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Abstract

In this paper, we consider a Bayesian inverse problem modeled by elliptic partial differential equations (PDEs). Specifically, we
propose a data-driven and model-based approach to accelerate the Hamiltonian Monte Carlo (HMC) method in solving large-
scale Bayesian inverse problems. The key idea is to exploit (model-based) and construct (data-based) intrinsic approximate
low-dimensional structure of the underlying problem which consists of two components—a training component that computes
a set of data-driven basis to achieve significant dimension reduction in the solution space, and a fast solving component that
computes the solution and its derivatives for a newly sampled elliptic PDE with the constructed data-driven basis. Hence we
develop an effective data and model-based approach for the Bayesian inverse problem and overcome the typical computational
bottleneck of HMC—repeated evaluation of the Hamiltonian involving the solution (and its derivatives) modeled by a complex
system, amultiscale elliptic PDE in our case. Finally, we present numerical examples to demonstrate the accuracy and efficiency
of the proposed method.
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1 Introduction

Inverse problems are ubiquitous in models used in science
and engineering where problem-specific parameters or inputs
need to be estimated from indirect and noisy observations.
However, inverse problems are often nonlinear (even if the
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forward problems are linear) and ill-posed (or unstable) in
that either the existence and uniqueness of the solutions
may not be guaranteed or the dependence of the parame-
ters on the data (and noise) may be sensitive. As a result,
pointwise estimates may be erroneous and misleading and
additional regularization is often required. On the other hand,
the Bayesian approach to inverse problems (Kaipio and Som-
ersalo 2005; Mondal et al. 2010; Dashti and Stuart 2011;
Martin et al. 2012; Beskos et al. 2015; Lan 2019) can provide
another alternative. In the Bayesian paradigm, the solution
to the inverse problem is posited as the posterior distribution
of the unknowns conditioned on observations, where regu-
larization is naturally imposed in the form of an appropriate
prior distribution. Bayesian inversion, therefore, provides a
principled way of uncertainty quantification in the presence
of data and noise. We refer interested readers to Stuart (2010)
for a comprehensive review of the Bayesian approach to
inverse problems.

As the posterior is generally intractable due to the com-
plexity of the system, people often resort to computational
approximation approaches such as Markov chain Monte
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Carlo (MCMC) methods. In a typical MCMC method, sam-
ples from the posterior distribution are generated by updating
the current states according to a proposing mechanism and a
correction criterion designed to keep the posterior invariant.
The efficiency of MCMC methods heavily depends on the
design of proposing mechanism, i.e. its computation cost,
acceptance probability, and mixing property. For compli-
cated and large systems in practice, it is important to strike an
appropriate balance among these factors. For example, sim-
ple MCMC algorithms (e.g., generating proposals based on
random walk Metropolis), although easy and cheap to imple-
ment, usually have a low acceptance rate and mix poorly for
complex and high dimensional problems since no informa-
tion or structure of the underlying problem is utilized.

In recent years, many advanced MCMC methods have
been proposed to improve the sampling efficiency for high-
dimensional problems (Duane et al. 1987; Neal 2011). Based
on an intelligent design of Hamiltonian dynamics, the Hamil-
tonian Monte Carlo (HMC) method uses gradient informa-
tion of the underlying posterior distribution to make distant
and less correlated proposals with high acceptance probabili-
ties, greatly improving the mixing rate of the Markov chains.
On the other hand, the associated computation cost of those
advanced MCMC methods can be a bottleneck that makes
it difficult to scale up to complicated models and large data.
Note that the sampling procedure requires repetitive evalua-
tions of the likelihood function and its derivatives and maybe
other geometric and statistical quantities, e.g., Fisher infor-
mation for Riemannian Hamiltonian Monte Carlo (RHMC)
method (Girolami and Calderhead 2011).

To alleviate this issue, one popular attempt is to find a
computationally cheap surrogate approximation to replace
the original Hamiltonian (Zhang et al. 2017a,b, 2018; Strath-
mann et al. 2015; Lan et al. 2016) in the sampling process.
The key in designing an effective surrogate function is
to capture the collective property of large datasets while
removing redundancy. The overall computation efficiency is
improved due to significant cost reduction in the Hamiltonian
proposing process and insignificant loss in acceptance rate.
Although these surrogate approximations can provide signif-
icant empirical performance improvement, they are usually
obtained as blackbox approximations by fitting the training
data where the mechanism and structure of the model that
generates the data have largely remained unexplored and
unexploited.

For our Bayesian inverse problem, not only the unknown
quantity is a random field that lives in a high-dimensional
space after discretization or can be a parametric model with
many parameters, the solution to an elliptic PDE and its
derivatives are also involved in generating the data and eval-
uating the posterior and Hamiltonian in the HMC method.
These computational challenges make traditional MCMC
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methods extremely costly to use for Bayesian inverse prob-
lems.

In this work, we propose a data-driven and model-based
approach that can significantly reduce the computation cost
of the HMC method for Bayesian elliptic inverse problems.
The key idea is to exploit the intrinsic approximate low-
dimensional structure of elliptic differential operators and
construct a data-driven basis as proposed in Li et al. (2020).
First, a set of data-driven basis functions are constructed from
training data, e.g., from real measurements or the initial burn-
in stage of MCMC methods, to achieve significant dimension
reduction in the solution space. With the constructed basis, a
newly sampled elliptic PDE can be solved efficiently. Note
that the derivatives (with respect to some parameters) of a
solution to a linear PDE satisfies the same PDE (with differ-
ent righthand sides) that can be computed efficiently as well.
Hence, this model-based and data-driven strategy can reduce
the computation cost of the HMC sampling for our Bayesian
inverse problem significantly.

The rest of the paper is organized as follows. We first
describe the forward model and the Bayesian inversion prob-
lem in Sect.2 and the HMC method for Bayesian inversion
in Sect. 3. Intrinsic low-dimensional structure of the forward
problem, model-based and data-driven dimension reduction,
and approximation of the parameter-to-solution map are dis-
cussed in Sect. 4. The accelerated HMC method for Bayesian
inverse problems is presented with implementation details in
Sect. 5. We also discuss alternative approaches for the gradi-
entcomputation in Sect. 6. We present numerical experiments
and results of the accelerated HMC method and compare
its performance to other state-of-the-art HMC methods in
Sect.7. Concluding remarks are made in Sect. 8.

2 Model problem
2.1 Forward problem

In this paper, we consider a classical inverse problem that
involves inference of the diffusion coefficient in an elliptic
PDE that is commonly used to model isothermal steady flow
in porous media, hydrology and reservoir simulation, and
many other applications. To be specific, we consider the fol-
lowing elliptic PDEs with random coefficients a (x, w), where
one would like to infer, as the forward model,

L, 0)ux, 0) ==V - (ax, 0)Vu(x, v))
=f(x), xeD,weQ, (1
ux,w) =0, xedD, 2)

where D € R is a bounded spatial domain, 2 is a sample
space, and the source function f(x) € L%*(D). We assume
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a(x, w) in (1) is almost surely uniformly elliptic, namely,
there exist dmin, dmax > 0, such that

P(a) € Q:aX,w) € [amin, Amax], VX € D) =1. 3)

In general, we can assume the random coefficient a(x, ®) is
of some parametric form. For example, a commonly used
affine form is the following,

a(x, ) =a® + Y an(®n (@), “

m=1

where &,,(w), m = 1, ..., r are random variables and a, (x)
are some spatial basis functions, e.g., finite element basis,
polynomial basis, Fourier basis, radial basis, etc. Usually,
one assumes a(X, w) is a random field and obtain the affine
form (4) by computing the Karhunen Lo¢ve approximation of
the random field a(x, ). In this setting, the basis a,, (x), m =
1, ..., r are the eigenfunctions of the covariance kernel of the
random field a(x, w) and the number of bases r is determined
such that the error ||a (X, @) —a(X) =Y, _ | am (X)&n (®)|]2 is
less than some threshold in the mean square error. The depen-
dence of r on the threshold reveals the intrinsic complexity
of the random field (see Bryson et al. (2019)).

Once a parametric form of the random coefficienta (x, ) =
a(x, §(w)) is given, computing the solution u (X, w) to the
problem (1)-(2) defines a map from the parameter domain
E@) = (B, &) € W C R to the solution
space

E(@) = u(x, ©) = u(x, (@) € Hy (D), &)

which is a Banach-space-valued function of the random input
vector & (w).

Many efficient numerical methods have been developed
for solving elliptic PDEs with random coefficients; see e.g.
Ghanem and Spanos (1991); Xiu and Karniadakis (2003);
Asokan and Zabaras (2006); Babuska et al. (2004, 2007);
Nobile et al. (2008); Graham et al. (2011); Abdulle et al.
(2013); Graham et al. (2015) and references therein. By solv-
ing the forward problem, one can quantify the uncertainty in
the elliptic PDEs with randomness. However, when the ellip-
tic PDEs involve multiscale features and/or high-dimensional
random inputs, these problems become challenging due to
high computational costs. In recent years, we have devel-
oped data-driven methods to solve multiscale elliptic PDEs
with random coefficients (1) based on intrinsic dimension
reduction (Zhang et al. 2015; Chung et al. 2018; Li et al.
2020). We also refer the intertested reader to Wan and Zabaras
(2013); Abdulle et al. (2013); Hou et al. (2016); Efendiev
et al. (2015); Hou et al. (2019) and references therein for
other methods to solve the forward problem (1).

2.2 Bayesian inverse problems

Let W be the space of admissible unknownsand 7 : W — U
be a forward map representing a mathematical model that
assigns an output u € U to an input & € V. In this paper, we
focus on the elliptic PDE (1), where £ is the parameter in the
random coefficient a(x, &) and u is the solution to the PDE
with the corresponding coefficient. The inverse problem is
to recover the unknown parameter & € W (and hence the
coefficient a(x, £)) from some measurements of the solution
u in the domain and at the boundary. Often in practice, u can
only be recorded at finite discrete locations with noise, which
is the data denoted by y € R™ related by

y=6@& +n. (6)

Here the forward model G : R” — R™ is a composition
of the forward map F and a discretized observation oper-
ator through which observable quantities (e.g., point-wise
evaluation of the solution) are collected, and n € R™ is the
measurement error (or the noise).

In the Bayesian formulation of the inverse problem (6),
one treats the parameter & as a random variable (vector) with
a prior distribution pg(§). The noisy model, i.e., distribu-
tion of n, gives the likelihood py¢ (y|€). For simplicity and
concreteness, in this paper we assume that » is a zero-mean
Gaussian with diagonal covariance o2I,,, so that

|w—g@m{

Ppyle(y1§) o exp (=P (&:y)), 752

D&y =
@)

The posterior distribution of & conditioned on the data y then
follows the Bayes’ rule:

Pey(€ly) o< pyie(y1€) - pe (§) ®)

and Bayesian inversion can be performed by estimating the
posterior via, e.g., the HMC method and other MCMC meth-
ods.

In addition to the usual computational issues for MCMC
type of methods, there is another challenge for the Bayesian
elliptic inverse problem due to the complicated forward
model (1). Instead of a simple explicit probabilistic model
that prescribes the likelihood of data given the parameter
of interest, one needs to solve the elliptic PDE (1) for each
random coefficient corresponding to a new sample of the
parameter & to compute the likelihood function (7), which
is the computation bottleneck for the Bayesian inversion.
To address these challenges, we propose a data-driven and
model-based accelerated HMC method that improves the
convergence rate of the MCMC method and exploit the
underlying forward model (1) using a data-driven approach
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proposed in Li et al. (2020), which enables us to reduce the
computational cost in solving the forward model problem
and hence the overall sampling cost.

3 The HMC method for Bayesian inversion

The HMC method is one of the state-of-the-art MCMC
methods suitable for complex high dimensional target dis-
tributions with strong dependencies between parameters,
which is the case for Bayesian inverse problems. Leverag-
ing geometric information from the target distribution, the
HMC method (Duane et al. 1987; Neal 2011) extends the
parameter space with auxiliary momentum variables ¢, and
introduces a Hamiltonian dynamics system to propose sam-
ples of model parameters within the Metropolis framework,
greatly enhancing the exploration efficiency in the parame-
ter space compared to simple random walk proposals. More
specifically, the HMC method generates proposals jointly for
& and ¢ using the following system of differential equations

d§¢ 0H dg oH 9
T E T —¥~ )
where the Hamiltonian function is defined as H(§,¢) =
U+ K(2).

Here in the Bayesian elliptic inverse problem, the potential
energy U is defined as U (§) = — log py|¢(y|§) — log pe (§),
and the kinetic energy K(¢) = %;TM ~1¢ corresponds to
the negative log-density of a zero-mean multivariate Gaus-
sian distribution with covariance M (also known as the mass
matrix and is often set to be the identity). As the analyt-
ical solution of the Hamiltonian dynamics (9) is usually
unavailable, proposals in the HMC method are often made
by numerical simulation via the leap-frog scheme. Specifi-
cally, given the sample (§ (’), ;<’)) at time ¢, we generate the
sample at time ¢ 4 1 by the following scheme

1 At
;(fJFz) — ;(l) _ TVEU@(I))’
ECHD = 50 4 A1V, K (£0HD), (10)
1 At

c(t+1) — c(l+2) _ 7V§U(E<t+l)),

where At is the step size. Starting from the current state
(&, ¢), where & is the current parameter and ¢ is resam-
pled from the multivariate Gaussian distribution A/ (0, M),

the proposed state (§*, £*) at the end of a simulated trajec-
tory of length L is accepted with probability

ainvic = min (Lexpl—HE £+ HE D). (1)

@ Springer

From this point of view, the HMC method can be viewed
as a Metropolis algorithm that samples from the joint distri-
bution

1
p(&,¢) ocexp (—U(&) —~ 5<:TM‘lc>. (12)

The marginal distribution of & then follows the target poste-
rior distribution since & and ¢ are separated (i.e., indepen-
dent). Note that the Hamiltonian is preserved for analytical
solutions of (9), and the discretization error in (10) can be
controlled by appropriate choice of the step size Az. There-
fore, the HMC method is often able to generate distant,
uncorrelated proposals with a high acceptance probability,
allowing for efficient exploration of the parameter space.

For our Bayesian inverse problem, however, there is
still a computational bottleneck we have to resolve, that
is repetitive computation of solution u(x, &) to the elliptic
PDE (1) in order to evaluate the potential energy U(§) =
—log pyjs(y1&) — log pg(§) in the Hamiltonian, and even
more, the gradient with respect to the parameter V¢ U (§)
needs to be repetitively evaluated to simulate a trajectory for
HMC proposals as in (10). Note that the key to evaluation of
VeU (&) is the evaluation of derivatives % = ug; (x, §)
of the solution to (1) for j = 1, ..., r, which satisfy

— V- (ax,&)Vug;(x,8) =V - (ag; (x, §)Vu(x, §)), x€ D,

(13)
ug; (x,§) =0, x € adD, (14)
which is the same elliptic PDE as (1) with a right-hand side
that depends on the solution to (1) corresponding to the cur-
rent sample of &. This could easily become prohibitively
expensive in practice since so many PDEs have to be solved
for each sampling step.

In what follows, we describe how to approximate the low-
dimensional structure of the solution space to the elliptic
PDE (1) with varying coefficients and right-hand sides and
the data-driven approach proposed in Li et al. (2020) that can
take advantage of the approximate low-dimensional structure
of the forward model to accelerate the HMC method.

4 Low-dimensional structure of the forward
problem and approximation of the
parameter-to-solution map

For the Bayesian elliptic inverse problem, we are facing the
challenge to solve the forward model problem, i.e., the elliptic
PDE (1) with different coefficients and different right-hand
sides (13) repetitively in the sampling process. This motivates
us to exploit the low-dimensional structures in the solution
space and develop data-driven and model-based dimension
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reduction methods to solve the forward model problem effi-
ciently.

4.1 Low-dimensional structure of the forward
problem

We assume the coefficient a (x, & (w)) in the elliptic PDE (1) is
almost surely uniform elliptic and smoothly depends on the
parameter &. Therefore, the solution u(x, &) also smoothly
depends on the parameters and can be approximated via a
polynomial expansion in & of the following form

Y ua(0E (), (15)
oae,

where e = (a1, a2, - - - , &) isamulti-index, J, = {o | o >
0,;, € N,1 < i < r}is a multi-index set of countable
cardinality, and £*(w) = [],-;, &" (@) is a multivariate
polynomial.

Studying the approximation error of the expansion form
(15) to the solution u(x, &) is an important problem. If a(x, &)
satisfies the uniform ellipticity assumption and has a holo-
morphic extension to an open set in a complex domain that
contains the real domain for &, we can obtain explicit esti-
mates for the coefficients u, similar to those estimates for
the polynomial approximation for an analytic function. The
following result for the best n-term approximation can be
proved, where the details of the proof can be found in Cohen
and DeVore (2015).

Proposition 4.1 Consider a parametric elliptic PDE of the
form (1)-(2) with a random coefficient (4). Both the Tay-
lor series and Legendre series of the form (15) converge to
u(x, &(w))in HO1 (D) forall & (w) € W. Moreover, for any set
It of indices corresponding to the n largest of ||uq (-] |H01 (Dy
we have

sup [|u, E@) = Y uaEX@)]| 1, < Cexp(—cn'/T),
sup | ZJ 3oy

(16)

where J" is a subset of J, with cardinality #J" = n, C and
c are positive and depend on r.

Proposition 4.1 reveals the existence of low-dimensional
structure in the solution space of the elliptic PDE (1). Specif-
ically, given a threshold e for the approximation error, there
exist a linear subspace with the dimension at most O(n ~
(IO%C + “OL—{;G')’) (e.g., spanned by uq(x), @ € J!'), which
can approximate the solution of the elliptic PDE (1) within
€ error.

The result in Proposition 4.1 provides a theoretical frame-
work to study the approximation property of the parametric
elliptic PDE. However, this approximation is obtained by

mathematical analysis, which cannot be directly imple-
mented via a computational algorithm. Moreover, using
polynomial basis functions (15) (e.g., Taylor series or Leg-
endre polynomials) may not be optimal to approximate
the solution uy(x) in general, especially when the dimen-
sion of the random input is high. In Li et al. (2020), a
data-driven approach was proposed to construct problem-
dependent basis functions that can approximate the solution
space of (1)-(2) effectively. We will adopt this approach in
this paper to solve the Bayesian elliptic inverse problems.

When the coefficient a(x, w) is a nonlinear function of a
finite number of random variables, one can apply the empir-
ical interpolation method (EIM) (Barrault et al. 2004) to
approximately convert a(x, w) into an affine form. Thus,
low-dimensional structures still exist in the solution space. In
addition, we refer the reader to Hoang and Schwab (2014);
Bachmayr et al. (2017) for the results of the best n-term
polynomial approximation of elliptic PDEs with lognormal
coefficients.

4.2 Data-driven basis functions for dimension
reduction

Since there exist low-dimensional structures in the solution
space of elliptic PDEs with random coefficients, we use
problem-specific and data-driven basis functions to achieve a
significant dimension reduction in solving the elliptic PDEs
(1) with random coefficients. Our method consists of a train-
ing process and a solving process. In the training process, we
extract the low-dimensional structure of the solution space
and construct a set of data-driven basis functions from train-
ing data or real measurements, e.g., a set of solution samples
{u(x, wi)}f\’: 1» which can be obtained from measurements or
generated by solving the elliptic PDE (1)-(2) with coeffi-
cient samples {a(x, a)i)}lN: | during the burn-in stage of the
HMC method. Let Vypgp = {u(X, w1), ..., u(X, wy)} denote
the solution samples that will be used for the construction of
the data-driven basis functions.

To make the paper self-contained, we introduce how to
use the proper orthogonal decomposition (POD) method
(Berkooz et al. 1993; Sirovich 1987; Benner et al. 2015)
to find the optimal subspace and its orthonormal basis
functions to approximate the solution samples V4 to a cer-
tain accuracy. Specifically, we define the correlation matrix
Y = (0jj) € RN*N with oij =< u(-, w;),u(-,w;j) >p,
i,j=1,..., N,where < -, - >p denotes the standard inner
product on L?(D). Let the eigenvalues of the correlation
matrix be Ay > Ay > ... > ... > Ay > 0 and the cor-
responding eigenvectors be ¢ (x), ¢2(x), ..., ¢y (x), which
will be referred to as data-driven basis functions in this paper.
In addition, we have the following estimate for the approxi-
mation error, where the proof can be found in Sect. 3.3.2 of
Holmes et al. (1998) or page 502 of Benner et al. (2015).
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Proposition 4.2 The space spanned by the leading K data-
driven basis functions has the following approximation
property to Vspap,

N K . w; (- ; ’
Dot ||, @) =3 <ul, @), $;() >p ¢A/(X)‘ L2(D)
N 2
T fJuce o0, ,,

N
_ L=k (17

Stk

where the number K of the basis function will be fvz’etermined
according to the decay speed of the ratio p = Z‘++;LAS
s=17s

In practice, we choose the first K dominant eigenvalues
such that the ratio p is small enough (e.g., p = 0.1%)
to achieve an expected accuracy. We expect a fast decay
in the eigenvalues Ag’s so that a small set of data-driven
basis functions (K <« N) will be enough to approximate
the solution samples well in the root mean square sense. We
refer the interested reader to Schwab and Todor (2006) for
some estimates on the rate of decay of the eigenvalues in
the Karhunen Loe¢ve approximation of random fields, which
are essentially the eigenvalues in POD method. In addi-
tion, since data-driven basis functions ¢;(x), j = 1, ..., K,
have captured the low-dimensional structure of the solu-
tion space, we can approximate the solution u(x, ) well
by u(x, w) = Zle cj(w)¢g;(x) almost surely for v € Q.
The number of data-driven basis functions K is determined
according to the decay of the eigenvalues A;’s.

Determining a set of good solution samples is important
for the construction of the data-driven basis functions. The
solution samples should span a linear space that approximates
the solution space of the original PDEs well. However, the
POD method itself gives no guidance on how to select the
snapshots (page 503 of Benner et al. (2015)). Under certain
assumptions on the random coefficient, we obtained some
criteria on how to choose the coefficient samples in order
to obtain a set of data-driven basis functions; see Sect. 3.4
of Li et al. (2020). In general, this issue is very challenging
especially when the dimension of the random coefficient is
high, which will be studied in our future work.

The computational costs of constructing the data-driven
basis functions consist of two parts: (1) compute solution
samples {u(x, wi)}fv: 1> and (2) compute the data-driven basis
by the POD method. This is common nature for many
model reduction methods. Effective samples of solutions
(see Sect. 3.4 of Li et al. (2020)) and the use of random-
ized algorithms (Halko et al. 2011) for the singular value
decomposition (SVD) (utilizing the low-rank structure) help
reduce the offline computation cost.

@ Springer

4.3 POD-based Galerkin method

Equipped with the data-driven basis function ¢;(x), j =
1, ..., K, we can solve the problem (1)-(2) on the domain
D by the standard Galerkin formulation for new realizations
of a(x, w). Specifically, given a new realization of the coef-
ficient a(x, w), we approximate the corresponding solution
u(x, w) as

K
ulX, w) ~ ch(w)q‘)j(x), as. w € Q,
j=1

(18)

and use the Galerkin projection to determine the coefficients
cj(w), j =1, ..., K. We substitute the approximation (18)
into Eq.(1), multiply both side by ¢;(x),/ = 1, ..., K, take
integration over the domain D, and obtain a coupled linear
system as follows:

K
Elﬁﬂxmquwaymwmﬂ
j=1

:/f@mmmzszK (19)
D

The computational cost of solving the linear system (19)
is small compared to using a Galerkin method, such as the
finite element method, directly for u(x, w) because K is
much smaller than the degree of freedom needed to discretize
u (X, w) in the whole domain.

Note that if a(x, w) has the affine form (4), we first com-
pute the terms that do not depend on randomness, including
[ @)V (%)- Ve (X)X, [, an (X)Vh; (%) Vepy (), and
fD fX)¢;j(x)dx, j,I =1, ..., K. Then, we save them in the
offline stage. This leads to considerable savings in assem-
bling the stiffness matrix for each new realization of the
coefficient a (X, w) in the online stage.

4.4 The parameter-to-solution map

To solve the Bayesian inverse problem modeled by the elliptic
PDE (1), we need to compute cj(w) by solving the lin-
ear equation system (19) for many realizations of a(x, w).
Although the data-driven basis functions provide consider-
able saving over standard finite element basis functions in
solving (1), it still requires a certain amount of computa-
tional cost in solving the linear equation system (19) in the
HMC methods. To further reduce the computational cost in
the HMC method, we construct parameter-to-solution maps
based on the training solution data and the data-driven basis
functions.

According to our assumption, a(X,®) is parameter-
ized by r independent random variables, i.e., a(X, w) =

a(xv gl (CL)), s gr(a)))
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Thus, the solution can be represented as a functional of

numerical solutions and their derivatives, we can use them

theserandom variables as well, i.e., u (X, ) = u(X, & (w), ..., & (@y)a proposal in the HMC method. Numerical experiments

Let §(w) = [£1(w), - , & (w)]" denote the random input
vector and ¢(w) = [c1(®), -+ - , ck (w)]T denote the vector
of solution coefficients in (18), respectively. Now, the prob-
lem can be viewed as constructing a parameter-to-solution
map from & (w) to ¢(w), denoted by F : &(w) — ¢(w), which
is nonlinear. We approximate this nonlinear map through the
given solution or measurement data. Given a set of solution
samples {u(x, a),-)}f.V:l corresponding to {S(a)i)}lN:l, e.g., by
solving (1)-(2) with a(x, &1 (w;), ..., & (w;)), from which the
set of data driven basis ¢;(x), j = 1, ..., K is obtained by
using POD method as described above, we can easily com-
pute the projection coefficients {c(a)l-)}l{v:] of u(x, ;) on
¢)j(X), ] = 1, veey K, i.e., Cj(a)i) =< M(X, w,-), ¢j(X) >D.
From the data set, F(§(w;)) = ¢(w;), i = 1, ..., N, we con-
struct the parameter-to-solution map F. Note the significant
dimension reduction by reducing the map & (w) — u(x, w)
to the map & (w) — c¢(w). We provide several ways to con-
struct the map F, depending on the dimension of the random
input vector. More implementation details can be found in Li
et al. (2020).

When the dimension of the random input r is small or mod-
erate, one can use interpolation. In particular, if the solution
samples correspond to £ located on a uniform or sparse grid,
standard polynomial interpolation can be used to approxi-
mate the coefficient ¢; at a new point of §. If the solution
samples correspond to & at scattered points or the dimension
of the random input r is moderate or high, one can first find
a few nearest neighbors to the new point efficiently using the
k-d tree algorithm Wald and Havran (2006) and then use the
moving least square approximation centered at the new point
to approximate the mapped value.

When the dimension of the random input r is high, the
interpolation approach becomes expensive and less accurate.
Due to the dimension reduction by the data-driven basis func-
tions, one can train a neural network with a small output
dimension to approximate the parameter-to-solution map F.
Numerical results in Li et al. (2020) show that this approach
works well. We will adopt the neural network approach to
approximate the parameter-to-solution maps for both the
solution and its derivatives in this work.

In the HMC method, one can compute the solution u (X, w)
using the constructed map F. For example, given a new
sample of a(x, &1 (w), ..., & (w)), we plug & (w) into the con-
structed map F to approximate ¢(w) = F(&(w)), which are
the projection coefficients of the solution on the data-driven
basis. So we can quickly obtain the new solution u(x, )
using Eq.(18), where the computational time is negligible.
Similarly, we can construct data-driven basis functions and
approximate the parameter-to-solution map for computing
the partial derivatives of the solution. Once we obtain the

show that our new method achieves significant savings in
computing a new proposed sample over the standard HMC
method.

5 The accelerated HMC method and its
implementation

In this section, we present the data-driven and model-
based accelerated HMC method for solving Bayesian elliptic
inverse problems with implementation details.

In the burn-in stage, we run the standard HMC method,
i.e., solving the forward elliptic problem (1) for u and solv-
ing (13) for ug, for the numerical evaluation of Hamiltonian
dynamics in (10) using the standard finite element method.
The samples of solution and its derivatives computed during
the burn-in stage are collected and used to construct the data-
driven basis for dimension reductions using the POD method
as described in Sect. 4.2. In particular, a set of basis functions
are computed for u and each ug,, separately. Then we use the
collected samples of solution and its derivatives to train two
neural networks using the Adam optimization method (see
Kingma and Ba (2014)) to approximate the parameter-to-
solution map described in Sect.4.4.

Although u and ug; satisfy the same elliptic PDE, u has
a fixed right-hand source and ug; has a varying right-hand
source. We find that it is more efficient and accurate to
construct two separate neural networks to approximate the
parameter-to-solution maps, one for u and one for all ug ;. The
neural network that approximates the parameter-to-solution
map

for u has a first layer that is a fully connected affine
transform h; = W& + b;. The following hidden layers
are residual connections h; = tanh(W;h;_1 + b;) + h;_;
(see He et al. (2016)). The output layer is another affine

transform with output ¢(§) = (c1(&), c2(§), ...,cK(E))T
and the error to minimize is Z?’:l Z,le e (§ ) — ck (‘;‘j)IZ,
where Ek(gj), k = 1,2,..., K, are the projected coef-
ficients from j-th data u(x,§j), j = 1,2,...,N, col-
lected during the burn-in stage. The neural network that
approximates the parameter-to-solution map for all ug,, i =
1,2, ..., r,where r is the dimension of the parameter space,
has a similar network structure as above with an output
of (c'(§),c*().....¢"(§)) and the error to minimize is
SN Y e ) — @& )17 where &), k =
1,2,..., K;, are the projected coefficients computed from
Jj-th data ug, (x, Ej), j =1,2,..., N collected during the
burn-in stage.

Once the parameter-to-solution maps are trained, we can
approximate the gradient of potential energy VU (§) effi-
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ciently without solving any PDEs and hence significantly
accelerate the HMC method to get the posterior samples
by evolving the Markov chain as described in Sect.3 for
Bayesian inverse problems. More specifically, let iinee and
Aﬁ;‘d denote the resulting approximations for u and Vgu
respectively. The gradient V¢ U (§) then can be approximated

as follows:

ViU(§) = Z u(xi, ) — i) Veu(xi, ) — Ve log pg (§)
l - A rd
~— Z finet (X, §) — Yi)iipe, (Xi, §) — Vg log pg (§)
= Uféi“‘(&)
where y = (y1,..., ym) is the observed data at locations

X1, ..., Xp. We then substitute V¢ U (§) with Ues d (&) when
simulating the Hamiltonian dynamics using the following

leap-frog scheme

Azt "grad §(t))

£+ — g0 4 A1y, K(;(”%)),

;(z+%) — 0

g+ — ;(z+%>

At A orad
B g g,
The acceptance probability of the proposed state (§*, ¢*) at
the end of a simulated trajectory is computed the same way
asin (11),1i.e.,

ainvic = min (1 expl—H (", £%) + H(E. ))).

where (&, ¢) is the starting state and H is the exact Hamilto-
nian computed using the standard FEM solution. We list the
implementation steps of the accelerated HMC algorithm in
Algorithm 1.

The extra computation cost for our proposed accelerated
HMC method is the construction of the data-driven basis
and training of the two neural networks to approximate the
parameter-to-solution maps. Due to the intrinsic approximate
low-dimensional structure of the solution (and its deriva-
tives) of the forward elliptic model, the singular values of the
data covariance matrix decay very fast. So one only needs
to approximate the space spanned by a few leading singular
vectors which can be computed efficiently using randomized
SVD algorithms as described in Sect.4.2 (and more details
in Li et al. (2020)). After significant model-based dimension
reduction, a rather shallow and small neural network with
a simple structure and low-dimensional input and output is
enough to approximate the parameter-to-solution map well
in practice. Hence, evaluation of the constructed parameter-
to-solution map vs a full computation of the forward elliptic
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Algorithm 1 The accelerated HMC algorithm.

1: Input: the prior distribution for a(x, & (w)).
2: Collect samples of solution and its partial derivatives, i.e.

ou(§;) 3(&)
(€ uE ), =g, Ty

3: Extract basis functions {¢_ (x)}f:l for the solution and basis func-

| during the burn-in stage.

tions {¢§. (x)}ﬁ1 for the partial derivatives of the solution, i =
1,.--,r, from the collected data using the POD method.

4: Get the training data {Ej,c(;-‘j), cl(Ej), e ,c’({-‘j)}?’:l by pro-
jecting the samples of solution and its partial derivatives onto the
corresponding basis.

5: Train a neural network fitting the data pair {&, c(§)} and train
another neural network fitting the data pair {&, (c! &),---,c (&)}
to approximate the parameter-to-solution maps.

6: Generate samples from posterior distribution via the accelerated
HMC algorithm.

(1) at the current position £, sample a new momentum { ~
N (0, M) to get a starting point (§, ¢);

(2) apply the leap-frog scheme (10) to compute the Hamiltonian
dynamic, with data-driven gradient for the potential by using
the learned parameter-to-solution maps in step 5;

(3) accept the proposed sample (§*, ¢*) at the end of the trajectory
with probability (11), where H is computed using the FEM
reference solution.

7: Output: samples of {£} that converge to the posterior distribution.

PDE significantly reduces the computation cost in each leap-
frog step of the HMC dynamic after the burn-in stage.

Moreover, our data and model-based dimension reduction
method captures the intrinsic low-dimensional structure of
the underlying problem with a data-driven basis and accuracy
control (through the POD method) that strikes a good balance
between computation efficiency (by dimension reduction and
parameter-to-solution approximation) and exploration effi-
ciency (by proposing well-decorrelated samples with high
acceptance rate), as demonstrated by numerical experiments
in the next section.

6 Alternative approaches for gradient
computation

In this section, we discuss two alternative approaches for
gradient computation in the HMC method. The first one is
based on the adjoint method (Givoli 2021; Natterer 2015).
Let’s consider the following general mixed boundary condi-
tion for the forward problem

— V- (ax E@)Vux, £@)) = f(x), XeD, weQ,
(20)
ux, §(w) =gx), xely, (21)
ax, §(w ))M +b(x, E(w)u(x, §(w) =h(x), xel}.
(22)
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where T4UT, = 0D.LetC={w:w e H'(D), w(x) =0,Yx €
I"'y}. The corresponding weak formulation

/aVqudx+/ buwdS
D

»

_ / hwdsS + / Fwdx, Vw eC. (23)
r, D

Taking derivatives with respective to & (i.e. &,i = 1, ...
have

,T), we

/aaVVd+/ v Ga
— vuvwdax aV —vVwdX =
0&; p 0§

ab d
—f —uwds—/ b2 wds. 24)
r, 0& r, 0&

Let v(x, &) solves the corresponding adjoint equation

— V- (a(x, £(@)V(x, £(0))) = y(x)

—u(x,€), xeD, (25)

v(x, &(w)) =0, x ey, (26)

a(x, &(w ))M—}—b(x,ﬁ(a)))v(x,g(w)) =0, xeTl).
(27)

where y(x) is the measurement at x. Then, the the corresponding
weak formulation for v is

/aVvadX—i—/ bvwdS:/(y—u)u)dx, Yw € C.
D D

r

(28)

Define the energy function as J(§) = %fD(y — u)?dx,
which is proportional to negative log-likelihood (see Eq.(7)).
Then, we can easily find its derivative with respect to & as
follows:

as, /( _“)a_s,dx

_—/ aVvVa—dx—/ bva—udS
D 0§; r, 09§

ob
/—Vqudx+/ EuvdS. (29)
r, 9§

When the random field a(x, &) and the boundary coef-
ficient b(x, &) are known, V¢J can be computed from
(29) once u is solved for the forward problem and v is
solved for the adjoint problem, e.g., by FEM. In practice,
/ p(y — w)wdx in (28) is replaced by the discrete approx-
imation %Z?:l (y.j — u(xj, 5))w(xj). We point out that
although the adjoint method is an efficient alternative for gra-
dient computation to the standard approach in (13) and (14)
that uses multiple PDEs, the adjoint method does not take
advantage of the low dimensional structure of the underlying

PDE and still requires to solve one forward PDE and one
adjoint PDE for each gradient evaluation during the simu-
lation of Hamiltonian dynamics. By exploiting the intrinsic
low-dimensional structures of the underlying model and con-
structing a set of data-driven basis functions, our proposed
accelerated HMC method can efficiently approximate the
nonlinear map § — U (&) and its gradient without solving
any PDE for gradient evaluation after training/burning stage.
Numerical results in the next section show that our proposed
method outperforms the adjoint method approach.

We can also consider a direct approach for the gradient
computation in the HMC method using the deep learning
method. Specifically, we use a neural network to directly
approximate the complicated nonlinear map & — U (&) and
thus we can compute @ (-; y) in the likelihood function (7).
This idea can be viewed as an end-to-end learning tech-
nique, which is easy to implement and relies on a single
neural network to explore the full model and approximate
the map. However, it is hard to incorporate the intrinsic low-
dimensional structure of the PDE solution space directly into
the network. Therefore, using this approach, one needs to
choose a large size of hidden layers and neurons per layer, in
order to obtain an accurate approximation. One can see the
low acceptance rate associated with the end-to-end learning
approach in Fig. 1.

7 Numerical experiments and results

In this section, we use numerical experiments to demon-
strate the accuracy and efficiency of the accelerated HMC
method for Bayesian inverse problems, with comparison to
other state-of-the-art methods, including the standard HMC
method and random network surrogate method (Zhang et al.
2017a). The Python codes are published on GitHub.!

We consider the elliptic inverse problem

-V (a(x, w)Vu(x, a))) =0, x=(x1,x2) €0,1] x [0, 1]

(30)
with mixed boundary conditions,
u(x, w
%lxlzo,xlzl =0, u(X,w)|x,=0 = x1,
n
uX, ®)|yn=1 =1-—x1. 3D

1 https://github.com/LSijing/Bayesian-pde-inverse-problem.
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7.1 Alog-normal coefficient with isotropic
heterogeneity

In the first example, a Gaussian prior with zero mean and
covariance function

N 2 _||X—X/||%
c(x,x)_aaexp( —p ) (32)

is assumed on log(a(x, w)), where x, X’ are any two points on
[0, 1] x [0, 1], and the parameters %2 and [ denote the vari-
ance and the correlation length, respectively. The diffusion
coefficient is approximated via a truncated Karhunen-Logve
(KL) expansion

log(a(x, £)) = Y & (@)v/Aivi (%), (33)

i=1

by r ii.d. Gaussian random variables &;(w), where § =
(), ..., & (W), Ajand v; (x),i = 1,2, --- , r areeigenval-
ues and eigenfunctions of the prior covariance function (32).
In this experiment, we test the performance of the accelerated
HMC Algorithm 1 for different input random dimensions,
r =25, 30, 35.

Suppose the observationy = (y1, y2, -+ , ym) is obtained
by adding independent Gaussian noise to the exact solutions
at some measurable locations

yi=u(x;, &) +nj, nj~N@Oo», j=1,2,---,m.
(34)

Our goal is to infer & and hence a(x, &) based on the obser-
vation data y. In the Bayesian framework, the posterior on &
is

Py (Ely) < pye (y1€) - pg(§)

1 1
ocexp(— Iy — ux, 61 exp(—zsrs), 35)

which is the target distribution. Thanks to an efficient approx-
imation to the parameter-to-solution maps, the computation
cost of u(x, &) and Veu(x, §) is significantly reduced and
hence the computation of likelihood (35) and Hamiltonian
dynamics (10) in the accelerated HMC method is very fast.
Moreover, as demonstrated later on, the acceptance rate and
exploration efficiency do not compromise much as a con-
sequence of model and data-based dimension reduction. So
the overall performance of the HMC method is enhanced
significantly.

To generate the training data, the discretization is done
on a uniform grid with 31 x 31 points through triangle
finite element basis functions. Suppose the measurements
are placed on 11 x 11 grids of the numerical solution u(x, -),
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i.e.m = 121 in (34). We choose o = 0.1 be the noise in the
observation data (34), and o, = 0.5,/ = 0.2 be parameters
in the prior covariance function (32).

The burn-in stage consists of 10000 steps of standard
HMC, of which 9000 accepted samples of solutions u and
its derivatives g—”l i = 1,2,...,r are collected during the
burn-in stage. These collected data are first used to construct
a set of data-driven basis using POD method for dimen-
sion reduction. In our previous study (Li et al. 2020), we
found that more basis functions are needed to approximate
the derivatives of the solution than those needed to approx-
imate the solution. Specifically, we construct K = 20 basis

P1(X), p2(X), ..., ¢ (x) for the approximation of u, and
K; = 40 basis ¢/ (x), ¢5(x), ..., q);(i (x) for the approxima-
tion of each g—g,i =1,2,...,r.

Once the dallta-driven basis are constructed, we then use
the collected data to train two neural networks to approx-
imate the parameter-to-solution maps, one for & — c(&)
that gives u(x; &) = Zle cr(&)pr(x), and another one

. d ;
for & — (c!(§).c2(®)....c"(§)) that gives 2X8 —

P ch(E)pi(x), i = 1,2,...,r, as described in Sect.5.
In our experiments, the first network has 4 hidden layers and
20 units within each hidden layer. The second network has
the same structure except there are 40 hidden units in each
hidden layer.

We specify the number of leap-frog steps in (10) to be
10, and the step size At = 0.16 for all methods. Typically,
we start sampling from the posterior after observing mixing.
For the standard HMC method and random network surrogate
method (Zhang et al. 2017a), with which we compare, they
share the same burn-in stage and starting point. We compute
the relative error of the posterior mean up to a computation
time ¢ by

Hm Zi:t,-gtgi - E«E\y(g)Hz
HEEIy(E)Hz

(36)

The left column of Fig. 1 plots the relative error of the pos-
terior mean vs computation time in log scale for the standard
HMC, the random network surrogate method, the proposed
accelerated HMC method, the adjoint method, and the end-
to-end learning method for » = 25, 30, 35, respectively.
We see significantly improved performance of the proposed
method. The right column of Fig. 1 plots the corresponding
acceptance rate for the proposal by Hamiltonian dynamics
for each method. As we can see, the significant dimension
reduction and the efficient neural network approximation
of the parameter-to-solution map does not compromise the
acceptance rate much. Moreover, the acceptance rate main-
tains high and stable as the input dimension increases for our
model-based and data-driven approach.
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Fig. 1 Numerical results for the random coefficient with 25-, 30- and work surrogate method, the accelerated HMC method, the adjoint
35-dimensional inputs, where “hmc”, “rns”, “data-driven”, “adjoint”, method, and the end-to-end learning method, respectively

and “end-to-end” refer to the standard HMC method, the random net-
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For the random network surrogate method, the surrogate
of the Hamiltonian in the parameter space is based on the least
square approximation of sampled data, e.g, from the burn-
in stage, using a set of random basis. Since this approach is
purely data-driven without model knowledge, to maintain the
approximation accuracy, the number of random basis has to
increase with the dimension of the parameter space although
the intrinsic dimension of the underlying model remains the
same. In this experiment, we fix the number of random basis
at 1000. As the input dimension increases, the approxima-
tion power of the surrogate using a fixed number of basis
decreases, and hence the approximation error becomes larger
and the acceptance rate drops quite sharply.

Table 1 shows the averaged time per each HMC iteration,
averaged acceptance rate, effective sample size (min, median,
max), and time normalized effective sample size for each
method, respectively. The effective sample size is defined as

K
ESS=B(1+2) y(k) ", (37)
k=1

where B is the number of the MCMC samples and ) le y (k)
is the sum of K monotone sample autocorrelations. It shows
that our model-based and data-driven approach has a good
balance between the computation efficiency and exploration
efficiency and hence achieves the best overall performance.

7.2 Alog-normal coefficient with anisotropic
heterogeneity

In the second example, a Gaussian prior with zero mean and
covariance function

lx1 — xp?

|x2 —x§|2)

38
213 213 (%)

c(x,X) = o2 exp ( -

is assumed on log(a(x, w)), where x = (x1, x2) and X' =
(x], x}) are any two points on [0, 1] x [0, 1], and /; and [,
are the correlation lengths in x1 and x». The diffusion coeffi-
cient is approximated via a truncated Karhunen-Loeve (KL)
expansion as in (33), only with a different prior covariance
function (38).

To generate the training data, we solve the elliptic problem
(30) with the same boundary condition (31). The discretiza-
tion is done on a uniform grid with 65 x 65 points through
triangle finite element basis functions. We choose the num-
ber of truncated KL modes r = 30, 0 = 0.1 be the noise
in the observation data (34), and o, = 0.5, [; = 0.08 and
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I> = 0.4 in the prior covariance function (38). All other set-
tings are the same as in Sect. 7.1. Suppose the measurements
are placed on 17 x 17 grids of the numerical solution u(X, -),
i.e.m = 2891n (34). We now infer the log-normal coefficient
log(a(x, &)) based on the observation data.

To illustrate that our method indeed converges to the
right target distribution, Fig.2 provides the one- and two-
dimensional posterior marginals of some selected parameters
obtained by the standard HMC method and the acceler-
ated HMC method. Figure 3 shows the posterior mean and
posterior standard deviation obtained by the standard HMC
method and the accelerated HMC method, respectively. The
relative errors of the posterior mean and posterior stan-
dard deviation are 0.047 and 0.024. Therefore, with the
accelerated HMC method, we can significantly reduce the
computation cost (by almost an order of magnitude in this
case) while maintaining the approximation accuracy of the
standard HMC method.

Finally, we compare the partial derivatives o,

%"’E) at the approximate the MAP state obtained via stan-
dard HMC method and the accelerated HMC method in
Fig.4. The relative errors of 3"6(;1’5) and 9”52‘2’5) are 0.013
and 0.019, respectively. We also examine the relative errors
atten posterior sample of & and the result is presented in Table
2. These results demonstrate the effectiveness of our intrin-
sic low-dimensional data-driven basis on providing fast and
accurate gradient approximations for accelerating the Hamil-
tonian dynamics in the HMC method.

0ux.8) and

8 Conclusion

The HMC method can generate less correlated proposals
with high acceptance probabilities, which greatly improves
the performance of the MCMC methods in solving Bayesian
inverse problems. However, when applying the HMC method
to solve a Bayesian inverse problem modeled by elliptic par-
tial differential equations, one needs to compute the solution
to the elliptic PDEs and their derivatives repeatedly in order
to generate data and evaluate the Hamiltonian, which makes
the HMC method extremely expensive.

By exploiting the intrinsic low-dimensional structures of
the underlying model and constructing a set of data-driven
basis, our proposed method achieves significant dimension
reduction in the solution space. Then, equipped with the
data-driven basis, neural networks are trained as efficient
approximations of the parameter-to-solution maps, which
significantly reduce the computation cost in obtaining the
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Table 1 Comparisons of - . )
different methods. Here “hmc”, Dimension Method AR s/Iter ESS min(ESS)/s med(ESS)/s
:rns(;’,t “datg;drwzn"",d - r=25 hmc 0.91 1.27 (4569, 5000, 5000) 0.72 0.79
end-to-end”, and “adjoin
refer to the standard HMC ns 0.71 0.076 (1890, 2518, 3094) 4.98 6.63
method, the random network data-driven 0.85 0.094 (3395, 4306, 4932) 7.22 9.16
Sumigate glg;})g theh . end-to-end 034  0.108 (507, 626, 867) 0.94 1.16
accelerate method, the ..
end-to-end learning method, and adjoint 0.91 0.466 (4475, 5000, 5000) 1.92 2.15
the adjoint method, respectively. r=230 hmc 0.90 1.49 (4592, 5000, 5000) 0.62 0.67
The acceptance .rate (AR), rns 0.60 0.082 (1312, 1661, 2068) 3.20 4.05
computational time for each data-driven 077 0.108  (2907,3414,4116)  5.38 6.32
iteration, effective sample size
(ESS). and time-normalized end-to-end  0.19  0.127 (238,275, 389) 0.38 0.43
ESS are provided adjoint 0.90 0.5 (4482, 5000, 5000) 1.79 2.00
r=235 hmc 0.90 1.72 (4388, 5000, 5000) 0.51 0.58
ns 0.48 0.095 (693, 1008, 1308) 1.46 2.12
data-driven 0.78 0.125 (2831, 3445, 4029) 4.53 5.51
end-to-end 0.12 0.148 (160, 178, 222) 0.22 0.24
adjoint 0.90 0.61 (4341, 4995, 5000) 1.42 1.64
2 2
° °
-2 -2
2 2
1 @ °
2 -2
1 1
: :
1 -1
0 0
-2 -2
-2 0 2 -2 2 =2 0 2 -1 0 -2 0 2 -2 0 2 =2 2 -1 0 1
(a) The standard HMC method. (b) The accelerated HMC method.
Fig.2 Comparing one- and two-dimensional posterior marginals of &, &4, &7, &9, £13
Table 2 relative errors between
the FEM reference solution and Mx 0032 0014 0036 0054 0016 0021 0032 0031 0028 0018
the data-driven approximationat  auxt) (054 0045 0022 0045 0024 0037 0043 0057 0060 0032
ten random samples from the &

posterior of &
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Standard HMC Standard HMC
0.05 0.052
0.04 0.048
0.03 0.044
0.02 0.040
0.01 0.036
0.00 0.032
-0.01 0.028
-0.02 0.024
-0.03 0.020
0.2 0.4 0.6 0.8
X1
Accelerated HMC Accelerated HMC
0.05 0.052
0.04 0.048
0.03 0.044
0.02 0.040
0.01 0.036
0.00 0.032
-0.01 0.028
-0.02 0.024
-0.03 0.020
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
X1 X1
Posterior mean. Posterior standard deviation.
Fig.3 Posterior statistics obtained by standard HMC and accelerated HMC
PDE solution and its derivatives for the Hamiltonian dynam- ~ computation efficiency and exploration efficiency and pro-

ics in proposing a new sample. Through numerical tests, we  vides an effective data and model-based approach for solving
demonstrate that our method strikes a good balance between  elliptic Bayesian inverse problems.
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Fig.4 Partial derivative of u(x, &) with respect to &; and &
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