



## Simplified Chernoff bounds with powers-of-two probabilities

Michael Dillencourt, Michael T. Goodrich\*

Department of Computer Science, University of California, Irvine, CA 92697, USA



### ARTICLE INFO

#### Article history:

Received 20 September 2022

Received in revised form 17 February 2023

Accepted 2 April 2023

Available online 5 April 2023

### ABSTRACT

In this paper, we derive simplified Chernoff bounds with powers-of-two probabilities, and we show their uses in analyzing probabilistic algorithms.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the

CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

#### Keywords:

Algorithms

Analysis of algorithms

Algorithm analysis

Chernoff bound

Lambert  $W$  function

### 1. Introduction

Chernoff bounds [4,11] have been shown to be useful for analyzing a wide variety of different probabilistic algorithms and processes, e.g., see [1,9,12,13].

Suppose  $X_1, X_2, \dots, X_n$  are independent random variables taking values in  $\{0, 1\}$ . Let  $X = \sum_{i=1}^n X_i$  and let  $\mu = E[X]$  denote  $X$ 's expected value. In their more general (multiplicative) forms for such a random variable,  $X$ , Chernoff bounds can be stated as follows, e.g., see [1,9,12–14].

**Theorem 1.** For any  $\delta > 0$ ,

$$\Pr(X > (1 + \delta)\mu) < \left( \frac{e^\delta}{(1 + \delta)^{1+\delta}} \right)^\mu.$$

Also, for any  $0 < \delta < 1$ ,

$$\Pr(X < (1 - \delta)\mu) < \left( \frac{e^{-\delta}}{(1 - \delta)^{1-\delta}} \right)^\mu.$$

These formulas are unwieldy to use in practice, however; hence, researchers often use other forms of the Chernoff bounds, with the following being common (see, e.g., [1,2,9,12–14]):

\* Corresponding author.

E-mail addresses: [dillenco@ics.uci.edu](mailto:dillenco@ics.uci.edu) (M. Dillencourt), [goodrich@uci.edu](mailto:goodrich@uci.edu) (M.T. Goodrich).

**Theorem 2.**

$$\Pr(X > (1 + \delta)\mu) < e^{-\delta^2\mu/(2+\delta)}, \quad \text{for } \delta > 0, \quad (1)$$

$$\Pr(X < (1 - \delta)\mu) < e^{-\delta^2\mu/2}. \quad \text{for } 0 < \delta < 1. \quad (2)$$

As evidence for how influential these bounds have been, we note that a 1990 paper from *Information Processing Letters*, by Hagerup and Rüb [9], which includes bounds like those in Theorem 2, has been cited over 700 times! Indeed, these bounds have become so well-known that researchers often use them without citation.

As in Theorem 2, probabilities in simplified Chernoff bounds are typically expressed as powers of Euler's number,  $e$ , whereas in Computer Science applications it is often preferred to express probabilities in terms of powers of 2, for which simplified Chernoff bounds are lacking. Indeed, some researchers apply a Chernoff bound, as in Theorem 2, and then convert the resulting probability to a power of two using the crude inequality,  $2 \leq e$ . For example, see Elsässer and Sauerwald [8]. Of course, one can use a slightly better inequality to derive the following.

**Corollary 3.**

$$\Pr(X > (1 + \delta)\mu) < 2^{-1.442\delta^2\mu/(2+\delta)} < 2^{-7\delta^2\mu/(10+5\delta)}, \quad \text{for } \delta > 0, \quad (3)$$

$$\Pr(X < (1 - \delta)\mu) < 2^{-1.442\delta^2\mu/2} < 2^{-7\delta^2\mu/10}, \quad \text{for } 0 < \delta < 1. \quad (4)$$

**Proof.** Note that  $2^{7/5} < e$ , since  $\log_2 e \approx 1.442695$ ; hence, the bounds follow immediately from Theorem 2. ■

In this paper, we are interested in simplified Chernoff bounds with powers-of-two probabilities for reasonable values of  $\delta$ , as such bounds are often used in Computer Science applications. In terms of prior work, there is a notable upper-tail power-of-two Chernoff bound from a book by Mitzenmacher and Upfal [12] and the *IPL* paper by Hagerup and Rüb [9]:

**Theorem 4** ([12] (p. 69) and [9]).

$$\Pr(X > R) < 2^{-R}, \quad \text{for } R \geq 6\mu.$$

In addition, Motwani and Raghavan [13] leave as an exercise to prove  $\Pr(X > R) < 2^{-R}$ , for  $R \geq 2e\mu$ , which is a slightly better condition, since  $2e \approx 5.43656$ . Although this and the power-of-two Chernoff bound of Theorem 4 are useful, we show below that  $\Pr(X > R) < 2^{-R}$ , for  $R \geq 4.5\mu$ , which can lead to better analyses for randomized algorithms. Indeed, in this paper, we derive a number of such simplified Chernoff bounds with powers-of-two probabilities, for both upper and lower tails, for reasonable values of  $\delta$ . We also mention some applications of our simplified powers-of-two Chernoff bounds, but these are just the tip of the iceberg in terms of improved analyses of algorithms that are possible, e.g., given that the *IPL* paper by Hagerup and Rüb [9] has been cited over 700 times.

**2. The Lambert  $W$  function**

Some of our proofs make use of the Lambert  $W$  function; hence, before we derive our simplified powers-of-two Chernoff bounds, let us first review this function. The Lambert  $W$  function is defined by the rule that  $W(z) = w$  iff  $w$  satisfies the equation

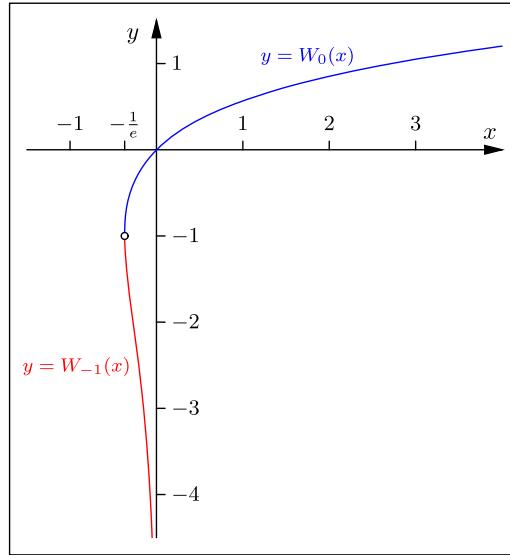
$$we^w = z,$$

e.g., see Corless, Gonnet, Hare, Jeffrey, and Knuth [5] or Corless, Jeffrey, and Knuth [6]. Technically,  $W$  is not a function. Hence its real-valued expression is partitioned into two branches:  $W_0(x)$ , which is called the *principal branch* and is always greater than or equal to  $-1$ , and  $W_{-1}(x)$ , which is called the *non-principal branch* and is always less than or equal to  $-1$ . A plot of the two real branches is shown in Fig. 1. The two branches split at  $(-\frac{1}{e}, -1)$ .  $W_0(ye^y) = y$  for  $y \geq -1$ , and  $W_{-1}(ye^y) = y$  for  $y \leq -1$ .

The Lambert  $W$  function has many applications, including characterizing the number of unrooted trees [5]. It cannot be expressed in terms of elementary functions; hence, evaluating it typically requires one to use a numerical algorithm, e.g., see [3].

**3. Improved powers-of-two Chernoff bounds**

In this section, we derive simplified Chernoff bounds with powers-of-two probabilities.



**Fig. 1.** The two real branches of the Lambert  $W$  function. Image Copyright © 2022 Michael Dillencourt; used with permission.

### 3.1. Upper-tail bounds

We begin with some upper-tail bounds. The first is a strict improvement of Theorem 4.

#### Theorem 5.

$$\Pr(X > R) < 2^{-R}, \quad \text{for } R \geq 4.5\mu.$$

**Proof.** We actually show that  $\Pr(X > R) < 2^{-R}$ , for  $R \geq 4.31107\mu > -\mu/W_0(-1/2e)$ , where  $W_0(x)$  is the principal branch of the Lambert  $W$  function. From the general form of the Chernoff bound of Theorem 1, taking  $R = (1 + \delta)\mu$ ,

$$\Pr(X > R) = \Pr(X > (1 + \delta)\mu) < \left( \frac{e^\delta}{(1 + \delta)^{1+\delta}} \right)^\mu.$$

In order for this probability to be at most  $2^{-R}$ , we need  $1 + \delta \geq 2e^{\delta/(1+\delta)}$ . Setting  $x = 1 + \delta$ , the breakpoint for this inequality occurs for  $x$  satisfying

$$x = 2e^{\frac{x-1}{x}}.$$

That is,

$$xe^{-\frac{x-1}{x}} = 2.$$

Putting this into the form of the Lambert  $W$  function definition, let  $u = -(x-1)/x$ , so  $x = 1/(1+u)$ . The equation becomes

$$\left( \frac{1}{1+u} \right) e^u = 2,$$

which can be rewritten as

$$-(1+u)e^{-(1+u)} = -\frac{1}{2e}.$$

This equation has  $u = -W_0(-1/2e) - 1$  as a solution. After back-substituting the solution is  $x = -1/W_0(-1/2e)$ . Numerically,  $-1/W_0(-1/2e) \approx -1/(-0.23196) \approx 4.31107$ , which establishes the bound for  $R$ . ■

We can also establish the following general bounds.

#### Theorem 6. The bound

$$\Pr(X > (1 + \delta)\mu) < 2^{-\alpha\mu}, \quad (5)$$

holds:

1. For fixed  $\delta > 0$  when

$$\alpha \leq \log_2 \left( \frac{(1+\delta)^{1+\delta}}{e^\delta} \right). \quad (6)$$

2. For fixed  $\alpha > 0$  when

$$\delta \geq e^{W_0\left(\frac{\alpha \ln 2 - 1}{e}\right) + 1} - 1. \quad (7)$$

**Proof.** By Theorem 1, (5) holds whenever we have:

$$2^{-\alpha\mu} \geq \left( \frac{e^\delta}{(1+\delta)^{1+\delta}} \right)^\mu. \quad (8)$$

Part 1 follows from the observation that if (6) holds, so does (8). To establish part 2, we fix  $\delta$  and determine the conditions for which (8) holds. (8) holds when

$$\left( \frac{1+\delta}{e} \right)^{1+\delta} \geq \frac{2^\alpha}{e}.$$

Since  $\ln x$  and  $x/e$  are both monotone increasing functions of  $x$  for positive  $x$ , this is equivalent to

$$\left( \frac{1+\delta}{e} \right) \ln \left( \frac{1+\delta}{e} \right) \geq \frac{\alpha \ln 2 - 1}{e}.$$

Since the left-hand side is of the form  $xe^x$  where  $x = \ln((1+\delta)/e)$ , and since  $\ln((1+\delta)/e) > -1$  for any positive  $\delta$ , we can rewrite the last equation as

$$\ln \left( \frac{1+\delta}{e} \right) \geq W_0 \left( \frac{\alpha \ln 2 - 1}{e} \right),$$

from which (7) follows. ■

We also have the following theorem, which provides a bound for modest values of  $\delta$ .

### Theorem 7.

$$\Pr(X > (1+\delta)\mu) < 2^{-\delta\mu}, \quad \text{for } \delta > 2.20603. \quad (9)$$

**Proof.** From the general form of the Chernoff bound of Theorem 1,

$$\Pr(X > (1+\delta)\mu) < \left( \frac{e^\delta}{(1+\delta)^{1+\delta}} \right)^\mu.$$

For this probability to be at most  $2^{-\delta\mu}$ , we need  $2^{-\delta}(1+\delta)^{1+\delta} \geq e^\delta$ . This can be rewritten as

$$\left( \frac{1+\delta}{2e} \right)^{1+\delta} \geq \frac{1}{2e}. \quad (10)$$

Taking both sides to the  $1/(2e)$  power, and taking the log of both sides yields

$$\left( \frac{1+\delta}{2e} \right) \ln \left( \frac{1+\delta}{2e} \right) \geq \left( \frac{1}{2e} \right) \ln \left( \frac{1}{2e} \right). \quad (11)$$

We can see by inspection that one breakpoint for (11) is  $\delta = 0$ , which is the trivial value for which equality holds in (10). Since  $\ln(1/(2e)) < -1$ , this corresponds to choosing the non-principal branch of the Lambert function. Choosing the principal branch, we see that equality occurs in (11) when

$$W_0 \left( \frac{-\ln 2 - 1}{2e} \right) = \ln \left( \frac{1+\delta}{2e} \right).$$

This produces the solution

$$\delta = 2e \cdot e^{W_0\left(\frac{-\ln 2 - 1}{2e}\right)} - 1 \approx 2e \cdot e^{W_0(0.31144)} - 1 \approx 2e \cdot e^{-0.52811} - 1 \approx 2.20603. \quad \blacksquare$$

We can use Theorem 6 to derive the following specific upper-tail powers-of-two Chernoff bounds for smaller values of  $\delta$ , all of which are tighter than the bounds of Corollary 3.

### Corollary 8.

$$\Pr(X > (1 + \delta)\mu) < 2^{-\mu}, \quad \text{for } \delta \geq 1.4, \quad (12)$$

$$\Pr(X > (1 + \delta)\mu) < 2^{-0.557\mu} < 2^{-5\mu/9}, \quad \text{for } \delta \geq 1, \quad (13)$$

$$\Pr(X > (1 + \delta)\mu) < 2^{-0.266\mu} < 2^{-\mu/4}, \quad \text{for } \delta \geq 2/3, \quad (14)$$

$$\Pr(X > (1 + \delta)\mu) < 2^{-0.156\mu} < 2^{-3\mu/20}, \quad \text{for } \delta \geq 1/2, \quad (15)$$

$$\Pr(X > (1 + \delta)\mu) < 2^{-0.072\mu} < 2^{-\mu/14}, \quad \text{for } \delta \geq 1/3, \quad (16)$$

$$\Pr(X > (1 + \delta)\mu) < 2^{-0.0417\mu} < 2^{-\mu/24}, \quad \text{for } \delta \geq 1/4. \quad (17)$$

**Proof.** To derive (12), we set  $\alpha = 1$  and use part 2 of Theorem 6. By (7), the minimum value of  $\delta$  is

$$e^{W_0\left(\frac{\ln 2-1}{e}\right)+1}-1 \approx e^{W_0(-0.11288)+1}-1 \approx e^{-0.128337+1}-1 \approx 1.39088 < 1.4.$$

To derive (13), we set  $\delta = 1$  and use part 1 of Theorem 6. By (6), the maximum value of  $\alpha$  is

$$\log_2\left(\frac{2^2}{e^2}\right) \approx 0.557.$$

The derivations of (14) through (17) are similar to that of (13). ■

### 3.2. Lower-tail bounds

We also derive lower-tail Chernoff bounds that improve the Chernoff bounds of Corollary 3. We first prove the following analog of Theorem 6.

#### Theorem 9. The bound

$$\Pr(X < (1 - \delta)\mu) < 2^{-\beta\mu}, \quad (18)$$

holds:

1. For fixed  $\delta$  with  $0 < \delta < 1$  when

$$\beta \leq \log_2\left(e^\delta(1-\delta)^{1-\delta}\right). \quad (19)$$

2. For fixed  $\beta > 0$  when

$$1 - e^{W_{-1}\left(\frac{\beta \ln 2 - 1}{e}\right)+1} \leq \delta < 1. \quad (20)$$

**Proof.** By Theorem 1, (18) holds whenever we have:

$$2^{-\beta\mu} \geq \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^\mu \quad (21)$$

Part 1 follows from the observation that if (19) holds, so does (21). To establish part 2, we fix  $\beta$  and determine the values of  $\delta$  between 0 and 1 for which (21) holds. (21) holds when

$$\left(\frac{1-\delta}{e}\right)^{1-\delta} \geq \frac{2^\beta}{e}. \quad (22)$$

Since the functions  $\ln x$  and  $x/e$  are both monotone increasing functions of  $x$  for positive  $x$  and since both quantities in (22) are less than 1, this is equivalent to

$$\left(\frac{1-\delta}{e}\right) \ln\left(\frac{1-\delta}{e}\right) \leq \frac{\beta \ln 2 - 1}{e}.$$

Since the left-hand side is of the form  $xe^x$  where  $x = \ln((1-\delta)/e)$ , and since  $\ln((1-\delta)/e) < -1$  for any positive  $\delta$ , we can rewrite the last equation as

$$\ln\left(\frac{1-\delta}{e}\right) \leq W_{-1}\left(\frac{\beta \ln 2 - 1}{e}\right),$$

from which (20) follows. ■

### Corollary 10.

$$\Pr(X < (1-\delta)\mu) < 2^{-\mu}, \quad \text{for } 0.9099 \leq \delta < 1. \quad (23)$$

**Proof.** To derive (23), we set  $\beta = 1$  and use part 2 of Theorem 9. By (20), the minimum value of  $\delta$  is

$$1 - e^{W_{-1}\left(\frac{\ln 2 - 1}{e}\right) + 1} \approx 1 - e^{W_{-1}(-0.11288) + 1} - 1 \approx 1 - e^{-3.40737 + 1} \approx 0.9099. \quad \blacksquare$$

If we are interested in bounds for slightly smaller values of  $\delta$ , we can use the following theorem.

### Theorem 11.

$$\Pr(X < (1-\delta)\mu) < 2^{-\delta\mu}, \quad \text{for } 0.8687 \leq \delta < 1. \quad (24)$$

**Proof.** From the general form of the Chernoff bound of Theorem 1,

$$\Pr(X < (1-\delta)\mu) < \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^\mu.$$

For this probability to be at most  $2^{-\delta\mu}$ , we need  $e^\delta(1-\delta)^{1-\delta} \geq 2^\delta$ . This can be rewritten as

$$\left(\frac{2(1-\delta)}{e}\right)^{1-\delta} \geq \frac{2}{e}. \quad (25)$$

Taking both sides to the  $2/e$  power, and taking the log of both sides yields

$$\left(\frac{2(1-\delta)}{e}\right) \ln\left(\frac{2(1-\delta)}{e}\right) \geq \left(\frac{2}{e}\right) \ln\left(\frac{2}{e}\right). \quad (26)$$

We can see by inspection that one breakpoint for (26) is  $\delta = 0$ , which is the trivial value for which equality holds in (25). Since  $\ln(2/e) > -1$ , this corresponds to choosing the principal branch of the Lambert function. Choosing the non-principal branch, we see that equality occurs in (26) when

$$W_{-1}\left(\frac{2(\ln 2 - 1)}{e}\right) = \ln\left(\frac{2(1-\delta)}{e}\right).$$

This produces the solution

$$\delta = 1 - \frac{e^{W_{-1}\left(\frac{2(\ln 2 - 1)}{e}\right) + 1}}{2} \approx 1 - \frac{e^{W_{-1}(-0.2257) + 1}}{2} \approx 1 - \frac{e^{-2.3372 + 1}}{2} \approx 0.8687. \quad \blacksquare$$

We can also derive the following specific lower-tail powers-of-two Chernoff bounds for smaller values of  $\delta$ , all of which are tighter than the bounds of Corollary 3.

### Corollary 12. Suppose $\delta < 1$ . Then

$$\Pr(X < (1-\delta)\mu) < 2^{-0.771\mu} < 2^{-3\mu/4}, \quad \text{for } \delta \geq 5/6, \quad (27)$$

$$\Pr(X < (1-\delta)\mu) < 2^{-0.582\mu} < 2^{-5\mu/9}, \quad \text{for } \delta \geq 3/4, \quad (28)$$

$$\Pr(X < (1-\delta)\mu) < 2^{-0.433\mu} < 2^{-3\mu/7}, \quad \text{for } \delta \geq 2/3, \quad (29)$$

$$\Pr(X < (1-\delta)\mu) < 2^{-0.221\mu} < 2^{-\mu/5}, \quad \text{for } \delta \geq 1/2, \quad (30)$$

$$\Pr(X < (1-\delta)\mu) < 2^{-0.09092\mu} < 2^{-\mu/11}, \quad \text{for } \delta \geq 1/3, \quad (31)$$

$$\Pr(X < (1-\delta)\mu) < 2^{-0.049\mu} < 2^{-\mu/21}, \quad \text{for } \delta \geq 1/4. \quad (32)$$

**Proof.** To derive (27), we set  $\delta = 5/6$  and use part 1 of Theorem 9. By (19), the maximum value of  $\beta$  is

$$\log_2\left(e^{5/6}(1/6)^{1/6}\right) \approx 0.7714.$$

The derivations of (28) through (32) are similar to that of (27). ■

## 4. Applications

In this section, we highlight some improved analyses that are implied by the above simplified Chernoff bounds.

Hassin and Peleg [10] study a probabilistic local polling process, examine its properties, and propose its use in the context of distributed network protocols for achieving consensus. Their analysis uses Theorem 4 to show that a parallel random-walk process will succeed with half of the pairs of random walks meeting in  $41M$  expected steps, where  $M$  is the maximum expected meeting time for two walks. Substituting Theorem 5 in their analysis improves the expected number of steps for half of the pairs meeting to  $24M$ .

Diks and Pelc [7] present an algorithm to exchange values between all fault-free nodes in an  $n$ -node network where nodes and links fail with constant probabilities, basing their analysis, in part, on Theorem 4. Substituting Theorem 5 in their analysis improves the constant factor in their analysis and/or the probability of failure that their algorithm tolerates.

Elsässer and Sauerwald [8] study a randomized broadcasting protocol. Their analysis uses Theorem 2, with  $\delta = 5/6$ , and the crude inequality  $2 < e$  to bound the failure probability of their algorithm to be at most  $1/n$ . Simply substituting Theorem 12 in their analysis improves their failure probability to  $n^{-3.5}$ .

## Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Michael Goodrich reports financial support was provided by National Science Foundation (2212129). Michael Goodrich reports a relationship with National Science Foundation (2212129) that includes: funding grants.

## Data availability

No data was used for the research described in the article.

## Acknowledgements

This research was supported in part by the National Science Foundation under grant 2212129.

## References

- [1] N. Alon, J.H. Spencer, *The Probabilistic Method*, 4/e edition, John Wiley & Sons, 2016.
- [2] D. Angluin, L.G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings, in: 9th ACM Symposium on Theory of Computing (STOC), 1977, pp. 30–41.
- [3] D.A. Barry, P.J. Culligan-Hensley, S.J. Barry, Real values of the  $W$ -function, *ACM Trans. Math. Softw.* 21 (2) (1995) 161–171.
- [4] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, *The Annals of Mathematical Statistics* (1952) 493–507.
- [5] R.M. Corless, G.H. Gonnet, D.E. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert  $W$  function, *Advances in Computational Mathematics* 5 (1) (1996) 329–359.
- [6] R.M. Corless, D.J. Jeffrey, D.E. Knuth, A sequence of series for the Lambert  $W$  function, in: *Int. Symp. on Symbolic and Algebraic Comp.*, 1997, pp. 197–204.
- [7] K. Diks, A. Pelc, Efficient gossiping by packets in networks with random faults, *SIAM Journal on Discrete Mathematics* 9 (1) (1996) 7–18.
- [8] R. Elsässer, T. Sauerwald, On the runtime and robustness of randomized broadcasting, *Theoretical Computer Science* 410 (36) (2009) 3414–3427.
- [9] T. Hagerup, C. Rüb, A guided tour of Chernoff bounds, *Information Processing Letters* 33 (6) (1990) 305–308.
- [10] Y. Hassin, D. Peleg, Distributed probabilistic polling and applications to proportionate agreement, *Information and Computation* 171 (2) (2001) 248–268.
- [11] W. Hoeffding, Probability inequalities for sums of bounded random variables, *Journal of the American Statistical Association* 58 (301) (1963) 13–30.
- [12] M. Mitzenmacher, E. Upfal, *Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis*, 2/e edition, Cambridge University Press, 2017.
- [13] R. Motwani, P. Raghavan, *Randomized Algorithms*, Cambridge University Press, 1995.
- [14] D. Shiu, Efficient computation of tight approximations to Chernoff bounds, *Computational Statistics* (2022) 1–15.