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Bound states in the continuum (BICs) provide a viable way of achieving high-Q resonances in both
photonics and acoustics. In this work, we propose a general method of constructing Friedrich-Wintgen
(FW) BICs and accidental BICs in a coupled acoustic waveguide-resonator system. We demonstrate that
FW BICs can be achieved with arbitrary two degenerate resonances in a closed resonator, regardless
of whether they have the same or opposite parity. Moreover, their eigenmode profiles can be arbitrarily
engineered by adjusting the position of the attached waveguide. This suggests an effective way of contin-
uously switching the nature of the BICs from FW BICs to symmetry-protected BICs or accidental BICs.
Also, such BICs are sustained in the coupled waveguide-resonator system with shapes such as rectangles,
ellipses, and rhomboids. These interesting phenomena are well explained by the two-level effective non-
Hermitian Hamiltonian, where two strongly coupled degenerate modes play a major role in forming such
FW BICs. Additionally, we find that such an open system also supports accidental BICs in geometry space
instead of momentum space via tuning the position of the attached waveguide, which is attributed to the
quenched coupling between the waveguide and eigenmodes of the closed cavity. Finally, we fabricate a
series of three-dimensional coupled resonator waveguides and experimentally verify the existence of FW
BICs and accidental BICs by measuring the transmission spectra. Our results complement the current BIC
library in acoustics and provide nice routes for designing acoustic devices, such as acoustic absorbers,
filters, and sensors.

DOI: 10.1103/PhysRevApplied.18.054021

I. INTRODUCTION

Bound states in the continuum (BICs) have attracted
broad interest across the photonic community in the past
10 years due to their extraordinary optical properties
[1,2]. They corresponds to trapped modes, despite being
localized within the continuous spectrum, thus having an
infinitely large Q factor. Usually, BICs must be converted
into quasi-BICs (QBICs) with finite high-Q factors for
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practical application because only QBICs can be accessed
by external excitation. The most salient property of BICs is
that they suggest a viable way of realizing ultrahigh-Q res-
onances, whereas extreme field confinement is enabled for
boosting light-matter interactions [3–6]. Different types of
BICs or QBICs, including symmetry-protected (SP) BICs
[7–10], accidental BICs [8,11], Friedrich-Wintgen (FW)
BICs [12–16], and Fabry-Perot BICs [17–21], are demon-
strated in an array structure of nanoparticles or a photonic
waveguide system.

In recent years, increasing attention has been paid to
acoustic BICs, also called trapped modes. SP BICs have
been intensively studied by different groups [22–26]. For
example, Evans and Porter considered SP BICs in a direc-
tional two-dimensional waveguide with a symmetrically
loaded rigid circular obstacle [22]. Hein et al. found that
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placing an object in a duct could excite a quasi-trapped
mode if symmetry was broken, leading to a high-Q Fano
resonance [25]. Fabry-Perot BICs have been numerically
studied by Hein et al. [27]. They found that Fabry-Perot
BICs happened only when two resonators were sepa-
rated by certain distances. FW BICs, known as embedded
trapped modes, have been theoretically studied by Hein
et al. [27], Lyapina et al. [28,29], and Dai [30].

Some early attempts at the experimental verification of
SP BICs were conducted by Parker [31,32] and Cobelli
et al. [33]. Recently developed three-dimensional (3D)
printing technology enables researchers to verify these
BICs. Huang et al. experimentally demonstrated the exis-
tence of SP BICs, FW BICs, and mirror-induced BICs
[34]. Soon after, the same group demonstrated topological
BICs [35] that arose from the merging of two Fabry-
Perot BICs. Since the Q factor of QBICs can be flexibly
tuned by structural parameters, they are used to realize
perfect absorption for both acoustic waves [36] and elas-
tic waves [37]. Although significant progress has been
made in the past few years, some open questions still
remain unanswered. (1) Is it possible to construct a FW
BIC based on any two degenerate resonances, regardless
of whether or not their parities are the same? FW BICs
are found in both photonics and acoustics [13–15,28,34].
However, the two resonances must have the same parity
and cross each other at certain geometric parameters, such
that their field profiles interchange with each other. (2)
Can the eigenfield profile of FW BICs be arbitrarily engi-
neered? Can the nature of BICs be switched from one type
to another? (3) Do accidental BICs exist in a finite sys-
tem? Accidental BICs are found at the off-! point in the
first Brillouin zone in a photonic crystal slab [11]. How-
ever, the first Brillouin cannot be defined in such a finite
system.

Here, we report a general framework of BICs in an
open acoustic system. We find that FW BICs can be con-
structed by any two degenerate resonances in a closed
resonator, regardless of whether these two resonances
have the same or opposite parity. Furthermore, tuning the
waveguide position allows one to control the FW BIC’s
eigenfield profile arbitrarily, allowing for a continuous
transition from a FW BIC to a SP BIC (or an acciden-
tal BIC). Additionally, we find that such open systems
support accidental BICs in geometric space by tuning the
position of the attached waveguide. The formation mecha-
nisms of both FW BICs and accidental BICs are explained
by the effective non-Hermitian two-level Hamiltonian.
Finally, we experimentally demonstrate the existence of
FW BICs and accidental BICs by fabricating a series of
3D coupled resonator-waveguide systems and measuring
their transmission spectra. The BICs are manifested by the
vanishing linewidth resulting from collapse of the Fano
resonance [38]. The Q factor retrieved from the transmis-
sion spectrum is up to 340. Our findings on these BICs may

find intriguing applications in realizing high-performance
acoustic devices, such as filters and sensors.

II. RESULTS AND DISCUSSION

A. General Friedrich-Wintgen BICs
We start by investigating the resonant modes in

three types of coupled waveguide-resonator systems: a
single-port waveguide-resonator system [Figs. 1(a)–1(c)]
and two-port waveguide-resonator systems with odd
[Figs. 1(d)–1(f)] and even [Figs. 1(g)–1(i)] symmetry. For
the sake of simplicity, we focus on the two-dimensional
(2D) coupled waveguide-resonator systems to illustrate
all possible BICs in these three systems comprehensively.
Notably, under certain circumstances, BICs supported in
Fig. 1(c) are equivalent to BICs in Figs. 1(f) and 1(i), which
is proved in Sec. II C. Thus, we first consider the BICs
in a single-port waveguide-resonator system, as shown in
Fig. 1(c). The exterior boundary of the waveguide and
resonator are set as a hard boundary to mimic acoustic
wave propagation in the real acoustic system. Without loss
of generality, we set the width of the two waveguides as
d = 10 cm and the height of the rectangular resonator as
Ly = 20 cm. Also, we define the size ratio of the resonator
as R = Ly /Lx, where Lx is the width of the rectangular res-
onator. In our previous study [34], we demonstrated that
such an open non-Hermitian system supported a series of
leaky modes, usually denoted as Mml (m and l are the num-
ber of antinodes along the x and y axes, respectively). Each
leaky mode is represented by a complex eigenfrequency,
ω = ω0 − iγ , with its Q factor, Q = ω0/2γ , where ω0 and
γ are, respectively, the resonant frequency and radiative
decay rate. Importantly, the leaky modes supported by this
open system play a dominant role in controlling the reflec-
tion (transmission) spectra, as demonstrated by temporal
coupled-mode theory [34,39]. Thus, searching for BICs
turns to finding leaky modes with a zero radiative-decay
rate or an infinite Q factor. Here, the leaky modes are calcu-
lated by using the commercial software package COMSOL
Multiphysics.

Remarkably, we find that the structure shown in Fig. 1(c)
supports many types of BICs. Figure 2(a) shows the BIC
with the lowest eigenfrequency, the eigenfield distribution
of which is displayed in the inset when R is varied from
0.95 to 1. Interestingly, this BIC also exists in the two-port
system with odd symmetry, as shown in Fig. 2(b). Careful
examination on the eigenfield profile suggests that such a
BIC is the superposition of the eigenfield profiles of modes
M 12 and M 21 of a closed cavity [see Fig. 2(c)], which can
be fitted as

ψBIC(x, y) ≈ Aψ21(x, y) + Bψ12(x, y), (1)

where ψ12 and ψ21 represent the eigenfield distributions of
closed-cavity modes M 12 and M 21, respectively. A and B
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FIG. 1. Schematic drawing of an open resonator system. (a)–(c) Schematic illustration of a 3D single-port waveguide-resonator
system with square or circular cross sections and its 2D equivalent. (d)–(f) Schematic illustration of a 3D two-port waveguide resonator
system with odd symmetry and its 2D equivalent. (g)–(i) Schematic illustration of a 3D two-port waveguide-resonator system with
even symmetry and its 2D equivalent.

are found to be 0.411 and −0.912, respectively. We show
how to derive the coefficients in Sec. II C 1. The lowest
eigenmodes, M 21 and M 12, are chosen because they belong
to different irreducible representations of group-symmetry
C2σ . All of the leaky modes in the open rectangular res-
onator can be decomposed into the eigenmodes in the
closed system, which form the complete orthogonal basis.
It is necessary to point out that such a BIC has never been
observed before, in either photonics or acoustics. Since the
right and bottom hard boundaries can be viewed as two
partial mirrors, this FW BIC corresponds to the FW BICs
in a extended resonator sandwiched between two acoustic
waveguides, as shown in Fig. 2(d). The BIC’s eigenfield
profile is equivalent to one quarter of the eigenfield profile
of Friedrich-Wintgen BIC M 13 [see the inset of Fig. 2(d)].
More examples can be easily constructed by finding the
FW BICs in a two-port waveguide–full-resonator system
[see Figs. 2(e) and S1 within the Supplemental Material
[47]]. In Sec. II C 1, we demonstrate that these BICs are
FW BICs. For example, the BICs in Figs. 2(a) and 2(b) are
the result of destructive interference of eigenmodes M 12
and M 21 in a closed cavity, although these two modes have

opposite parity. A similar situation also occurs for the BIC
in Fig. 2(e), which is attributed to the destructive interfer-
ence of modes M 31 and M 22 in the closed cavity. Here, it
is worth commenting that the mirror-induced BICs shown
in Fig. 2(g) in Ref. [34] also belong to FW BICs. They are
caused by the destructive interference of eigenmodes M 21
and M 13 in a closed resonator (Fig. S2 within the Supple-
mental Material [47]). In addition, it is worth pointing out
that a rectangular resonator is not the only resonator that
can host such BICs. We also find this BIC in an elliptical
resonator [Fig. 2(f)] and a rhomboid resonator system (Fig.
S3 within the Supplemental Material [47]).

Note that such a FW BIC always exists, even when the
attached waveguide position is moved along four sides
[Fig. S4(a) within the Supplemental Material [47] ]. Inter-
estingly, its eigenfield profile can be arbitrarily engineered
by adjusting the position of the attached waveguide, which
is manifested in Fig. 3(a). Moreover, it is found that this
FW BIC can be switched to a SP BIC when the attached
waveguide position is moved from the bottom to the mid-
dle point. Any other intermediate state can be viewed as
the superposition of two eigenmodes, M 12 and M 21, of a
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FIG. 2. FW BICs in an open resonator. (a) Q factor of a FW BIC in a single-port system versus the size ratio, R. Inset shows the
eigenfield profile of the BIC. (b) Q factor of a FW BIC in a two-port system with odd symmetry versus the size ratio, R. Inset shows
the eigenfield profile of the BIC. (c) Decomposition of a FW BIC into closed-cavity modes M 12 and M 21. (d) Q factor of a FW BIC
in a coupled-waveguide–full-resonator system versus size ratio. (e) Q factor of another FW BIC in a two-port waveguide-resonator
system with odd symmetry versus size ratio. (f) Q factor of a FW BIC in an open elliptical resonator versus size ratio.

closed cavity, which can be explicitly written as

ψBIC(x, y) ≈ cos θψ21(x, y) + sin θψ12(x, y). (2)

Therefore, one can speculate that the waveguide posi-
tion rotates the BIC in the Hilbert space of the eigenmodes
of the closed resonator by the angle θ . Figure 3 shows
the particular case of this mapping. Importantly, similar
phenomena also occur for other FW BICs, such as the
one shown in Fig. 2(e) [Figs. S4(b) and S5 within the
Supplemental Material [47] ] and the one arising from
destructive interference of closed-cavity modes M 13 and
M 31 [Figs. S4(c) and S6 within the Supplemental Material
[47] ]. More examples are included in Figs. S7–S9 within
the Supplemental Material [47]. Thus, we can safely con-
clude that FW BICs always exist in the systems shown in
Figs. 1(c) and 1(f), and their eigenfields can be arbitrarily
synthesized via tuning the position of the attached waveg-
uide. Also, the nature of BICs can be switched from FW
BICs to SP BICs at θ =π /2.

B. General accidental BICs
Accidental BICs were reported in a photonic crystal slab

by Hsu et al. [11]. They occur in the first Brillouin zone,
located either along the x and y axes in momentum space
or in four quadrants, depending on the structural param-
eters. However, it is difficult to define accidental BICs in
a finite system using a similar strategy because one can-
not define the first Brillouin zone in momentum space.

For the open resonator shown in Fig. 2, the accidental
BIC can be defined as the eigenmode of a closed res-
onator, the coupling of which with the propagating mode
of the waveguide accidentally turns to zero upon moving
the waveguide [40]. Since accidental BICs in a periodic
structure are found at the off-! point, while SP BICs are
hosted at the ! point, we may call BICs accidental BICs in
Hilbert space [40] when the attached waveguide deviates
from the middle point that usually hosts SP BICs like M 12
and M 22. To illustrate this notion, we again consider the
single-port waveguide-resonator system. Here, the width
of the waveguide is still set as d = 10 cm. The width and
height of the rectangular resonator are Lx = 40 cm and
Ly = 60 cm, respectively. We have to point out here that the
height and width of the resonator can take any other values,
as long as the resonant frequencies of the target mode are
below the cutoff frequency of the waveguide. Figure 4(a)
shows the Q factor of mode M 13 as the center of the waveg-
uide shifts from 5 to 55 cm. Surprisingly, two BICs occur
at yc1 = 15.45 cm and yc2 = 44.55 cm. Figure 4(b) shows
the eigenfield distribution of two BICs. Note that these
two BICs are not independent of each other. They follow
yc1 + yc2 = Ly . This is because mode M 13 is symmetric
with respect to yc = 30 cm. If there is a BIC at yc0, another
BIC appears at yc = Ly − yc0. Such BIC pairs are also
found in a two-port waveguide-resonator system with even
or odd symmetry, as confirmed in Figs. 4(c)–4(f). Another
common feature of these accidental BICs is that all critical
positions are around yc1 = 15 cm and yc2 = 45 cm, which
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FIG. 3. Eigenfield-profile engineer-
ing of a FW BIC. (a) Eigenfield profile
of a FW BIC for a single-port sys-
tem with different attached waveguide
positions. (b) Synthetic eigenfield pro-
file based on modes M 12 and M 21 in a
closed square resonator.

correspond to the nodes of closed-cavity mode M 13. Sim-
ilarly, one could construct such accidental BICs based on
modes M 14 and M 23 by altering the attached waveguide
position (Fig. S10 within the Supplemental Material [47]).

C. Formation mechanism of these two BICs
To account for the formation of these BICs, we apply

the method of an effective non-Hermitian Hamiltonian
[2,41–45]. The Hamiltonian is the result of the Feshbach
projection of total space onto the inner Hilbert space of
eigenmodes in a closed resonator:

Heff = HR −
∞∑

p=1

∑

C

ikpWCpW+
Cp , (3)

where the first term, HR, represents the dynamics of the
closed resonator, and the matrices, Wcp , represent the cou-
pling of resonators modes with the pth channels of Cth
waveguides with wave number kp .

Again, we consider the coupled waveguide-resonator
system shown in Fig. 1(c). To make the conclusion as
general as possible, we set the width of the waveguide as

d = 1(unitless), and the width and height of the resonator
are Lx and Ly , respectively. Also, for the sake of conve-
nience, we take the bottom-left corner of the resonator as
the origin, and the middle point of the attached waveg-
uide position is y = y0. Thus, the waveguide spans from
y = y0 − 1/2 to y = y0 + 1/2. The first step is to compute
the eigenfrequencies and eigenmodes of a closed resonator.
They can be solved analytically with Neuman boundary
conditions as follows:

ν2
mn

ω2
0

= (m − 1)2

L2
x

+ (n − 1)2

L2
y

, (4a)

ψmn(x, y) =
√

(2 − δm,1)(2 − δn,1)

LxLy
cos

[
π(m − 1)x

Lx

]

× cos
[
π(n − 1)y

Ly

]
, (4b)

where νmn is the resonant frequency and ω0 = πυ/d =
πυ; υ is the velocity of sound in air.
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FIG. 4. Accidental BICs in an open resonator. (a) Q factor of
accidental BICs in a single-port system with an attached waveg-
uide located at different positions, yc. (b) Eigenfield profile of two
accidental BICs in a single-port system. (c) Q factor of acciden-
tal BICs in a two-port system with even symmetry. (d) Eigenfield
profile of two accidental BICs in a two-port system with even
symmetry. (e) Q factor of accidental BICs in a two-port system
with odd symmetry. (f) Eigenfield profile of two accidental BICs
in a two-port system with odd symmetry. All three resonators
have dimensions Lx = 40 cm and Ly = 60 cm.

The propagating wave numbers in the waveguide are
given by

ν2

ω2
0

=
k2

p

π2 + (p − 1)2, (5a)

φp(x, y) =
√

(2 − δp ,1) cos[π(p − 1)y] eikp x. (5b)

Then the coupling matrix elements between eigenmodes
of the closed resonator and the pth propagation channels
of the waveguide can be obtained by

Wmn;p =
∫ y0+(1/2)

y0−(1/2)

ψm,n(x = 0, y)φp(x = 0, y)dy. (6)

After obtaining the coupling matrix, we calculate the com-
plex eigenvalues of the effective Hamiltonian, the real parts
of which correspond to the resonant frequencies, and the
imaginary parts are half of the resonant linewidth. Thus,
searching for BICs amounts to finding the zero imaginary
part of the eigenvalues. In general, the eigenfunction of
each BIC can be decomposed as

φBIC(x, y) =
∑

mn

amnψmn(x, y). (7)

Since the BIC is perfectly decoupled from the continuum,
its eigenfunction must follow

∫ y0+(1/2)

y0−(1/2)

φBIC(x = 0, y)dy = 0. (8)

1. Physical mechanism of FW BICs
When two resonant states approach each other as a

function of a certain continuous parameter, interference
causes an avoided crossing of the two states in their energy
positions. Simultaneously, one of the resonant linewidths
vanishes exactly at a certain value of the parameters and
the other is boosted to maximum. These are known as FW
BICs [12]. They are found in a single dielectric [13,14]
and acoustic [28,34] resonator with a rectangular cross
section. However, when constructing such FW BICs, two
resonances must have the same parity and cross each other
at a certain size ratio for the closed cavity. Thus, a pair of
eigenmodes, Mmn and Mm+2,n−2 (or Mmn and Mm−2,n+2),
are frequently used for building FW BICs because they
satisfy both requirements. Also, the eigenfield profile may
interchange with each other when the size ratio of the
rectangular resonator passes through the critical value.

Since the essence of finding FW BICs is to find two
degenerate resonances in a closed resonator at a certain
size ratio, in principle, there should be numerous choices of
paired modes not limited to modes Mmn and Mm+2,n−2. In
the present paper, we consider the FW BIC in a rectangular
resonator embedded into the first channel, p = 1, pro-
vided that other channels are closed for ν < 1. There are
numerous degeneracies in a closed rectangular resonator:

m2

L2
x

+ n2

L2
y

= m′2

L2
x

+ n′2

L2
y

. (9)

The lowest case corresponds to m, n = 1, 2 and m′, n′ =
2, 1 for a square resonator, Lx = Ly . The other degenera-
cies happening in a square resonator satisfy m = n′ and
n = m′. The second-lowest degeneracy in a rectangular
resonator is m, n = 2, 2 and m′, n′ = 3, 1 for Lx =

√
3Ly .

All of these degeneracies can be used to construct FW
BICs in the single-port waveguide-resonator system or
two-port waveguide-resonator system with odd symmetry.
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FIG. 5. Formation mechanism of FW BICs. Real part (a) and
imaginary part (b) of eigenfrequency in a single-port system
when 20 eigenstates are considered for calculating the com-
plex eigenfrequencies (solid blue line). Dashed line corresponds
to the case where only closed-cavity modes M 12 and M 21 are
considered.

Figure 5 shows the behavior of real and imaginary
parts of complex eigenvalues for two resonances in the
effective Hamiltonian. The solid line represents the results
for the effective Hamiltonian, considering 20 eigenstates
in the closed resonator, and the dashed line corresponds
to the case of the effective Hamiltonian, which involves
only eigenmodes M 12 and M 21 of the closed resonator.
From Fig. 5, we indeed observe the avoided crossing at
Lx = 3.9942, around which one of the imaginary parts is
suppressed to zero, and the other is boosted to maximum.
These match the features of FW BICs. Interestingly, the
formation of such a BIC can be mainly attributed to the
destructive interference of modes M 12 and M 21 in a closed
resonator, as demonstrated by the dashed line of Figs. 5(a)
and 5(b). Thus, we may approximate the eigenfunction of
the lowest-order FW BIC as a superposition of the two
eigenmodes of the closed resonator, and their coefficients
A and B can be rigorously calculated by

ψBIC(x, y) ≈ Aψ21(x, y) + Bψ12(x, y). (10)

Substituting Eq. (10) into Eq. (8) gives us

A = W12;p=1 = 1
π

√
2Ly

Lx

[
sin

π

Ly

(
y0 + 1

2

)

− sin
π

Ly

(
y0 − 1

2

)]
, (11a)

B = −W21;p=1 = −
√

2
LxLy

. (11b)

Excellent agreement is found between the eigenfield pro-
file predicted from Eqs. (10) and (11) and the numerically
calculated eigenfield profile of the FW BIC (Fig. S11
within the Supplemental Material [47]) when y0 varies

from 0.5 to 2. Another interesting point is that such a FW
BIC is reduced to a SP BIC at y0 = Ly/2 due to W12;p=1 =
0. Although modes M 12 and M 21 in the closed resonator
play a major role in the formation of a FW BIC, the cou-
pling between the evanescent modes of the waveguide with
imaginary kp (p = 2, 3, . . . ) and eigenmodes in the closed
resonator leads to a slight deviation of Ly from Ly = 4.
Following a similar strategy, we can construct more FW
BICs by finding resonance degeneracies based on Eq. (7).
Their formation can also be explained by destructive inter-
ference between two major resonant modes. For example,
the FW BIC shown in Fig. 2(e) is the result of coupling
between modes M 22 and M 31 (Fig. S12 within the Sup-
plemental Material [47]). The synthetic eigenfield profile
of such a FW BIC is also confirmed using this analytical
model (Fig. S13 within the Supplemental Material [47]).
Excellent agreement is also found for mirror-induced BICs
(Fig. S14 within the Supplemental Material [47]).

2. Physical mechanism of accidental BICs and SP BICs
When only the first channel, p = 1, is considered for

ν< 1, the key to realizing BICs is to find Wmn;p=1 = 0. It
is easy to find that zero coupling between the waveguide
and mode Mmn happens at

y0 = 2s + 1
2(n − 1)

Ly , s = 1, 2, . . . , n − 1. (12)

Equation (12) predicts the critical waveguide positions
around which BICs can be found in a real system. Note
that accidental BICs can be found only for n > 2. When n
is even, both accidental BICs and SP BICs are supported
in such a system. In Fig. 4, dashed vertical lines indicate
the predicted yc0 with Wmn;p=1 = 0, which is very close to
the observed value yc of the BICs. The slight difference
between them is ascribed to the fact that there is a small
contribution from higher eigenmodes M 22 and M 23 owing
to evanescent modes with p = 2 (see Sec. S1 and Fig. S15
within the Supplemental Material [47]). Here, it is neces-
sary to highlight the difference between accidental BICs
and SP BICs, although the attached waveguide is almost
located at the nodal line of the eigenfield profile of BICs.
Due to coupling of the eigenmodes to evanescent modes of
the waveguide, the critical position of the attached waveg-
uide slightly deviates from the nodal line of the eigenfield
in the closed resonator. However, for SP BICs, the waveg-
uide is attached at the exact position of the nodal line of the
eigenfield in the closed resonator due to the compatibility
of structural symmetry. Additionally, the whole structure
no longer preserves its symmetry for the structure support-
ing accidental BICs. This is the reason why we define these
BICs as accidental BICs.
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3. Symmetry considerations
As shown in Sec. II A, the system shown in Fig. 1(f) can

support similar FW BICs to those shown in Fig. 1(c). For
a two-port systems with even or odd symmetry, it is easy
to derive

WL
mn;p=1 = (−1)m−1 WR

mn;p=1, (13a)

WL
mn;p=1 = (−1)m+n WR

mn;p=1. (13b)

Thus, if FW BICs are sustained in a single-port waveguide-
resonator system, from Eq. (13b) one can immediately find
such FW BICs in a two-port waveguide-resonator system
with odd symmetry. We use the FW BIC shown in Fig. 2(a)
as an example to illustrate this notion; it has C1WL

12;p=1 +
C2WL

21;p=1 = 0. According to Eq. (13b), odd symme-
try of the structure requires C1WR

12;p=1 + C2WR
21;p=1 =

−C1WL
12;p=1 − C2WL

21;p=1 = 0. Equation (13) also explains
why the lowest-order FW BIC in a square resonator is
M 13 when the left and right waveguides are located at
the middle point of the left and right sides. Additionally,
Eq. (13a) explains how two-port systems with either even
or odd symmetry support accidental BICs like a single-port
system.

D. Experimental verification of general FW BICs and
accidental BICs

We would like to emphasize that such FW BICs and
accidental BICs also exist in the 3D case. For exper-
imental consideration, we study a 3D resonator cou-
pled to two shifted cylindrical waveguides, as shown
in Fig. 6(a). The diameter of the cylindrical waveg-
uide is set as D = 29 mm. The resonator has dimensions
Lx = 2D = 58 mm, Ly = 29 mm. By sweeping Lz from 49.7
to 52.2 mm, we find that there is a BIC at Lz = 50.89 mm,
as confirmed in the top panel of Fig. 6(b). Its eigenfield
distribution is shown in the right panel of Fig. 6(a), similar
to the eigenfield profile of the 2D case shown in Fig. 2(b).
The emergence of the BIC is also confirmed by calculating
the transmission-spectra mapping shown in the top panel
of Fig. 6(c), which indeed shows a vanishing linewidth at
Lz = 50.89 mm. Then, we move to demonstrate the exis-
tence of such a BIC experimentally. We fabricate a series
of samples with different Lz, covering the range from 49.7
to 52.2 mm. The bottom panel of Fig. 6(c) shows the mea-
sured transmission-spectra mapping. Excellent agreement
is found between experiment and simulation. By applying
a Fano-resonance fitting procedure [39,46] (see Sec. S2
and Fig. S16 within the Supplemental Material [47]), we
retrieve the Q factor of the acoustic resonance at different
Lz. The relevant result is plotted in the bottom-left panel
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FIG. 6. Experimental demonstration of a FW BIC and an accidental BIC in a 3D open resonator with odd symmetry. (a) Left panel is
the optical image of the 3D-printed sample, and right panel represents the eigenfield profile of a FW BIC. (b) Calculated and measured
Q factor versus Lz . (c) Calculated and measured transmission-spectra mapping for Lz varying from 49.7 to 52.2 mm. (d) Left panel is
the optical image of the 3D-printed sample, and right panel represents the eigenfield profile of an accidental BIC. (e) Calculated and
measured Q factor versus xc. (f) Calculated and measured transmission-spectra mapping for xc varying from 18 to 20 mm.

054021-8



GENERAL FRAMEWORK OF BOUND. . . PHYS. REV. APPLIED 18, 054021 (2022)

of Fig. 6(b). The vertical dashed line indicates Lz showing
the vanishing linewidth of resonance, indicating the for-
mation of the BIC. The experimentally measured Q factor
shows several orders of magnitude reduction compared to
the theoretical prediction because of viscous losses in the
real system. However, we still observe a relatively high-
Q resonance with a Q factor up to 340, which is large
enough for real applications. Additionally, we emphasize
that this is not the only structure supporting such a FW
BIC. More examples can be found in Fig. S17 within the
Supplemental Material [47].

We also demonstrate the accidental BICs in such a two-
port system. Figure 6(d) shows the optical image of a
3D-printed sample. The diameters of the two waveguides
are also D = 29 mm. The dimensions of the cuboid res-
onator are Lx = 70 mm, Ly = 36 mm, and Lz = 50 mm. By
varying the attached waveguide position, we find an acci-
dental BIC at xc = 19.11 mm, as seen in the top panel
of Fig. 6(e). This critical position deviates slightly from
xc0 = Lx/4 = 17.5 mm predicted by Eq. (11) because of the
coupling between the evanescent modes in the waveguide
and eigenmodes in the closed resonator. The existence of
such a BIC is confirmed by the calculated transmission-
spectra mapping shown in the top panel of Fig. 6(f). We
fabricate nine samples using 3D-printing technology (see
Sec. IV for details). Excellent agreement can be found
between the measured transmission spectra [bottom panel
of Fig. 6(f)] and simulated transmission spectra. We also
retrieve their Q factors by Fano fitting and plot them in
the bottom panel of Fig. 6(e). The overall trend in Q fac-
tor matches reasonably well with the calculated Q factor,
although the measured one is several orders lower than
the numerical prediction due to the viscous losses inside
the waveguide and resonator. However, all Q factors are
above 200, which is large enough for many applications.
Also, we find further examples of accidental BICs in such
a two-port waveguide–3D-resonator system (Fig. S18 in
the Supplemental Material [47]).

III. CONCLUSION

We report a general procedure for finding FW BICs
and accidental BICs in an open acoustic resonator. We
demonstrate that FW BICs can be constructed by any two
degenerate resonances with either the same or opposite
parity in a single-port system or two-port system with
odd symmetry. Moreover, their eigenfield profile can be
arbitrarily synthesized by tuning the waveguide position,
similar to the case of quantum mechanics. Also, FW BICs
can be switched to either SP BICs or accidental BICs when
the waveguide is placed at a certain position. In addi-
tion, we find that such an open system supports accidental
BICs as the vector in Hilbert space of the eigenmodes
of the closed resonator, the direction of which changes
with the position of the attached waveguide that breaks

the symmetry of the closed resonator. The formation of
both FW BICs and accidental BICs is well explained by
the effective Hamiltonian method. The former is attributed
to the destructive interference of two eigenmodes in the
closed cavity, while the latter arises from the suppressed
coupling between propagation modes in the waveguide
and eigenmode in the closed resonator. Finally, we exper-
imentally demonstrate both FW BICs and accidental BICs
in a 3D coupled waveguide-resonator system with odd
symmetry. The emergence of BICs is evidenced by the
vanishing linewidth of the acoustic resonance. Our find-
ings promise many exciting applications, such as enhanced
acoustic emission, ultranarrowband acoustic absorbers,
acoustic filters, and sensors.

IV. MATERIALS AND METHODS

A. Simulations
All simulations are performed with the commercial soft-

ware package COMSOL Multiphysics. The speed of sound
and density of air are 343 m/s and 1.29 kg/m3, respec-
tively. When calculating the eigenmodes and transmission
(or reflection spectrum), we apply perfectly matched layer
boundaries at the two ends of the waveguides to mimic
acoustic wave propagation in infinite space. The other
exterior boundaries are set as rigid.

B. Experiments
The experimental samples are fabricated by using 3D-

printing technology with laser sintering stereolithography
(SLA, 140 µm) with a photosensitive resin (UV curable
resin), exhibiting a manufacturing precision of 0.1 mm.
The complex transmission (and reflection) coefficients of
the samples are measured using a Brüel & Kjær type-
4206T impedance tube with a diameter of 29 mm. A
loudspeaker generates a plane wave, and the amplitude
and phase of local pressure are measured by four 1/4-inch
condenser microphones (Brüel & Kjær type-4187) situated
at designated positions. The complex transmission (and
reflection) coefficients are obtained by the transfer-matrix
method.
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