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ABSTRACT

Dating back to two famous experiments by the social-psychologist,

Stanley Milgram, in the 1960s, the small-world phenomenon is

the idea that all people are connected through a short chain of

acquaintances that can be used to route messages. Many subsequent

papers have attempted to model this phenomenon, with most

concentrating on the “short chain” of acquantances rather than

their ability to efficiently route messages. For example, a well-

known preferential attachment model by Barabási and Albert

provides a mathematical explanation of how a social network can

have small diameter—hence, short chains between participants—

but this model doesn’t explain how they can route messages. A

notable exception is a well-known model by Jon Kleinberg, which

shows that it is possible for participants in a 𝑛 × 𝑛 grid to route

a message in 𝑂 (log2 𝑛) hops by augmenting the grid with a small

number of long-range random links and using a simple greedy

routing strategy. Although Kleinberg’s model is intriguing, it does

not take into account the road network of the United States used in

the original Milgram experiments and its𝑂 (log2 𝑛) number of hops

for messages is actually quite far from the average of six hops for

successful messages observed byMilgram in his experiments, which

gave rise to the “six-degrees-of-separation” expression. In this paper,

we study the small-world navigability of the U.S. road network, with

the goal of providing a model that explains how messages in the

original small-world experiments could be routed along short paths

using U.S. roads. To this end, we introduce the Neighborhood

Preferential Attachment model, which combines elements from

Kleinberg’s model and the Barabási-Albert model, such that long-

range links are chosen according to both the degrees and (road-

network) distances of vertices in the network. We empirically eval-

uate all three models by running a decentralized routing algorithm,

where each vertex only has knowledge of its own neighbors, and

find that our model outperforms both of these models in terms of

the average hop length. Moreover, our experiments indicate that

similar to the Barabási-Albert model, networks generated by our

model are scale-free, which could be a more realistic representation

of acquaintanceship links in the original small-world experiment.
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1 INTRODUCTION

The small-world phenomenon is the idea that all people are

connected through a short chain of acquaintances that can be

used to route messages. This phenomenon was popularized by the

social-psychologist, Stanley Milgram, based on two experiments

performed in the 1960s [18, 22], where a randomly-chosen group of

people were given packages to send to someone in Massachusetts.

Each participant was told that they should mail their package

only to its target person if they knew them on a first-name basis;

otherwise, they should mail their package to someone they knew

who is more likely to know the target person. Remarkably, many

packages made it to the target people, with the median number of

hops being 6, which gave rise to the expression that everyone is

separated by just “six degrees of separation” [12].

Subsequent to this pioneering research, many papers have been

written on the small-world phenomenon, e.g., see [9], with a number

of models having been proposed to explain it. Nevertheless, based

on our review of the literature, the models proposed so far do

not fully explain observations made by Milgram regarding his

experiments [18, 22]. For example, Milgram observed that message

routing occurred in a geographic setting with distances (measured

in miles, presumably in the road network of the United States)

roughly halving with each hop; see Figure 1.

Figure 1: Illustration of geographic data from an original

small-world experiment, from [18].
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In spite of the geographic nature of the early small-world exper-

iments,1 we are not familiar with any previous work that models

the small-world phenomenon with road networks. Thus, we are

interested in this paper in modeling the small-world phenomenon

with road networks. For example, one of the surprising results in

the original small-world experiments was that people were able

to find very short paths among acquaintances with only a limited

knowledge of the social network of acquaintances. This suggests

that a model should explain how people can find short paths in

a social network using a decentralized greedy algorithm, where

individuals, who only have knowledge of their direct acquaintances,

attempt to send a message towards a target along some path.

1.1 Related Prior Work

Arguably, the closest prior work on a model directed at explaining

how small-world (social-network) greedy routing can work in a geo-

graphic setting is a well-knownmodel by Jon Kleinberg [14]. Rather

than using a road network, however, Kleinberg’s model is built on

a two dimensional 𝑛 ×𝑛 grid, where each grid point corresponds to

a single person, with two types of connections—local connections

and long-range connections. The local connections of the network

are made by connecting each grid point to every other grid point

within lattice distance 𝑝 ≥ 1. The long-range connections are made

by connecting each grid point to 𝑞 ≥ 0 other grid points chosen

randomly (typically with 𝑞 = 1 or 𝑞 being a small constant), such

that the probability that grid point 𝑢 is connected to grid point 𝑣 is
proportional to [𝑑ℎ (𝑢, 𝑣)]

−𝑠 , where 𝑑ℎ (𝑢, 𝑣) is the lattice distance
between 𝑢 and 𝑣 , and 𝑠 is the clustering exponent of the network.

Kleinberg showed that in an 𝑛 × 𝑛 grid, a decentralized greedy

algorithm, where each message holder forwards its message to

an acquaintance that is closest to the target grid point, is able to

achieve an expected path length of 𝑂 (log2 𝑛) for 𝑝 = 𝑞 = 1 and

𝑠 = 2, with a constant of at least 88 in the leading term in his Big-O

analysis [14].

When attempting to model the original small-world experiments,

however, there are a number of drawbackswith the Kleinbergmodel.

First, it requires that the underlying distances are in the form of

a grid, which is not compatible with how messages were sent in

the original small-world experiments, where messages were sent

using the U.S. road network. Second, the upper bound 𝑂 (log2 𝑛),
with a hidden constant that is at least 88, for the expected number

of hops between vertices does not match the average hop length of

six obtained in the original small-world experiments. For example,

if 𝑛 = 9,000, then 88 log2 𝑛 is approximately 15,000. Finally, as we

show in Section 6, when acquaintanceship links are viewed as

bidirectional, the maximum degree in the resulting network for the

Kleinberg model is quite small. Having a degree distribution with a

heavier tail might be more realistic for a social network. Moreover,

these high-degree vertices might improve the performance of the

model during the routing step. Indeed, Milgram noted that in one

of his experiments half of the successfully delivered packages were

routed through three “key” individuals; see Figure 2.

1The first experiment involved a group of people in Wichita, Kanasas who were asked
to send a package to the wife of a divinity student in Cambridge, and the second
experiment involved a group of people in Omaha, Nebraska (plus a small number of
folks in Boston) who were asked to send a package to a stock broker who worked in
Boston and lived in Sharon, Mass [18].

Figure 2: Final hops for the paths of delivered packages for

people in an original small-world experiment, from [18].

Roughly half of the paths were routed through three “key”

individuals, Jacobs, Jones, and Brown.

Another well-known social-network model is the preferential

attachment model, which is a random graph model for non-

geographic social networks, such as the World Wide Web. This

model traces its roots back roughly 100 years, e.g., see [6, 20, 24],

and was popularized and formalized by Barabási and Albert [1],

who also coined the term scale-free, which describes networks

where the fraction of vertices with degree 𝑑 follows a power law,

𝑑−𝛼 , where 𝛼 > 1. A graph in the preferential attachment model

is constructed incrementally, starting from a constant-sized “seed”

graph, adding vertices one-at-a-time, such that when a vertex, 𝑣 ,
is added one adds a fixed number,𝑚, of edges incident to 𝑣 , where
each other neighbor is chosen with probability proportional to its

degree at that time, e.g., see [3]. This is often called a “rich-get-

richer” process, and a rigorous analysis on the degree distribution

and diameter of this model was studied by Bollabas and Riordan [4].

Further, Dommers, Hofstad and Hooghiemstra [8] investigated

the diameters of several variations of the preferential attachment

model, proving that, for each variant, when the power law exponent

exceeds 3, the diameter is Ω(log𝑛), and when the power law

exponent is in (2, 3), the diameter is Ω(log log𝑛).
To our knowledge, there does not exist any prior work combining

a preferential attachment model with Kleinberg’s model. In terms

of the most relevant prior work, Flaxman, Frieze, and Vera [10]

introduce a random graph model that combines preferential attach-

ment graphs with geometric random graphs, with points created

randomly on a unit sphere one-at-a-time, such that for each added

vertex,𝑚 neighbors that are within a fixed distance, 𝑟 , of that vertex
are chosen with probability proportional to their degrees. Flaxman,

Friex, and Vera show that with high probability the vertex degrees

in this model follow a power law assuming 𝑟 is sufficiently large,

and they prove that the diameter of this graph model is 𝑂 (ln𝑛/𝑟 )
w.h.p., but they do not study its ability to support efficient greedy

routing. Indeed, when 𝑟 ≥ 𝜋/2, this model is just the preferential

attachment model.
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1.2 Additional Prior Work

Ever since being popularized by Milgram’s experiments and the

subsequent work by other researchers on complex networks, the

small-world phenomenon has found applications in a wide array

of research fields, including rumor spreading, epidemics, electronic

circuits, wireless networks, the World Wide Web, network neuro-

science, and biological networks. For an overview of the small-world

phenomenon and its applications, the reader can refer to [23].

Incidentally, and not surprisingly, there has been a significant

amount of additional prior work that analyzes the small-world

phenomenon on different types of social network models, e.g.,

see [15, 16, 21]). Liben-Nowell, Novak, Kumar, Raghavan, and

Tomkins [16] introduce a geographic social network model, which

uses rank-based friendships, where the probability of assigning

long-range connections from any person 𝑢 to person 𝑣 is inversely
proportional to the number of people in the network who are

geographically closer to 𝑢 than 𝑣 . The social network is modeled

based on a 2D grid representation of the surface of earth, where each

grid point has a positive population value, and has local connections

to its immediate neighbors on the grid. Each grid point is then

connected to a fifth neighbor based on their rank. Liben-Nowell et

al. prove an upper bound of 𝑂 (log3 𝑛) for the expected hop length

of paths formed by this model, which, of course, is worse than the

expected 𝑂 (log2 𝑛) hop lengths in Kleinberg’s model.

Kleinberg’s model and its extensions have also been studied

extensively. Martel and Nguyen [17] proved the expected diameter

of the resulting graph is Ω(log𝑛), but that a greedy routing strategy
cannot find such short paths, as they show that Kleinberg’s𝑂 (log2)

analysis for greedy routing is tight. They extend Kleinberg’s model

by assuming each vertex has some additional (unrealistic) knowl-

edge of the network. For example, they show that when each

node 𝑢 knows the long-range contacts of the log𝑛 nodes closest

to 𝑢 in the grid, the expected number of hops is 𝑂 (log3/2 𝑛).
Fraigniaud, Gavoille and Paul [11] provide a similar extension, and

they prove a bound of 𝑂 (log1+1/𝑑 𝑛)) expected hops in the general

𝑑−dimensional mesh, and show that this bound is tight for a variety

of greedy algorithms, including those that have global knowledge

of the network.

1.3 Our Contributions

In this paper, we study the small-world phenomenon with road

networks, which is motivated by the fact that, as mentioned

above, the network of connections in the original small-world

experiments were as much geographic as they were social [18,

22]. We introduce a new small-world model, which we call the

Neighborhood Preferential Attachment model, which blends

elements from the preferential attachment model of Barabási and

Albert [1] and Kleinberg’s model [14], but with underlying distances

defined by a road network rather than a square grid.

In a nutshell, our model generates a random social network

starting from a road network. We add the vertices to our model

one-at-a-time at random from the vertices of the underlying road

network (whose vertices stand in as the participants in our social

network). When we add a new vertex, 𝑣 , to our model, we create a

fixed contant number,𝑚 ≥ 1, of additional edges from 𝑣 to existing

vertices, with each other neighbor, 𝑤 , chosen with a probability

proportional to the ratio of the current degree of𝑤 (counting just

the added edges) and 𝑑 (𝑣,𝑤)2, where 𝑑 (𝑣,𝑤) is the distance from 𝑣
to𝑤 in the road network.

By using the constant, 𝑚, as parameter, we guarantee that

the average degree in the network is a constant, which matches

another observation made by Milgram for his experiments [18].

Interestingly, researchers have observed that an upper bound of

𝑂 (log𝑛) on the expected hop length in Kleinberg’s model can be

achieved by having an unrealistic𝑂 (log𝑛) outgoing links for every
vertex instead of a small constant, e.g., see [17]. Thus, our model

tests whether short paths can be found using greedy routing in a

social networkwith constant average degree, but with a few vertices

having degrees higher than this, as was the case for the few “key”

individuals, Jacobs, Jones, and Brown, in an original small-world

experiment [18].

One of the main goals in our design of the Neighborhood

Preferential Attachment model is to introduce a model that brings

the average hop length for greedy routing closer to the six degrees-

of-separation found in the original small-world experiments, while

keeping the average degree of the network bounded by a con-

stant. To test this, we experimentally evaluate instances of our

model using road networks for various U.S. states. We empirically

compare the performance of greedy routing in our model to

the performance for a variant of Kleinberg’s model, where links

are chosen with probability proportional to the inverse squared

road-network distances of vertices (rather than a grid), as well

as with the well-known Barabási-Albert preferential-attachment

model. Interestingly, our experiments show that the Neighborhood

Preferential Attachment model outperforms both the Barabási-

Albert preferential-attachment model and the road-network variant

of Kleinberg’s model. Moreover, our experimental results show

that our model has a scale-free degree distribution, which is

arguably a better representation of real-world social networks

than Kleinberg’s model while also being geographic, unlike the

preferential-attachment model of Barabási and Albert.

2 PRELIMINARIES

We view road networks as undirected, weighted, and connected

graphs, where each vertex corresponds to a road junction or

terminus, and each edge corresponds to road segments that connect

two vertices. In our social networkmodel, each junction or terminus

in a road network represents a single person, and each road segment

represents a social connection between two people, which we

consider to be the local connections of the network. Intuitively,

our social network model can be seen as a mapping of each person

in the population to the road network vertex that is geographically

closest to their address. Likewise, an edge (𝑢, 𝑣) in the road network

represents the existence of social connections between people

who were mapped to vertices 𝑢 and 𝑣 . This is admittedly an

approximation for a population distribution, but we feel it is

reasonable for most geographic regions, since population density

correlates with road-network density, e.g., see [2, 5, 13]. Certainly,

it is is more realistic than modeling population density using a

uniform 𝑛 × 𝑛 grid, as in Kleinberg’s model [14].

The distance between two vertices 𝑢, 𝑣 ∈ 𝑉 is denoted as 𝑑 (𝑢, 𝑣)
and is the total weight of the shortest path between 𝑢 and 𝑣 in the
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underlying road network. The hop distance between two vertices

is denoted as 𝑑ℎ (𝑢, 𝑣) and is the minimum number of hops required

to reach 𝑣 from 𝑢, without considering edge weights and including

both road-network edges and additional edges added during model

formation. In all of the social network models we mention in

this paper, we assume all edges are undirected for the sake of

distance computations, which reflects the notion that friendships

are bidirectional.

We define deg𝐺 (𝑣) to be the degree of 𝑣 in a graph, 𝐺 = (𝑉 , 𝐸),
that is, the number of 𝑣 ’s adjacent vertices in 𝐺 . If 𝐺 is understood

from context, then we may drop the subscript.

3 THE ROAD-NETWORK KLEINBERG MODEL

In this section, we introduce a variant of Kleinberg’s small-world

model adapted so that it works with weighted road networks rather

than 𝑛×𝑛 grids. We denote this model throughout this paper as the

KL model. Interestingly, as we show in our empirical analysis,

although this model is not as effective for performing greedy

routing as our Neighborhood Preferential Attachment model, it

nevertheless is much more efficient in practice than the theoretical

analysis of Kleinberg [14] that is based on using 𝑛 × 𝑛 grids would

predict.

As mentioned above, Kleinberg’s network model begins by

defining a set of vertices as the lattice points in an 𝑛 × 𝑛 grid,

i.e., {(𝑖, 𝑗) | 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑗 ∈ {1, 2, . . . 𝑛}}, so that the distance

between any two vertices 𝑢 = (𝑖, 𝑗) and 𝑣 = (𝑘, 𝑙) is the Manhattan

distance,𝑑 (𝑢, 𝑣) = |𝑘−𝑖 |+ |𝑙− 𝑗 |. Each vertex,𝑢, has an edge to every
vertex within distance 𝑝 ≥ 1, called the local contacts (typically,

we just take 𝑝 = 1, so these are just grid-neighbor connections), and

each vertex has edges to𝑚 ≥ 1 other vertices selected at random,

called the long-range contacts, such that the probability that there

exists an edge from 𝑢 to 𝑣 is 𝑑 (𝑢, 𝑣)−𝑠/𝑧, where 𝑠 ≥ 0 is called the

clustering exponent and 𝑧 is a normalizing factor that ensures

we have a probability distribution. Then, a decentralized greedy

algorithm is used to route messages between a source and target

vertex as follows: at each step, the current message holder forwards

its message to a contact that has the smallest Manhattan distance

to the target vertex.

We now adapt thismodel to the KLmodel that works onweighted

road networks. We start with the set of vertices and edges of a road

network, where each edge corresponds to a local connection. Then,

for each vertex,𝑢, we add𝑚 ≥ 1 long-range edges randomly, where

the probability that there exists a long-range connection between

𝑢 and a vertex, 𝑣 , is 𝑑 (𝑢, 𝑣)−𝑠/𝑧, where 𝑑 (𝑢, 𝑣) is the road-network
distance between 𝑢 and 𝑣 (in miles or kilometers), 𝑠 ≥ 0 is the

clustering exponent, and 𝑧 is a normalizing factor that ensures we

have a probability distribution. See Algorithm 1, noting that we call

it for a road network, 𝐺 = (𝑉 , 𝐸), and parameter,𝑚 ≥ 1, for the

number of long-range connections to add for each vertex.

For his original model (on an 𝑛 × 𝑛 grid), Kleinberg [14] showed

that the optimal value for the clustering exponent 𝑠 is 2, for which
the decentralized greedy routing algorithm is able to find paths of

length𝑂 (log2 𝑛) in expectation, and that for any other value of 𝑠 ≠
2, the greedy algorithmwould only be able to find a path with length

that is lower bounded by a polynomial in |𝑉 |. Following Kleinberg,

we usually select 𝑠 = 2 for the weighted road-network variant,

Algorithm 1 Construct-KL(𝑉 , 𝐸, 𝑠,𝑚)

1: 𝐸 ′ ← ∅

2: for each 𝑣 ∈ 𝑉 do

3: 𝑃 ← {1/𝑑 (𝑣,𝑢)𝑠 | 𝑢 ∈ 𝑉 ,𝑢 ≠ 𝑣}
4: 𝑧𝑣 ←

∑
𝑝∈𝑃 𝑝

5: Normalize 𝑃 by dividing each 𝑝 ∈ 𝑃 by 𝑧𝑣
6: 𝑆 ← sample𝑚 vertices according to their probabilities in 𝑃
7: 𝐸 ′ ← 𝐸 ′ ∪ {(𝑣,𝑤) | 𝑤 ∈ 𝑆}
8: return 𝐺 = (𝑉 , 𝐸 ∪ 𝐸 ′)

KL, of this model, as well as for the Neighborhood Preferential

Attachment model, and we include some experiments that show

the effect of varying this parameter for the latter model on different

road networks.

In the routing algorithm for the KL model, we use a weighted

version of the decentralized greedy algorithm, such that at each

step, the current message holder forwards its message to a directly

adjacent contact in the social network that has the smallest road-

network distance to the target vertex (which could have easily been

estimated in the 1960s using a road atlas of the United States and

which can be determined in modern times from any navigation app,

such as Google Maps, OpenStreetMap, Apple Maps, or Waze). We

denote this greedy algorithm as Weighted-Decentralized-Routing.

4 A ROAD-NETWORK PREFERENTIAL
ATTACHMENT MODEL

In this section, we give a brief description of the preferential-

attachment model; see, e.g., [1, 4, 8, 19]. This model is defined by

an algorithm to generate random graphs whose degree distribution

follows a power law. The algorithm is based on a preferential

attachment mechanism, where vertices with larger degrees are

more likely to receive new links.

The algorithm for building an instance of the preferential-

attachment model starts with a set, 𝑉 , of 𝑛 vertices, and an initial

clique of𝑚+1 vertices from𝑉 .2 It then selects the remaining vertices

from 𝑉 in random order, with each vertex, 𝑣 , getting connected to

𝑚 existing vertices, where the probability that 𝑣 connects to vertex

𝑢 is proportional to 𝑢’s degree at the time 𝑣 is added. In the case of

𝑚 ≥ 2, edges for a particular vertex are added through independent

trials, i.e., previous edges do not affect the degree counts when

choosing later edges for the same vertex. The algorithm stops when

it has constructed a graph with 𝑛 vertices. Note that the number of

added edges is exactly 𝑛𝑚. See Algorithm 2.

Although the preferential attachment model is defined as a non-

geographic model, if the vertices in the model have geographic

coordinates, such as determined in a road network, we can never-

theless apply the same distributed greedy routing algorithm as for

the KL model. Specifically, if we take the set of candidate vertices in

the preferential attachment model to be vertices in a road network

and we union the edges of the final preferential attachment model

with the edges of the road network for the corresponding vertices

(as shown in Algorithm 2), then we can construct an instance

of a preferential-attachment graph embedded in a road network.

2There are other variations for the starting “seed” graph, but the results in the limit
are similar [19].
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Algorithm 2 Construct-BA(𝑉 , 𝐸,𝑚)

1: Select subset𝑀 ⊆ 𝑉 of size𝑚 + 1 by sampling vertices u.a.r.

2: 𝐸 ′ ← {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑀,𝑢 ≠ 𝑣}
3: for each 𝑣 ∈ 𝑉 \𝑀 in random order do

4: 𝑃 ← {deg𝐺′ (𝑢) | 𝑢 ∈ 𝑉 ,𝑢 ≠ 𝑣}, where 𝐺 ′ = (𝑉 , 𝐸 ′)
5: 𝑧𝑣 ←

∑
𝑝∈𝑃 𝑝

6: Normalize 𝑃 by dividing each 𝑝 ∈ 𝑃 by 𝑧𝑣
7: 𝑆 ← sample𝑚 vertices according to their probabilities in 𝑃
8: 𝐸 ′ ← 𝐸 ′ ∪ {(𝑣,𝑤) | 𝑤 ∈ 𝑆}
9: return 𝐺 = (𝑉 , 𝐸 ∪ 𝐸 ′)

This allows each participant to forward their message to a direct

contact (including both added edges and road-network edges) that

is closest to the target (using road-network distance). Indeed, for

our experiments, this is what we refer to as the BA model.

5 THE NEIGHBORHOOD PREFERENTIAL
ATTACHMENT MODEL

We now introduce our Neighborhood Preferential Attachment

(NPA) model. We start with the same set of local connections as for

the road-network Kleinberg model, KL, except now we distribute

long-range connections according to a combination of vertex

degrees and road-network distances between vertices. Thus, our

model combines elements of the KL and BA models. Surprisingly,

as we show below, rather than achieving a performance somewhere

between the KL and BA models, our NPA model outperforms both

the KL model and BA model.

To generate the network of long-range connections, we consider

the vertices in random order, adding new (long-range) edges, based

on degrees, distances, and an input parameter,𝑚 ≥ 1. Let𝐺 = (𝑉 , 𝐸)
be a road network of 𝑛 vertices. We begin by selecting a subset,

𝑀 ⊆ 𝑉 , of 𝑚 + 1 vertices from 𝐺 and we add all possible edges

between them, so that every initial vertex has an initial degree

equal to𝑚. That is, we start by forming a clique of size𝑚 + 1 of

randomly chosen vertices from 𝑉 . We then repeatedly randomly

consider the remaining vertices from 𝑉 , until we have considered
all the vertices from 𝑉 . When we process a vertex, 𝑣 , we connect
𝑣 to𝑚 other vertices, where the probability that there is an edge

between a new vertex 𝑣 and another vertex 𝑢 is proportional to the

ratio
deg(𝑢)
𝑑 (𝑣,𝑢)𝑠 , normalized by normalizing factor,

𝑧𝑣 =
∑

𝑤≠𝑣

deg(𝑤)

𝑑 (𝑣,𝑤)𝑠
,

for 𝑣 , such that deg(𝑣) is the degree of vertex 𝑣 considering only

added edges and 𝑑 (𝑣,𝑢) is road-network distance. Typically, we

choose 𝑠 = 2. When𝑚 ≥ 2, edges for a particular vertex are added

through independent trials. See Algorithm 3 and Figure 3.

Once the model-construction is finished, we add the local road-

network connections back in. Since we add𝑚 edges for each vertex

in the network, and since road networks themselves have a constant

maximum degree, the average degree for our network model is a

constant when𝑚 is a constant. We refer to this as the NPA model.

For the routing phase, we run the same decentralized greedy routing

algorithm for the NPA model as for the KL and BA models.

Algorithm 3 Construct-NPA(𝑉 , 𝐸, 𝑠,𝑚)

1: Select subset𝑀 ⊆ 𝑉 of size𝑚 + 1 by sampling vertices u.a.r.

2: 𝐸 ′ ← {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑀,𝑢 ≠ 𝑣}
3: for each 𝑣 ∈ 𝑉 \𝑀 in random order do

4: 𝑃 ← {deg𝐺′ (𝑢)/𝑑 (𝑣,𝑢)𝑠 | 𝑢 ∈ 𝑉 ,𝑢 ≠ 𝑣}, where 𝐺 ′ = (𝑉 , 𝐸 ′)
5: 𝑧𝑣 ←

∑
𝑝∈𝑃 𝑝

6: Normalize 𝑃 by dividing each 𝑝 ∈ 𝑃 by 𝑧𝑣
7: 𝑆 ← sample𝑚 vertices according to their probabilities in 𝑃
8: 𝐸 ′ ← 𝐸 ′ ∪ {(𝑣,𝑤) | 𝑤 ∈ 𝑆}
9: return 𝐺 = (𝑉 , 𝐸 ∪ 𝐸 ′)

Figure 3: How edges are chosen in the Neighborhood

Preferential Attachment model, illustrated with the road

network of San Francisco, Berkeley, and Oakland. When

vertex 𝑣 is added, the ratio for the probability for 𝑎 is 2/16(=
0.125), the ratio for the probability for 𝑏 is 2/144(= 0.014), the
ratio for the probability for 𝑐 is 4/144(= 0.028). Thus, even
though 𝑏 and 𝑐 are the same distance from 𝑣 , 𝑐 is twice as

likely as 𝑏 to be chosen, and 𝑎 is 4.5 times more likely to

be chosen than 𝑐, because 𝑐’s degree of 4 is twice that of 𝑏
or 𝑎, but 𝑎’s squared distance is 9 times smaller than that

of 𝑏 and 𝑐. (Background image is from OpenStreetMap and

is licensed under the Open Data Commons Open Database

License (ODbL) by the OpenStreetMap Foundation (OSMF).)

6 EXPERIMENTAL ANALYSIS

Intuitively, the BA model tries to capture how popularity is often

distributed according to a power law, with the “rich getting richer”

as more people are added to a group, but it completely ignores

geography in forming friendship connections. That is, in the BA

model, if there is a popular person, 𝑢, in New York and an equally

popular person,𝑤 , in Los Angeles, a newly-added person, 𝑣 , in San

Diego is just as likely to form a long-range connection to 𝑢 as to𝑤 .

The KL model, on the other hand, tries to capture how friendship

is correlated with geographic distance, but it completely ignores

popularity. That is, in the KLmodel, if there is a popular person,𝑢, in
Hollywood and an unpopular person,𝑤 , who is also in Hollywood,

a newly-added person, 𝑣 , in San Diego is just as likely to form a

long-range connection to 𝑢 as to𝑤 .

In contrast to both of these extremes, as illustrated above in Fig-

ure 3, our NPA model tries to capture how friendship is correlated

with both popularity and geographic distance. That is, in the NPA
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Figure 4: Average hop lengths over 1000 runs of Weighted-Decentralized-Routing for 50 U.S. states and Washington, DC.

model, if there is a popular person, 𝑢, in New York and an equally

popular person,𝑤 , in Los Angeles, a newly-added person, 𝑣 , in San

Diego is more likely to form a long-range connection to 𝑤 than

to 𝑢. Furthermore, if there is a popular person, 𝑢, in Hollywood

and an unpopular person, 𝑤 , who is also in Hollywood, a newly-

added person, 𝑣 , in San Diego is more likely to form a long-range

connection to 𝑢 than to𝑤 .

Intuition aside, however, we are interested in this paper in

determining how effective the BA, KL, and NPA models are at

greedy routing. For example, which of these models is the best

at greedy routing and can any of them achieve the six-degrees-

of-separation phenomenon shown in the original small-world

experiments [18, 22]?

6.1 Experimental Framework

To answer the above question, we implemented the BA, KL and NPA

models in C++ (using an open-source routing library [7] to find

shortest paths), randomly sampled 1000 source/target pairs, then

ran Weighted-Decentralized-Routing on each pair and measured

the average hop length. The datasets we used are road networks for

50 U.S. states and Washington, D.C., obtained from the formatted

TIGER/Line dataset available from the 9th DIMACS Implementation

Challenge website.3 For each road network, only the largest con-

nected component was considered. The sizes of the road networks

we used range from 9,522 to 2,037,156 vertices. As a preprocessing

step, we normalized edge weights so that the smallest edge weight

is 1.

6.2 Hop Counts with Few Long-Range Links

The first set of experiments that we performed was to test the

effectiveness of each of the three models on each road-network data

set assuming that we add only a small number of long-range links.

In particular, we tested each model for the cases when𝑚 = 1, 2, 3, 4.
We show the results of these experiments in Figure 4, which show

that the NPA model outperforms both the KL and BA models for

each of these small values for𝑚. For example, even for𝑚 = 1, the

3http://www.diag.uniroma1.it/~challenge9/data/tiger/
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number of hops for the NPA model tends to be half the numbers for

the BA and KL models. Once𝑚 ≥ 2, the KL model shows improved

performance over the BA model, with the KL model achieving

degrees-of-separation values that are roughly half those for the BA

model. Nevertheless, for𝑚 ≥ 2, the NPA model still beats the KL

model, with hop-counts that are between a third and a half better

than the KL model. Further, as would be expected, all the models

tend to do better as we increase the value of𝑚. For example, when

𝑚 = 1, the NPA model achieves a degrees-of-separation value of

between 40 and 60, whereas when we increase𝑚 to just 4, the NPA

model achieves a degrees-of-separation value of between 10 and

20. Admittedly, this still isn’t 6, but it is getting closer, and it shows

what can be achieved with just a few added long-range links.

6.3 Dropouts

There is another aspect of the original small-world experiments,

which (like most prior research on the small-world phenomenon)

we have heretofore ignored. Namely, as participants perform greedy

routing in the real world there is a probably that someone will

simply drop out of the experiment and not forward the package

to anyone. For example, in one of the original small-world experi-

ments [22], Travers and Milgram observed a dropout probability

of roughly 𝑝 = 0.2 at each step in a routing operation. That is, in

the original small-world experiment, it was observed that some

amount of messages never ended up reaching the target person,

e.g., due to recipients refusing to participate or not having anyone

to forward the message to. The longer a source-to-target path gets,

the more likely it is that at least one person will drop the message,

so we expect that the average path length would decrease as the

probability of dropping messages increases. To see whether this

could have contributed to the small average hop length observed in

the original small-world experiment, we ran a variant of Weighted-

Decentralized-Routing on the KL and NPA models, such that each

message holder has a fixed probability 𝑝 of dropping the message.

Our results can be seen in Figure 5, for𝑚 = 4. As expected, these

experiments show that the average hop counts for successful paths

decrease as we increase the dropout probability, 𝑝 , but we still are
not quite achieving six degrees of separation for these values.

6.4 Six Degrees of Separation

We can, in fact, achieve six degrees of separation in the NPA model,

just by slightly increasing the value of𝑚. In particular, we provide

experimental results in Figure 6 for the NPA model with𝑚 = 30

with different dropout probabilities. As this result shows, even with

𝑝 = 0 (no dropouts), we can achieve 7 degrees of separation for

modestly sized road networks (and 8 degrees of separation for the

three largest road networks). With 𝑝 = 0.2, for the majority of road

networks, we get average hop counts that match the findings in the

original small-world experiments, where the average hop length

was found to be 6. For the largest road networks, we get average

hop counts that are between 6 and 7.

Intuitively, setting𝑚 = 30 is equivalent to assuming that people

participating in a small-world experiment would consult their

address books when deciding who to send a package to next and

that the average number of entries in each address book is 30, which

we feel is a reasonable assumption.

Figure 5: Effect of varying the probability 𝑝 of dropping the

message at each step during Weighted-Decentralized-Routing

for the KL and NPA models, with𝑚 = 4.

Figure 6: Average hop length of the NPA model with𝑚 = 30

for different dropout probabilities.

7 DIVING DEEPER

We are actually interested in more than just showing that the NPA

model can achive six degrees of separation and thereby match

the performance of the original small-world experiments. In this

section, we take a deeper dive into the models we introduce in this

paper, with an eye towards trying to better understand what is

going on during the greedy routing done in each model.
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Figure 7: Degree distributions of the three main models with𝑚 = 4 on road networks of different sizes.

7.1 Degree Distributions

Comparing the degree distributions of the three models, which

are shown in Figure 7, we see that the KL model has a light-tailed

distribution, whereas our model seems to be scale-free, similar to

the BA model. These results indicate that the NPA model, similar

to the KL model, is able to utilize local clustering when finding

long-range contacts, while still having the scale-free property.

7.2 How Distances to the Target Decrease

As shown above, we observe that the NPA model outperforms

both of the KL and BA models in terms of the average hop length.

We also see that the KL model performs significantly better than

Kleinberg’s theoretical upper bound [14] on the grid, which was

𝑐 log2 𝑛 for 𝑐 > 88. Still, Kleinberg’s theoretical analysis was based

on an interesting proof technique that was inspired from Milgram’s

figure showing how distances to the target tend to halve with each

hop, as shown above in Figure 1. At a high level, Kleinberg’s proof

for his𝑂 (log2 𝑛) bound is based on finding that the probability that

the distance from the current vertex to the target is halved at any

step is Θ(1/log𝑛); hence, this is a constant after Θ(log𝑛) hops, and
we can reach the target by repeating this argument 𝑂 (log𝑛) times.

We provide experimental results in Figure 8 showing how the

remaining distance to the target changes for the NPA model over

multiple runs of Weighted-Decentralized-Routing. We see that for

most runs, the distance typically gets halved every few steps, as

Milgram observed.

Figure 8: Remaining distance to target, denoted as𝑑 , during 10
runs of Weighted-Decentralized-Routing on two road networks,

with 𝑚 = 4. Each line corresponds to a separate run of

Weighted-Decentralized-Routing, with themarkers on each line

corresponding to the remaining distance at a particular

step. The last data point for each run corresponds to the

penultimate step, i.e. when the message holder is one hop

away from the target.
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7.3 Varying the Clustering Coefficient

In Figure 9, we see how varying the clustering coefficient affects

the average hop length in the NPA model for the HI and CA road

networks. Though 𝑠 = 2 is not the best-performing clustering

exponent for either road network in our experiments, the results

indicate that the best-performing clustering exponent seems to

move towards 2 when the input size gets larger, which suggests

that the asymptotically optimal clustering exponent could still

be 2. A similar effect could be observed in Kleinberg’s original

model as well, since the lower bounds that are proved for 𝑠 ≠ 2

are Ω(𝑛 (2−𝑠)/3) for 𝑠 < 2 and Ω(𝑛 (𝑠−2)/(𝑠−1) ) for 𝑠 > 2, both of

which require input sizes that are orders of magnitude larger than

real-world road networks to be able to experimentally observe the

optimality of 𝑠 = 2.

Figure 9: Effect of varying the clustering coefficient on the

average hop length in the NPA model for the road networks

of Hawaii (|𝑉 | = 21 774) and California (|𝑉 | = 1 595 577), for

𝑚 = 1.

7.4 Capping the Maximum Degree

We considered another variation of the NPA model, where we cap

the maximum degree such that only vertices of degree less than

𝑐 are considered when choosing long-range contacts. We call this

the NPA-cap model. We choose 𝑐 = log𝑛 and 𝑐 = 150 as possible

maximum degree caps. Intuitively, the cap on the maximum degree

is like a cap on the size of someone’s address book during a small-

world experiment. We provide experimental results comparing the

models KL, NPA, and NPA-cap (for 𝑐 = log𝑛 and 𝑐 = 150), with

𝑚 = 4, in Figure 10.

In Figure 11, we compare the models NPA and NPA-cap (for

𝑐 = 150), when there is a dropout probability of 𝑝 = 0.2, with
𝑚 = 30.

7.5 Routing Across Multiple States

The experiments we have performed so far have been limited to the

road networks of individual states. However, Milgram’s small-world

experiments were performed across multiple states. For this reason,

we also performed experiments on the combined road networks

of Virginia, Washington, D.C., Maryland, Delaware, New Jersey,

New York, Connecticut, and Massachusetts. For𝑚 = 30, we found

that the average hop length was ≈ 8.06, and when we introduced a

dropout probability of 𝑝 = 0.2, the average hop length was ≈ 7.15.
In Figure 12, we provide the resulting degree distribution of this

road network when the NPA model with a dropout of 𝑝 = 0.2 was
used.

Figure 10: Comparing the average hop lengths of the NPA,

KL, and the NPA-cap models, and the degree distribution of

the NPA and NPA-cap models for Illinois, with𝑚 = 4.

Figure 11: Comparing the average hop lengths of the NPA

and NPA-cap (150) models with a dropout probability of 0.2

and𝑚 = 30.

Figure 12: Degree distribution in the multi-state road net-

work, using the NPA model with a dropout probability of 0.2

and𝑚 = 30.
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7.6 Key Participants

We also considered the importance of key participants in perform-

ing greedy routing, as shown in Figure 2, which motivated the NPA

model in the first place.

Having a long-tailed degree distribution could be benefiting

the routing phase, as we know that having more links per vertex

improves the asymptotic bound of Kleinberg’s model.

In Figure 13, we compare the degree distribution of vertices that

were used during the routing phase with the degree distribution

of the whole network for both the NPA and BA models. We can

see that for the NPA model, high-degree vertices are being better

utilized during an instance of the routing algorithm compared to

the BA model.

Figure 13: Degree distributions in the Washington road

network for vertices in the whole network, and vertices

visited during the routing phase, using the BA and NPA

models with𝑚 = 4.

8 CONCLUSION

We introduced a new small world model, the Neighborhood Pref-

erential Attachment model, which combines elements of both

Kleinberg’s model and the Barabási-Albert model, and experimen-

tally outperforms both models in terms of the average hop length.

Importantly, our model is built using real-world distances from

nodes in a road network rather than vertices in a square grid or

random points on a sphere.

8.1 Future Work

For future work, given our experimental results, it would be

interesting to perform a mathematical analysis of our model, e.g.,

to see whether our model has an asymptotic bound on the expected

hop length that is𝑜 (log2 𝑛). Another interesting question is whether
the power law exponent of the degree distribution differs from the

Barabási-Albert model in the limit of the size of the network, or

what the diameter of graphs generated by our model is. Yet another

interesting problem is whether Kleinberg’s lower bounds for the

standard model when the clustering coefficient is ≠ 2 still holds for

our model.
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