delocalized into the aromatic p-system. In the 
case of 2,5-disubstituted N-acyl pyrroles, the substituents force 
the pyrrole out of planarity from the carbonyl group.  Based on 
our ketone synthesis (Scheme 2e), we were curious if 3,4-
dihydroisoquinolones could be accessed from 2-methyl ben-
zamide derivatives through an initial aminobenzylation fol-
lowed by transamidation (Scheme 2f). Herein we report the 
net [4+2] annulation composed of an initial aminobenzylation 
of aldehydes and transamidation of the N-acyl pyrrole for the 
synthesis of 3,4-dihydroisoquinolones (Scheme 2f).  This one-

pot procedure results in the formation of 3 new bonds (2 x C–
N, C–C) and a heterocyclic scaffolding. 
At the outset of our studies, the reaction of the model sub-

strate, 2,5-dimethyl-N-2’,4’,6’-trimethylbenzolpyrrole 1a, and 
benzaldehyde 2a was conducted in toluene at 100 oC for 12 h 
with NaN(SiMe3)2 (Table 1). To our delight, the target product 
3aa was produced in 77% isolated yield (Table 1, entry 1). 
Screening solvents [toluene, CPME (cyclopentyl methyl ether), 
DME, THF, and 1,4-dioxane] indicated that reactions in 1,4-
dioxane showed the best performance, furnishing the cycliza-
tion product in 83% yield (entry 5). Different main group cati-
ons can have a profound impact on reactivity and chemoselec-
tivity.42 Thus, it was not surprising that the choice of silyla-
mide base for our reaction was critical. Unlike NaN(SiMe3)2, 
KN(SiMe3)2 failed to promote the reaction (entry 6) and 
LiN(SiMe3)2 exhibited inferior performance (60% yield, entry 
7). Increasing the amount of benzaldehyde 2a to 1.2 equiv. 
improved the yield of 3aa (entries 5 vs 8, from 83% to 88%). 
Furthermore, excess base was essential for this protocol.  
Lowering the equivalents of NaN(SiMe3)2 to 2 gave 55% yield, 
while almost no product was detected with 1 equiv. of 
NaN(SiMe3)2 (entries 9 and 10 vs. 8). It should be noted that 
1.2 equivalent of the silyl amide is needed to convert the alde-
hyde to the imine.  The pyrrolide anion (formed as a byproduct) 
is insufficiently basic to deprotonate the benzylic methyl 
group, resulting in consumption of an equiv of base. Thus, the 
use of 3 equiv base insures that any trace protic impurities in 
the solvent can also be deactivated. The optimized conditions 
(Table 1, entry 8) were then carried forward to explore the 
substrate scope. 
Table 1. Reaction Optimizationa 

 
Entry Solvent Base 1a:2a Yieldb (%) 
1 Toluene NaN(SiMe3)2 1:1 77 
2 CPME NaN(SiMe3)2 1:1 61 
3 DME NaN(SiMe3)2 1:1 trace 
4 THF NaN(SiMe3)2 1:1 60 
5 1,4-Dioxane NaN(SiMe3)2 1:1 83 
6 1,4-Dioxane KN(SiMe3)2 1:1 trace  
7 1,4-Dioxane LiN(SiMe3)2 1:1 60 
8 1,4-Dioxane NaN(SiMe3)2 1:1.2 88 
9c 1,4-Dioxane NaN(SiMe3)2 1:1.2 55 
10d 1,4-Dioxane NaN(SiMe3)2 1:1.2 trace 

a Reactions were conducted with 1a (0.2 mmol), 2a (0.24 
mmol), base (0.6 mmol), solvent (2 mL), 12 h. b Isolated yields. c 
2 Equiv. of NaN(SiMe3)2. d 1 Equiv. of NaN(SiMe3)2 

As depicted in Table 2, a wide range of aryl aldehydes were 
compatible with the reaction and afforded the 3,4-
dihydroisoquinolone products in good to excellent yields. 
Benzaldehydes containing alkyl groups (4-Me and 4-tBu) gave 
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products 3ab and 3ac in 82% and 86% yield, respectively. 
Benzaldehydes bearing electronically-diverse substituents, 
including electron-donating 4-OMe, 4-OPh, 4-OBn, 4-NMe2 
and 4-SMe, gave the products (3ad, 3ae, 3af, 3ag, 3ah) in 69–
96% yield.  Benzaldehydes with electronegative or electron-
withdrawing substituents (4-F, 4-Cl, 4-Br, 4-CF3, 4-OCF3) 
resulted in product generation in 60–81% yield (3ai, 3aj, 3ak, 
3al, 3am). However, 4-iodobenzaldehyde was not a suitable 
substrate in this protocal and decomposed under the reaction 
conditions. Additionally, substrates possessing 4-Ph (3an), 2-
naphthyl (3ao), heterocyclic 2-pyridyl (3ap), and morpholino 
(3aq) groups furnished products in 76–91% yield. Sterically 
hindered aryl aldehydes bearing 2-Me and 2-Cl groups were 
found to be suitable substrates, affording the cyclized products 
3ar and 3as in 58–84% yields. Interestingly, heterocyclic 
nicotinealdehyde, furfural, 3-thiophenaldehyde, 2-
thiophenaldehyde, 1-benzothiophene-2-carbaldehyde, and 1,4-
benzodioxan-6-carboxaldehyde also participated in this reac-
tion, giving the products 3at–3ay in 44–86% yields.  
Table 2. Scope of arylaldehyde a,b 

 
a Reaction conditions: 1a (0.2 mmol), arylaldehyde (0.24 

mmol), NaN(SiMe3)2 (1.0 mol/L in THF, 0.6 mL, 0.6 mmol), 1,4-
dioxane (0.1 M), 100 oC, 12 h. b Isolated yield. c 80 oC. d Reaction 
conducted on 5 mmol scale. 

 
It is noteworthy that the reaction was also applicable to cyclo-
propanecarboxaldehyde to furnish desired 3az, albeit with 
diminished efficiency (51% yield). No desired product was 
observed with terephthalaldehyd. To test the scalability of our 
method, 5 mmol of 1a was reacted with 1.2 equiv. of 2-
thiophenaldehyde (2w) and the target product 3aw was isolat-
ed in 85% yield (1.09 g). 

The scope of 2,5-dimethyl-N-acylpyrroles was next ex-
plored with benzaldehyde (2a) (Table 3).  As expected, 2,6-
dimethyl substituted N-acyl pyrrole showed similar reactivity 
to the model reaction (87% yield). In this study, it was found 
that substrates bearing substituents at the 6-position are critical 
for high yield. The less sterically encumbered substrate 2c 
displayed 31% yield in the formation of 3ca. The origin of the 
reactivity difference is not clear, but may result from directed 
ortho metalation (although no such products were observed). 
Replacement of one of the methyl groups of 1b with electron-
donating OMe (1d) or electron-withdrawing Cl or Br (1e, 1f) 
groups restored the reactivity, providing the target product 
3da–3fa in 83–89% yields. Unfortunately, a 6-iodo substituent 
was not tolerated in this reaction due to decomposition. Addi-
tionally, use of substrates with various 2-aryl substituents [2-
Ph, 2-(2-thienyl), 2-(4-pyridinyl), 2-(3-pyridinyl) or 2-(3-
quinolyl)] furnished the product 3ga–3ka in 60–98% yields. 
Notably, a heterocyclic substrate bearing a thienyl group, pro-
duced a 48% yield of 3la. When 2-ethyl-N-acylpyrrole was 
also utilized in this transformation, no desired product was 
observed under various reaction conditions. Overall, a variety 
of 3,4-dihydroisoquinolones were synthesized under our tran-
sition metal-free annulation reaction with readily available 
aryl aldehydes and 2,5-dimethyl-N-acylpyrroles. 
Table 3. Scope of 2,5-dimethyl-N-acylpyrroles a,b 

 
a Reaction conditions: 2,5-dimethyl-N-acylpyrroles (0.2 mmol), 

2a (0.24 mmol), NaN(SiMe3)2 (1.0 mol/L in THF, 0.6 mL, 0.6 
mmol), 1,4-dioxane (0.1 M), 100 oC, 12 h. b Isolated yield. c 1,4-
dioxane was replaced with DME. d 80 oC. e 60 oC 

The key steps in a proposed mechanism are shown in 
Scheme 3.  Rapid reaction of the aldehyde with the silyl amide 
base is followed by an aza-Peterson elimination to generate 
the N-SiMe3 imine.  At the same time, deprotonation of the 
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methyl group next to the amide ensues.  The reaction of the 
metalated amide with the imine generates a C–C bond and 
reveals a nucleophilic nitrogen that is positioned to undergo 
transamidation with the N-acyl pyrrole, forming the second C–
N bond.  Aqueous workup provides the observed annulated 
product.   
Scheme 3. Key steps in the proposed mechanism.  

 
In conclusion, we have advanced a novel NaN(SiMe3)2 me-

diated tandem aminobenzylation/transamidation reaction un-
der transition metal-free conditions. This method provides an 
efficient and straightforward strategy for the synthesis of 3,4-
dihydroisoquinolones. The broad scope and good functional 
group compatibility of this protocol make it an attractive alter-
native to previously reported methods. The 3,4-
dihydroisoquinolone derivatives prepared in this study belong 
to a class of scaffolds relevant to pharmacologically important 
compounds and natural products. Due to its ability to access 
bioactive heterocycles in a single step, we envision that this 
tandem reaction will find application in chemical sciences and 
medicinal chemistry. 
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