Base-promoted tandem synthesis of 3,4-dihydroisoquinolones

Jie Li,^{1,2,3,4} Huan Wang,³ Huimin Jin,^{1,3,4} Zhenhua Xiang,^{1,3,4} Lingfeng Chen,¹ Patrick J. Walsh,^{*,2} Guang Liang^{*,1}

- ¹ School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- ² Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA
- ³ College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- ⁴ Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China

Supporting Information Placeholder

ABSTRACT: Using benzaldehydes, NaN(SiMe₃)₂ and *N*-acylpyrroles, an operationally simple tandem method to produce a wide array of 3,4-dihydroisoquinolones is presented (37 examples, yields up to 98%). A unique feature of this method stems from the sequential aminobenzylation of aldehydes and transamidation of the corresponding *N*-(trimethylsilyl)imines in one-pot. In this process, three new bonds are generated (one C–C and two C–N bonds).

3,4-Dihydroisoquinolones are common scaffolds found widely in naturally occurring alkaloids¹ and pharmaceuticals (Scheme 1).²⁻⁴ Compounds containing 3,4-dihydroisoquinolone cores exhibit a variety of biological activities, such as anti-HIV,⁵ antidepressant,⁶ anticancer,⁷ antioxidant,⁸ anti-thrombotic,⁹ and antibacterial properties.¹⁰ They are also known as EZH2 inhibitors,¹¹ PARP inhibitors,¹² and cyclin-dependent kinase inhibitors.¹³ Consequently, the development of efficient methods for the synthesis of this important *N*-heterocycle core has attracted much attention.

Traditional approaches to access 3,4-dihydroisoquinolones mainly rely on intramolecular cyclization of activated amide or amide precursors, including carbamates, ¹⁴⁻¹⁶ isocynates, ^{17, 18} ureas, ¹⁹ and azidoamides. ^{20, 21} However, most of these methods suffer from limited substrate scope resulting from the use of strongly acidic conditions. Recently, significant effort has been devoted to the preparation of 3,4-dihydroisoquinolones, with representative methods including: (1) palladium catalyzed carbonyl insertion (Scheme 2a); ²²⁻²⁴ (2) oxidation of cyclic amines (Scheme 2b); ²⁵⁻²⁷ and (3) [4+2] cycloaddition of activated arylamides with alkenes *via* transition metal cata-

lyzed C–H activation (Scheme 2c).²⁸⁻³⁰ Despite substantial progress, most of these methods still leave room for improvement to address the use of prefunctionalized substrates, expensive metal catalysts and ligands, the need for excess oxidants, or tedious procedures. The development of greener and more practical methods for the synthesis of 3,4-dihydroisoquinolones, therefore, remains in demand.

Scheme 1. Representative biologically active compounds containing 3,4-dihydroisoquinolone cores.

Our team has a long-standing interest in Brønsted base [MN(SiMe₃)₂, M = Li, Na, K, and Cs] promoted functionalization of weakly acidic C–H bonds in toluene derivatives.³¹⁻³³ As shown in Scheme 2d, we advanced an MN(SiMe₃)₂ mediated C–N and C–C bond-forming process by reaction of MN(SiMe₃)₂ with aryl aldehydes to generate *N*-TMS imines. The MN(SiMe₃)₂ simultaneously acts as base in the deprotonation of toluene derivatives weakly acidic C(sp³)–H bonds. The resulting benzylic organometallic reacts with the *N*-TMS imine to give an amine after hydrolysis. Other groups have used different bases in related strategies,³⁴⁻³⁸ including use of enantioenriched ligands for the base by the Kobayshi group.

Scheme 2. Methods for the synthesis of 3,4-dihydroisoquinolones and relevant prior studies.

R1
$$\stackrel{H}{=}$$
 $\stackrel{R^3}{=}$ $\stackrel{Pd \ cat.}{=}$ $\stackrel{R^3}{=}$ $\stackrel{R^3}{=}$ $\stackrel{R^3}{=}$ $\stackrel{R^3}{=}$ $\stackrel{R^2}{=}$ $\stackrel{R^3}{=}$ $\stackrel{R^3}{=}$

(d) One-pot aminobenzylation of aldehydes

$$\begin{array}{c} O \\ Ar^1 \\ H \end{array} \xrightarrow{NaN(SiMe_3)_2} \left[\begin{array}{c} NSiMe_3 \\ Ar^1 \\ H \end{array} \right] \xrightarrow{NaN(SiMe_3)_2} \begin{array}{c} NaN(SiMe_3)_2 \\ 35 \text{ mol}\% \text{ CsTFA} \\ Ar^2 \text{CH}_3 \end{array} \xrightarrow{NH_2} Ar^1 \xrightarrow{NaN(SiMe_3)_2} Ar^1 \xrightarrow{NaN(SiMe_3)_2} Ar^2 \xrightarrow{NaN(SiMe_3)_2} Ar^2 \xrightarrow{NaN(SiMe_3)_2} Ar^3 \xrightarrow{NaN(SiMe_3)_3} Ar^3 \xrightarrow{NaN(SiMe_3)_4} Ar^3 \xrightarrow{NaN(SiMe_3)_4} Ar^3 \xrightarrow{NaN(SiMe_3)_4} Ar^3 \xrightarrow{NaN(SiMe_3)_4$$

(e) Aroylation of toluene derivatives with N-acyl pyrroles

$$Ar^{1} + Ar^{2}-Me \xrightarrow{KN(SiMe_{3})_{2} 3 \text{ eq}} Ar^{1} Ar^{2}$$

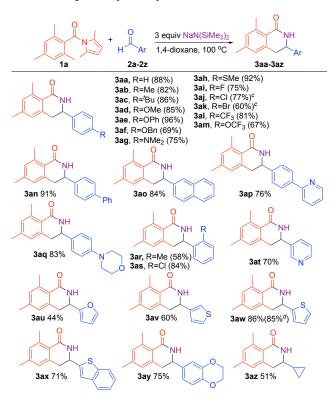
(f) This work

■ Bonds formed: 2 C-N, 1 C-C ■ broad scope

In combination with reversible toluene deprotonation, we have examined different electrophiles, including methyl esters, Weinreb amides, and N-acyl pyrroles to make ketones (Scheme 2e). 39, 40 It is well known that the carbonyl group of N-acyl pyrroles is significantly more electrophilic than those of standard amides, 41 because the lone pair of the pyrrole nitrogen is also delocalized into the aromatic π -system. In the case of 2,5-disubstituted N-acyl pyrroles, the substituents force the pyrrole out of planarity from the carbonyl group. Based on our ketone synthesis (Scheme 2e), we were curious if 3,4dihydroisoquinolones could be accessed from 2-methyl benzamide derivatives through an initial aminobenzylation followed by transamidation (Scheme 2f). Herein we report the net [4+2] annulation composed of an initial aminobenzylation of aldehydes and transamidation of the N-acyl pyrrole for the synthesis of 3,4-dihydroisoguinolones (Scheme 2f). This onepot procedure results in the formation of 3 new bonds (2 x C–N, C–C) and a heterocyclic scaffolding.

At the outset of our studies, the reaction of the model substrate, 2,5-dimethyl-N-2',4',6'-trimethylbenzolpyrrole 1a, and benzaldehyde 2a was conducted in toluene at 100 °C for 12 h with NaN(SiMe₃)₂ (Table 1). To our delight, the target product 3aa was produced in 77% isolated yield (Table 1, entry 1). Screening solvents [toluene, CPME (cyclopentyl methyl ether), DME, THF, and 1,4-dioxane] indicated that reactions in 1,4dioxane showed the best performance, furnishing the cyclization product in 83% yield (entry 5). Different main group cations can have a profound impact on reactivity and chemoselectivity. 42 Thus, it was not surprising that the choice of silylamide base for our reaction was critical. Unlike NaN(SiMe₃)₂, KN(SiMe₃)₂ failed to promote the reaction (entry 6) and LiN(SiMe₃)₂ exhibited inferior performance (60% yield, entry 7). Increasing the amount of benzaldehyde 2a to 1.2 equiv. improved the yield of 3aa (entries 5 vs 8, from 83% to 88%). Furthermore, excess base was essential for this protocol. Lowering the equivalents of NaN(SiMe₃)₂ to 2 gave 55% yield, while almost no product was detected with 1 equiv. of NaN(SiMe₃)₂ (entries 9 and 10 vs. 8). It should be noted that 1.2 equivalent of the silyl amide is needed to convert the aldehyde to the imine. The pyrrolide anion (formed as a byproduct) is insufficiently basic to deprotonate the benzylic methyl group, resulting in consumption of an equiv of base. Thus, the use of 3 equiv base insures that any trace protic impurities in the solvent can also be deactivated. The optimized conditions (Table 1, entry 8) were then carried forward to explore the substrate scope.

Table 1. Reaction Optimization^a


Entry	Solvent	Base	1a:2a	Yield ^b (%)
1	Toluene	NaN(SiMe ₃) ₂	1:1	77
2	CPME	$NaN(SiMe_3)_2$	1:1	61
3	DME	NaN(SiMe ₃) ₂	1:1	trace
4	THF	NaN(SiMe ₃) ₂	1:1	60
5	1,4-Dioxane	NaN(SiMe ₃) ₂	1:1	83
6	1,4-Dioxane	KN(SiMe ₃) ₂	1:1	trace
7	1,4-Dioxane	LiN(SiMe ₃) ₂	1:1	60
8	1,4-Dioxane	NaN(SiMe ₃) ₂	1:1.2	88
9 ^c	1,4-Dioxane	NaN(SiMe ₃) ₂	1:1.2	55
10^d	1,4-Dioxane	NaN(SiMe ₃) ₂	1:1.2	trace

^a Reactions were conducted with **1a** (0.2 mmol), **2a** (0.24 mmol), base (0.6 mmol), solvent (2 mL), 12 h. ^b Isolated yields. ^c 2 Equiv. of NaN(SiMe₃)₂. ^d 1 Equiv. of NaN(SiMe₃)₂

As depicted in Table 2, a wide range of aryl aldehydes were compatible with the reaction and afforded the 3,4-dihydroisoquinolone products in good to excellent yields. Benzaldehydes containing alkyl groups (4-Me and 4-'Bu) gave

products 3ab and 3ac in 82% and 86% yield, respectively. Benzaldehydes bearing electronically-diverse substituents, including electron-donating 4-OMe, 4-OPh, 4-OBn, 4-NMe₂ and 4-SMe, gave the products (3ad, 3ae, 3af, 3ag, 3ah) in 69-96% yield. Benzaldehydes with electronegative or electronwithdrawing substituents (4-F, 4-Cl, 4-Br, 4-CF₃, 4-OCF₃) resulted in product generation in 60-81% yield (3ai, 3ai, 3ak, 3al, 3am). However, 4-iodobenzaldehyde was not a suitable substrate in this protocal and decomposed under the reaction conditions. Additionally, substrates possessing 4-Ph (3an), 2naphthyl (3ao), heterocyclic 2-pyridyl (3ap), and morpholino (3aq) groups furnished products in 76–91% yield. Sterically hindered aryl aldehydes bearing 2-Me and 2-Cl groups were found to be suitable substrates, affording the cyclized products 3ar and 3as in 58-84% yields. Interestingly, heterocyclic furfural, nicotinealdehyde, 3-thiophenaldehyde, thiophenaldehyde, 1-benzothiophene-2-carbaldehyde, and 1,4benzodioxan-6-carboxaldehyde also participated in this reaction, giving the products 3at-3ay in 44-86% yields.

Table 2. Scope of arylaldehyde a,b

 a Reaction conditions: **1a** (0.2 mmol), arylaldehyde (0.24 mmol), NaN(SiMe₃)₂ (1.0 mol/L in THF, 0.6 mL, 0.6 mmol), 1,4-dioxane (0.1 M), 100 °C, 12 h. b Isolated yield. c 80 °C. d Reaction conducted on 5 mmol scale.

It is noteworthy that the reaction was also applicable to cyclopropanecarboxaldehyde to furnish desired 3az, albeit with diminished efficiency (51% yield). No desired product was observed with terephthalaldehyd. To test the scalability of our method, 5 mmol of 1a was reacted with 1.2 equiv. of 2-thiophenaldehyde (2w) and the target product 3aw was isolated in 85% yield (1.09 g).

The scope of 2,5-dimethyl-N-acylpyrroles was next explored with benzaldehyde (2a) (Table 3). As expected, 2,6dimethyl substituted N-acyl pyrrole showed similar reactivity to the model reaction (87% yield). In this study, it was found that substrates bearing substituents at the 6-position are critical for high yield. The less sterically encumbered substrate 2c displayed 31% yield in the formation of 3ca. The origin of the reactivity difference is not clear, but may result from directed ortho metalation (although no such products were observed). Replacement of one of the methyl groups of 1b with electrondonating OMe (1d) or electron-withdrawing Cl or Br (1e, 1f) groups restored the reactivity, providing the target product 3da-3fa in 83-89% yields. Unfortunately, a 6-iodo substituent was not tolerated in this reaction due to decomposition. Additionally, use of substrates with various 2-aryl substituents [2-Ph, 2-(2-thienyl), 2-(4-pyridinyl), 2-(3-pyridinyl) or 2-(3quinolyl)] furnished the product 3ga-3ka in 60-98% yields. Notably, a heterocyclic substrate bearing a thienyl group, produced a 48% yield of **3la**. When 2-ethyl-N-acylpyrrole was also utilized in this transformation, no desired product was observed under various reaction conditions. Overall, a variety of 3,4-dihydroisoguinolones were synthesized under our transition metal-free annulation reaction with readily available aryl aldehydes and 2,5-dimethyl-N-acylpyrroles.

Table 3. Scope of 2,5-dimethyl-N-acylpyrroles a,b

 a Reaction conditions: 2,5-dimethyl-*N*-acylpyrroles (0.2 mmol), **2a** (0.24 mmol), NaN(SiMe₃)₂ (1.0 mol/L in THF, 0.6 mL, 0.6 mmol), 1,4-dioxane (0.1 M), 100 °C, 12 h. b Isolated yield. c 1,4-dioxane was replaced with DME. d 80 °C. e 60 °C

The key steps in a proposed mechanism are shown in Scheme 3. Rapid reaction of the aldehyde with the silyl amide base is followed by an aza-Peterson elimination to generate the *N*-SiMe₃ imine. At the same time, deprotonation of the

methyl group next to the amide ensues. The reaction of the metalated amide with the imine generates a C–C bond and reveals a nucleophilic nitrogen that is positioned to undergo transamidation with the *N*-acyl pyrrole, forming the second C–N bond. Aqueous workup provides the observed annulated product.

Scheme 3. Key steps in the proposed mechanism.

In conclusion, we have advanced a novel NaN(SiMe₃)₂ mediated tandem aminobenzylation/transamidation reaction under transition metal-free conditions. This method provides an efficient and straightforward strategy for the synthesis of 3,4-dihydroisoquinolones. The broad scope and good functional group compatibility of this protocol make it an attractive alternative to previously reported methods. The 3,4-dihydroisoquinolone derivatives prepared in this study belong to a class of scaffolds relevant to pharmacologically important compounds and natural products. Due to its ability to access bioactive heterocycles in a single step, we envision that this tandem reaction will find application in chemical sciences and medicinal chemistry.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its online supplementary material.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures, characterization data, and NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

Guang Liang – School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Email: cuiliang1234@163.com

Patrick J. Walsh – Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States; orcid.org/0000-0001-8392-4150; Email: pwalsh@ sas.upenn.edu

Authors

Jie Li – School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States; College of Pharmaceutical Sciences, ZhejiangUniversity, Hangzhou 310058, People's Republic of China; Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou 310015, People's Republic of China

Huan Wang — College of Pharmaceutical Sciences, ZhejiangUniversity, Hangzhou 310058, People's Republic of China

Huimin Jin – Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou 310015, People's Republic of China

Zhenhua Xiang – Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou 310015, People's Republic of China

Lingfen Chen – School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China

Author Contributions

The manuscript was written through contributions of all authors. / All authors approved the final version of the manuscript.

Note

The authors declare no competing financial interest.

ACKNOWLEDGMENT

LJ thanks Zhejiang Provincial Natural Science Foundation of China (LY20C020003) and National Natural Science Foundation of China (31670357). PJW thanks the US National Science Foundation (CHE-2154593).

REFERENCES

- (1) Scott, J. D.; Williams, R. M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. *Chem. Rev.* **2002**, *102*, 1669-730.
- (2) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Privileged scaffolds for library design and drug discovery. *Curr. Opin. Chem. Biol.* **2010**, *14*, 347-61.
- (3) Murray, C. W.; Rees, D. C. Opportunity Knocks: Organic Chemistry for Fragment-Based Drug Discovery (FBDD). *Angew. Chem. Int. Ed.* **2016**, *55*, 488-92.
- (4) Singh, I. P.; Shah, P. Tetrahydroisoquinolines in therapeutics: a patent review (2010-2015). *Expert Opin. Ther. Pat.* **2017**, *27*, 17-36.
- (5) Billamboz, M.; Bailly, F.; Lion, C.; Touati, N.; Vezin, H.; Calmels, C.; Andreola, M. L.; Christ, F.; Debyser, Z.; Cotelle, P. Magnesium chelating 2-hydroxyisoquinoline-1,3(2*H*,4*H*)-diones, as inhibitors of HIV-1 integrase and/or the HIV-1 reverse transcriptase ribonuclease H domain: discovery of a novel selective inhibitor of the ribonuclease H function. *J. Med. Chem.* **2011**, *54*, 1812-24.
- (6) Müjde, B.; Özcan, S.; Balci, M. New synthetic methodology for construction of the 3,4-dihydroisoquinolinone skeleton: A key structure for isoquinoline alkaloids. *Phytochem. Lett.* **2011**, *4*, 407-410.
- (7) Billamboz, M.; Suchaud, V.; Bailly, F.; Lion, C.; Demeulemeester, J.; Calmels, C.; Andreola, M. L.; Christ, F.; Debyser, Z.; Cotelle, P. 4-Substituted 2-Hydroxyisoquinoline-1,3(2*H*,4*H*)diones as a Novel Class of HIV-1 Integrase Inhibitors. *ACS Med. Chem. Lett.* **2013**, *4*, 606-11.
- (8) Chen, J. J.; Chang, Y. L.; Teng, C. M.; Chen, I. S. Vasorelaxing and antioxidant constituents from Hernandia nymphaeifolia. *Planta Med.* **2001**, *67*, 593-8.

- (9) Wurtz, N. R.; Parkhurst, B. L.; Jiang, W.; DeLucca, I.; Zhang, X.; Ladziata, V.; Cheney, D. L.; Bozarth, J. R.; Rendina, A. R.; Wei, A.; Luettgen, J. M.; Wu, Y.; Wong, P. C.; Seiffert, D. A.; Wexler, R. R.; Priestley, E. S. Discovery of Phenylglycine Lactams as Potent Neutral Factor VIIa Inhibitors. *ACS Med. Chem. Lett.* **2016**, *7*, 1077-1081.
- (10) Fu, L.; Liu, X.; Ling, C.; Cheng, J.; Guo, X.; He, H.; Ding, S.; Yang, Y. Design, synthesis, and structure-activity relationship studies of conformationally restricted mutilin 14-carbamates. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 814-9.
- (11) Kung, P. P.; Bingham, P.; Brooun, A.; Collins, M.; Deng, Y. L.; Dinh, D.; Fan, C.; Gajiwala, K. S.; Grantner, R.; Gukasyan, H. J.; Hu, W.; Huang, B.; Kania, R.; Kephart, S. E.; Krivacic, C.; Kumpf, R. A.; Khamphavong, P.; Kraus, M.; Liu, W.; Maegley, K. A.; Nguyen, L.; Ren, S.; Richter, D.; Rollins, R. A.; Sach, N.; Sharma, S.; Sherrill, J.; Spangler, J.; Stewart, A. E.; Sutton, S.; Uryu, S.; Verhelle, D.; Wang, H.; Wang, S.; Wythes, M.; Xin, S.; Yamazaki, S.; Zhu, H.; Zhu, J.; Zehnder, L.; Edwards, M. Optimization of Orally Bioavailable Enhancer of Zeste Homolog 2 (EZH2) Inhibitors Using Ligand and Property-Based Design Strategies: Identification of Development Candidate (*R*)-5,8-Dichloro-7-(methoxy(oxetan-3-yl)methyl)-2-((4-methoxy-6-methyl-2-oxo-1,2-dihydrojyridin-3-yl)methyl)-3,4-dihydroisoquinolin-1(2*H*)-one (PF-06821497). *J. Med. Chem.* **2018**, *61*, 650-665.
- (12) Morgan, R. K.; Carter-O'Connell, I.; Cohen, M. S. Selective inhibition of PARP10 using a chemical genetics strategy. *Bioorg. Med. Chem. Lett.* **2015**, *25*, 4770-4773.
- (13) Tsou, H. R.; Liu, X.; Birnberg, G.; Kaplan, J.; Otteng, M.; Tran, T.; Kutterer, K.; Tang, Z.; Suayan, R.; Zask, A.; Ravi, M.; Bretz, A.; Grillo, M.; McGinnis, J. P.; Rabindran, S. K.; Ayral-Kaloustian, S.; Mansour, T. S. Discovery of 4-(benzylaminomethylene)isoquinoline-1,3-(2*H*,4*H*)-diones and 4-[(pyridylmethyl)aminomethylene]isoquinoline-1,3-(2*H*,4*H*)-diones as potent and selective inhibitors of the cyclin-dependent kinase 4. *J. Med. Chem.* **2009**, *52*, 2289-310.
- (14) Kurouchi, H.; Kawamoto, K.; Sugimoto, H.; Nakamura, S.; Otani, Y.; Ohwada, T. Activation of electrophilicity of stable Y-delocalized carbamate cations in intramolecular aromatic substitution reaction: evidence for formation of diprotonated carbamates leading to generation of isocyanates. *J. Org. Chem.* **2012**, *77*, 9313-28.
- (15) Kurouchi, H.; Sumita, A.; Otani, Y.; Ohwada, T. Protonation Switching to the Least-Basic Heteroatom of Carbamate through Cationic Hydrogen Bonding Promotes the Formation of Isocyanate Cations. *Chemistry A European Journal* **2014**, *20*, 8682-8690.
- (16) In, J.; Hwang, S.; Kim, C.; Seo, J. H.; Kim, S. Synthesis of 3,4-Dihydroisoquinolin-1-ones from *N*-Boc-(β-Arylethyl)carbamates via Isocyanate Intermediates. *Eur. J. Org. Chem.* **2013**, *2013*, 965-971
- (17) Murashige, R.; Ohtsuka, Y.; Sagisawa, K.; Shiraishi, M. Versatile synthesis of 3,4-dihydroisoquinolin-1(2H)-one derivatives via intra-molecular Friedel—Crafts reaction with trifluoromethanesulfonic acid. *Tetrahedron Lett.* **2015**, *56*, 3410-3412.
- (18) Judd, K. E.; Mahon, M. F.; Caggiano, L. Efficient Synthesis of Tetrahydro-β-carbolin-1-one and Dihydroisoquinolin-1-one Derivatives as Versatile Intermediates. *Synthesis* **2009**, *2009*, 2809-2817.
- (19) Raja, E. K.; Nilsson Lill, S. O.; Klumpp, D. A. Friedel-Craftstype reactions with ureas and thioureas. *Chem. Commun.* **2012**, *48*, 8141-3
- (20) Lee, S. J.; Heo, I. J.; Cho, C. W. One-Pot Synthesis of Five-, Six-, and Seven-Membered Lactams via Bu₃SnH-Mediated Reductive Cyclization of Azido Amides. *Bull. Korean Chem. Soc.* **2012**, *33*, 739-741.
- (21) Heo, I. J.; Lee, S. J.; Cho, C. W. Direct Lactamization of Azido Amides via Staudinger-Type Reductive Cyclization. *Bull. Korean Chem. Soc.* **2012**, *33*, 333-336.
- (22) Zhang, L.; Wang, C.; Han, J.; Huang, Z. B.; Zhao, Y. Palladium-Catalyzed Carbonylation of β-Arylethylamide Directed by Oxalyl

- Amide in the Presence of Carbon Monoxide. J. Org. Chem. 2016, 81, 5256-62
- (23) Chung, S.; Sach, N.; Choi, C.; Yang, X.; Drozda, S. E.; Singer, R. A.; Wright, S. W. Aminocarbonylation of aryl tosylates to carboxamides. *Org. Lett.* **2015**, *17*, 2848-51.
- (24) Gross, U.; Koos, P.; O'Brien, M.; Polyzos, A.; Ley, S. V. A General Continuous Flow Method for Palladium Catalysed Carbonylation Reactions Using Single and Multiple Tube-in-Tube Gas-Liquid Microreactors. *Eur. J. Org. Chem.* **2014**, *2014*, 6418-6430.
- (25) Ghosh, S.; Jana, C. K. Metal-Free Thermal Activation of Molecular Oxygen Enabled Direct α-CH₂-Oxygenation of Free Amines. *J. Org. Chem.* **2018**, *83*, 260-266.
- (26) Jin, X.; Kataoka, K.; Yatabe, T.; Yamaguchi, K.; Mizuno, N. Supported Gold Nanoparticles for Efficient α-Oxygenation of Secondary and Tertiary Amines into Amides. *Angew. Chem. Int. Ed.* **2016**, *55*, 7212-7217.
- (27) Bechi, B.; Herter, S.; McKenna, S.; Riley, C.; Leimkühler, S.; Turner, N. J.; Carnell, A. J. Catalytic bio-chemo and bio-bio tandem oxidation reactions for amide and carboxylic acid synthesis. *Green Chem.* **2014**, *16*, 4524-4529.
- (28) Ye, B.; Cramer, N. Chiral cyclopentadienyl ligands as stere-ocontrolling element in asymmetric C-H functionalization. *Science* **2012**, *338*, 504-6.
- (29) Ozols, K.; Jang, Y. S.; Cramer, N. Chiral Cyclopentadienyl Cobalt(III) Complexes Enable Highly Enantioselective 3d-Metal-Catalyzed C-H Functionalizations. *J. Am. Chem. Soc.* **2019**, *141*, 5675-5680.
- (30) Yu, X.; Chen, K.; Wang, Q.; Zhang, W.; Zhu, J. Co(III)-Catalyzed N-chloroamide-directed C-H activation for 3,4-dihydroisoquinolone synthesis. *Org. Chem. Front.* **2018**, *5*, 994-997.
- (31) Sha, S. C.; Tcyrulnikov, S.; Li, M.; Hu, B.; Fu, Y.; Kozlowski, M. C.; Walsh, P. J. Cation-pi Interactions in the Benzylic Arylation of Toluenes with Bimetallic Catalysts. *J. Am. Chem. Soc.* **2018**, *140*, 12415-12423.
- (32) Wang, Z.; Zheng, Z.; Xu, X.; Mao, J.; Walsh, P. J. One-pot aminobenzylation of aldehydes with toluenes. *Nat. Commun.* **2018**, *9*, 3365
- (33) Mao, J.; Wang, Z.; Xu, X.; Liu, G.; Jiang, R.; Guan, H.; Zheng, Z.; Walsh, P. J. Synthesis of Indoles through Domino Reactions of 2-Fluorotoluenes and Nitriles. *Angew. Chem. Int. Ed.* **2019**, *58*, 11033-11038.
- (34) C. C. Bao; Y. L. Luo; H. Z. Du; B. T. Guan Benzylic aroylation of toluenes with unactivated tertiary benzamides promoted by directed ortho-lithiation. *Science China Chemistry* **2021**, *64*, 1349-1354.
- (35) Yazaki, R.; Ohshima, T. Recent strategic advances for the activation of benzylic C-H bonds for the formation of C-C bonds. *Tetrahedron Lett.* **2019**, *60*.
- (36) Reidl, T. W.; Bandar, J. S. Lewis Basic Salt-Promoted Organosilane Coupling Reactions with Aromatic Electrophiles. *J. Am. Chem. Soc.* **2021**, *143*, 11939-11945.
- (37) Hirata, T.; Yamashita, Y.; Kobayashi, S. Asymmetric C(sp³)—H Functionalization of Unactivated Alkylarenes such as Toluene Enabled by Chiral Brønsted Base Catalysts. *Commun. Chem.* **2021**, *4*, 36
- (38) Sreedharan, R.; Pal, P. K.; Panyam, P. K. R.; Priyakumar, U. D. Gandhi, T. Synthesis of α -Aryl Ketones by Harnessing the Non-Innocence of Toluene and its Derivatives: Enhancing the Acidity of Methyl Arenes by a Brønsted Base and their Mechanistic Aspects. *Asian J. Org. Chem.* **2022**, *11*, e202200372.
- (39) Yang, F.; Zou, D.; Chen, S. G.; Wang, H.; Zhao, Y. C.; Zhao, L. Y.; Li, L. L.; Li, J.; Walsh, P. J. Transition Metal-Free Aroylation of Diarylmethanes with *N*-Bn-*N*-Boc Arylamides and *N*-Acylpyrroles. *Adv. Synth. Catal.* **2020**, *362*, 3423-3430.
- (40) Wang, H.; Mao, J. Y.; Shuai, S. J.; Chen, S. G.; Zou, D.; Walsh, P. J.; Li, J. *N*-Acyl pyrroles: chemoselective pyrrole dance vs. C-H functionalization/aroylation of toluenes. *Org. Chem. Front.* **2021**, *8*, 6000-6008.

- (41) Goldys, A. M.; McErlean, C. S. P. *N*-Acylpyrroles: More Than Amides. *Eur. J. Org. Chem.* **2012**, *2012*, 1877-1888.
- (42) Gentner, T. X.; Mulvey, R. E. Alkali-Metal Mediation: Diversity of Applications in Main-Group Organometallic Chemistry. *Angew. Chem. Int. Ed.* **2021**, *60*, 9247-9262.