
14 | IEEE nanotechnology magazine | DECEMBER 2022� 1932-4510/23©2023IEEE

a
Nanoscale

Accelerators for
Artificial Neural

Networks
Arithmetic Design,

Analysis and ASIC Implementations

Farzad Niknia, Ziheng Wang, Shanshan Liu, Ahmed Louri, and Fabrizio Lombardi

Digital Object Identifier 10.1109/MNANO.2022.3208757

Date of current version: 20 January 2023

Artificial neural networks
(ANNs) are usually implemented in
accelerators to achieve efficient process-
ing of inference; the hardware implemen-
tation of an ANN accelerator requires
careful consideration on overhead met-
rics (such as delay, energy and area)
and performance (usually measured by
the accuracy). This paper considers the
ASIC-based accelerator from arithmetic
design considerations. The feasibility of
using different schemes (parallel, serial
and hybrid arrangements) and different
types of arithmetic computing (f loat-
ing-point, f ixed-point and stochastic
computing) when implementing multi-
layer perceptrons (MLPs) are considered.

Image licensed by Ingram Publishing

Authorized licensed use limited to: The George Washington University. Downloaded on July 14,2023 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

 		 DECEMBER 2022 | IEEE nanotechnology magazine | 15

The evaluation results of MLPs for two
popular datasets show that the floating-
point/fixed-point-based parallel (hybrid)
design achieves the smallest latency (area)
and the SC-based design offers the low-
est energy dissipation.

ARTIFICIAL NEURAL NETWORK
ACCELERATORS
The study of the human brain and its
operation has helped scientists to find
better and more effective ways to cure
many diseases; it has also inspired the
subject of neuromorphic computing to
deal with the ever increasing need for
artificial intelligence (AI) based machine
designs to mimic the function of the
human brain for solving complex prob-
lems. These designs usually fall into the
category of Artificial Neural Networks
(ANNs) [1]. ANNs are more efficient in
comparison with conventional regres-
sion and statistical models for solving
complex non-linear problems. A signifi-
cant advantage of ANNs is the higher
processing speed, as allowed for paral-
lel implementation [2], [3]. Specifically,
an ANN consists of several layers, and
each layer has multiple circuits (hereaf-
ter referred to as neurons) that are con-
nected to the same/next layer through
synaptic weights [2]. ANNs have been
utilized in a wide range of applications,

such as pattern recognition, business and
f inance, tracking renewable energy to
achieve sustainability, and language pro-
cessing [4], [5], [6], [7].

Despite the large variety of applicat
ions and superior performance for extr
acting high-level features from raw data
(and thus, reaching a higher accuracy),
the hardware complexity of an ANN
must be addressed by designing a suitable
platform to accelerate the entire computa-
tional process; this has been investigated
over may years [8], [9]. The most efficient
and popular platforms can be categorized
in three different groups: GPUs, FPGAs,
and ASICs. There are also other platforms
(like CPUs), but due to the lack of accura-
cy, they are out of interest as accelerators.

GPUs perform complex computa-
tions by parallelization. Although a GPU
increases accuracy, the higher power dis-
sipation makes them unsuitable for low
power systems. To address this issue,
FPGA-based designs have been proposed
[10]. FPGAs offer flexibility and parallel-
ization albeit less than GPUs. Moreover,
they have better power characteristics,
and unlike GPUs, FPGAs are reconfigu-
rable and programmed using hardware/
software codesign. Their lower speed and
the demand for platforms with even lower
power dissipation make ASIC designs a
competitor. ASICs have less flexibility in

comparison with FPGAs, so for example,
the design cannot be changed after being
implemented [11]. Nevertheless, their
higher speed and lower power dissipation
make them a good choice to implement
ANN accelerators in power-limited appli-
cations [9].

The main arithmetic operation in a
fully connected ANN for each neuron is
the sum of weighted products; this can be
performed by multiply-and-accumulation
(MAC) units [12], [13]. An example of
these networks is the multilayer perceptron
(MLP) that is a fully connected feedfor-
ward network; MLP has been extensively
used in deep learning applications [14].
Since the neurons in each layer are con-
nected to all neurons of the next layer
through synapses, a significant increase
in the number of neurons/layers requires
an increase in MAC units; this makes the
accelerator design challenging for systems
requiring a higher performance in addition
to power limitation, such as for Internet of
Thing applications [2], [15].

To pursue a tradeoff between power/
energy dissipation and clock rate, different
arithmetic methods have been utilized
[9]. Floating-point (FLP) arithmetic
units based on the IEEE-754 standard
[16] achieve a higher accuracy, but they
also incur in a higher overhead due to
the complex hardware [9], [17]. Fixed-
point (FIP) numbers are simpler than
FLP numbers when computing; so they
incur in a lower overhead but lose accu-
racy due to a loss in precision [2], [12],
[13]. Additionally, another method is to
use stochastic computing (SC) that can
be implemented with simple logics; it
leads to a significant drop in overhead
and allows the higher parallelization in
computation in comparison with the
other two formats [18], [19].

In this paper, we focus on imple-
menting an ASIC-based MLP design
using three arithmetic formats (i.e., FLP,
FIP and SC) and introduce a tradeoff
between complexity and accuracy to
present the advantages and disadvantages
of each method with simulation results
for their implementations. The rest of
this paper is organized as follows. The
Multilayer Perceptron section reviews
the MLP and discusses the challenges
of its implementation using ASICs. The FIGURE 1  An MLP. (a) Network. (b) Neuron computation.

The study of the human brain and its operation
has helped scientists to find better and more

effective ways to cure many diseases.

Authorized licensed use limited to: The George Washington University. Downloaded on July 14,2023 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

16 | IEEE nanotechnology magazine | DECEMBER 2022	

Arithmetic Computing Schemes section
presents different arithmetic computing
methods. The MLP Implementation and
Comparison section initially implements
the proposed MLP designs for two pop-
ular datasets using different arithmetic
computing methods; then, it compares
the performance of the MLPs and the
hardware overhead required for the dif-
ferent schemes. Finally, the last section
concludes this article.

MULTILAYER PERCEPTRON
Multilayer Perceptron
The multilayer perceptron (MLP) is a
simple feedforward neural network
(NN) with no recurrent connection. It
consists of multiple layers including an
input layer, at least a single hidden layer,
and an output layer. Generally, the fea-
tures dimension determines the number
of neurons at the input layer, and the
value of each neuron is given by the
sum of weighted products. Therefore,
the value of neuron nk

i+1 in layer (i+1)
is calculated by the sum of the prod-
uct of each neuron ni at layer i with
its mapping weight wi to neuron nk

i+1.
Finally, a bias value bi is added to this
sum and the so-called activation function
(e.g., ReLU, which is considered in the
remaining of this paper) is applied to it
[2], [14]. Figure 1 shows the structure
of an MLP and its neuron computa-
tion. As amenable to an MLP, different
levels of parallelization in an ASIC-based
MLP implementation are illustrated in
subsequent subsections.

Fully Parallel Implementation
In this scheme, the NN (with all lay-
ers and neurons) is implemented on the
platform (i.e., ASIC); as the implemented
design is specific to the MLP, each neu-
ron receives all possible pairs of inputs
(the weight and neuron value) from the
previous layer at the same time and cal-
culates the products and sums simultane-
ously. To perform all multiplications and
sums, many multiplier and adder trees
are required. Assume that there are m
neurons in layer i; then m multipliers
and a related adder tree to sum them up
is required for each neuron at layer (i+1)
[9]. The fully parallel scheme permits a
low computation latency; however, the

implementation depends on the restric-
tions of the platform, or application. For
example, when implementing larger net-
works, the hardware incurs in a large
power dissipation and signif icant area
overhead. In many cases, it is not feasi-
ble for applications with a limited power
budget [20]. SC arithmetic units may be
used in a fully parallel design for infer-
ence, because they use simpler hardware
for multiplication and addition [21].

Serial Implementation
A serial implementation utilizes only a
single neuron as process engine (PE); it
can be realized in two ways using multi-
plier and adder trees.

1) Fully Parallel PE : This type of PE
receives all possible input pairs of each
neuron per clock cycle and then multiplies
and accumulates them during the next
cycles in a fully pipelined mode. In this
case, the output of a neuron at the end
of each cycle is obtained. This procedure
continues for all neurons in the network
sequentially. For example, assume a MLP
as A-B-C-D (i.e., it has four layers and the
number of neurons in each layer is A, B, C,
D), with C > A > B > D. The neuron imple-
mentation must have at least C + 1 entries
to support the calculation of all possible
neurons in each layer; this occurs because
C is the maximum number of neurons

in a layer and then, in the output layer,
a neuron with at least C + 1 entries is
required to receive all neurons values
from the second last hidden layer in
addition to the bias value [9], [22]. This
method of PE implementation incurs in
a low delay; however, the efficiency sig-
nificantly decreases with an increase of
the size of the network. When there are
hundreds of neurons in each layer; then,
hundreds of multipliers and adders
are also required for a PE design; this
requires a massive area and incurs in a
significant power dissipation. Moreover,
it increases the static power dissipation
when the number of input pairs in a
layer is less than the number of entries
in a PE, because the unnecessary entries
must be connected to zero logic [9].

2) Semi Parallel PE : This PE design
is simpler by eliminating some of the
arithmetic units. Instead of choosing
the number of entries for the PE based
on the maximum number of neurons in
a layer, a smaller number is selected as a
tradeoff between area, power, and latency.
For example, if a PE is designed with A
entries and there are B neurons in layer i
(B > A), then for implementing each neu-
ron in layer i + 1, the PE must receive
inputs during B A/�� �� consequent iter-
ations (i.e., more cycles than fully pipe-
lined serial designs) [9], [22]. Although

FIGURE 2  Serial implementation of an MLP.

To perform all multiplications and sums,
many multiplier and adder trees are required.

Authorized licensed use limited to: The George Washington University. Downloaded on July 14,2023 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

 		 DECEMBER 2022 | IEEE nanotechnology magazine | 17

it addresses the area/power issue of a fully
parallel PE discussed previously, the semi
parallel PE still significantly increases the
latency for NNs of a large size.

Figure 2 shows a serial network; an
SRAM is utilized for saving the weight
values and the neuron values after a PE
completes its operations for each neu-
ron. The bus size r denotes the number
of inputs the PE can receive simultane-
ously multiplied by the data width. The
control unit generates two signals; one is
for activating a PE, and the other is for
determining the read/write, address, and
the bank of the memory. The PE unit
may have an accumulator (ACC) regis-
ter based on the use of either a fully or
semi parallel PE. For fully parallel PEs,
the result of a neuron is ready at the last
stage of the adder tree; thus, there is no
need for the ACC. However, for the semi
parallel PE, the process is completed in
several iterations, and therefore, an ACC
is required to accumulate the results of
each iteration.

Hybrid Implementation
A hybrid MLP implementation employs
a combination of parallelization and
serialization in implementing the NN
for a tradeoff between area, power, and
latency. In this implementation, differ-
ent strategies are illustrated next.

1) Full layer with fully parallel PEs:
This scheme uses fully parallel PEs (con-
sisting of multiplier and adder trees) as

discussed in paragraph 3) of this section
for implementing a layer with the maxi-
mum number of neurons in the NN [22].
This is a fast scheme, but it is not feasible
for NNs of a large size; if the network has
hundreds of neurons in each layer, then
even a single PE occupies a large area
and dissipates significant power. This
further deteriorates the performance for
the entire network, because the PE must
be replicated hundreds of times for a full
layer (as the layer with the largest num-
ber of neurons). Additionally, for layers
with a smaller number of neurons, some
neurons may be idle, so imposing unnec-
essary static power.

2) Full layer with MAC-based PEs:
In this case, a fully parallel layer is also
required based on the largest number
of neurons among all layers in the NN.
However, instead of using multiplier and
adder trees in a PE as in the previous
schemes, a simple multiply-and-accumu-
lation (MAC) unit [23] is introduced in
a PE to receive a pair of inputs per cycle.
Each MAC-based PE can be considered
as a neuron and receives all input pairs
serially (one pair per cycle), rather than
in parallel. This type of PE combines
the serialization with parallelization to
make an efficient accelerator for ANNs.
Although it is more efficient for power
and area, the latency deteriorates. By
using a fully pipelined implementation
of MAC units, the latency can be sig-
nificantly improved, albeit larger than

the scheme employing fully parallel PEs.
A significant reduction in power and area
is also achieved; however, for larger NNs
and with a limited power budget, this
implementation is still not efficient for a
full layer with hundreds of MAC units;
an improvement in design is discussed
next to address this issue.

3) Array of MAC-based PEs: Differ-
ent from the full layer with MAC-based
PEs, this scheme does not implement a
layer with the largest number of neurons;
instead, it utilizes an arbitrary number of
PEs based on the arithmetic computing
units to achieve a good tradeoff. In this
case, all neurons in a layer are not nec-
essarily computed in a single iteration;
as per the number of MAC units and
number of neurons in a layer, the com-
putation process can continue for several
iterations [9]. Hence, this is a hybrid
scheme. Figure 3 denotes the overview
of a MAC-based hybrid design. A con-
trol unit is responsible for distributing
the data from the SRAM banks to the
different MAC units through the design.
Each PE consists of a multiplier, an adder
and an ACC to calculate the product of
each pair of inputs and accumulate the
results; when all input pairs are received
and accumulated, the result is sent to
the activation function. An additional
control unit may be needed to deal with
flushing [24]; this is described in more
detail in The MLP Implementation and
Comparison section.

FIGURE 3  Hybrid implementation of an MLP.

Authorized licensed use limited to: The George Washington University. Downloaded on July 14,2023 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

18 | IEEE nanotechnology magazine | DECEMBER 2022	

ARITHMETIC COMPUTING
SCHEMES
In this section different types of arithme-
tic computing units including FLP, FI,
and SC are described.

Floating-Point (FLP) Arithmetic
When utilizing FLP to implement a NN,
the IEEE 754 single precision format
(Figure 4) [16] is typically used for cal-
culation. EQN. (1) gives its mathematical
form, where S, E, M and H denote the
sign, exponent, mantissa, and hidden bit
respectively. The hidden bit is obtained by
performing the OR on all exponent bits; a
result of (1) refers to a normal FLP num-
ber, otherwise it is a sub-normal number.

flP number

1 s 2 e 127� � �� � � �� �- - .H.M 	 (1)

The FLP arithmetic units often have
a high complexity in hardware and thus,
they incur in a significant area overhead
in addition encountering large power
dissipation in computation.

Fixed-Point (FIP) Arithmetic
Compared to FLP numbers with a con-
stant bit width, FIP numbers requires a
longer bit width to provide a large range
of values. FIP numbers have a simpler
representation; a binary point separates
the integer and fractional parts within a
data representation. Therefore, its data
resolution is not as good as for FLP
numbers. However, unlike FLP arith-
metic computing, only simple integer
arithmetic units are utilized for imple-
menting FIP computation. Moreover,
the pre and post normalization stages
in FLP arithmetic (specially for addi-
tion due to its complicated computa-
tion) require combinational encoders
and shifters that may deteriorate latency,
area, and power; thus, it makes FLP
more complex than FIP ar ithme-
tic. Overall, the use of FIP arithmetic
decreases area and power dissipation,
while improving latency, because they
do not have the exponent part (so
related complicated computations are
not required). Therefore, the tradeoff
between hardware overhead and accura-
cy must be considered when using these
arithmetic units.

Stochastic Computing (SC)
In conventional FLP/FIP computing,
processing a large amount of data in a
fully parallel network implementation
makes the design often complicated and
infeasible due to the complex computa-
tional units. Therefore, emerging com-
puting paradigms have been investigated
for reducing the hardware complexity
[18]; for example, a promising solution is
to use stochastic computing (SC). SC was
introduced in 1960s for the first time,
but it has attracted more attention in
recent years for nano-scaled designs [26].

An important characteristic of SC is
that real numbers are converted into bit-
stream, and thus, very simple designs can
be used for performing arithmetic opera-
tions [26]. Specifically, an SC bit-stream
is generated using a stochastic number
generator (SNG); the occurrence prob-
ability of 1 in the sequence is used to
represent the real number. Therefore, its
possible range of values is [0, 1] (for uni-
polar computation) and [-1, 1] (for bipolar

computation). A simple AND (XNOR)
gate can perform the multiplication on
unipolar (bipolar) SC bit-streams; more-
over, since SC operates with probabilities,
the computation is capable of tolerating
transient or soft errors caused by process
variations or cosmic interference [26].

Even though SC has unique advan-
tages in terms of low hardware complex-
ity and error tolerance against bit f lips
in the sequence, its use may cause an
accuracy loss. This issue is generated due
to two causes: i) the low data resolution
determined by the probabilities; ii) the
limited range of values. To address these
issues, a longer sequence can be used to
improve the data resolution; moreover,
designs based on extended stochastic
logic (ESL) have been investigated to
extend the computation range by uti-
lizing the quotient of two stochastic
sequences [18]. However, these solutions
may incur in hardware penalties, so that
a careful design is required for a tradeoff
between computation accuracy and

FIGURE 5  The pipelined FLP MAC Unit.

Different configurations (including the fully
parallel design, serial design and hybrid design)
are utilized for implementing a FL P-based MLP.

FIGURE 4  Single precision format with IEEE 754 standard.

Authorized licensed use limited to: The George Washington University. Downloaded on July 14,2023 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

 		 DECEMBER 2022 | IEEE nanotechnology magazine | 19

hardware. For more details, the reader
should refer to [18], [21], [26].

MLP IMPLEMENTATION
AND COMPARISON
In this section, MLPs for two popu-
lar datasets are implemented by using
different arithmetic units; the network
structure is given by 784-100-200-10
for MNIST and 1024-100-200-10 for
the SVHN. The classification accuracy
and hardware overhead for the different
schemes are evaluated and compared.

Implementation Using
FLP Arithmetic
Different configurations (including the
fully parallel design, serial design and
hybrid design) are utilized for imple-
menting a FLP-based MLP. The fully
parallel and serial (using fully paral-
lel PEs as an example) implementations
are performed as discussed in 2) and
3) of the second section. In the hybrid
scheme, an array of MAC-based PEs is
selected because it incurs in a low hard-
ware overhead as discussed previously.

For designing the MAC unit, an FLP
multiplier and an FLP adder (more details
of their designs and algorithms can be
found in [25]) are needed (Figure 5).
A pipelined strategy has been proposed
in [9] to improve the clock rate; so, the
adder and multiplier complete the com-
putation in four and five cycles, respec-
tively. As these units require different
number of cycles, a control unit is used
to manage the data and flush the MAC
unit at the end. The pipelined MAC unit
is shown in Figure 5. To perform com-
putation as a PE, the multiplier initially
receives an input pair per cycle; once the
multiplication result is generated after
four cycles, the multiplexer transfers
them to the input of the adder. Since
the adder requires five cycles to generate
the result, the other input of the adder
must be 0, and it is handled by the sec-
ond multiplexer. At the end of cycle 9,
both the adder and multiplier outputs
are valid, then the second multiplexer
switches from 0 to the adder outcome to
accumulate the results. When all input
pairs are received, the pipeline stages are

flushed. Therefore, DFF saves the output
of the adder at cycle i and adds it with
its output at cycle i+1; [9] presents this
process in more details.

Therefore, the hybrid implementation
of an MLP using FLP MAC units is like
in Figure 3. For the datasets considered
in this paper, we use 64 PEs (MAC units)
and a control unit for distributing data on
the PEs; for example, for a layer with 100
neurons, the MAC array completes the
calculation of 64 neurons in first itera-
tion and then the remaining 36 neurons
in the second iteration.

Implementation Using
FIP Arithmetic
As the FIP arithmetic units are simpler
than FLP (they are like integer arith-
metic units) and due to the lower over-
head, a full layer using MAC-based PEs
is selected for the hybrid implementa-
tion. The lower complexity of the units
allows us to use fewer pipelining stages;
so, the only pipelining stages are the
ones between the multiplier and adder.
Then the design consists of a simple
integer multiplier and an adder on top
of an accumulator such that each design
works in one cycle. A 16-bit format [2]
(including one bit for the sign, eight
bits for the integer and seven bits for the
fraction) is used for calculations as wide-
ly utilized. By increasing the number of
bits, the accuracy can be improved but
at a higher hardware overhead. Hence,
a tradeoff between latency, area, and
power dissipation must be considered.
In this paper, the goal is to decrease
the latency, and accordingly, shorter
sequences are selected to decrease the
overhead which allows to increase the
parallelization.

Implementation Using
SC Arithmetic
Due to less complex arithmetic designs
in SC, the fully parallel implementation
of the NN is usually selected (unlike
FLP and FIP in which more complex
hardware is needed). Sequences with
a length of 256 bits are utilized to
assess the trade-off between computa-
tional accuracy and hardware overhead.
Figure 6 shows the SC-based implemen-
tation for a neuron (i.e., a PE) of the

FIGURE 6  SC-based PE implementation for a neuron (the detailed circuit of a multiplier/adder is
shown below the tree block).

Due to less complex arithmetic designs in SC,
the fully parallel implementation of the

NN is usually selected.

Authorized licensed use limited to: The George Washington University. Downloaded on July 14,2023 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

20 | IEEE nanotechnology magazine | DECEMBER 2022	

MLPs. As shown in this figure, an SNG
consists of a linear feedback shift register
(LFSR) and a comparator to convert the
probability of a real number (i.e., the
input data or weight) to its stochastic
sequence. For neurons in the first hid-
den layer, the SNG is required for each
input of the multiplier; for the other
layers, it is only required for converting
the weight. The SC multiplier and adder
are also given in Figure 6; the activation
function ReLU is implemented using an
FSM [21]. As this scheme is fully paral-
lel, then the latency is decreased signifi-
cantly; however, the power dissipation
increases as well. Also, there is no need
for memory to save the neuron values for
the next uses. Consider the energy as a
further metric, this design may be better
suited than the FLP/FIP-based hybrid
design, because the lower latency com-
pensates the increase in power. A hybrid
design of SC design is also possible,
but it needs to store the long stochastic
sequences in a large SRAM for next use;
hence, it may be counterproductive if
its purpose is to reduce area and power
dissipation of a parallel design.

Evaluation and Comparison
Table 1 shows the synthesis results of
different schemes for the two datas-
ets considered in this paper. The same
clock frequency (800MHz) is utilized to
ensure a fair comparison.

Consider the conventional FLP and
FIP implementations first. As shown in
Table 1, the parallel scheme requires the
largest area and energy, but the small-
est latency to complete the entire MLP
inference process; this is expected due
to its fully parallelization. Compared
to the parallel design, the serial scheme
achieves a reduction in area and energy,
but these results are still considerable.
The hybrid design offers the smallest
area and energy, but a significant latency
is incurred; this occurs because a single
MAC unit is required for calculating each
neuron, so requiring many cycles. As the
designs are fully pipelined, then a neuron
per cycle (all neurons per cycle) for each
layer is processed for serial (fully parallel)
implementations. This causes a signifi-
cant decrease in the number of cycles by
imposing a significant increase in over-
head. Moreover, an SRAM for storing
the temporary computation results for
next uses is also required in the serial

and hybrid schemes; the overhead for the
SRAM is the same in these implementa-
tions for the same MLP structure.

The SC scheme is shown to be more
efficient in area and energy compared to
the FLP/FIP-based parallel and serial
schemes due to the low complexity of the
arithmetic units. However, its area is larger
than the FLP/FIP-based hybrid design;
this occurs because a fully parallel imple-
mentation is employed in the SC scheme.
The latency for an SC implementation
is larger than the FLP/FIP-based paral-
lel design, but it is smaller than the other
schemes. Also, no SRAM is required in the
SC scheme.

Overall, for the two datasets consid-
ered in this paper, the FLP/FIP-based
parallel design achieves the smallest laten-
cy, the hybrid design achieves the small-
est area, and the SC design requires the
smallest energy. The classification accu-
racy of the MLP in different schemes is
also evaluated and compared in Table 1.

DATASET IMPLEMENTATION ARITHMETIC UNITS SRAM # OF CYCLES ACCURACY

Area
(mm2)

Latencya
(μ s)

Energy
(μ J)

Size
(Bytes)

Power
(mW)

Area
(mm2)

MNIST [27]

FLP Parallel 1465.39 0.14 104.48 - - - 115 98.36%
Serial 11.44 0.53 3.01 310*32 54.61 0.15 425 98.36%
Hybrid 0.93 2.94 1.36 310*32 54.61 0.15 2352 98.36%

FIP Parallel 334.55 0.03 7.91 - - - 30 93.31%
Serial 2.61 0.42 0.7 310*16 31.63 0.08 340 93.31%
Hybrid 0.67 1.37 0.57 310*16 31.63 0.08 1096 93.31%
SC 1.72 0.32 0.39 - - - 260 97.49%

SVHN [28]

FLP Parallel 1815.69 0.14 129.48 - - - 115 89.91%
Serial 14.94 0.53 3.93 310*32 54.61 0.15 425 89.91%
Hybrid 0.93 3.54 1.64 310*32 54.61 0.15 2832 89.91%

FIP Parallel 414.52 0.03 9.80 - - - 30 82.81%
Serial 3.41 0.42 0.91 310*16 31.63 0.08 340 82.81%
Hybrid 0.67 1.65 0.69 310*16 31.63 0.08 1324 82.81%
SC 2.11 0.32 0.48 - - - 260 88.61%

aThe latency result is for the entire computation of an MLP inference, i.e., including the number of cycles.

T A B L E 1 Synthesis results for MLPs using different implementation methods.

Overall, for the two datasets considered in this
paper, the FLP/FIP-based parallel design
achieves the smallest latency, the hybrid

design achieves the smallest area, and
the SC design requires the smallest energy.

Authorized licensed use limited to: The George Washington University. Downloaded on July 14,2023 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

 		 DECEMBER 2022 | IEEE nanotechnology magazine | 21

The FLP scheme offers the highest accura-
cy, followed by the SC scheme and then the
FIP scheme. Therefore, different imple-
mentation schemes can be selected as per
the requirement of different applications.

CONCLUSION
This paper has presented the ASIC-based
design of various MLP accelerators. The
hardware for performing network compu-
tation using conventional floating-point
and fixed-point based computing and
stochastic computing, as well as different
schemes (parallel, serial and hybrid arrange-
ments), has been analyzed and implement-
ed. The evaluation shows that each type of
implementation has a unique advantage in
hardware metric. All findings and designs
presented in this paper provide a compre-
hensive assessment for designing nanoscale
accelerators when the ANN application has
different requirements of learning perfor-
mance and hardware overhead.

ABOUT THE AUTHORS
Farzad Niknia (niknia.f@northeastern.
edu) is with the Department of Electri-
cal and Computer Engineering, North-
eastern University, Boston, MA, 02215,
USA. He is a Student Member of IEEE.

Ziheng Wang (wang.zihe@north
eastern.edu) is with the Department of
Electrical and Computer Engineering,
Northeastern University, Boston, MA,
02215, USA. He is a Student Member
of IEEE.

Shanshan Liu (ssliu@coe.neu.edu) is
with the Klipsch School of Electrical and
Computer Engineering, New Mexico
State University, Las Cruces, NM,
88001, USA. He is a Member of IEEE.

Ahmed Louri (louri@gwu.edu) is
with the Department of Electrical and
Computer Engineering, George Wash-
ington University, DC, 20052, USA. He
is a Fellow of IEEE.

Fabrizio Lombardi (lombardi@
ece.neu.edu) is with the Department
of Electrical and Computer Engineer-
ing, Northeastern University, Boston,
MA, 02215, USA. He is a Life Fellow of
IEEE.

REFERENCES
[1]	 Q. Zhang, H. Yu, M. Barbiero, B. Wang, and

M. Gu, “Artif icial neural networks enabled
by nanophotonics,” Light: Sci. Appl., vol. 8,
no. 42, pp. 1–14, May 2019.

[2]	 D. Kim, J. Kung, and S. Mukhopadhyay, “A
power-aware digital mult i layer perceptron
accelerator with on-chip training based on
approximate computing,” IEEE Trans. Emerg.
Topics Comput., vol. 5, no. 2, pp. 164–178,
Apr.–Jun. 2017.

[3]	O . I. Abiodun, A. Jantan, A. E. Omolara, K.
V. Dada, N. A. Mohamed, and H. Arshad,
“State-of-the-art in artif icial neural network
applications: A survey,” Heliyon, vol. 4, no. 11,
pp. 1–41, Nov. 2018.

[4]	O . I. Abiodun et al., “Comprehensive review
of artif icial neural network applications to
pattern recognit ion,” IEEE Access, vol. 7,
pp. 158820–158846, 2019.

[5]	 M. Tkáč and R. Verner, “Artificial neural net-
works in business: Two decades of research,”
Appl. Soft Comput., vol. 38, pp. 788–804, Jan.
2016.

[6]	 A. P. Marugán, F. P. G. Márquez, J. M. P.
Perez, and D. R. Hernández, “A survey of
artif icial neural network in wind energy sys-
tems,” Appl. Energy, vol. 228, pp. 1822–1836,
Oct. 2018.

[7]	L . M. Elobaid, A. K. Abdelsalam, and E. E.
Zakzouk, “Artif icial neural network-based
photovoltaic maximum power point tracking
techniques: A survey,” IET Renewable Power
Gener., vol. 9, no. 8, pp. 1043–1063, Nov.
2015.

[8]	 V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer,
“Efficient processing of deep neural networks:
A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[9]	F . Niknia, Z. Wang, S. Liu, and F. Lombardi,
“Nanoscale design of multi-layer perceptrons
using f loating-point arithmetic units,” in Proc.
IEEE 22nd Int. Conf. Nanotechnol., 2022,
pp. 1–6.

[10]	 M. A. Talib, S. Majzoub, Q. Nasir, and D.
Jamal, “A systemat ic l iterature review on
hardware implementation of artif icial intel-
ligence algorithms,” J. Supercomput., vol. 77,
no. 2, pp. 1897–1938, May 2020.

[11]	 D. Moolchandani, A. Kumar, and S. R. Sarangi,
“Accelerating CNN inference on ASICs: A sur-
vey,” J. Syst. Architecture, vol. 113, Feb. 2021,
Art. no. 101887.

[12]	 A. Shiri, A. N. Mazumder, B. Prakash, H.
Homayoun, N. R. Waytowich, and T. Mohs-
enin, “A hardware accelerator for language-
guided reinforcement learning,” IEEE Des. Test,
vol. 39, no. 3, pp. 37–44, Jun. 2022.

[13]	 A. Shiri et al., “Energy-efficient hardware for lan-
guage guided reinforcement learning,” in Proc.
Great Lakes Symp. VLSI, 2020, pp. 131–136.

[14]	S . Haykin, Neural Networks and Learning
Machines, 3rd ed. Noida, India: Pearson Educa-
tion India, 2009.

[15]	L . Ye et al., “The challenges and emerging technol-
ogies for low-power artificial intelligence IoT sys-
tems,” IEEE Trans. Circuits Syst. I: Regular Papers,
vol. 68, no. 12, pp. 4821–4834, Dec. 2021.

[16]	 IEEE Standard for Floating-Point Arithmetic,
IEEE Standard 754-2019, Jul. 2019, pp. 1–84.

[17]	W . Jiang et al., “Achieving super-linear speedup
across multi-fpga for real-time dnn inference,”
ACM Trans. Embedded Comput. Syst., vol. 18,
no. 67, pp. 1–23, Oct. 2019.

[18]	S . Liu et al., “Stochastic dividers for low latency
neural networks,” IEEE Trans. Circuits Syst. I:
Regular Papers, vol. 68, no. 10, pp. 4102–4115,
Oct. 2021.

[19]	 Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J.
Han, “A survey of stochastic computing neural
networks for machine learning applications,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 32,
no. 7, pp. 2809–2824, Jul. 2021.

[20]	L . D. Medus, T. Iakymchuk, J. V. Frances-
Villora, M. Bataller-Mompeán, and A. Rosa-
do-Muñoz, “A novel systolic parallel hardware
architecture for the FPGA acceleration of feed-
forward neural networks,” IEEE Access, vol. 7,
pp. 76084–76103, 2019.

[21]	 Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J.
Han, “A stochastic computational multi-layer
perceptron with backward propagation,” IEEE
Trans. Comput., vol. 67, no. 9, pp. 1273–1286,
Sep. 2018.

[22]	I . Westby, X. Yang, T. Liu, and H. Xu, “FPGA
acceleration on a multi-layer perceptron neural
network for digit recognition,” J. Supercomput.,
vol. 77, no. 12, pp. 14356–14373, May 2021.

[23]	N . Nedjah, R. M. da Silva, L. M. Mourelle, and
M. V. C. da Silva, “Dynamic MAC-based archi-
tecture of artificial neural networks suitable for
hardware implementation on FPGAs,” Neuro-
computing, vol. 72, no. 10–12, pp. 2171–2179,
Jun. 2009.

[24]	 Z. Wang, F. Niknia, S. Liu, P. Reviriego, P.
Montuschi, and F. Lombardi, “Tolerance of
siamese networks (SNs) to memory errors:
Analysis and design,” IEEE Trans. Comput.,
early access, Jun. 28, 2022, doi: 10.1109/
TC.2022.3186628.

[25]	 J. M. Muller et al., Handbook of Floating-Point
Arithmetic. Basel, Switzerland: Birkhäuser,
2018.

[26]	 A. Alaghi and J. P. Hayes, “Survey of stochastic
computing,” ACM Trans. Embedded Comput.
Syst., vol. 12, no. 2s, pp. 1–19, May 2013.

[27]	 Y. Lecun, L. Bottou, Y. Bengio, and P. Haff-
ner, “Gradient-based learning applied to docu-
ment recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[28]	 Y. Netzer, T. Wang, A. Coates, A. Bissacco, B.
Wu, and A. Y. Ng, “Reading digits in natural
images with unsupervised feature learning,” in
Proc. NIPS Workshop Deep Learn. Unsupervised
Feature Learn., 2011, pp. 1–9.

�

Authorized licensed use limited to: The George Washington University. Downloaded on July 14,2023 at 18:25:17 UTC from IEEE Xplore. Restrictions apply.

mailto:niknia.f@northeastern.edu
mailto:niknia.f@northeastern.edu
mailto:wang.zihe@norteastern.edu
mailto:wang.zihe@norteastern.edu
mailto:lombardi@ece.neu.edu
mailto:lombardi@ece.neu.edu
http://dx.doi.org/10.1109/TC.2022.3186628
http://dx.doi.org/10.1109/TC.2022.3186628

