ARTICLE

Rhodium(I)-Catalyzed Directed Trideuteromethylation of (Hetero)arene C-H Bonds with CD₃CO₂D

Haoqiang Zhao, *abc Qi Zeng, a Ji Yang, b Bing Xu, a Haimin Lei, a Lijin Xu*b and Patrick J. Walsh*c

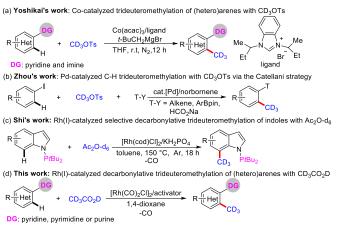
Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

A Rh(I)-catalyzed trideuteromethylation of heteroarenes with inexpensive and readily available deuterated acetic acid (CD₃CO₂D) with the aid of a N-containing directing groups is developed. The oxidant-free reaction is applicable to a wide range of heteroarene substrates, including 2-pyridones, indoles, aryl rings, pyrroles and carbazoles. It allows installation of CD3 groups under straightforward reaction conditions. It is expected that the salient and practical features of this trideuteriomethylation protocol will be of use to academic and industrial researchers.

Introduction

Deuterium labelled compounds continue to be of great interest in chemistry, medicine and the life sciences, because of their wide applications in exploration of reaction mechanisms, ^{1a} drug discovery and development, 1b NMR1c and MS.1d Significant research effort has been dedicated to the synthesis and clinical evaluation of deuterium-labelled drug candidates.² In 2017 the first deuterated chiral drug (Austedo™) was approved for the treatment of chorea symptoms by the US Food and Drug Administration.³ The majority of existing methods for the preparation of deuterium labelled compounds rely on multistep synthetic routes and catalytic H/D exchange reactions.4 In order to meet the rising demands for deuterated compounds, more efficient and convenient deuteration methods are required.5


It is well-known that the installation of a methyl group into bioactive molecules can dramatically alter their biological and physical properties.⁶ Given the benefits of the so-called "magic methyl" effect, the quest of efficient methylation methods has been the subject of extensive research,7 most recently in the development of catalytic methylation of C-H bonds.8 In contrast, the corresponding trideuteromethylation has progressed more slowly, despite the widespread use of trideuteromethylated compounds.9 Several protocols including substitution reaction with CD₃I, 10a transition-metal-catalyzed trideuteromethylation of N-heteroarenes and ketones with

^{a.} School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing

b. Department of Chemistry, Renmin University of China, Beijing 100872, China. E-

102488, China. E-mail: hq-zhao@bucm.edu.cn

CD₃OD via a hydrogen borrowing approach, 10b, g, h transitionmetal catalyzed trideuteromethylation of aryl halides with CD₃I and CD₃OTs, ^{10c, e, f} and radical trideuteromethylation of Nheteroarenes and alkenes with DMSO-d₆^{10d} have been developed. However, trideuteromethylation of C-H bonds under transition-metal catalysis has been less explored. In this context, the group of Yoshikai realized a cobalt-catalyzed chelation-assisted regioselective trideuteromethylation of (hetreo)arene C-H bonds with CD₃OTs (Scheme 1a).8d Zhou et al. achieved a Pd-catalyzed C-H deuterated methylation of iodobenzenes with CD₃OTs via the Catellani strategy (Scheme 1b).8b Interestingly, Shi and co-workers recently reported a C7-selective Rh(I)-catalyzed decarbonylative trideuteromethylation of indoles with Ac₂O-d₆ in the presence of a base additive (Scheme 1c).11

Scheme 1. Transition-metal Catalyzed C-H trideuteromethylation of heteroarenes.

available and inexpensive CD₃CO₂D would be more attractive

the

only

However,

mail: 20050062@ruc.edu.cn c Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Though useful, a major drawback of the chemistry was the Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, prior preparation of Ac₂O-d₆. Clearly, the use of more readily

United States, E-mail: pwalsh@sas.upenn.edu †Electronic Supplementary Information (ESI) available, CCDC 1878486 (3g) and 2102000 (7f). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/x0xx00000x

ARTICLE Journal Name

trideuteromethylation reported in the literature using CD₃CO₂D as CD₃ source was a cerium catalyst by merging electrochemistry and photocatalysis in moderate yields.^{10j} The recent reports by the group of Shi and our team revealed that 2-(m-tolyl)pyridine, N-(2-pyrimidyl)-indole and 1-(2-pyridyl)-2pyridone could undergo Rh(I)-catalyzed chelation-assisted decarbonylative C-H methylation with in situ generated Ac₂O from acetic acid and activator under base- and oxidant-free conditions.¹² Inspired by these reports, we became interested in using readily available and inexpensive CD₃CO₂D trideuteromethylation of (hetero)arene C-H bonds under Rh(I) catalysis. Herein, we describe an efficient and convenient approach for regioselective trideuteromethylation (hetero)arene C-H bonds with CD₃CO₂D using an Rh(I) catalyst (Scheme 1d). This method features high yields, wide substrate scope, good functional group tolerance and operational simplicity.

Results and discussion

In consideration of the importance of bioactive 2-pyridones, 13 we commenced our study by surveying reaction conditions with 1-(2-pyridyl)-2-pyridone (1a) as the model substrate and CD $_3$ CO $_2$ D as the coupling partner. We started our study with the combination of [Rh(CO) $_2$ Cl] $_2$ and Boc $_2$ O/PivOH, which have been shown previously to be effective for the decarbonylative alkylation of 2-pyridones with different types of aliphatic acids. 12c

Table 1 Optimization of reaction conditions.a

	ia Z		Ja	
Entry	Catalyst	Activator	Yield (%) ^b	
1 ^c	$[Rh(CO)_2CI]_2$	Boc ₂ O	84	
2^c	[Rh(COD)Cl] ₂	Boc ₂ O	61	
3^c	[Rh(COD) ₂]OTf	Boc ₂ O	56	
4	$[Rh(CO)_2CI]_2$	Boc₂O	21	
5	$[Rh(CO)_2CI]_2$	(MeOCO)₂O	13	
6	$[Rh(CO)_2CI]_2$	Piv ₂ O	93 (90) ^d	
7	$[Rh(CO)_2CI]_2$	PivCl	10	
8	$[Rh(CO)_2CI]_2$	Tf ₂ O	0	

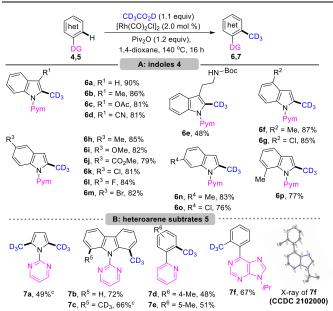
°Reaction Conditions: **1a** (0.1 mmol.), **2a** (0.11 mmol), [Rh] dimer (2.0 mol %), activator (1.2 equiv), additive (1.2 equiv), solvent (1.0 mL, 0.1 M), 140 °C, 16h, under N_2 . ^bYields were determined by ¹H NMR analysis of unpurified reaction mixtures with internal standard CH₂Br₂. ^cPivOH (1.2 equiv) was employed. ^dIsolated yield. COD: cyclooctadiene.

We found that the combination of $[Rh(CO)_2Cl]_2$ (2 mol %), Boc_2O (1.2 equiv) and PivOH (1.2 equiv) worked effectively to catalyze the reaction of $\mathbf{1a}$ with CD_3CO_2D in 1,4-dioxane at 140 °C to provide the C6-trideuteromethylated product $\mathbf{3a}$ in 84% AY (Table 1, entry 1, AY = assay yield, determined by 1H NMR integration against an internal standard). The catalytic activity decreased when $[Rh(COD)Cl]_2$ or $[Rh(COD)_2]OTf$ was employed (entries 2 and 3). Notably, solvents other than 1,4-dioxane gave

either lower yields of **3a** or no reaction (for details, see SI, Table S1), indicating a dramatic solvent effect in this reaction. The reaction yield was compromised in the absence of PivOH (entry 4). Replacing Boc₂O/PivOH with other acid activators, such as (MeOCO)₂O, PivCl or Tf₂O, dramatically diminished the reaction efficiency (entries 5, 7 and 8). Piv₂O proved to be an effective activator, affording 3a in 93% assay yield and 90% isolated yield (entry 6). The yield of 3a dropped slightly to 89% when lowering the reaction temperature to 130°C (ESI, Table S1). Reducing the rhodium loading to 2 mol % led to a decrease in the assay yield of 3a (65%, ESI, Table S1). Control experiments showed the reaction failed to proceed in the absence of [Rh(CO)₂Cl]₂ (ESI, Table S1). Further experiments revealed that free 2-pyridone and 2-pyridone substrates bearing other substituents on the nitrogen, such as Me, Bn, Ph, or 3-pyridyl were totally ineffective, clearly highlighting the importance of the pyridyl directing group for successful catalysis (for details see ESI, Table S2).

Table 2. Scope of 2-Pyridones.a,b CD₃CO₂D (1.1 equiv) [Rh(CO)2CI]2 (2.0 mol %) Piv₂O (1.2 equiv), 1,4-dioxane 140 °C, 16 h 3b, R1 = Me, 90% 3c, R1 = OBn, 70% 3h. R² = Me, 83% 3d, R¹ = F, 76% 3i, R2 = CI, 80% 3e. R1 = CI. 81% 3j, $R^2 = Ph$, 78%3m R3 = Me 81% 3n, R³ = CI, 77% 3k, R² = Br, 78% 3q, R1 = CF₃, 69% 3I, R2 = CF3, 71% 30. R3 = Br. 75% 3p, R4 = Me, 89% 3a, R4 = CF₃, 85%

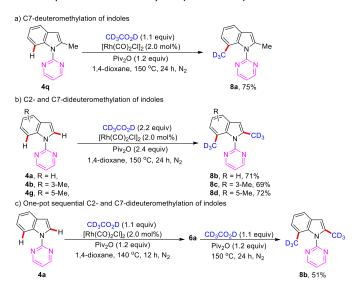
°General reaction conditions: 1 (0.3 mmol), CD₃CO₂D (0.33 mmol), [Rh(CO)₂Cl]₂ (2.0 mol %), Piv₂O (1.2 equiv), 1,4-dioxane (0.1 M), 140 °C, 16 h, N₂. ^bIsolated yield.


Under the optimized reaction conditions, 2-pyridones were then subjected to C-H trideuteromethylation with CD₃CO₂D. 2-Pyridone (1b-1l) bearing substituents at C3- or C4- were readily converted into C6-trideuteromethylated products (3b-3l) in 69–90% yields, regardless of the nature of the substituent. The reaction is relatively insensitive to steric hinderance, as evidenced by high conversions with C5-substituted 2-pyridones (75-81% yields, 3m-3o). The efficiency was not affected by the installation of C5-substituents on the pyridyl directing group, (3p-3r, 80-89% yields). The structure of 3q was confirmed by single-crystal X-ray diffraction (CCDC 1878486). The reaction of 3,4-disubstsitued 2-pyridone 1s proceeded readily, providing the desired product 3s in 83% yield. Additionally, the catalytic tridueteromethylation was also applicable to isoquinolin-1(2H)and pyridin-4(1H)-one (1u), affording the corresponding products (3t and 3u) in 65-68% yields.

We then explored various heteroarene substrates. As shown in Table 3A, the scope of indoles was examined. Here, the pyrimidine directing group was found to give higher yields than the 2-pyridyl analogue. It was noteworthy that the sterically congested C3-substituted indoles (4b-4d) were

Journal Name ARTICLE

smoothly converted into the corresponding C2-CD3 products (6b-6d) in 81-86% yields. Of note, the reaction of tryptamine derivative 4e gave 6e in 48% yield. Similarly, various 4-, 5- and 6-substituted indoles (4f-4o) bearing electron-rich or electronpoor groups [including halogens (F, Cl, Br), methoxy and ester], afforded 6f-6o in 76-87% yields. The C7 methyl-substituted indole 4p gave trideuteromethylation at the 2-position (6p, 77% yield). Furthermore, the reaction was not restricted to indole substrates (Table 3B). Pyrrole 5a and carbazole 5b gave the corresponding products (7a-7c) in 49-72% yields. It should be noted that in the case of the pyrrole 5a, only the formation of di-deuteromethylated 7a was observed, but for carbazole 5b, mono- and disubstituted products were obtained by adjusting the reaction temperature and the amounts of acid and activator. Moreover, phenylpyridine substrates 5d and 5e successfully engaged in the reaction to provide 7d and 7e in 48%-51% yields. Notably, 9-isopropyl-6-phenyl-9H-purine 5f also participated to afford 7f in 67% yield. The structure of 7f was confirmed by X-ray diffraction (CCDC 2102000).


Table 3. Scope of indoles and other heteroarene substrates.a,b

°General reaction conditions: 4 or 5 (0.3 mmol), CD₃CO₂D (0.33 mmol), [Rh(CO)₂Cl]₂ (2.0 mol %), Piv₂O (1.2 equiv), 1,4-dioxane (3 mL, 0.1 M), 140 °C, 16 h, under N₂. blsolated yield. ¹Increased reaction temperature to 150 °C, CD₃CO₂D (0.66 mmol) and Piv₂O (2.4 equiv) was employed.

With the success in C2-deuteromethylation of indoles, we then envisaged that the presence of a C2-substitutent on N-(2-pyrimidyl)-indole would steer the reactivity to C7–H under similar Rh(I) catalysis. Indeed, as shown in Scheme 2a, upon slight modification of the reaction conditions, C2-substituted indole 4q could effectively participate in the reactions to give the C7-deuteromethylated product 8a in 75% yield. We next examined the feasibility of double trideuteromethylation of indole substrates at both the C2 and C7 positions. Fortunately, the treatment of 4a, 4b and 4g with CD₃CO₂D (2.2 equiv), Piv₂O (2.4 equiv) in 1,4-dioxane at 150 °C for 24 h, provided the C2,C7-di-deuteromethylated products (8b–8d) in 69–72% yields (Scheme 2b). Finally, the possibility of one-pot C2,C7-sequential di-deuteromethylation was tested. As expected, the one-pot sequential bis-deuteromethylation of indole 4a furnished the

desired product 8b in 51% yield (Scheme 2c).

Scheme 2. Direct C7-trideuteromethylation and C2, C7-di-trideuteromethylation of indoles.

To demonstrate the synthetic utility, gram scale reactions of 1a, 1p, 4a and 4e with CD_3CO_2D were performed to deliver 3a, 3p, 6a and 6e in 40-84% yields (for details, see SI). Derivatizations of C6-deuteromethylated 2-pyridone products were then explored. It was found that 3a and 3p underwent hydrogenation to give 9 and 10 in 90% and 92% yields, respectively (Scheme 3a). The pyrimidinyl directing group in deuteromethylated indole products was removed by treatment with EtONa in DMSO (Scheme 3b). In this way, 6a was easily converted into the corresponding free indole 11 in 73% yield. To further demonstrate the value of this method, we focused on the development of a unique and expeditious route to the deuterated antitumor agent derivatives. 14 As shown in Scheme 3 C, from commercially available materials, we successfully prepared 12 and 13 in $^{84\%}$ and $^{81\%}$ yields, respectively.

Preliminary experiments were performed to gain insight

ARTICLE Journal Name

into the reaction mechanism. The reversibility of the C–H activation step was first investigated (for details, see SI). Treatment of 1h with CD₃OD as a co-solvent in the absence of CD₃CO₂D and acid activator resulted in significant H/D exchange at the C–6 position of 1h. In contrast, lower deuterium incorporation was observed at the C–3 and C–5 positions. These results suggest that the C–H activation is reversible. The parallel reactions between 1h or [D₁]-1h with CD₃CO₂D afforded a kinetic isotope effect value of 1.9 ± 0.1 (for details, see SI)¹⁵, implying that the C–H bond cleavage is the turnover-limiting step (TLS) in the catalytic cycle.

On the basis of the experimental results above, and the previous reports, 12b, c, 15-16 a plausible mechanism is proposed as described in Scheme 4. Initially, coordination of heteroarene substrates 1, 4 or 5 to the Rh(I) species A followed by Ndirecting group-assisted C2-H bond activation is proposed. Next, reductive elimination of HCl is expected to afford the 5membered rhodacycle intermediate B (the previous DFT calculations indicate that C-H activation is more feasible as the first step). 16a At the same time, reaction of CD₃CO₂D with Boc₂O and pivalic acid results in in situ formation of the key mixed anhydride CD₃COOCOR (R likely being t-Bu). Oxidative addition of the mixed anhydride at the more accessible C-O bond gives C. In our past computational studies on a related system the Rh(III) in C likely reacts with HCl to liberate the acid and form intermediate **D**.^{16a} Subsequently, **D** undergoes decarbonylation to release CO and generate the CD₃-Rh(III) intermediate E. Finally, reductive elimination of **E** affords the desired products (3, 6 or 7) with the concurrent regeneration of the Rh(I) species A.

Conclusions

In summary, we have developed a general and efficient method for trideuteromethylation of heteroarene substrates with inexpensive and readily available CD₃CO₂D under Rh(I) catalysis. Besides diversely substituted 2-pyridones, a variety of substituted indoles and aryl rings were tolerated, providing C2-deuteriomethylated products. Pyrrole and carbazole were also suitable substrates. This method employs a readily available

and easy-to-handle catalytic system. Moreover, minor modification of the reaction conditions enabled regioselective C7-deuteriomethylation and C2,C7-dideuteriomethylation of indoles. Given the potential utility of heterocyclic compounds bearing CD_3 groups, and the straightforward method for their synthesis outlined herein, we anticipate that this tridueteromethylation will be of much use.

Author Contributions

H. Zhao performed the optimization of the reaction and analyzed the experimental results. L. Xu and H. Zhao designed the experiments. H. Zhao, L. Xu and P. J. Walsh wrote the manuscript. Q. Zeng and B. Xu performed and synthesized some of the starting materials. The research directed by H. Lei, L. Xu and P. J. Walsh.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful for financial support from Beijing University of Chinese Medicine (2022-JYB-XJSJJ023), China Scholarship Council (201806360122), H.Z. and P.J.W. thanks the US National Science Foundation (CHE-1902509).

Notes and references

- (a) Simmons, E. M.; Hartwig, J. F., Angew. Chem. Int. Ed. 2012, 51, 3066-3072. (b) Gant, T. G., J. Med. Chem. 2014, 57, 3595-3611. (c) Scheppele, S. E., Chem. Rev. 1972, 72, 511-532. (d) Kheterpal, I.; Wetzel, R., Acc. Chem. Res. 2006, 39, 584-593.
- (a) Mullard, A., Nat. Rev. Drug Discov. 2016, 15, 219-221. (b) Timmins, G. S., Expert Opin. Ther. Pat 2014, 24, 1067-1075. (c) Isin, E. M.; Elmore, C. S.; Nilsson, G. N.; Thompson, R. A.; Weidolf, L., Chem. Res. Toxicol. 2012, 25, 532-542.
- 3. Mullard, A., Nat. Rev. Drug Discov. 2017, 16, 305-305.
- (a) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J., Angew. Chem. Int. Ed. 2007, 46, 7744-7765. (b) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M., Angew. Chem. Int. Ed. 2018, 57, 3022-3047. (c) Sattler, A., ACS Catal. 2018, 8, 2296-2312.
- (a) Zhu, N.; Su, M.; Wan, W.-M.; Li, Y.; Bao, H., Org. Lett. 2020,
 22, 991-996. (b) Puleo, T. R.; Strong, A. J.; Bandar, J. S., J. Am. Chem. Soc. 2019, 141, 1467-1472. (c) Guo, L.; Xu, C.; Wu, D.-C.; Hu, G.-Q.; Zhang, H.-H.; Hong, K.; Chen, S.; Liu, X., Chem. Commun. 2019, 55, 8567-8570.
- (a) Barreiro, E. J.; Kümmerle, A. E.; Fraga, C. A. M., Chem. Rev. 2011, 111, 5215-5246.
 (b) Schönherr, H.; Cernak, T., Angew. Chem. Int. Ed. 2013, 52, 12256-12267.
 (c) Sun, S.; Fu, J., Bioorg. Med. Chem. Lett. 2018, 28, 3283-3289.
- (a) Yan, G.; Borah, A. J.; Wang, L.; Yang, M., Adv. Synth. Catal. 2015, 357, 1333-1350. (b) Chen, Y., Chem. Eur. J. 2019, 25, 3405-3439. (c) Hu, L.; Liu, Y. A.; Liao, X., Synlett 2018, 29, 375-382.
- (a) Kumar, R.; Sharma, R.; Kumar, R.; Sharma, U., Org. Lett. 2020,
 22, 305-309. (b) Gao, Q.; Shang, Y.; Song, F.; Ye, J.; Liu, Z.-S.; Li, L.; Cheng, H.-G.; Zhou, Q., J. Am. Chem. Soc. 2019, 141, 15986-15993. (c) Qiu, X.; Wang, P.; Wang, D.; Wang, M.; Yuan, Y.; Shi, Z., Angew. Chem. Int. Ed. 2019, 58, 1504-1508. (d) Sun, Q.; Yoshikai, N., Org. Chem. Front. 2018, 5, 2214-2218. (e) Ma, C.;

Journal Name ARTICLE

- Zhao, C.-Q.; Li, Y.-Q.; Zhang, L.-P.; Xu, X.-T.; Zhang, K.; Mei, T.-S., *Chem. Commun.* 2017, **53**, 12189-12192.
- 9. Wermuth, C. G., *The practice of medicinal chemistry*. Academic Press: 2011.
- (a) Komarapuri, S.; Krishnan, K.; Covey, D. F., J. Labelled Compd. Radiopharm. 2008, 51, 430-434. (b) Chen, S.-J.; Lu, G.-P.; Cai, C., RSC Adv. 2015, 5, 70329-70332. (c) Hu, L.; Liu, X.; Liao, X., Angew. Chem. Int. Ed. 2016, 55, 9743-9747. (d) Caporaso, R.; Manna, S.; Zinken, S.; Kochnev, A. R.; Lukyanenko, E. R.; Kurkin, A. V.; Antonchick, A. P., Chem. Commun. 2016, 52, 12486-12489. (e) Wang, J.; Zhao, J.; Gong, H., Chem. Commun. 2017, 53, 10180-10183. (f) Komeyama, K.; Yamahata, Y.; Osaka, I., Org. Lett. 2018, 20, 4375-4378. (g) Sklyaruk, J.; Borghs, J. C.; El-Sepelgy, O.; Rueping, M., Angew. Chem. Int. Ed. 2019, 58, 775-779. (h) Mamidala, R.; Biswal, P.; Subramani, M. S.; Samser, S.; Venkatasubbaiah, K., J. Org. Chem. 2019, 84, 10472-10480. (i) Steverlynck, J.; Sitdikov, R.; Rueping, M. Chem. Eur. J. 2021, 27, 11751-11772. (j) Lai, X.-L.; Shu, X.-M.; Song, J.; Xu, H.-C. Angew. Chem. Int. Ed. 2020, 59, 10626-12632.
- 11. Han, X.; Yuan, Y.; Shi, Z., J. Org. Chem. 2019, **84**, 12764-12772.
- (a) Pan, F.; Lei, Z.-Q.; Wang, H.; Li, H.; Sun, J.; Shi, Z.-J., Angew. Chem. Int. Ed. 2013, 52, 2063-2067. (b) Yu, H.; Zhao, H.; Xu, X.; Zhang, X.; Yu, Z.; Li, L.; Wang, P.; Shi, Q.; Xu, L., Asian J. Org. Chem. 2021, 10, 879-885. (c) Zhao, H.; Xu, X.; Yu, H.; Li, B.; Xu, X.; Li, H.; Xu, L.; Fan, Q.; Walsh, P. J., Org. Lett. 2020, 22, 4228-4234.
- (a) Schröder, P.; Förster, T.; Kleine, S.; Becker, C.; Richters, A.;
 Ziegler, S.; Rauh, D.; Kumar, K.; Waldmann, H., Angew. Chem. Int. Ed. 2015, 54, 12398-12403. (b) Jessen, H. J.; Gademann, K.,
 Nat. Prod. Rep. 2010, 27, 1168-1185.
- Ganesh, T.; Jiang, J.; Dingledine, R., Eur. J. Med. Chem. 2014, 82, 521-535.
- Zhao, H.; Xu, X.; Luo, Z.; Cao, L.; Li, B.; Li, H.; Xu, L.; Fan, Q.;
 Walsh, P. J., Chem. Sci. 2019, 10, 10089-10096.
- (a) Zhao, H.; Luo, Z.; Yang, J.; Li, B.; Han, J.; Xu, L.; Lai, W.; Walsh, P. J., Chem. Eur. J. 2022, 28, e202200441. (b) Zhao, H.; Xu, J.; Xu, X.; Pan, Y.; Yu, Z.; Xu, L.; Fan, Q.; Walsh, P. J., Adv. Synth. Catal. 2021, 363, 3995-4001.