Session 4B: VLS| for Machine Learning and Artifical Intelligence 2

GLSVLSI 22, June 6-8, 2022, lrvine, CA, USA

Adapt-Flow: A Flexible DNN Accelerator Architecture for
Heterogeneous Dataflow Implementation

Jiagi Yang Hao Zheng Ahmed Louri
Yang Jiaqi_Cute@gwu.edu haozheng@ucf.edu louri@gwu.edu
The George Washington University University of Central Florida The George Washington University

Washington DC, USA

ABSTRACT

Deep neural networks (DMNNs) have been widely applied to various
application domains. DNN computation is memory and compute-
intensive requiring excessive memory access and a large number of
computations. To efficiently implement these applications, several
data reuse and parallelism exploitation strategies, called dataflows,
have been proposed. Studies have shown that many DNN appli-
cations benefit from a heterogeneous dataflow strategy where the
dataflow type changes from layer to layer. Unfortunately, very few
existing DMMN architectures can simultaneously accommodate mul-
tiple dataflows due to their limited hardware flexibility. In this paper,
we propose a flexible DNN accelerator architecture, called Adapt-
Flow, which has the capability of supporting multiple dataflow
selections for each DNM layer at runtime. Specifically, the proposed
Adapt-Flow architecture consists of (1) a flexible interconnect, (2) a
dataflow selection algorithm, and (3) a dataflow mapping technique.
The flexible interconnect provides dynamic support for various traf-
fic patterns required by different dataflows. The proposed dataflow
selection algorithm selects the optimal dataflow strategy for a given
DMNN layer with the aim of much improved performance. And the
dataflow mapping technique efficiently maps the dataflow amenable
to the flexible interconnect. Simulation studies show that the pro-
posed Adapt-Flow architecture reduces execution time by 46%, 78%,
26%, and energy consumption by 45%, 80%, 25% as compared to
NVDLA [1], ShiDianNao [2], and Eyeriss [3] respectively.
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1 INTRODUCTION

Deep neural networks (DNNs) have been widely deployed in many
application domains such as virtual reality [4], image recogni-
tion [5], signal processing [6], and many others [7]. These DNN
applications are structured with a collection of layers with heteroge-
neous size and connectivity due to their distinct properties [8-11].
Such heterogeneity leads to a wide variation in computation needs
and data movement volume [8, 11-13], and it also indicates the
opportunity in the selection of parallelism and data reuse strategies,
called dataflow, from layer to layer. This could lead to up to 51%
of difference in DRAM access volume when considering different
dataflows per our simulation studies using AlexNet model [5].

Though a large number of architectures have been proposed and
implemented in support of various dataflows, few prior works are
agile enough to simultaneously accommodate multiple dataflows
within a single application. The key obstacle is the limited flexibility
of the underlying communication fabrics for implementing data
movement between the global buffer and the processing array. The
interconnect fabric plays a critical role in implementing data reuse
strategies needed for a given dataflow.

Significant research efforts have been devoted to the design of
flexible interconnects, but many have limited applicability in DNMN
accelerators, in particular supporting multiple dataflows. For exam-
ple, SMART [14] and Adapt-NoC [15, 16] have been proposed to en-
able shortcut or path diversity on top of grid-like (e.g., mesh) topol-
ogy for general purpose processors. However, the long-distance
communication between processing elements (PEs) is rarely seen
in DNN accelerators. Reconfigurability [8, 17] has been explored
in DNN accelerators to customize the interconnects for multiply-
accumulate (MAC) units. As such, a collection of MAC units can
adapt to different dataflows eliminating the data sparsity in a fine-
grained manner. However, such fine-grained reconfigurability re-
sults in prohibitive latency and hardware overheads.

In this paper, we address the main bottleneck for the dynamic
support of multiple dataflows and the ability to switch dataflow
strategies from layer to layer. We identify the communication be-
tween the PE array and the global buffer as a major impediment, asit
directly impacts the choice of data reuse and parallelism. Leveraging
this understanding, we propose a flexible DNN accelerator archi-
tecture, called Adapt-Flow, which allows each DNN layer to select
optimal dataflow with its desired data reuse and parallelism exploita-
tion. Specifically, Adapt-Flow consists of (1) a flexible interconnect,
(2) a dataflow selection algorithm, and (3) a dataflow mapping strat-
egy. The flexible interconnect exploits the unique properties of the
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Figure 1: Overview of the proposed Adapt-Flow architecture. (a)Architecture of bidirectional Clos Network, (b)Layout of PE
array(16 = 8) with ring topology, (c)Architecture of Processing Element (PE), (d)Architecture of diverged bidirectional Clos
switch (DC-Switch), (e)Architecture of bidirectional Clos switch (C-Switch).

Clos network to seamlessly support unicast, multicast, and broad-
cast communication functions often seen in various dataflows [18].
The dataflow selection strategy selects the optimal dataflow at each
layer. And the dataflow mapping technique efficiently maps the
selected the dataflow onto the architecture. We evaluate the pro-
posed Adapt-Flow using several popular DNN benchmarks such
as AlexNet, VGG16 [19], ResNet50 [20] and UNet [21]. Simulation
results show that Adapt-Flow design reduces execution time by 46%,
T8%, 26%, and energy consumption by 45%, 80%, 25% as compared
to NVDLA [1], ShiDianMao [2], and Eyeriss [3] respectively.

2 ADAPT-FLOW ARCHITECTURE

The goal of Adapt-Flow architecture is to enable flexible dataflow
selection for each DNN layer, thus maximizing data-reuse oppor-
tunities and minimizing DRAM accesses. More specifically, Adapt-
Flow provides several dataflow options including weight stationery
(WS), input stationery (IS), output stationery (O5) dataflows [7].

For the sake of simplicity, we illustrate the Adapt-Flow archi-
tecture using a 128-PE setup. As shown in Figure 1, Adapt-Flow
consists of a global butfer, a bi-directional Clos network [18, 22]
including 2 % 4 diverged Clos switches as shown in Figure 1 (d) and
2 % 2 Clos switches as shown in Figure 1 (g), and 128 PEs arranged
as an array. The global buffer is connected to the PE array using
the Clos network as shown in Figure 1 (a). Within the PE array
illustrated in Figure 1 (b), PEs are connected by a bi-directional
ring at each row. Each PE consists of a 4 x 4 multiplier array for
vector multiplication and a local buffer for the temporary storage
of weights, input activations, and output activations as shown in
Figure 1 (c).

2.1 Proposed Flexible Interconnect

The proposed flexible interconnect is shown in Figure 1, and con-
sists of a bi-directional Clos network with the ability to provide
adequate support for various communication functions required by
the dataflows considered. As shown in Table 1, various dataflows
require distinct communication patterns for handling weights, in-
put activations, and psum to take advantage of the spatial-temporal
data reuse opportunities. This puts a huge burden on the communi-
cation fabric and the proposed Clos Network provides the needed
flex ibility and capability.

Table 1: Traffic Pattern of Different Dataflows

Dataflow  Weight Input Activation Psum

Ws Unicast Multicast Unicast
05 Broadcast Unicast Unicast
s Multicast Unicast Unicast

2.1.1 Communication Between Global Buffer and PE Array. The
bi-directional switches of the Clos network (shown in Figure 1)
can provide non-blocking and parallel communication when trans-
mitting the data from the global buffer to the the PE array and
can provide bypassing connection when transmitting the data back
from the PE array to the global buffer. These switches can be set
up by the controller for each DNN layer.

To better illustrate the process of communication between global
buffer and PE array, we use WS dataflow as an example with the
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Figure 2: An example of our proposed accelerator processing
a simple tiled convolutional layer nsing WS dataflow.

stride of 1 (Stride is a parameter of the neural network's filter that
modifies the amount of movement over the image or video). As

shown in Figure 2(ab), weight (K, C, 5, R), input activation (N, C, X, ¥,

and output (N, K, X', ¥") are tiled into small portion of data, called
sublayer, fitting the global size, where tiling factors are considered

as (T, T, T2, 77, 7%, T¥ ). As such, weight matrix (T¥, T¢, T%, T7),

input activation (T, Tf +TF -1, :rf'r +T —1), and output activation

|[T.k, '.Ffl, ¥ ) will be moved from the global buffer to the PE array.

In such a case, the bi-directional switches can be set to broadcast
input activation data (al, a2, a3, etc.) to multiple rows of the PE
array, where the circuit switching allows the data to be broadcast
to multiple rows of PE array shown in Figure 2(c). In Figure 2(d),
multiple data paths can be simultaneously set to transmit weights
to different rows of the PE array. For the output, partial sums are
accumulated across each row and eventually written back to the
global buffer using the Clos network as shown in Figure 2(g). As
can be seen, WS communication requirements, namely input ac-
tivation broadcast, weight transmission, and psum gathering and
accumulation all happen efficiently.

2.1.2  Inter-PE Communication. The communication between PEs
within the PE array can be of two types, namely psum accumulation

GLSVLSI 22, June 6-8, 2022, lrvine, CA, USA

Algorithm : Dataflow Selection

Input :Features of n dataflows: DF;, i € {1,--- ,n}
Input :Capacity of global buffer: GLB
Input :Data dimension of DNN layer
Output :Optimal dataflow
i begin
2 DA« {}

3 Bar £ 1nE
4 for i=1tondo

5 Calculate V9, d € {wt, if map, psum}
f Caleculate Rf,d £ {wt, i fmap, psum}
7 Calculate Gy

B if G; = GLB then

% f* Calculate the DRAM
ring globa wffer
Julrement
DA; + Eq V¥ x R, d € {wt, {fmap, psum)
else
' de

DA & oo
end

return {DF;|DA; = min{ DA} }

18 end

Figure 3: Dataflow Selection Algorithm.

aswell as input activation/weight transmission (unicast) from PE to
PE [23]. For psum accumulation, the psums are forwarded from PE
to PE calculating the final result. In other words, the average hop
count for psum accumulation would be a constant number, and this
can be handled by any simple topology such as a torus or a ring.
In order to manage various psum movement directions, we use a
bi-directional ring to support the unicast of weights and input acti-
vations for the proposed architecture. The bi-directional ring can
provide sufficient bandwidth, reduced diameter, with a reasonable
cost and design complexity for the proposed architecture.

2.2 Dataflow Selection Strategy

In this section, we present the algorithm for determining the optimal
dataflow for each DNM layer. As shown in Figure 3, the process con-
sist of estimating the number of DRAM access volume for each DNN
layer with different data dimensions (N, K,C,5, R, X', Y"). In gen-
eral, our proposed model considers unique features of each dataflow

such as loop order (L) and tiling factors |[T.k, Tf, TS, T' 'F'rl T!’r}
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To estimate the DEAM access volume (DA;) for the i-th dataflow
of the dataflow candidates, we calculate the product of the data vol-
ume involved in each invocation {Vi‘i} and the total number of invo-
cations fRf} for all data types (ie., weight{wt), input activation(i f map),
psumi psum)) as shown in Equation 1:

DA; = Z Vi‘i ® Rf, d € {wt, if map, psum} (1)
d

The data volume involved in each invocation for different data
type can be calculated as V", ‘.-’;’rmap, VU™ a5 depicted in Equa-

tion 2: '

VY = TE XTI X T X T
VvIme e x (X + T =) x (1Y +T7 - 1) ()
VP TE X T xTY

The tiling factors determine the accessed array regions of each
sublayer, thus different tiling factor configurations imply different
dataflows. We observed that different dataflows exhibit large dif-
ferences in DRAM access volume. The total number of imvocations
can be calculated as R}, R:Imep, Rf”m.ﬁﬂcnrding to the different
loop orders (LO;), the total number of invocations {R‘f} has different
formulas to calculate:

If the loop order (LO;) is weight stationary, the total mumber of
invocations {R:.i} can be calculated as depicted in Equation 3:

i KxCxS5xR
C T XTEXTIXT
ifmap NXKxCxSxRxX' xY’
T v ®
TEX T X T X T X TF XT,
’) ’) o
Rpwm=NxKxSxRxX ®Y x{f_r—l}

i ]}EKT}SKI}IKT}I‘.KT}?

Similarly, the total number of invocations {R‘f} can be calculated
using Equation 4 for input stationary.

_ NxKxCxSxRxX'xY'
TEXTEXT X T X T x T
NxCxX'=xY'
RI™ = ——— @
ToxTF xT,
¥ ¥ 2C
Rpwm=NxKxSxRxX ®xY x{ﬂr—l}

[

R

]"'_ﬁ.'xTisxT'_rxTiI" x'}}ﬁr

The total number of invocations {Rf} can be calculated as de-
picted in Equation 5 for output stationary.

GLSVLSI 22, June 6-8, 2022, lrvine, CA, USA

_ NXKxCxSxRxX' xY'
CTEXTEX T XTI X T X T
gifmap _ NxKxCxSxRxX' =Y
L TXTXTIXT X T x T
Rpwm_NxKxX‘xY‘

‘ XTI xTY

R

()

In this work, we also include hardware parameter to refine the
selection. The global buffer capacity of the proposed architecture
(GLE) needs to be larger than the global buffer capacity require-
ment. In other words, any dataflow exceeding the global buffer
capacity requirement will not be considered in the proposed algo-
rithm. Given the different data type P, Pifmap, Ppsum and the
data volume involved in each invocation for different data type
Vf‘”, ‘.-’:'rmﬂp, ‘.-’ipmm, the global buffer capacity requirement (G;)
can be calculated using Equation &:

Gy = ZV;‘[K Py d € {wt,if map, psum} (6)
o

We compare the total DRAM access volume (DA;) of different
dataflows and consider the dataflow with minimal DRAM access
volume as the optimal one. We note that the layer-wise dataflow
selection will be calculated before execution time, and therefore it
will not have any negative impact on the execution. The dataflow
selection algorithm is described in detail in Figure 3.

2.3 Dataflow Mapping for Adapt-Flow
Architecture

Once a selected dataflow strategy is selected (data reuse and par-
allelism), we need to map it onto the architecture. Without loss of
generality, we illustrate the mapping strategy using WS dataflow. It
should be noted that the mapping can be applied to all the dataflows.

In W5 dataflow, the matrix-matrix multiplication is performed in
a nested loop KCRSY X, where each input activation (I]e] [y] [x]) is
multiplied with each weight (W [k][c][][5]) as shown in Figure 4
(a,b). To execute the multiplication in parallel, input channels (C)
and output channels (K) should be partitioned and distributed to
an array of PEs (PE[p][4]). In a typical WS-optimized accelerator
(Le. NVDLA-style) as shown in Figure 4 (c,e), weights and input
activations are distributed to PEs in form of unicast and broad-
cast communications through the row-wise bus. However, the ring
topology would be inefficient in handling the broadeast commumni-
cation at each row. In Figure 4 (d.f), the modified mapping strategy
distributes the input activations and weights column-wise, result-
ing in column-wise broadcast communication. The key idea of our
strategy is to map computations with broadcast communication
demand (spatial optimization) in the same column and the ones
with unicast communication demand (temporal optimization) in
the same row.
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Figure 4: The differences between proposed mapping strat-

egy and traditional mapping strategy for weight stationary
dataflow.

3 EVALUATION METHODOLOGY

3.1 Simulation Setup

We extend MAESTRO[11] simulator to support the non-uniform
latency and bandwidth between PEs. The extended simulation
framewuork is used to calculate arithmetic operation, and access to
memory both to the global buffer and the local buffers, taking the
dataflow and system configuration parameters into account. The
number of arithmetic operations is used to calculate the compu-
tation time, while the number of accesses to memory is used to
calculate the on-package communication time. We take the Clos
network and bandwidth limit into account when calculating the
on-package communication time. The overall execution time is
derived by calculating computation time, the on-package communi-
cation time, and the off-package commumication time, considering
the overlap caused by the buffering of the GB and other memory
arcesses.

Baseline: We compare the proposed design with three accelera-
tor architectures, namely NVDLA[1], ShiDianNao[2), and Eyeriss[3].
We use AlexNet[5], Vggl6[19], ResNet50[20], and UNet[21] DNN
models as our workloads. The proposed Adapt-Flow architecture
can support multiple dataflows at the same time. For a fair com-
parison, we keep the configurations consistent for all designs: All
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Figure 5: Normalized latency of different accelerators
for DNN models(AlexNet[5], Vgg16[19], ResNet50[20], and
UNet[21]), normalized to Adapt-Flow and the reconfigura-
tion time of Clos network.

designs use 256 processing elements, and each processing element
contains 16 MAC units, the SRAM of each processing elements is
SKB and the global buffer capacity is 20MB.

3.2 Execution Time Analysis

Figure 5 shows the normalized execution time for NVDLA[1],
ShiDianNao(2], and Eyeriss[3], and for the proposed Adapt-Flow.
As can be seen, Adapt-Flow outperforms other architectures, be-
cause prior designs can only select fived dataflow across different
DMNN applications and DNN layers. This limits their ability in ex-
ploiting data reuse and minimizing DRAM access. And Adapt-Flow
architecture can support multiple dataflow at runtime and can min-
imize DRAM access by dataflow selection algorithm. Furthermore,
the average hop count of Adapt-Flow is lower than the previous
designs (NVDLA[1], ShiDianNao[2], and Eyeriss[3]). The proposed
work reduces overall execution time by 46%, 78% and 26%, when
compared to NVDLA[1], ShiDianNao[2], and Eyeriss[3] on average.
We also study the latency overhead of Adapt-Flow for setting
up communication paths for each DNN layer. For a 32 by 8 Clos
network, the latency overhead would be 96 cycles. This latency ap-
pears to be very small when compared to the layer-wise execution
time of DNN applications. Figure 5 shows the ratio of the reconfig-
uration time to the total execution time. The reconfiguration time
represents 0.0003% of the total execution time on average.

3.3 Energy Consumption

For energy analysis, we use DSENT[24] to obtain power consump-
tion and MAESTRO[11] to calculate execution time. It should be
noted that the evaluation includes the energy consumption of the
entire system including PE array, DEAM, global buffer, and inter-
connects. Figure 6 shows the normalized overall energy analysis of
the proposed Adapt-Flow. As can be seen, Adapt-Flow improves
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Figure 6: Normalized overall energy consumption of dif-
ferent accelerators for DNN models(AlexNet[5], Vgg16[19],
ResNet50{20], and UNet|[21]), normalized to Adapt-Flow.

overall energy savings by 45%, 80% and 25% when compared to
NVDLA[1], ShiDianNao[ 2], and Eyeriss[3] on average. The energy
savings mainly result from the reduced execution time, simplified
architecture design, and reduced DRAM access.

3.4 Area Overhead

We evaluate the area overhead of various architectures through de-
tailed synthesis using 45nm technology. Figure 7 shows the break-
down of the area overhead for NVDLA[1], ShiDianNao[2], and
Eyeriss[3] respectively, normalized to the proposed Adapt-Flow.
Adapt-Flow uses a multi-stage topology between global buffer and
PE array, and for the chosen size (32 x 8), the Clos network contains
7 stages requiring 56 simple switches and 368 links. For a similar
accelerator size, the Eyeriss[3] and NVDLA[1] use 16 buses and
256 links, ShiDianNao[2] uses a MUX array and 512 links. The
MNoC area of the proposed Adapt-Flow architecture is 74% smaller
compared to the previous design on average, and the overall area
of the proposed architecture is also reduced by 2% on average. The
area savings mainly result from the simplified architecture design.

4 CONCLUSIONS

In this paper, we propose a flexible DNN accelerator architec-
ture, called Adapt-Flow, which can provide optimal dataflow for
each DNN layer at runtime. With the ability to support multiple
dataflows and data reuse capabilities at muntime, the proposed archi-
tecture provides significant energy saving and reduction in overall
execution time. Detailed simulation studies show that Adapt-Flow
reduces execution time by 46%, T8%, 26%, and energy consumption
by 45%, 80%, 25% as compared to NVDLA [1], ShiDianMao [2], and
Eyeriss [3] respectively while incurring minimal overheads.
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