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EXISTENCE RESULTS FOR FRACTIONAL ORDER FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN THE SENSE
OF THE DEFORMABLE DERIVATIVE

MESFIN ETEFA!, GASTON M. NGUEREKATA?2

ABSTRACT. In this article, we discuss the existence and uniqueness of solutions for initial
value problems of fractional order functional and neutral functional differential equations
with infinite delay. We use the deformable derivative introduced in 2017 by Zulfeqarr
et. al (see [21]). Our results are obtained using the Banach fixed point theorem and
the nonlinear alternative Leray—Schauder type theorem. We provide an example as an
illustration of the main results.

1. INTRODUCTION

The concept of deformable derivative was recently introduced by F. Zulfeqarr, A. Ujlayan,
and P. Ahuja [21]. Using this relatively new fractional derivative, we established the existence
and uniqueness of solutions to evolution equations with nonlocal and local conditions (See
[16, 17]). In [8], we studied solutions to the impulsive fractional differential equation :

D%(t) = f(t,y), t € J =1[0,T], t # t, (1.1)

Aylies, = Lu(y(t;) (1.2)

y(0) = yo, (1.3)

where k =1,...,m,0 < a < 1, D% is the deformable fractional derivative of y. In this paper,

we study the existence solutions for initial value problems of fractional order functional
differential equations with infinite delay. We consider the initial value problem

Day(t):f(t,yt),fOTtGJ: [Ovb]vae (071)7 (14)

y(t) = o(t),t € (—o0,0], (1.5)
where D? is the deformable derivative, f : J x B — R is a given function,
¢ € B ( a phase space) , ¢(0) =0, and y:(0) = y(t +0),0 € (—o00,0],t € J, y is defined on
(—00,b], and y; is the element of B defined here. Here y:(-) represents the history of the
state from time —oo up to the present time t.
Then we study fractional neutral functional differential equation :

Dy(t) — g(t,y)] = f(t,ye), €,
where g : J x B — R is a given function such that ¢(0, ¢) = 0.
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2. PRELIMINARIES

In this section, C(J,R) stands for the Banach space of all continuous functions from .J
into R with the norm

9lloo := sup{|y(t)| : t € J}.
where | - | denotes a suitable complete norm on R.

Definition 2.1. ([21]) Let f be a real valued function on [a, 8], a € [0,1]. The deformable
derivative of f of order « at t € (a,b) is defined as:

D f(t) = lim (1+eB)f(t+ex) — f(t),

e—0 €

where a 4+ 8 = 1. If the limit exists, we say that f is a-differentiable at ¢.

Remark 2.1. If @ =1, then 8 = 0, we recover the usual derivative. This shows that the
deformable derivative is more general than the usual derivative.

Definition 2.2. ([21]) For a € (0,1], the a-integral of the function h € L'([a,b],R ) is
defined by

1 _ t
ISh(t) = —eTﬁt/ egwf(:n)d:c, t € la,b],
« a
where a4+ 5 = 1. When a = 0 we use the notation
1 -5, 8

t
I*h(t) = —e™= / e>"h(x)dx.
0

(%

Remark 2.2. If a = 1, then § = 0, we recover the usual Riemann integral. This also
shows that the a-integral is more general than the usual Riemann integral.

In what follows, we assume that the state space (B, ||-||5) is a seminormed linear space of
functions mapping (—oo, 0] into R satisfying the following fundamental set of axioms from
Hale and Kato in [11].

(A) Ify: (—o0,b] = R, and yo € B, then for every ¢ € [0, b] the following conditions hold:
(1) y; isin B.
(2) [lyellp < K (&) sup{[y(s)| : 0 < s < ¢} + M(#)l|yoll 5,
(3) |ly(t)] < Hllyt|lg, where H > 0 is a constant, K : [0,b] — [0,00) is continuous,
M : [0,00) — [0, 00) is locally bounded and H, K, M are independent of y(-).
(A-1) For the function y(-) in (A), y; is a B-valued continuous function on [0, b].
(A-2) The space B is complete.

Theorem 2.1. ([21]) A differentiable function h at a point ¢ € (a,b) is always a-
differentiable at that point for any «. Moreover, we have

D“h(t) = Bh(t) + aDh(t).
Corollary 2.2. ([21]) An « - differentiable function f defined in (a,b) is differentiable

as well.
Theorem 2.3. ([16],[21]) The operators D and IS possess the following properties:
Let a, 1,0 € (0,1] such that a+ =1, a; + ;=1 fori=1,2.

(1) Let f be differentiable at a point t for some a. Then it is continuous there.
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(2) Suppose f and g are a-differentiable. Then

D(f o g)(t) = B(f o g)(t) + aD(f o g)(t)
= B(fog)(t) + af (g(t))g' (1)
(3) Let f be continuous on [a,b]. Then IS f is a- differentiable in (a,b), and we have

D(ISf(1) = f(t), and
I8(Df(t) = f(t) — e= @0 f(a).

De(f) —
() po (L) = #22U) o)
g g
(5) Linearity : D*(af 4+ bg) = aD*f + bD>g.
(6) Commutativity : D* - D% = D*2 . D1,
(7) For a constant ¢, D*(c) = Bc.
(8) D*(fg) = (D*f)g + afDy.
(9) Linearity : IS (bf +cg) = bI2 f + cI%g.
(10) Commutativity : IS+ I82 = I&2]¢1,

3. EXISTENCE OF SOLUTIONS
Let Q@ = {y : (—00,b] = R : y|[ is continuous }
Definition 3.1. A function y € Q is said to be a solution of (4)—(5) if y satisfies the
equation D*y(t) = f(¢,y:) on J, and the condition y(t) = ¢(¢) on (—o0,0].

Lemma 3.1. [8] Let 0 < aw < 1 and let h : (0,b] — R be continuous and lim;_,o+ h(t) =
h(0T) € R. Then y is a solution of the integral equation

_ 1 — t
eTBtyo + —eTBt/ egsh(s)ds,
o 0
if and only if y is a solution of the initial value problem for the fractional differential equation
D%y(t) = h(t), te<(0,b]
y(0) = 0.
Our existence result for the IVP (4)-(5) is based on the Banach contraction principle.

Theorem 3.2. Let f:J x B — R. Assume
(H) There exists | > 0 such that |f(t,u) — f(t,v)] <Il|lu—v| B, for t € J and every u,v € B

If % < 1, where k, = sup{|k(t)| : t € [0,b]}, then there exists a unique solution for the
IVP(4)-(5) on the interval (—o0, b].

Proof. Transform the problem (4)-(5) into a fixed point problem. Consider the operator
N : Q — Q defined by

o(t), t t € [—o0,0],
Ny(t) = le;ﬁt/ e f(s,ys)ds, t € (0,b).

« 0
Let z(-) : (—00,b] — R be the function defined by

o Jo irteinn,
(t){(b(t), if t€[-o0,0. (32)
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Then zy = ¢, for each z € C([0,b], R) with z(0) = 0. We denote by Z the function defined by

t ftel0,0
z= 20, teld), (3.3)
0, if t € (—o0,0].
If y(-) satisfies the integral equation
1o, [* s,
o) = e [ B s,
@ 0

we can decompose y(-) as y(t) = Z+ x(t),0 < ¢t < b, which implies y, = Z; + =z, for every
0 <t < b and the function z(-) satisfies

z(t) = ée%ﬁt /Ot 6g5f(5,28 + z;)ds.
Set
Co={2€C([0,b],R) : 20} =0
and let || - || be the seminorm in Cy defined by

Izlle = llz0llB + sup{|z(t)| : 0 <t < b, } = sup{z(t) : 0 <t < b} z € Cp.
Cy is a Banach space with norm || - ||,. Let the operator P : Cy — Cy be defined by

1 _ t
) = e [ B fsm )i te 0,
Q 0
That the operator N has a fixed point is equivalent to P has a fixed point, and so we turn
to proving thatP has a fixed point. We shall show that P : Cy — ¢( is a contraction map.
Indeed, consider z, z* € Cy. Then we have for each ¢ € [0, b]

1 _ t
PG = PEOI< 2o [ eolf(5.7 4 20) = f(5,3% 4 m)lds
0
Uo—s, (Y s .
< —e e~’l||zs — Zk||pds
o 0
1 —s, [V &,
< —e%t/ et UK, sup ||z(s) — z*(s)||ds
Q@ 0 s€[0,t]
Ky -8, [* 5,
< —beTBt/ easl ds||z = z"|s-
« 0
Therefore,
oy~ Bolllz = 2"ls
Ip(2) = p(z")|| < 7
B
hence P is a contraction. Therefore, P has a unique fixed point by Banach’s fixed point
principle.

Now we give an existence result based on the nonlinear alternative of Leray—Schauder type.
For this, we state the following standard Gronwall’s inequality:

Lemma 3.3. [6] If

o0 <h(®)+ [ Ke)a(s)ds, 1€ fo.T),

to
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where all functions involved are continuous on [to,T), T < +oo, and k(t) > 0, then z(t)
satisfies

x(t) < h(t) + /t h(s)k(s) exp [/: k(u)d(u)} ds, t € [to, T).

to

Theorem 3.4. Assume that the following hypotheses hold:
(H1) fis a continuous function

(H2) there exist p,q € C(J, RT) such that

£ (&, u)l < p(t) + q(@)|[ull B

fort e J and eachu € B, and || I%p|loc < 0.
Then the IVP (1)-(2) has at least one solution on(—o0, b]

O

Proof. LetP : Cy — Cy be defined as in the proof of Theorem 3.2. We shall show that the
operator P is continuous and completely continuous.

Step 1. P is continuous
Let {z,} be a sequence such that z, — z € C. Then

(B20)(6) = (=)0 < e [ e8I (5,20, +2) = 5.5+ )l ds
0

Since f is a continuous function, we have

92 - 9l < T ) —FZ0 e

as n — o0o.

Step 2. P maps bounded sets into bounded sets in Cj.

Indeed, it is enough to show that for any n > 0, there exists a positive constant [ such that
for each z € B, = {z € Cy : ||z|ly < n} one has ||[P(2)||oc < I. Let z € B,,. Since f is
continuous function, we have for each ¢ € [0, b]

-8 b B
(P()(8)] < —e=t / e F(5, 2, + 2,)ds
0

1
o
1

INA
D“‘D

e

b
t/o e§5[p(3)_|_q(5)”§é+$3||B]d3

(0%
< Pl llall

e Moy —.,

- B B
where

I1Zs + @slls < |Z:ll + llaslls < Kon + Myl glls =17,
and
My = sup{|M(t)| : t € [0,b]}.
Hence|| P(2)]|co <.
Step 3. P maps bounded sets into equicontinuous sets of Cj.
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Let t1,t2 € [0,b],t1 < t2, and let B, be a bounded set of Cj as in step 2. Let z € B,,. Then
for each ¢ € [0,b], we have

|(Pz)(t2) — (Pz )(tl)\
f\/ s —e%ﬂtl)f(s,zs—i—xs)ds

+/ eatea 2fzf(s Zs + 5)ds]
t1

* t
[1Plloc + llglloom / ' 655(6%‘%1 _ e%ﬁw)ds
0

e
o plloe + llglloon® /“ oLso =2t g
e! t
< 1PNl + llglloon” (e%‘*tl _ e%"tz)g(e%ﬁn ~1)
e
Iplloc + lgllcon™ , =4, 0, 24, B4
Wl Mol 50 e — ey
< W(l *(751 t2) _ o Ly +e—ﬁtz)
TTECTVIR S
< M@ % L(ti—ta) _ e 2t Lew t2)
- g

o IPlloo + llgllocn® (1= 2ty

As t; — to, [(p2)(t2) — (pz)(t1)| — 0. As a consequence of steps 1-3, together with Arzela-
Ascoli theorem, we can conclude that P : Cy — Cy is continuous and completely continuous.
Step 4 (A priori bounds ). We now show that there exists an open set U C Cjy with z # Ap(z)
for A € (0,1) and z € OU.
Let z € Cp and z = AP(z) for some 0 < A < 1. Then for each ¢ € [0, b] we have

-8,

()—)\{ea /teisf(s,zs—i—xs)ds.

« 0

This implies by (H2)

[Iplloo

et [ evoq(s)|Zs + x4l p ds +
0 8

t €10,b].
But
12+ alls <[Zls < K(t) sup{|=(s)] : 0 < s < 1}

M(@)|lz0llp + K () sup{[z(s)[ : 0 < s <t} + M(t)||20ll B
<Kpsup{[z(s)] : 0 <5 <t} + My|¢] 5.

If we denote by w(t) the right side of (6), then we have ||Z; + zs||p < w(t), and therefore

2(t) < Tﬁt/o egsq(s)w(s)der % t €[0,b].

1
o
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Using the above inequality and the definition of w we have that

Kb Plloo Kb q|loo
w(t) < M| + 0L ol

Then from Lemma 3.4, we have

t
/e%ﬁtegsw(s)ds, t €[0,0].
0

K ') K 0o t _ r prt B
(o)) < Myfolp + S0y Bl [Fozticton ey | [ eftezudm)} s
0 LY S
Kolplleo  Kpllgllee [F = —
< ol + Sy Kollelee " 2ot oy [0 — )
o 0 i
K K, - t _
< Myl + b”ﬁp”“+ b”j” /eTﬂtegsR cap g} ds
0 L
K, K t
< Myl + ZolPloe 4 M aldle [* <tbep
g 1
Ky ||pl|o Kllglle [t -
§M6||¢||B+b”ﬁp”+K(a)baq”/ el g ds.
0
where "
Ky ||pl| o a
Assume that
% > 1,
«
hence -
\lelm§R+R (g” b ._ AT
o [l
T || T Plloo N
l|2]loe < M|IT q||00+T = M*.
Set

U={z€Co:|z|lp < M*+1}.
P : U — () is continuous and completely continuous. From the choice of U,there is no

z € OU such that z = Ap(z), for A € (0,1). As a consequence of the nonlinear alternative of
Leray-Schauder type [8], we deduce that p has a fixed point z in U. g

4. NFDES OF FRACTIONAL ORDER

In this section we give existence result for the IVP (3)-(4)

Definition 4.1. A function y € € is said to be a solution of (3)-(4) if y satisfies the
equation D*[y(t) — g(t,y)] = f(¢,y:) on J, and y(t) = ¢(¢) on (—o0, 0].

Our first existence result for the IVP (3)—(4) is also based on the Banach contraction
principle.

Theorem 4.1. Assume that (H) holds and moreover
(A) there exists a nonnegative constant ¢y such that
l9(t,u) — 9(t, )| < esllu— vllp, for every u, v € B.
If Kpler + é] < 1 then there exists a unique solution for the IVP (3)-(4) on the interval
(—00,b].
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Proof. Consider the operator Ny : Q — § defined by
(1), t € [—00,0],

Nyy(t) = 1 - t 4.1
VO o+ Lo [ s uas 1eo .
0
In analogy to Theorem 3.5, we consider the operator P; : Cy — Cy defined by
0, t<0
(P12)(t) = (4.2)

1 t
g(t,Zy + x) + aeTﬁt/ egsf(s,fs + x5)ds, te(0,b].
0

We shall now show that the operator P; is a contraction.
Let z, z, € Q. Then following the steps of Theorem 3.3, we have

[PL(2)(t) = Pa(z.)(8)] < Ig(t Ze 4 ae) — g, 7y + )|
—ea / |ea (8,Zs + xs) — f(8,Zng + xs)|ds

1 - _ _
<erllz ~Zlls + e t/ €25 1|12, — Zusll ds
0

<crkpsup{|z(s) — z«(s)| : s € [0, ]}

1 t
+fwﬂ/e%ZMwMM@—a@M8HQM@

« 0

Consequently,

Pu(2)(t) = Pu(z) )y < Koler + é

which implies that P; is a contraction. Hence, P; has a unique fixed point by Banach’s
contraction principle.

Iz = zlls,

O

Our second existence result for the IVP (3)-(4)is based on the nonlinear alternative of
Leray Schauder.

Theorem 4.2. Assume (H1)-(H2) and the following condition:
(H3) The function g is consinuous and completely continuous, and for any bounded set B
€ Q, the set {t — g(t,y:) : y € B} is equicontinuous in C([0,b],R) and there exist constants
0 < kpdy < 1,do > 0 such that |g(t,u)| < di|ju|lg + de, ¢t € [0,b],u € B.
Then the IVP (3)-(4) has at least one solution on (—oo,b].

Proof. Let Py : Cy — Cj be defined as in Theorem 4.2. We shall show that the operator P;
is continuous and completely continuous.
Using (H3) it suffices to show that the operator P : Co — Cy defined by

1 — t

Po(2)(t) = glt %o + 20) + aevﬁt/ ¢35 F(5, %, + 25)ds. t € [0,1]
0

is continuous and completely continuous. This was proved in Theorem 3.5.
We now show that there exists an open set U C C with z # APz for A € (0,1) and z € 9OU.
Let z € Cp and z = AN;(z) for some 0 < A < 1. Then

t
/ egsf(s,fs—i—xs)ds . t€[0,b]

0

=8¢

(2)(t) = A |g(t, %+ 24) + ée -
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and

0o 1 =8 ¢ By _
|2(t)] §d1||§t+xt||3+d2+%+ae a t/ e=®q(s)||Zs + zs||gds, t€[0,D]
0

Thus,

1 llpll o llg" Il Et/t 2
t) < —— [2kpd k k o a® d te0,b
w()_lfkbdl vdo + Ky 3 + kyp " e Oe w(s)ds| , €10, ]

and consequently,

R1K[lq" || o
Wl oo S R + T N, La
[[w]] Y hdi )5
vhere lal ol
o= e nd Ry = ——[2kydy + ky PPN
g 1— kyd, and Iy 1—kbd1[ bd2 + Kp ]
Then
||Z||OO < d1H¢||B + 2ds + Ld; + ||pﬁ|oo + LHI“L]HOO =L*
Set

U, = {y € Cy: ||y||b <L*+ 1}
From the choice of U, there is no y € dU; such that y = Apa(y)forA € (0,1). As a conse-

quence of the nonlinear alternative of Leray-Schauder type, we deduce that py has a fixed
point z in Uy. Then N; has a fixed point which is a solution of the IVP (3)-(4). |

5. AN EXAMPLE

We provide an illustrative example as follows.

C(#1)  alul
(31 + @+ 1) 0+ )
y(t) = ¢(t), te (—o0,0]. (5.2)
Let w > 0 and B, = {y € C((—00,0],R) : limy_,_ (ﬁ) y(0) exists in R}.

Doy(t) = teJ:=[0,b], ac01) (5.1)

The norm of B, is given by |ly|l, = SUP_ oo <p<0 (ﬁ) ly(8)].
Let y : (—o00,b] — R be such that yg € B,,. Then

. 1\ . L - ! ’
egrzloo (02“> y(0) = OLIIEIOO (92+1> y(t+6) = GEIPOO <(0t)2+1) y(0)
1 “ 1
< i —_— = 1l YRR :
eﬂmoo<(0_t)2+1) W)=, o (92+1> i) <

Hence, y; € B,,. Finally we prove that

1Yelle < K () sup{[y(s)] : 0 < s <t} + M(t)|lyoll.,

where K = M =1 and H = 1. We have |y, (0)| = |y(t + 0)|.
If6+4+¢t <0, we get

|y (0)] < sup{|y(s)[ : —o0 <'s <0}

For t + 6 > 0, we have

|y (0)] < sup{ly(s)[ : 0 < s < t}.

Thus for all t + 60 € [0,b], we get

[e(0)] < sup{Jy(s)| : —o0 < 5 < 0} + sup{Jy(s)] : 0 < 5 < 1}.
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It is clear that (B, | - ||lw) is a Banach space. We can conclude that B, is a phase space.
Set

1 \Y
(m) P i
(ﬁ + (22 + 1)) (14 z)

Let x,y € B,,. Then we have

f(t,l’) =

(t,z) € [0,b] X B,.

[f(t, ) = f(t,y)]

1 \7Y 1 T
(#1) = ‘a: y (#7) -yl

C( . x2—|—1)) T+ 1+@/‘_C(w21+1+(x2+1))(1+x)(1+y)

(z2+1) lz -y, 1
< Lz~ ylls.
(x EES x2+1))

Hence the condition H holds. Assume that B% < 1. Since K =1, then B% < 1.
Then by theorem 3.3 the problem 11-12 has a unique solution on (—o0, b].

| N
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