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ABSTRACT: Using benzaldehydes, NaN(SiMes), and N-acylpyrroles, an operationally simple tandem method to produce a wide
array of 3,4-dihydroisoquinolones is presented (37 examples, yields up to 98%). A unique feature of this method stems from the
sequential aminobenzylation of aldehydes and transamidation of the corresponding N-(trimethylsilyl)imines in one-pot. In this

process, three new bonds are generated (one C—C and two C—N bonds).

3,4-Dihydroisoquinolones are common scaffolds found
widely in naturally occurring alkaloids' and pharmaceuticals
(Scheme 1.4 Compounds containing 3,4-
dihydroisoquinolone cores exhibit a variety of biological ac-
tivities, such as anti-HIV,’ antidepressant,’ anticancer,” antiox-
idant,® anti-thrombotic,” and antibacterial properties.' They
are also known as EZH2 inhibitors,"! PARP inhibitors,'? and
cyclin-dependent kinase inhibitors."? Consequently, the devel-
opment of efficient methods for the synthesis of this important
N-heterocycle core has attracted much attention.

Traditional approaches to access 3,4-dihydroisoquinolones
mainly rely on intramolecular cyclization of activated amide
or amide precursors, including carbamates,'*'¢ isocynates,'” '*
ureas,'® and azidoamides.?*?' However, most of these methods
suffer from limited substrate scope resulting from the use of
strongly acidic conditions. Recently, significant effort has
been devoted to the preparation of 3,4-dihydroisoquinolones,
with representative methods including: (1) palladium cata-
lyzed carbonyl insertion (Scheme 2a);?*** (2) oxidation of
cyclic amines (Scheme 2b);**?7 and (3) [4+2] cycloaddition of
activated arylamides with alkenes via transition metal cata-

lyzed C-H activation (Scheme 2¢).*3° Despite substantial
progress, most of these methods still leave room for improve-
ment to address the use of prefunctionalized substrates, expen-
sive metal catalysts and ligands, the need for excess oxidants,
or tedious procedures. The development of greener and more
practical methods for  the synthesis of 3,4-
dihydroisoquinolones, therefore, remains in demand.

Scheme 1. Representative biologically active compounds
containing 3,4-dihydroisoquinolone cores.
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Our team has a long-standing interest in Brensted base
[MN(SiMes),, M = Li, Na, K, and Cs] promoted functionaliza-
tion of weakly acidic C—H bonds in toluene derivatives.*!** As
shown in Scheme 2d, we advanced an MN(SiMes), mediated
C-N and C-C bond-forming process by reaction of
MN(SiMes), with aryl aldehydes to generate N-TMS imines.
The MN(SiMes), simultaneously acts as base in the deprotona-
tion of toluene derivatives weakly acidic C(sp*)—H bonds. The
resulting benzylic organometallic reacts with the N-TMS
imine to give an amine after hydrolysis. Other groups have
used different bases in related strategies,*® including use of
enantioenriched ligands for the base by the Kobayshi group.

Scheme 2. Methods for the synthesis of 3,4-
dihydroisoquinolones and relevant prior studies.
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(d) One-pot aminobenzylation of aldehydes
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In combination with reversible toluene deprotonation, we
have examined different electrophiles, including methyl esters,
Weinreb amides, and N-acyl pyrroles to make ketones
(Scheme 2¢).** % 1t is well known that the carbonyl group of
N-acyl pyrroles is significantly more electrophilic than those
of standard amides,*" because the lone pair of the pyrrole ni-
trogen is also delocalized into the aromatic m-system. In the
case of 2,5-disubstituted N-acyl pyrroles, the substituents force
the pyrrole out of planarity from the carbonyl group. Based on
our ketone synthesis (Scheme 2e), we were curious if 3,4-
dihydroisoquinolones could be accessed from 2-methyl ben-
zamide derivatives through an initial aminobenzylation fol-
lowed by transamidation (Scheme 2f). Herein we report the
net [4+2] annulation composed of an initial aminobenzylation
of aldehydes and transamidation of the N-acyl pyrrole for the
synthesis of 3,4-dihydroisoquinolones (Scheme 2f). This one-

pot procedure results in the formation of 3 new bonds (2 x C—
N, C-C) and a heterocyclic scaffolding.

At the outset of our studies, the reaction of the model sub-
strate, 2,5-dimethyl-N-2’,4",6’-trimethylbenzolpyrrole 1a, and
benzaldehyde 2a was conducted in toluene at 100 °C for 12 h
with NaN(SiMes), (Table 1). To our delight, the target product
3aa was produced in 77% isolated yield (Table 1, entry 1).
Screening solvents [toluene, CPME (cyclopentyl methyl ether),
DME, THF, and 1,4-dioxane] indicated that reactions in 1,4-
dioxane showed the best performance, furnishing the cycliza-
tion product in 83% yield (entry 5). Different main group cati-
ons can have a profound impact on reactivity and chemoselec-
tivity.* Thus, it was not surprising that the choice of silyla-
mide base for our reaction was critical. Unlike NaN(SiMes),,
KN(SiMe3), failed to promote the reaction (entry 6) and
LiN(SiMes), exhibited inferior performance (60% yield, entry
7). Increasing the amount of benzaldehyde 2a to 1.2 equiv.
improved the yield of 3aa (entries 5 vs 8, from 83% to 88%).
Furthermore, excess base was essential for this protocol.
Lowering the equivalents of NaN(SiMes), to 2 gave 55% yield,
while almost no product was detected with 1 equiv. of
NaN(SiMes), (entries 9 and 10 vs. 8). It should be noted that
1.2 equivalent of the silyl amide is needed to convert the alde-
hyde to the imine. The pyrrolide anion (formed as a byproduct)
is insufficiently basic to deprotonate the benzylic methyl
group, resulting in consumption of an equiv of base. Thus, the
use of 3 equiv base insures that any trace protic impurities in
the solvent can also be deactivated. The optimized conditions
(Table 1, entry 8) were then carried forward to explore the
substrate scope.

Table 1. Reaction Optimization”

0
et
3aa
Entry  Solvent Base la:2a  Yield® (%)
1 Toluene NaN(SiMes), 1:1 77
2 CPME NaN(SiMes), 1:1 61
3 DME NaN(SiMes), 1:1 trace
4 THF NaN(SiMes), 1:1 60
5 1,4-Dioxane  NaN(SiMes), 1:1 83
6 1,4-Dioxane  KN(SiMe3),  1:1 trace
7 1,4-Dioxane  LiN(SiMes), 1:1 60
8 1,4-Dioxane  NaN(SiMes), 1:1.2 88
9¢ 1,4-Dioxane  NaN(SiMes), 1:1.2 55
104 1,4-Dioxane  NaN(SiMes), 1:1.2  trace

@ Reactions were conducted with 1a (0.2 mmol), 2a (0.24
mmol), base (0.6 mmol), solvent (2 mL), 12 h. ? Isolated yields.
2 Equiv. of NaN(SiMes),. ¢ 1 Equiv. of NaN(SiMes),

As depicted in Table 2, a wide range of aryl aldehydes were
compatible with the reaction and afforded the 3.,4-
dihydroisoquinolone products in good to excellent yields.
Benzaldehydes containing alkyl groups (4-Me and 4-'Bu) gave



products 3ab and 3ac in 82% and 86% yield, respectively.
Benzaldehydes bearing electronically-diverse substituents,
including electron-donating 4-OMe, 4-OPh, 4-OBn, 4-NMe,
and 4-SMe, gave the products (3ad, 3ae, 3af, 3ag, 3ah) in 69—
96% yield. Benzaldehydes with electronegative or electron-
withdrawing substituents (4-F, 4-Cl, 4-Br, 4-CF;, 4-OCF;)
resulted in product generation in 60-81% yield (3ai, 3aj, 3ak,
3al, 3am). However, 4-iodobenzaldehyde was not a suitable
substrate in this protocal and decomposed under the reaction
conditions. Additionally, substrates possessing 4-Ph (3an), 2-
naphthyl (3ae), heterocyclic 2-pyridyl (3ap), and morpholino
(3aq) groups furnished products in 76-91% yield. Sterically
hindered aryl aldehydes bearing 2-Me and 2-CI groups were
found to be suitable substrates, affording the cyclized products
3ar and 3as in 58-84% yields. Interestingly, heterocyclic
nicotinealdehyde, furfural, 3-thiophenaldehyde, 2-
thiophenaldehyde, 1-benzothiophene-2-carbaldehyde, and 1,4-
benzodioxan-6-carboxaldehyde also participated in this reac-
tion, giving the products 3at-3ay in 44-86% yields.

Table 2. Scope of arylaldehyde “°

o
MN k 3 equiv NaN(SiMej), m
S Ar  1,4-dioxane, 100 °C Ar

2a-2z 3aa-3az
o) 3aa, R=H (88%) 3ah, R=SMe (92%)
3ab, R=Me (82%) 3ai, R=F (75%)

3ac. R=Bu (86%) 34, R=CI (77%)°
3ad, R=OMe (85%) 32k R=Br (60%)°
3ae, R=OPh (96%) oab R=CFs (81%)
. 3af, R=0Bn (69%) 3am, R=0CF3 (g”’)
3ag, R=NMe; (75%)
0

3ar, R=Me (58%)
K/O 3as, R=Cl (84%)
o)

NH

=
3av60% | °

@ Reaction conditions: 1a (0.2 mmol), arylaldehyde (0.24
mmol), NaN(SiMes), (1.0 mol/L in THF, 0.6 mL, 0.6 mmol), 1,4-
dioxane (0.1 M), 100 °C, 12 h. ® Isolated yield. € 80 °C. ¢ Reaction
conducted on 5 mmol scale.

It is noteworthy that the reaction was also applicable to cyclo-
propanecarboxaldehyde to furnish desired 3az, albeit with
diminished efficiency (51% yield). No desired product was
observed with terephthalaldehyd. To test the scalability of our
method, 5 mmol of la was reacted with 1.2 equiv. of 2-
thiophenaldehyde (2w) and the target product 3aw was isolat-
ed in 85% yield (1.09 g).

The scope of 2,5-dimethyl-N-acylpyrroles was next ex-
plored with benzaldehyde (2a) (Table 3). As expected, 2,6-
dimethyl substituted N-acyl pyrrole showed similar reactivity
to the model reaction (87% yield). In this study, it was found
that substrates bearing substituents at the 6-position are critical
for high yield. The less sterically encumbered substrate 2¢
displayed 31% yield in the formation of 3ca. The origin of the
reactivity difference is not clear, but may result from directed
ortho metalation (although no such products were observed).
Replacement of one of the methyl groups of 1b with electron-
donating OMe (1d) or electron-withdrawing Cl or Br (1e, 1f)
groups restored the reactivity, providing the target product
3da—3fa in 83-89% yields. Unfortunately, a 6-iodo substituent
was not tolerated in this reaction due to decomposition. Addi-
tionally, use of substrates with various 2-aryl substituents [2-
Ph, 2-(2-thienyl), 2-(4-pyridinyl), 2-(3-pyridinyl) or 2-(3-
quinolyl)] furnished the product 3ga—-3ka in 60-98% yields.
Notably, a heterocyclic substrate bearing a thienyl group, pro-
duced a 48% yield of 3la. When 2-ethyl-N-acylpyrrole was
also utilized in this transformation, no desired product was
observed under various reaction conditions. Overall, a variety
of 3,4-dihydroisoquinolones were synthesized under our tran-
sition metal-free annulation reaction with readily available
aryl aldehydes and 2,5-dimethyl-N-acylpyrroles.

Table 3. Scope of 2,5-dimethyl-N-acylpyrroles “

% Ph 3 equw NaN(SiMe;),
1,4-dioxane, 100 °C

1a-1k 3ba-3la
0 OMe O
Ph Ph Ph
3ba 87% 3ca 31% 3da 89%
cl o Br O Ph O
NH NH Cﬁibﬂq
Ph Ph
3ea 87%“’ N\ 3fa83%° NN, 3ga98%
| 5
NH NH
Ph
3ha 60% ‘ 3ia 92% 3ja 85%
N
Ty eny
O Ph
3ka 78% 3la 48%

“Reaction conditions: 2,5-dimethyl-N-acylpyrroles (0.2 mmol),
2a (0.24 mmol), NaN(SiMes), (1.0 mol/L in THF, 0.6 mL, 0.6
mmol), 1,4-dioxane (0.1 M), 100 °C, 12 h. ?Isolated yield. ¢ 1,4-
dioxane was replaced with DME. ¢80 °C. ¢ 60 °C

The key steps in a proposed mechanism are shown in
Scheme 3. Rapid reaction of the aldehyde with the silyl amide
base is followed by an aza-Peterson elimination to generate
the N-SiMe; imine. At the same time, deprotonation of the



methyl group next to the amide ensues. The reaction of the
metalated amide with the imine generates a C—C bond and
reveals a nucleophilic nitrogen that is positioned to undergo
transamidation with the N-acyl pyrrole, forming the second C—
N bond. Aqueous workup provides the observed annulated
product.

Scheme 3. Key steps in the proposed mechanism.
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In conclusion, we have advanced a novel NaN(SiMes), me-
diated tandem aminobenzylation/transamidation reaction un-
der transition metal-free conditions. This method provides an
efficient and straightforward strategy for the synthesis of 3,4-
dihydroisoquinolones. The broad scope and good functional
group compatibility of this protocol make it an attractive alter-
native to previously reported methods. The 3,4-
dihydroisoquinolone derivatives prepared in this study belong
to a class of scaffolds relevant to pharmacologically important
compounds and natural products. Due to its ability to access
bioactive heterocycles in a single step, we envision that this
tandem reaction will find application in chemical sciences and
medicinal chemistry.
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