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ABSTRACT

Dating back to two famous experiments by the social-psychologist,
Stanley Milgram, in the 1960s, the small-world phenomenon is
the idea that all people are connected through a short chain of
acquaintances that can be used to route messages. Many subsequent
papers have attempted to model this phenomenon, with most
concentrating on the “short chain” of acquantances rather than
their ability to efficiently route messages. For example, a well-
known preferential attachment model by Barabasi and Albert
provides a mathematical explanation of how a social network can
have small diameter—hence, short chains between participants—
but this model doesn’t explain how they can route messages. A
notable exception is a well-known model by Jon Kleinberg, which
shows that it is possible for participants in a n X n grid to route
a message in O(log? n) hops by augmenting the grid with a small
number of long-range random links and using a simple greedy
routing strategy. Although Kleinberg’s model is intriguing, it does
not take into account the road network of the United States used in
the original Milgram experiments and its O(log® n) number of hops
for messages is actually quite far from the average of six hops for
successful messages observed by Milgram in his experiments, which
gave rise to the “six-degrees-of-separation” expression. In this paper,
we study the small-world navigability of the U.S. road network, with
the goal of providing a model that explains how messages in the
original small-world experiments could be routed along short paths
using U.S. roads. To this end, we introduce the Neighborhood
Preferential Attachment model, which combines elements from
Kleinberg’s model and the Barabasi-Albert model, such that long-
range links are chosen according to both the degrees and (road-
network) distances of vertices in the network. We empirically eval-
uate all three models by running a decentralized routing algorithm,
where each vertex only has knowledge of its own neighbors, and
find that our model outperforms both of these models in terms of
the average hop length. Moreover, our experiments indicate that
similar to the Barabasi-Albert model, networks generated by our
model are scale-free, which could be a more realistic representation
of acquaintanceship links in the original small-world experiment.
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1 INTRODUCTION

The small-world phenomenon is the idea that all people are
connected through a short chain of acquaintances that can be
used to route messages. This phenomenon was popularized by the
social-psychologist, Stanley Milgram, based on two experiments
performed in the 1960s [18, 22], where a randomly-chosen group of
people were given packages to send to someone in Massachusetts.
Each participant was told that they should mail their package
only to its target person if they knew them on a first-name basis;
otherwise, they should mail their package to someone they knew
who is more likely to know the target person. Remarkably, many
packages made it to the target people, with the median number of
hops being 6, which gave rise to the expression that everyone is
separated by just “six degrees of separation” [12].

Subsequent to this pioneering research, many papers have been
written on the small-world phenomenon, e.g., see [9], with a number
of models having been proposed to explain it. Nevertheless, based
on our review of the literature, the models proposed so far do
not fully explain observations made by Milgram regarding his
experiments [18, 22]. For example, Milgram observed that message
routing occurred in a geographic setting with distances (measured
in miles, presumably in the road network of the United States)
roughly halving with each hop; see Figure 1.

Figure 1: Illustration of geographic data from an original
small-world experiment, from [18].
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In spite of the geographic nature of the early small-world exper-
iments,! we are not familiar with any previous work that models
the small-world phenomenon with road networks. Thus, we are
interested in this paper in modeling the small-world phenomenon
with road networks. For example, one of the surprising results in
the original small-world experiments was that people were able
to find very short paths among acquaintances with only a limited
knowledge of the social network of acquaintances. This suggests
that a model should explain how people can find short paths in
a social network using a decentralized greedy algorithm, where
individuals, who only have knowledge of their direct acquaintances,
attempt to send a message towards a target along some path.

1.1 Related Prior Work

Arguably, the closest prior work on a model directed at explaining
how small-world (social-network) greedy routing can work in a geo-
graphic setting is a well-known model by Jon Kleinberg [14]. Rather
than using a road network, however, Kleinberg’s model is built on
a two dimensional n X n grid, where each grid point corresponds to
a single person, with two types of connections—local connections
and long-range connections. The local connections of the network
are made by connecting each grid point to every other grid point
within lattice distance p > 1. The long-range connections are made
by connecting each grid point to g > 0 other grid points chosen
randomly (typically with ¢ = 1 or g being a small constant), such
that the probability that grid point u is connected to grid point v is
proportional to [dy (u,v)] ™, where dj, (u,v) is the lattice distance
between u and v, and s is the clustering exponent of the network.
Kleinberg showed that in an n X n grid, a decentralized greedy
algorithm, where each message holder forwards its message to
an acquaintance that is closest to the target grid point, is able to
achieve an expected path length of O(log? n) for p = ¢ = 1 and
s = 2, with a constant of at least 88 in the leading term in his Big-O
analysis [14].

When attempting to model the original small-world experiments,
however, there are a number of drawbacks with the Kleinberg model.
First, it requires that the underlying distances are in the form of
a grid, which is not compatible with how messages were sent in
the original small-world experiments, where messages were sent
using the U.S. road network. Second, the upper bound O(log2 n),
with a hidden constant that is at least 88, for the expected number
of hops between vertices does not match the average hop length of
six obtained in the original small-world experiments. For example,
if n =9,000, then 88 log? n is approximately 15,000. Finally, as we
show in Section 6, when acquaintanceship links are viewed as
bidirectional, the maximum degree in the resulting network for the
Kleinberg model is quite small. Having a degree distribution with a
heavier tail might be more realistic for a social network. Moreover,
these high-degree vertices might improve the performance of the
model during the routing step. Indeed, Milgram noted that in one
of his experiments half of the successfully delivered packages were
routed through three “key” individuals; see Figure 2.

! The first experiment involved a group of people in Wichita, Kanasas who were asked
to send a package to the wife of a divinity student in Cambridge, and the second
experiment involved a group of people in Omaha, Nebraska (plus a small number of
folks in Boston) who were asked to send a package to a stock broker who worked in
Boston and lived in Sharon, Mass [18].
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Figure 2: Final hops for the paths of delivered packages for
people in an original small-world experiment, from [18].
Roughly half of the paths were routed through three “key”
individuals, Jacobs, Jones, and Brown.

Another well-known social-network model is the preferential
attachment model, which is a random graph model for non-
geographic social networks, such as the World Wide Web. This
model traces its roots back roughly 100 years, e.g., see [6, 20, 24],
and was popularized and formalized by Barabasi and Albert [1],
who also coined the term scale-free, which describes networks
where the fraction of vertices with degree d follows a power law,
d~%, where a > 1. A graph in the preferential attachment model
is constructed incrementally, starting from a constant-sized “seed”
graph, adding vertices one-at-a-time, such that when a vertex, v,
is added one adds a fixed number, m, of edges incident to v, where
each other neighbor is chosen with probability proportional to its
degree at that time, e.g., see [3]. This is often called a “rich-get-
richer” process, and a rigorous analysis on the degree distribution
and diameter of this model was studied by Bollabas and Riordan [4].
Further, Dommers, Hofstad and Hooghiemstra [8] investigated
the diameters of several variations of the preferential attachment
model, proving that, for each variant, when the power law exponent
exceeds 3, the diameter is Q(logn), and when the power law
exponent is in (2, 3), the diameter is Q(loglogn).

To our knowledge, there does not exist any prior work combining
a preferential attachment model with Kleinberg’s model. In terms
of the most relevant prior work, Flaxman, Frieze, and Vera [10]
introduce a random graph model that combines preferential attach-
ment graphs with geometric random graphs, with points created
randomly on a unit sphere one-at-a-time, such that for each added
vertex, m neighbors that are within a fixed distance, r, of that vertex
are chosen with probability proportional to their degrees. Flaxman,
Friex, and Vera show that with high probability the vertex degrees
in this model follow a power law assuming r is sufficiently large,
and they prove that the diameter of this graph model is O(Inn/r)
w.h.p., but they do not study its ability to support efficient greedy
routing. Indeed, when r > /2, this model is just the preferential
attachment model.
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1.2 Additional Prior Work

Ever since being popularized by Milgram’s experiments and the
subsequent work by other researchers on complex networks, the
small-world phenomenon has found applications in a wide array
of research fields, including rumor spreading, epidemics, electronic
circuits, wireless networks, the World Wide Web, network neuro-
science, and biological networks. For an overview of the small-world
phenomenon and its applications, the reader can refer to [23].

Incidentally, and not surprisingly, there has been a significant
amount of additional prior work that analyzes the small-world
phenomenon on different types of social network models, e.g.,
see [15, 16, 21]). Liben-Nowell, Novak, Kumar, Raghavan, and
Tomkins [16] introduce a geographic social network model, which
uses rank-based friendships, where the probability of assigning
long-range connections from any person u to person v is inversely
proportional to the number of people in the network who are
geographically closer to u than v. The social network is modeled
based on a 2D grid representation of the surface of earth, where each
grid point has a positive population value, and has local connections
to its immediate neighbors on the grid. Each grid point is then
connected to a fifth neighbor based on their rank. Liben-Nowell et
al. prove an upper bound of O(log® n) for the expected hop length
of paths formed by this model, which, of course, is worse than the
expected O(log? n) hop lengths in Kleinberg’s model.

Kleinberg’s model and its extensions have also been studied
extensively. Martel and Nguyen [17] proved the expected diameter
of the resulting graph is Q(log n), but that a greedy routing strategy
cannot find such short paths, as they show that Kleinberg’s O(log?)
analysis for greedy routing is tight. They extend Kleinberg’s model
by assuming each vertex has some additional (unrealistic) knowl-
edge of the network. For example, they show that when each
node u knows the long-range contacts of the log n nodes closest
to u in the grid, the expected number of hops is O(log®? n).
Fraigniaud, Gavoille and Paul [11] provide a similar extension, and
they prove a bound of O(long/ 4 ny) expected hops in the general
d—dimensional mesh, and show that this bound is tight for a variety
of greedy algorithms, including those that have global knowledge
of the network.

1.3 Our Contributions

In this paper, we study the small-world phenomenon with road
networks, which is motivated by the fact that, as mentioned
above, the network of connections in the original small-world
experiments were as much geographic as they were social [18,
22]. We introduce a new small-world model, which we call the
Neighborhood Preferential Attachment model, which blends
elements from the preferential attachment model of Barabasi and
Albert [1] and Kleinberg’s model [14], but with underlying distances
defined by a road network rather than a square grid.

In a nutshell, our model generates a random social network
starting from a road network. We add the vertices to our model
one-at-a-time at random from the vertices of the underlying road
network (whose vertices stand in as the participants in our social
network). When we add a new vertex, o, to our model, we create a
fixed contant number, m > 1, of additional edges from v to existing
vertices, with each other neighbor, w, chosen with a probability
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proportional to the ratio of the current degree of w (counting just
the added edges) and d (v, w)?, where d(v, w) is the distance from v
to w in the road network.

By using the constant, m, as parameter, we guarantee that
the average degree in the network is a constant, which matches
another observation made by Milgram for his experiments [18].
Interestingly, researchers have observed that an upper bound of
O(logn) on the expected hop length in Kleinberg’s model can be
achieved by having an unrealistic O(log n) outgoing links for every
vertex instead of a small constant, e.g., see [17]. Thus, our model
tests whether short paths can be found using greedy routing in a
social network with constant average degree, but with a few vertices
having degrees higher than this, as was the case for the few “key”
individuals, Jacobs, Jones, and Brown, in an original small-world
experiment [18].

One of the main goals in our design of the Neighborhood
Preferential Attachment model is to introduce a model that brings
the average hop length for greedy routing closer to the six degrees-
of-separation found in the original small-world experiments, while
keeping the average degree of the network bounded by a con-
stant. To test this, we experimentally evaluate instances of our
model using road networks for various U.S. states. We empirically
compare the performance of greedy routing in our model to
the performance for a variant of Kleinberg’s model, where links
are chosen with probability proportional to the inverse squared
road-network distances of vertices (rather than a grid), as well
as with the well-known Barabasi-Albert preferential-attachment
model. Interestingly, our experiments show that the Neighborhood
Preferential Attachment model outperforms both the Barabasi-
Albert preferential-attachment model and the road-network variant
of Kleinberg’s model. Moreover, our experimental results show
that our model has a scale-free degree distribution, which is
arguably a better representation of real-world social networks
than Kleinberg’s model while also being geographic, unlike the
preferential-attachment model of Barabasi and Albert.

2 PRELIMINARIES

We view road networks as undirected, weighted, and connected
graphs, where each vertex corresponds to a road junction or
terminus, and each edge corresponds to road segments that connect
two vertices. In our social network model, each junction or terminus
in a road network represents a single person, and each road segment
represents a social connection between two people, which we
consider to be the local connections of the network. Intuitively,
our social network model can be seen as a mapping of each person
in the population to the road network vertex that is geographically
closest to their address. Likewise, an edge (u,v) in the road network
represents the existence of social connections between people
who were mapped to vertices u and v. This is admittedly an
approximation for a population distribution, but we feel it is
reasonable for most geographic regions, since population density
correlates with road-network density, e.g., see [2, 5, 13]. Certainly,
it is is more realistic than modeling population density using a
uniform n X n grid, as in Kleinberg’s model [14].

The distance between two vertices u,v € V is denoted as d(u, v)
and is the total weight of the shortest path between u and v in the



SIGSPATIAL ’22, November 1-4, 2022, Seattle, WA, USA

underlying road network. The hop distance between two vertices
is denoted as dj, (4, v) and is the minimum number of hops required
to reach v from u, without considering edge weights and including
both road-network edges and additional edges added during model
formation. In all of the social network models we mention in
this paper, we assume all edges are undirected for the sake of
distance computations, which reflects the notion that friendships
are bidirectional.

We define deg;(v) to be the degree of v in a graph, G = (V, E),
that is, the number of v’s adjacent vertices in G. If G is understood
from context, then we may drop the subscript.

3 THE ROAD-NETWORK KLEINBERG MODEL

In this section, we introduce a variant of Kleinberg’s small-world
model adapted so that it works with weighted road networks rather
than n X n grids. We denote this model throughout this paper as the
KL model. Interestingly, as we show in our empirical analysis,
although this model is not as effective for performing greedy
routing as our Neighborhood Preferential Attachment model, it
nevertheless is much more efficient in practice than the theoretical
analysis of Kleinberg [14] that is based on using n X n grids would
predict.

As mentioned above, Kleinberg’s network model begins by
defining a set of vertices as the lattice points in an n X n grid,
ie, {(i,j) |ie{L2,...,n},j€{1,2,...n}}, so that the distance
between any two vertices u = (i, j) and v = (k, [) is the Manhattan
distance, d(u,v) = |k—i|+|l— j|. Each vertex, u, has an edge to every
vertex within distance p > 1, called the local contacts (typically,
we just take p = 1, so these are just grid-neighbor connections), and
each vertex has edges to m > 1 other vertices selected at random,
called the long-range contacts, such that the probability that there
exists an edge from u to v is d(u,v) % /z, where s > 0 is called the
clustering exponent and z is a normalizing factor that ensures
we have a probability distribution. Then, a decentralized greedy
algorithm is used to route messages between a source and target
vertex as follows: at each step, the current message holder forwards
its message to a contact that has the smallest Manhattan distance
to the target vertex.

We now adapt this model to the KL model that works on weighted
road networks. We start with the set of vertices and edges of a road
network, where each edge corresponds to a local connection. Then,
for each vertex, u, we add m > 1long-range edges randomly, where
the probability that there exists a long-range connection between
u and a vertex, v, is d(u,v) "% /z, where d(u, v) is the road-network
distance between u and o (in miles or kilometers), s > 0 is the
clustering exponent, and z is a normalizing factor that ensures we
have a probability distribution. See Algorithm 1, noting that we call
it for a road network, G = (V,E), and parameter, m > 1, for the
number of long-range connections to add for each vertex.

For his original model (on an n x n grid), Kleinberg [14] showed
that the optimal value for the clustering exponent s is 2, for which
the decentralized greedy routing algorithm is able to find paths of
length O(log? n) in expectation, and that for any other value of s #
2, the greedy algorithm would only be able to find a path with length
that is lower bounded by a polynomial in |V|. Following Kleinberg,
we usually select s = 2 for the weighted road-network variant,
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Algorithm 1 ConsTrRUCT-KL(V, E, 5, m)
1: E 0
2: for eachv € V do
32 P« {1/d(v,u)* |ueV,u+o}
4 Zy < Ypepp
5. Normalize P by dividing each p € P by z,
6: S « sample m vertices according to their probabilities in P
7
8:

E' — E'U{(v,w) | weS}
return G=(V,EUE’)

KL, of this model, as well as for the Neighborhood Preferential
Attachment model, and we include some experiments that show
the effect of varying this parameter for the latter model on different
road networks.

In the routing algorithm for the KL model, we use a weighted
version of the decentralized greedy algorithm, such that at each
step, the current message holder forwards its message to a directly
adjacent contact in the social network that has the smallest road-
network distance to the target vertex (which could have easily been
estimated in the 1960s using a road atlas of the United States and
which can be determined in modern times from any navigation app,
such as Google Maps, OpenStreetMap, Apple Maps, or Waze). We
denote this greedy algorithm as Weighted-Decentralized-Routing.

4 A ROAD-NETWORK PREFERENTIAL
ATTACHMENT MODEL

In this section, we give a brief description of the preferential-
attachment model; see, e.g., [1, 4, 8, 19]. This model is defined by
an algorithm to generate random graphs whose degree distribution
follows a power law. The algorithm is based on a preferential
attachment mechanism, where vertices with larger degrees are
more likely to receive new links.

The algorithm for building an instance of the preferential-
attachment model starts with a set, V, of n vertices, and an initial
clique of m+1 vertices from V.2 It then selects the remaining vertices
from V in random order, with each vertex, v, getting connected to
m existing vertices, where the probability that v connects to vertex
u is proportional to u’s degree at the time v is added. In the case of
m > 2, edges for a particular vertex are added through independent
trials, i.e., previous edges do not affect the degree counts when
choosing later edges for the same vertex. The algorithm stops when
it has constructed a graph with n vertices. Note that the number of
added edges is exactly nm. See Algorithm 2.

Although the preferential attachment model is defined as a non-
geographic model, if the vertices in the model have geographic
coordinates, such as determined in a road network, we can never-
theless apply the same distributed greedy routing algorithm as for
the KL model. Specifically, if we take the set of candidate vertices in
the preferential attachment model to be vertices in a road network
and we union the edges of the final preferential attachment model
with the edges of the road network for the corresponding vertices
(as shown in Algorithm 2), then we can construct an instance
of a preferential-attachment graph embedded in a road network.

2There are other variations for the starting “seed” graph, but the results in the limit
are similar [19].
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Algorithm 2 ConsTrUCT-BA(V, E, m)

Algorithm 3 Construct-NPA(V, E, s, m)

1: Select subset M C V of size m + 1 by sampling vertices u.a.r.
2 B — {(u,0) | u,0 € M,u # v}

3. for each v € V \ M in random order do

4 P {degy (u) |ueV,u+v} where G’ = (V,E)

5 Zo < LpepD

6:  Normalize P by dividing each p € P by z,

7: S « sample m vertices according to their probabilities in P
8¢ E' «— E'U{(v,w)]|weS}

9: return G = (V,EUE)

1: Select subset M C V of size m + 1 by sampling vertices u.a.r.
2 E' — {(u,0) | u,0 € M,u # v}

3. for each v € V \ M in random order do

4 P« {degs (u)/d(v,u)® |u€V,u+v}, where G’ = (V,E’)
5 Zo < LpepP

6:  Normalize P by dividing each p € P by z,

7: S « sample m vertices according to their probabilities in P
8 E' «— E' U{(s,w)]|weS}

9: return G = (V,EUE’)

This allows each participant to forward their message to a direct
contact (including both added edges and road-network edges) that
is closest to the target (using road-network distance). Indeed, for
our experiments, this is what we refer to as the BA model.

5 THE NEIGHBORHOOD PREFERENTIAL
ATTACHMENT MODEL

We now introduce our Neighborhood Preferential Attachment
(NPA) model. We start with the same set of local connections as for
the road-network Kleinberg model, KL, except now we distribute
long-range connections according to a combination of vertex
degrees and road-network distances between vertices. Thus, our
model combines elements of the KL and BA models. Surprisingly,
as we show below, rather than achieving a performance somewhere
between the KL and BA models, our NPA model outperforms both
the KL model and BA model.

To generate the network of long-range connections, we consider
the vertices in random order, adding new (long-range) edges, based
on degrees, distances, and an input parameter,m > 1.Let G = (V, E)
be a road network of n vertices. We begin by selecting a subset,
M C V, of m + 1 vertices from G and we add all possible edges
between them, so that every initial vertex has an initial degree
equal to m. That is, we start by forming a clique of size m + 1 of
randomly chosen vertices from V. We then repeatedly randomly
consider the remaining vertices from V, until we have considered
all the vertices from V. When we process a vertex, v, we connect
v to m other vertices, where the probability that there is an edge

between a new vertex v and another vertex u is proportional to the
deg(u)

ratio FICXNER

normalized by normalizing factor,
deg(w
2= Y ),
W#0 ’

for v, such that deg(v) is the degree of vertex v considering only
added edges and d(v, u) is road-network distance. Typically, we
choose s = 2. When m > 2, edges for a particular vertex are added
through independent trials. See Algorithm 3 and Figure 3.

Once the model-construction is finished, we add the local road-
network connections back in. Since we add m edges for each vertex
in the network, and since road networks themselves have a constant
maximum degree, the average degree for our network model is a
constant when m is a constant. We refer to this as the NPA model.

For the routing phase, we run the same decentralized greedy routing
algorithm for the NPA model as for the KL and BA models.

e N
L+*  ratio=4/122 -
B
K
R
o
i
S i
;

Figure 3: How edges are chosen in the Neighborhood
Preferential Attachment model, illustrated with the road
network of San Francisco, Berkeley, and Oakland. When
vertex v is added, the ratio for the probability for a is 2/16(=
0.125), the ratio for the probability for b is 2/144(= 0.014), the
ratio for the probability for c is 4/144(= 0.028). Thus, even
though b and c are the same distance from v, c is twice as
likely as b to be chosen, and a is 4.5 times more likely to
be chosen than c, because ¢’s degree of 4 is twice that of b
or a, but a’s squared distance is 9 times smaller than that
of b and c. (Background image is from OpenStreetMap and
is licensed under the Open Data Commons Open Database
License (ODbL) by the OpenStreetMap Foundation (OSMF).)

6 EXPERIMENTAL ANALYSIS

Intuitively, the BA model tries to capture how popularity is often
distributed according to a power law, with the “rich getting richer”
as more people are added to a group, but it completely ignores
geography in forming friendship connections. That is, in the BA
model, if there is a popular person, u, in New York and an equally
popular person, w, in Los Angeles, a newly-added person, v, in San
Diego is just as likely to form a long-range connection to u as to w.

The KL model, on the other hand, tries to capture how friendship
is correlated with geographic distance, but it completely ignores
popularity. That is, in the KL model, if there is a popular person, u, in
Hollywood and an unpopular person, w, who is also in Hollywood,
a newly-added person, v, in San Diego is just as likely to form a
long-range connection to u as to w.

In contrast to both of these extremes, as illustrated above in Fig-
ure 3, our NPA model tries to capture how friendship is correlated
with both popularity and geographic distance. That is, in the NPA
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Figure 4: Average hop lengths over 1000 runs of Weighted-Decentralized-Routing for 50 U.S. states and Washington, DC.

model, if there is a popular person, u, in New York and an equally
popular person, w, in Los Angeles, a newly-added person, v, in San
Diego is more likely to form a long-range connection to w than
to u. Furthermore, if there is a popular person, u, in Hollywood
and an unpopular person, w, who is also in Hollywood, a newly-
added person, v, in San Diego is more likely to form a long-range
connection to u than to w.

Intuition aside, however, we are interested in this paper in
determining how effective the BA, KL, and NPA models are at
greedy routing. For example, which of these models is the best
at greedy routing and can any of them achieve the six-degrees-
of-separation phenomenon shown in the original small-world
experiments [18, 22]?

6.1 Experimental Framework

To answer the above question, we implemented the BA, KL and NPA
models in C++ (using an open-source routing library [7] to find
shortest paths), randomly sampled 1000 source/target pairs, then
ran Weighted-Decentralized-Routing on each pair and measured

the average hop length. The datasets we used are road networks for
50 U.S. states and Washington, D.C., obtained from the formatted
TIGER/Line dataset available from the 9th DIMACS Implementation
Challenge website.? For each road network, only the largest con-
nected component was considered. The sizes of the road networks
we used range from 9,522 to 2,037,156 vertices. As a preprocessing
step, we normalized edge weights so that the smallest edge weight
is 1.

6.2 Hop Counts with Few Long-Range Links

The first set of experiments that we performed was to test the
effectiveness of each of the three models on each road-network data
set assuming that we add only a small number of long-range links.
In particular, we tested each model for the cases when m = 1,2, 3, 4.
We show the results of these experiments in Figure 4, which show
that the NPA model outperforms both the KL and BA models for
each of these small values for m. For example, even for m = 1, the

Shttp://www.diag.uniromal.it/~challenge9/data/tiger/
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number of hops for the NPA model tends to be half the numbers for
the BA and KL models. Once m > 2, the KL model shows improved
performance over the BA model, with the KL model achieving
degrees-of-separation values that are roughly half those for the BA
model. Nevertheless, for m > 2, the NPA model still beats the KL
model, with hop-counts that are between a third and a half better
than the KL model. Further, as would be expected, all the models
tend to do better as we increase the value of m. For example, when
m = 1, the NPA model achieves a degrees-of-separation value of
between 40 and 60, whereas when we increase m to just 4, the NPA
model achieves a degrees-of-separation value of between 10 and
20. Admittedly, this still isn’t 6, but it is getting closer, and it shows
what can be achieved with just a few added long-range links.

6.3 Dropouts

There is another aspect of the original small-world experiments,
which (like most prior research on the small-world phenomenon)
we have heretofore ignored. Namely, as participants perform greedy
routing in the real world there is a probably that someone will
simply drop out of the experiment and not forward the package
to anyone. For example, in one of the original small-world experi-
ments [22], Travers and Milgram observed a dropout probability
of roughly p = 0.2 at each step in a routing operation. That is, in
the original small-world experiment, it was observed that some
amount of messages never ended up reaching the target person,
e.g., due to recipients refusing to participate or not having anyone
to forward the message to. The longer a source-to-target path gets,
the more likely it is that at least one person will drop the message,
so we expect that the average path length would decrease as the
probability of dropping messages increases. To see whether this
could have contributed to the small average hop length observed in
the original small-world experiment, we ran a variant of Weighted-
Decentralized-Routing on the KL and NPA models, such that each
message holder has a fixed probability p of dropping the message.
Our results can be seen in Figure 5, for m = 4. As expected, these
experiments show that the average hop counts for successful paths
decrease as we increase the dropout probability, p, but we still are
not quite achieving six degrees of separation for these values.

6.4 Six Degrees of Separation

We can, in fact, achieve six degrees of separation in the NPA model,
just by slightly increasing the value of m. In particular, we provide
experimental results in Figure 6 for the NPA model with m = 30
with different dropout probabilities. As this result shows, even with
p = 0 (no dropouts), we can achieve 7 degrees of separation for
modestly sized road networks (and 8 degrees of separation for the
three largest road networks). With p = 0.2, for the majority of road
networks, we get average hop counts that match the findings in the
original small-world experiments, where the average hop length
was found to be 6. For the largest road networks, we get average
hop counts that are between 6 and 7.

Intuitively, setting m = 30 is equivalent to assuming that people
participating in a small-world experiment would consult their
address books when deciding who to send a package to next and
that the average number of entries in each address book is 30, which
we feel is a reasonable assumption.
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Figure 5: Effect of varying the probability p of dropping the
message at each step during Weighted-Decentralized-Routing
for the KL and NPA models, with m = 4.
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Figure 6: Average hop length of the NPA model with m = 30
for different dropout probabilities.

7 DIVING DEEPER

We are actually interested in more than just showing that the NPA
model can achive six degrees of separation and thereby match
the performance of the original small-world experiments. In this
section, we take a deeper dive into the models we introduce in this
paper, with an eye towards trying to better understand what is
going on during the greedy routing done in each model.
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Figure 7: Degree distributions of the three main models with m = 4 on road networks of different sizes.

7.1 Degree Distributions

Comparing the degree distributions of the three models, which
are shown in Figure 7, we see that the KL model has a light-tailed
distribution, whereas our model seems to be scale-free, similar to
the BA model. These results indicate that the NPA model, similar
to the KL model, is able to utilize local clustering when finding
long-range contacts, while still having the scale-free property.

7.2 How Distances to the Target Decrease

As shown above, we observe that the NPA model outperforms
both of the KL and BA models in terms of the average hop length.
We also see that the KL model performs significantly better than
Kleinberg’s theoretical upper bound [14] on the grid, which was
clog? n for ¢ > 88. Still, Kleinberg’s theoretical analysis was based
on an interesting proof technique that was inspired from Milgram’s
figure showing how distances to the target tend to halve with each
hop, as shown above in Figure 1. At a high level, Kleinberg’s proof
for his O(log? n) bound is based on finding that the probability that
the distance from the current vertex to the target is halved at any
step is ©(1/log n); hence, this is a constant after ©(log n) hops, and
we can reach the target by repeating this argument O(log n) times.

We provide experimental results in Figure 8 showing how the
remaining distance to the target changes for the NPA model over

multiple runs of Weighted-Decentralized-Routing. We see that for
most runs, the distance typically gets halved every few steps, as
Milgram observed.
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Figure 8: Remaining distance to target, denoted as d, during 10
runs of Weighted-Decentralized-Routing on two road networks,
with m = 4. Each line corresponds to a separate run of
Weighted-Decentralized-Routing, with the markers on each line
corresponding to the remaining distance at a particular
step. The last data point for each run corresponds to the
penultimate step, i.e. when the message holder is one hop
away from the target.
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7.3 Varying the Clustering Coefficient

In Figure 9, we see how varying the clustering coefficient affects
the average hop length in the NPA model for the HI and CA road
networks. Though s = 2 is not the best-performing clustering
exponent for either road network in our experiments, the results
indicate that the best-performing clustering exponent seems to
move towards 2 when the input size gets larger, which suggests
that the asymptotically optimal clustering exponent could still
be 2. A similar effect could be observed in Kleinberg’s original
model as well, since the lower bounds that are proved for s # 2
are Q(n(z_s)/3) for s < 2 and Q(ns=2/6=D) for s > 2, both of
which require input sizes that are orders of magnitude larger than
real-world road networks to be able to experimentally observe the
optimality of s = 2.
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Figure 9: Effect of varying the clustering coefficient on the
average hop length in the NPA model for the road networks
of Hawaii (|[V| = 21774) and California (|V| = 1595577), for
m=1.

7.4 Capping the Maximum Degree

We considered another variation of the NPA model, where we cap
the maximum degree such that only vertices of degree less than
c are considered when choosing long-range contacts. We call this
the NPA-cap model. We choose ¢ = logn and ¢ = 150 as possible
maximum degree caps. Intuitively, the cap on the maximum degree
is like a cap on the size of someone’s address book during a small-
world experiment. We provide experimental results comparing the
models KL, NPA, and NPA-cap (for ¢ = logn and ¢ = 150), with
m = 4, in Figure 10.

In Figure 11, we compare the models NPA and NPA-cap (for
¢ = 150), when there is a dropout probability of p = 0.2, with
m = 30.

7.5 Routing Across Multiple States

The experiments we have performed so far have been limited to the
road networks of individual states. However, Milgram’s small-world
experiments were performed across multiple states. For this reason,
we also performed experiments on the combined road networks
of Virginia, Washington, D.C., Maryland, Delaware, New Jersey,
New York, Connecticut, and Massachusetts. For m = 30, we found
that the average hop length was =~ 8.06, and when we introduced a
dropout probability of p = 0.2, the average hop length was ~ 7.15.
In Figure 12, we provide the resulting degree distribution of this
road network when the NPA model with a dropout of p = 0.2 was
used.
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Figure 11: Comparing the average hop lengths of the NPA
and NPA-cap (150) models with a dropout probability of 0.2
and m = 30.
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work, using the NPA model with a dropout probability of 0.2
and m = 30.
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7.6 Key Participants

We also considered the importance of key participants in perform-
ing greedy routing, as shown in Figure 2, which motivated the NPA
model in the first place.

Having a long-tailed degree distribution could be benefiting
the routing phase, as we know that having more links per vertex
improves the asymptotic bound of Kleinberg’s model.

In Figure 13, we compare the degree distribution of vertices that
were used during the routing phase with the degree distribution
of the whole network for both the NPA and BA models. We can
see that for the NPA model, high-degree vertices are being better
utilized during an instance of the routing algorithm compared to
the BA model.

o Allvertices
BA O Vertices on paths NPA

P(degree)

degree

Figure 13: Degree distributions in the Washington road
network for vertices in the whole network, and vertices
visited during the routing phase, using the BA and NPA
models with m = 4.

8 CONCLUSION

We introduced a new small world model, the Neighborhood Pref-
erential Attachment model, which combines elements of both
Kleinberg’s model and the Barabasi-Albert model, and experimen-
tally outperforms both models in terms of the average hop length.
Importantly, our model is built using real-world distances from
nodes in a road network rather than vertices in a square grid or
random points on a sphere.

8.1 Future Work

For future work, given our experimental results, it would be
interesting to perform a mathematical analysis of our model, e.g.,
to see whether our model has an asymptotic bound on the expected
hop length that is 0 (log? n). Another interesting question is whether
the power law exponent of the degree distribution differs from the
Barabasi-Albert model in the limit of the size of the network, or
what the diameter of graphs generated by our model is. Yet another
interesting problem is whether Kleinberg’s lower bounds for the
standard model when the clustering coefficient is # 2 still holds for
our model.
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