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EXISTENCE RESULTS FOR FRACTIONAL ORDER FUNCTIONAL

DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN THE SENSE

OF THE DEFORMABLE DERIVATIVE

MESFIN ETEFA1, GASTON M. N’GUÉRÉKATA2

Abstract. In this article, we discuss the existence and uniqueness of solutions for initial
value problems of fractional order functional and neutral functional differential equations

with infinite delay. We use the deformable derivative introduced in 2017 by Zulfeqarr
et. al (see [21]). Our results are obtained using the Banach fixed point theorem and

the nonlinear alternative Leray–Schauder type theorem. We provide an example as an

illustration of the main results.

1. Introduction

The concept of deformable derivative was recently introduced by F. Zulfeqarr, A. Ujlayan,
and P. Ahuja [21]. Using this relatively new fractional derivative, we established the existence
and uniqueness of solutions to evolution equations with nonlocal and local conditions (See
[16, 17]). In [8], we studied solutions to the impulsive fractional differential equation :

Dαy(t) = f(t, y), t ∈ J = [0, T ], t ̸= tk, (1.1)

∆y|t=tk = Ik(y(t
−
k )) (1.2)

y(0) = y0, (1.3)

where k = 1, . . . ,m, 0 < α ≤ 1, Dα is the deformable fractional derivative of y. In this paper,
we study the existence solutions for initial value problems of fractional order functional
differential equations with infinite delay. We consider the initial value problem

Dαy(t) = f(t, yt), for t ∈ J = [0, b], α ∈ (0, 1), (1.4)

y(t) = ϕ(t), t ∈ (−∞, 0], (1.5)

where Dα is the deformable derivative, f : J ×B → R is a given function,
ϕ ∈ B ( a phase space) , ϕ(0) = 0, and yt(θ) = y(t + θ), θ ∈ (−∞, 0], t ∈ J , y is defined on
(−∞, b], and yt is the element of B defined here. Here yt(·) represents the history of the
state from time −∞ up to the present time t.
Then we study fractional neutral functional differential equation :

Dα[y(t)− g(t, yt)] = f(t, yt), t ∈ J,

y(t) = ϕ(t), t ∈ (−∞, 0],

where g : J ×B → R is a given function such that g(0, ϕ) = 0.
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2. Preliminaries

In this section, C(J,R) stands for the Banach space of all continuous functions from J
into R with the norm

∥y∥∞ := sup{|y(t)| : t ∈ J}.
where | · | denotes a suitable complete norm on R.

Definition 2.1. ([21]) Let f be a real valued function on [a, b], α ∈ [0, 1]. The deformable
derivative of f of order α at t ∈ (a, b) is defined as:

Dαf(t) = lim
ϵ→0

(1 + ϵβ)f(t+ ϵα)− f(t)

ϵ
,

where α+ β = 1. If the limit exists, we say that f is α-differentiable at t.

Remark 2.1. If α = 1, then β = 0, we recover the usual derivative. This shows that the
deformable derivative is more general than the usual derivative.

Definition 2.2. ([21]) For α ∈ (0, 1], the α-integral of the function h ∈ L1([a, b],R+) is
defined by

Iαa h(t) =
1

α
e

−β
α t

∫ t

a

e
β
αxf(x)dx, t ∈ [a, b],

where α+ β = 1. When a = 0 we use the notation

Iαh(t) =
1

α
e

−β
α t

∫ t

0

e
β
αxh(x)dx.

Remark 2.2. If α = 1, then β = 0, we recover the usual Riemann integral. This also
shows that the α-integral is more general than the usual Riemann integral.

In what follows, we assume that the state space (B, ∥·∥B) is a seminormed linear space of
functions mapping (−∞, 0] into R satisfying the following fundamental set of axioms from
Hale and Kato in [11].
(A) If y : (−∞, b] → R, and y0 ∈ B, then for every t ∈ [0, b] the following conditions hold:

(1) yt is in B.
(2) ∥yt∥B ≤ K(t) sup{|y(s)| : 0 ≤ s ≤ t}+M(t)∥y0∥B ,
(3) |y(t)| ≤ H∥yt∥B , where H ≥ 0 is a constant, K : [0, b] → [0,∞) is continuous,

M : [0,∞) → [0,∞) is locally bounded and H,K,M are independent of y(·).
(A-1) For the function y(·) in (A), yt is a B-valued continuous function on [0, b].
(A-2) The space B is complete.

Theorem 2.1. ([21]) A differentiable function h at a point t ∈ (a, b) is always α-
differentiable at that point for any α. Moreover, we have

Dαh(t) = βh(t) + αDh(t).

Corollary 2.2. ([21]) An α - differentiable function f defined in (a, b) is differentiable
as well.

Theorem 2.3. ([16],[21]) The operators Dα and Iαa possess the following properties:
Let α, α1, α2 ∈ (0, 1] such that α+ β = 1, αi + βi = 1 for i = 1, 2.

(1) Let f be differentiable at a point t for some α. Then it is continuous there.
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(2) Suppose f and g are α-differentiable. Then

Dα(f ◦ g)(t) = β(f ◦ g)(t) + αD(f ◦ g)(t)
= β(f ◦ g)(t) + αf ′(g(t))g′(t).

(3) Let f be continuous on [a,b]. Then Iαa f is α- differentiable in (a,b), and we have

Dα(Iαa f(t)) = f(t), and

Iαa (D
αf(t) = f(t)− e

β
α (a−t)f(a).

(4) Dα

(
f

g

)
=

gDα(f)− αf

g2
.

(5) Linearity : Dα(af + bg) = aDαf + bDαg.
(6) Commutativity : Dα1 ·Dα2 = Dα2 ·Dα1 .
(7) For a constant c,Dα(c) = βc.
(8) Dα(fg) = (Dαf)g + αfDg.
(9) Linearity : Iαa (bf + cg) = bIαa f + cIαa g.
(10) Commutativity : Iα1

a Iα2
a = Iα2

a Iα1
a .

3. Existence of solutions

Let Ω = {y : (−∞, b] → R : y|[0,b] is continuous }

Definition 3.1. A function y ∈ Ω is said to be a solution of (4)–(5) if y satisfies the
equation Dαy(t) = f(t, yt) on J , and the condition y(t) = ϕ(t) on (−∞, 0].

Lemma 3.1. [8] Let 0 < α < 1 and let h : (0, b] → R be continuous and limt→0+ h(t) =
h(0+) ∈ R. Then y is a solution of the integral equation

e
−β
α ty0 +

1

α
e

−β
α t

∫ t

0

e
β
α sh(s)ds,

if and only if y is a solution of the initial value problem for the fractional differential equation

Dαy(t) = h(t), t ∈ (0, b]

y(0) = 0.

Our existence result for the IVP (4)-(5) is based on the Banach contraction principle.

Theorem 3.2. Let f : J ×B → R. Assume
(H) There exists l > 0 such that |f(t, u)−f(t, v)| ≤ l∥u−v∥B , for t ∈ J and every u, v ∈ B

If kbl
β < 1, where kb = sup{|k(t)| : t ∈ [0, b]}, then there exists a unique solution for the

IVP(4)-(5) on the interval (−∞, b].

Proof. Transform the problem (4)-(5) into a fixed point problem. Consider the operator
N : Ω → Ω defined by

Ny(t) =

ϕ(t), t ∈ [−∞, 0],

1

α
e

−β
α t

∫ t

0

e
β
α sf(s, ys)ds, t ∈ (0, b].

(3.1)

Let x(·) : (−∞, b] → R be the function defined by

x(t) =

{
0, if t ∈ [0, b],

ϕ(t), if t ∈ [−∞, 0].
(3.2)
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Then x0 = ϕ, for each z ∈ C([0, b],R) with z(0) = 0. We denote by z the function defined by

z =

{
z(t), if t ∈ [0, b],

0, if t ∈ (−∞, 0].
(3.3)

If y(·) satisfies the integral equation

y(t) =
1

α
e

−β
α t

∫ t

0

e
β
α sf(s, ys)ds,

we can decompose y(·) as y(t) = z + x(t), 0 ≤ t ≤ b , which implies yt = zt + xt for every
0 ≤ t ≤ b and the function z(·) satisfies

z(t) =
1

α
e

−β
α t

∫ t

0

e
β
α sf(s, zs + xs)ds.

Set

C0 = {z ∈ C([0, b],R) : z0} = 0

and let ∥ · ∥b be the seminorm in C0 defined by

∥z∥b = ∥z0∥B + sup{|z(t)| : 0 ≤ t ≤ b, } = sup{z(t) : 0 ≤ t ≤ b} z ∈ C0.

C0 is a Banach space with norm ∥ · ∥b. Let the operator P : C0 → C0 be defined by

(pz)(t) =
1

α
e

−β
α t

∫ t

0

e
β
α sf(s, zs + xs)ds, t ∈ [0, b].

That the operator N has a fixed point is equivalent to P has a fixed point, and so we turn
to proving thatP has a fixed point. We shall show that P : C0 → c0 is a contraction map.
Indeed, consider z, z∗ ∈ C0. Then we have for each t ∈ [0, b]

|P (z)(t)− P (z∗)(t)| ≤ 1

α
e

−β
α t

∫ t

0

e
β
α s|f(s, zs + xs)− f(s, z∗s + xs)|ds

≤ 1

α
e

−β
α t

∫ t

0

e
β
α sl||zs − z∗s||Bds

≤ 1

α
e

−β
α t

∫ t

0

e
β
α slKb sup

s∈[0,t]

∥z(s)− z∗(s)∥ds

≤ Kb

α
e

−β
α t

∫ t

0

e
β
α sl ds∥z − z∗∥b.

Therefore,

∥p(z)− p(z∗)∥ ≤ Kbl∥z − z∗∥b
β

,

hence P is a contraction. Therefore, P has a unique fixed point by Banach’s fixed point
principle.
Now we give an existence result based on the nonlinear alternative of Leray–Schauder type.
For this, we state the following standard Gronwall’s inequality:

Lemma 3.3. [6] If

x(t) ≤ h(t) +

∫ t

t0

k(s)x(s)ds, t ∈ [t0, T ),
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where all functions involved are continuous on [t0, T ), T ≤ +∞, and k(t) ≥ 0, then x(t)
satisfies

x(t) ≤ h(t) +

∫ t

t0

h(s)k(s) exp

[∫ t

s

k(u)d(u)

]
ds, t ∈ [t0, T ).

Theorem 3.4. Assume that the following hypotheses hold:
(H1) f is a continuous function
(H2) there exist p, q ∈ C(J,R+) such that

|f(t, u)| ≤ p(t) + q(t)∥u∥B
for t ∈ J and eachu ∈ B, and ∥Iαp∥∞ < ∞.
Then the IVP (1)–(2) has at least one solution on(−∞, b]

□

Proof. LetP : C0 → C0 be defined as in the proof of Theorem 3.2. We shall show that the
operator P is continuous and completely continuous.

Step 1. P is continuous
Let {zn} be a sequence such that zn → z ∈ C0. Then

|(pzn)(t)− (pz)(t)| ≤ 1

α
e

−β
α t

∫ t

0

e
β
α s|f(s, zns + xs)− f(s, zs + xs)|ds

Since f is a continuous function, we have

∥(pzn)− (pz)∥b ≤
∥f(., zn(.) + x(.))− f(., z(.) + x(.))∥∞

β
→ 0

as n → ∞.
Step 2. P maps bounded sets into bounded sets in C0.
Indeed, it is enough to show that for any η > 0, there exists a positive constant l such that
for each z ∈ Bη = {z ∈ C0 : ∥z∥b ≤ η} one has ∥P (z)∥∞ ≤ l. Let z ∈ Bη. Since f is
continuous function, we have for each t ∈ [0, b]

|(P (z)(t)| ≤ 1

α
e

−β
α t

∫ b

0

e
β
α sf(s, zs + xs)ds

≤ 1

α
e

−β
α t

∫ b

0

e
β
α s[p(s) + q(s)||zs + xs||B ]ds

≤ ∥p∥∞
β

+
∥q∥∞
β

η∗ =: l,

where

∥zs + xs∥B ≤ ∥zs∥B + ∥xs∥B ≤ Kbη +Mb∥ϕ∥B := η∗,

and
Mb = sup{|M(t)| : t ∈ [0, b]}.
Hence∥P (z)∥∞ ≤ l.
Step 3. P maps bounded sets into equicontinuous sets of C0.
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Let t1, t2 ∈ [0, b], t1 < t2, and let Bη be a bounded set of C0 as in step 2. Let z ∈ Bη.Then
for each t ∈ [0, b], we have

|(Pz)(t2)− (Pz)(t1)|

=
1

α
|
∫ t1

0

e
β
α s(e

−β
α t2 − e

−β
α t1)f(s, zs + xs)ds

+

∫ t2

t1

e
β
α se

−β
α t2f(s, zs + xs)ds|

≤ ∥p∥∞ + ∥q∥∞η∗

α

∫ t1

0

e
β
α s(e

−β
α t1 − e

−β
α t2)ds

+
∥p∥∞ + ∥q∥∞η∗

α

∫ t2

t1

e
β
α se

−β
α t2ds

≤ ∥p∥∞ + ∥q∥∞η∗

α
(e

−β
α t1 − e

−β
α t2)

α

β
(e

−β
α t1 − 1)

+
∥p∥∞ + ∥q∥∞η∗

α
(e

−β
α t2)

α

β
(e

β
α t2 − e

β
α t1)

≤ ∥p∥∞ + ∥q∥∞η∗

β
(1− e

β
α (t1−t2) − e

−β
α t1 + e

−β
α t2)

+
∥p∥∞ + ∥q∥∞η∗

β
(1− e

β
α (t1−t2))

≤ ∥p∥∞ + ∥q∥∞η∗

β
(2− 2e

β
α (t1−t2) − e

−β
α t1 + e

−β
α t2)

≤ 2
∥p∥∞ + ∥q∥∞η∗

β
(1− e

β
α (t1−t2)).

As t1 → t2, |(pz)(t2) − (pz)(t1)| → 0. As a consequence of steps 1-3, together with Arzela-
Ascoli theorem, we can conclude that P : C0 → C0 is continuous and completely continuous.
Step 4 (A priori bounds ). We now show that there exists an open set U ⊆ C0 with z ̸= λp(z)
for λ ∈ (0, 1) and z ∈ ∂U.
Let z ∈ C0 and z = λP (z) for some 0 < λ < 1. Then for each t ∈ [0, b] we have

z(t) = λ

[
1

α
e

−β
α t

∫ t

0

e
β
α sf(s, zs + xs)ds

]
.

This implies by (H2)

|z(t)| ≤ 1

α
e

−β
α t

∫ t

0

e
β
α sq(s)∥zs + xs∥B ds+

∥p∥∞
β

, t ∈ [0, b].

But

∥zs + xs∥B ≤|z∥B ≤ K(t) sup{|z(s)| : 0 ≤ s ≤ t}
+M(t)∥z0∥B +K(t) sup{|x(s)| : 0 ≤ s ≤ t}+M(t)∥x0∥B
≤Kb sup{|z(s)| : 0 ≤ s ≤ t}+Mb∥ϕ∥B .

If we denote by w(t) the right side of (6), then we have ∥zs + xs∥B ≤ w(t), and therefore

z(t) ≤ 1

α
e

−β
α t

∫ t

0

e
β
α sq(s)w(s)ds+

∥p∥∞
β

, t ∈ [0, b].



EXISTENCE RESULTS FOR FRACTIONAL ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 117

Using the above inequality and the definition of w we have that

w(t) ≤ Mb∥ϕ∥B +
Kb∥p∥∞

β
+

Kb∥q∥∞
α

∫ t

0

e
−β
α te

β
α sw(s)ds, t ∈ [0, b].

Then from Lemma 3.4, we have

|w(t)| ≤ Mb∥ϕ∥B +
Kb∥p∥∞

β
+

Kb∥q∥∞
α

∫ t

0

e
−β
α te

β
α sR exp

[∫ t

s

e
−β
α te

β
αud(u)

]
ds

≤ Mb∥ϕ∥B +
Kb∥p∥∞

β
+

Kb∥q∥∞
α

∫ t

0

e
−β
α te

β
α sR exp

[
α

β
e

−β
α t(e

β
α t − e

β
α s)

]
ds

≤ Mb∥ϕ∥B +
Kb∥p∥∞

β
+

Kb∥q∥∞
α

∫ t

0

e
−β
α te

β
α sR exp

[
α

β

]
ds

≤ Mb∥ϕ∥B +
Kb∥p∥∞

β
+ exp

[
α

β

]
Kb∥q∥∞

α

∫ t

0

e
−β
α te

β
α sR ds

≤ Mb∥ϕ∥B +
Kb∥p∥∞

β
+K(α)

Kb∥q∥∞
α

∫ t

0

e
−β
α te

β
α sR ds,

where

R = Mb∥ϕ∥B +
Kb∥p∥∞

β
, K(α) = exp

[
α

β

]
.

Assume that
Kb∥q∥∞

α
≥ 1,

hence

∥w∥∞ ≤ R+
RK(α)Kb

β
:= M̃.

Then

∥z∥∞ ≤ M̃∥Iαq∥∞ +
∥p∥∞
β

:= M∗.

Set

U = {z ∈ C0 : ∥z∥b < M∗ + 1}.
P : U → C0 is continuous and completely continuous. From the choice of U ,there is no
z ∈ ∂U such that z = λp(z), for λ ∈ (0, 1). As a consequence of the nonlinear alternative of
Leray-Schauder type [8], we deduce that p has a fixed point z in U . □

4. NFDEs of fractional order

In this section we give existence result for the IVP (3)-(4)

Definition 4.1. A function y ∈ Ω is said to be a solution of (3)-(4) if y satisfies the
equation Dα[y(t)− g(t, yt)] = f(t, yt) on J , and y(t) = ϕ(t) on (−∞, 0].

Our first existence result for the IVP (3)–(4) is also based on the Banach contraction
principle.

Theorem 4.1. Assume that (H) holds and moreover
(A) there exists a nonnegative constant c1 such that
|g(t, u)− g(t, v)| ≤ c1∥u− v∥B , for every u, v ∈ B.
If Kb[c1 + l

β ] < 1 then there exists a unique solution for the IVP (3)-(4) on the interval

(−∞, b].
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Proof. Consider the operator N1 : Ω → Ω defined by

N1y(t) =

ϕ(t), t ∈ [−∞, 0],

g(t, yt) +
1

α
e

−β
α t

∫ t

0

e
β
α sf(s, ys)ds, t ∈ [0, b].

(4.1)

In analogy to Theorem 3.5, we consider the operator P1 : C0 → C0 defined by

(P1z)(t) =

0, t ≤ 0

g(t, zt + xt) +
1

α
e

−β
α t

∫ t

0

e
β
α sf(s, zs + xs)ds, t ∈ (0, b].

(4.2)

We shall now show that the operator P1 is a contraction.
Let z, z∗ ∈ Ω. Then following the steps of Theorem 3.3, we have

|P1(z)(t)− P1(z∗)(t)| ≤ |g(t, zt + xt)− g(t, z∗t + xt)|

+
1

α
e

−β
α t

∫ t

0

|e
β
α sf(s, zs + xs)− f(s, z∗s + xs)|ds

≤c1∥zt − z∗∥B +
1

α
e

−β
α t

∫ t

0

e
β
α s l∥zs − z∗s∥B ds

≤c1kb sup{|z(s)− z∗(s)| : s ∈ [0, t]}

+
1

α
e

−β
α t

∫ t

0

e
β
α s l kb sup{|z(s)− z∗(s)| : s ∈ [0, t]}ds

Consequently,

|P1(z)(t)− P1(z∗)(t)|b ≤ kb[c1 +
l

β
]∥z − z∗∥b,

which implies that P1 is a contraction. Hence, P1 has a unique fixed point by Banach’s
contraction principle.

□

Our second existence result for the IVP (3)-(4)is based on the nonlinear alternative of
Leray Schauder.

Theorem 4.2. Assume (H1)-(H2) and the following condition:
(H3) The function g is consinuous and completely continuous, and for any bounded set B
∈ Ω, the set {t → g(t, yt) : y ∈ B} is equicontinuous in C([0, b],R) and there exist constants
0 ≤ kbd1 < 1, d2 ≥ 0 such that |g(t, u)| ≤ d1∥u∥B + d2, t ∈ [0, b], u ∈ B.
Then the IVP (3)-(4) has at least one solution on (−∞, b].

Proof. Let P1 : C0 → C0 be defined as in Theorem 4.2. We shall show that the operator P1

is continuous and completely continuous.
Using (H3) it suffices to show that the operator P2 : C0 → C0 defined by

P2(z)(t) = g(t, zs + xs) +
1

α
e

−β
α t

∫ t

0

e
β
α sf(s, zs + xs)ds. t ∈ [0, b]

is continuous and completely continuous. This was proved in Theorem 3.5.
We now show that there exists an open set U ⊆ C0 with z ̸= λP1z for λ ∈ (0, 1) and z ∈ ∂U.
Let z ∈ C0 and z = λN1(z) for some 0 < λ < 1. Then

(z)(t) = λ

[
g(t, zt + xt) +

1

α
e

−β
α t

∫ t

0

e
β
α sf(s, zs + xs)ds

]
. t ∈ [0, b]
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and

|z(t)| ≤ d1∥zt + xt∥B + d2 +
∥p∥∞
β

+
1

α
e

−β
α t

∫ t

0

e
β
α sq(s)∥zs + xs∥Bds, t ∈ [0, b]

Thus,

w(t) ≤ 1

1− kbd1

[
2kbd2 + kb

∥p∥∞
β

+ kb
∥q∗∥∞

α
e

−β
α t

∫ t

0

e
β
α sw(s)ds

]
, t ∈ [0, b]

and consequently,

∥w∥∞ ≤ R1 +
R1Kb∥q∗∥∞
(1− kbd1)β

:= L,

where

∥q∗∥∞ =
∥q∥∞

1− kbd1
, and R1 =

1

1− kbd1
[2kbd2 + kb

∥p∥∞
β

].

Then

∥z∥∞ ≤ d1∥ϕ∥B + 2d2 + Ld1 +
∥p∥∞
β

+ L∥Iαq∥∞ := L∗

Set
U1 = {y ∈ C0 : ∥y∥b < L∗ + 1}

From the choice of U , there is no y ∈ ∂U1 such that y = λp2(y)forλ ∈ (0, 1). As a conse-
quence of the nonlinear alternative of Leray-Schauder type, we deduce that p2 has a fixed
point z in U1. Then N1 has a fixed point which is a solution of the IVP (3)-(4). □

5. An Example

We provide an illustrative example as follows.

Dαy(t) =
C
(

1
x2+1

)−ω
1

x2+1∥yt∥(
1

x2+1 + (x2 + 1)
)
(1 + ∥yt∥)

, t ∈ J := [0, b], α ∈ (0, 1) (5.1)

y(t) = ϕ(t), t ∈ (−∞, 0]. (5.2)

Let ω > 0 and Bω = {y ∈ C((−∞, 0],R) : limθ→−∞

(
1

θ2+1

)ω
y(θ) exists in R}.

The norm of Bω is given by ∥y∥ω = sup−∞<θ≤0

(
1

θ2+1

)ω
|y(θ)|.

Let y : (−∞, b] → R be such that y0 ∈ Bω. Then

lim
θ→−∞

(
1

θ2 + 1

)ω

yt(θ) = lim
θ→−∞

(
1

θ2 + 1

)ω

y(t+ θ) = lim
θ→−∞

(
1

(θ − t)2 + 1

)ω

y(θ)

≤ lim
θ→−∞

(
1

(θ − t)2 + 1

)ω

y0(θ) = lim
θ→−∞

(
1

θ2 + 1

)ω

y0(θ) < ∞.

Hence, yt ∈ Bω. Finally we prove that
∥yt∥ω ≤ K(t) sup{|y(s)| : 0 ≤ s ≤ t}+M(t)∥y0∥ω,
where K = M = 1 and H = 1. We have |yt(θ)| = |y(t+ θ)|.
If θ + t ≤ 0, we get
|yt(θ)| ≤ sup{|y(s)| : −∞ < s ≤ 0}
For t+ θ ≥ 0, we have
|yt(θ)| ≤ sup{|y(s)| : 0 < s ≤ t}.
Thus for all t+ θ ∈ [0, b], we get
|yt(θ)| ≤ sup{|y(s)| : −∞ < s ≤ 0}+ sup{|y(s)| : 0 ≤ s ≤ t}.
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It is clear that (Bω, ∥ · ∥ω) is a Banach space. We can conclude that Bω is a phase space.
Set

f(t, x) =

(
1

x2+1

)−ω
1

x2+1x(
1

x2+1 + (x2 + 1)
)
(1 + x)

, (t, x) ∈ [0, b]×Bω.

Let x, y ∈ Bω. Then we have

|f(t, x)− f(t, y)| =

(
1

x2+1

)−ω
1

x2+1

C
(

1
x2+1 + (x2 + 1)

) ∣∣∣∣ x

1 + x
− y

1 + y

∣∣∣∣ =
(

1
x2+1

)1−ω

|x− y|

C
(

1
x2+1 + (x2 + 1)

)
(1 + x)(1 + y)

≤

(
1

x2+1

)
|x− y|Bω

C
(

1
x2+1 + (x2 + 1)

) ≤ 1

C
∥x− y∥Bω

Hence the condition H holds. Assume that 1
βC < 1. Since K = 1, then 1

βC < 1..

Then by theorem 3.3 the problem 11-12 has a unique solution on (−∞, b].
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