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Abstract Research on intelligent tutoring systems has been exploring data-
driven methods to deliver effective adaptive assistance. While much work has
been done to provide adaptive assistance when students seek help, they may
not seek help optimally. This had led to the growing interest in proactive adap-
tive assistance, where the tutor provides unsolicited assistance upon predic-
tions of struggle or unproductivity. Determining when and whether to provide
personalized support is a well-known challenge called the assistance dilemma.
Addressing this dilemma is particularly challenging in open-ended domains,
where there can be several ways to solve problems. Researchers have explored
methods to determine when to proactively help students, but few of these
methods have taken prior hint usage into account. In this paper, we present a
novel data-driven approach to incorporate students’ hint usage in predicting
their need for help. We explore its impact in an intelligent tutor that deals
with the open-ended and well-structured domain of logic proofs. We present
a controlled study to investigate the impact of an adaptive hint policy based
on predictions of HelpNeed that incorporate students’ hint usage. We show
empirical evidence to support that such a policy can save students a signifi-
cant amount of time in training, and lead to improved posttest results, when
compared to a control without proactive interventions. We also show that
incorporating students’ hint usage significantly improves the adaptive hint
policy’s efficacy in predicting students’ HelpNeed, thereby reducing training
unproductivity, reducing possible help avoidance, and increasing possible help
appropriateness (a higher chance of receiving help when it was likely to be
needed). We conclude with suggestions on the domains that can benefit from
this approach as well as the requirements for adoption.
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1 Introduction

Personalized instruction is considered an effective educational strategy [12],
with research suggesting that students who receive this individualized instruc-
tion perform significantly better than those who receive classroom instruc-
tion [31,51]. However, human tutors may not always be available or accessible
to each student at all times which, in turn, makes personalized human tutoring
infeasible at a large scale. This has led to the growing success of intelligent
tutoring systems (ITSs) because they can provide user-adaptive instruction
and feedback at a large scale [27,50].

Research suggests that hints when used appropriately can augment stu-
dents’ learning experience and improve their performance [8, 17], but they
may not seek help optimally [2]. One way to tackle non-optimal help-seeking
behaviors, such as help avoidance, is to provide unsolicited help. The assis-
tance dilemma is a trade-off between information giving and withholding to
achieve optimal learning [30]. A core problem of the assistance dilemma is the
need to discover when and whether students are unproductive so that the tutor
can intervene. Modeling student behavior for adaptive unsolicited assistance
in ITSs, especially that deal with open-ended domains, is a well-recognized
challenge [14,37]. This is because open-ended domains have problems that can
be solved in several ways, making it difficult to figure out what path students
are on, and how to adapt assistance for effective learning.

Open-ended domains can be ill-structured, where problems do not have a
clear goal, set of operations, end states, or constraints; or they can be well-
structured, where problems have a clear goal, end states, or constraints. The
assistance dilemma has been challenging to address in open-ended domains
that deal with both ill-structured problems [14, 37] and well-structured prob-
lems [50]. In our prior work, we developed a data-driven approach to solve
the assistance dilemma in Deep Thought, an intelligent tutor for the open-
ended and well-structured domain of logic proofs. While logic problems are
well-structured in that they contain all the information needed to solve the
problem and there are well-defined algorithms that students can use to solve
them, they are open-ended in the sense that they have many possible solu-
tions that can all be correct. We developed a model of student productivity,
and used it to form an adaptive hint policy that proactively intervenes upon
predictions of HelpNeed or unproductivity [34]. While the controlled study
showed promising results, it also showed that our HelpNeed predictor had a
higher than expected proportion of false negatives (student steps that were
falsely predicted to not need help, when actually they did). We hypothesized
that the predictor was highly biased towards efficient steps and was unable to
differentiate efficient steps carried out with tutor help, from those without. So,
in this paper, we seek to examine and understand the impact of incorporating
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student hint usage in modeling their productivity, and consequently, the im-
pact of the revised adaptive hint policy on student learning and performance.

We present a novel method to incorporate student hint usage in modeling
their HelpNeed, and an analysis to investigate its impact on HelpNeed pre-
dictions. We also present a controlled study that showcases the significance of
providing Adaptive assistance proactively upon predictions of HelpNeed. Our
results show that, unlike our prior adaptive hint policy (that did not take into
account students’ hint usage), students in this study’s Adaptive condition have
significantly lower unproductive HelpNeed steps in training than the Control.
We also observe that the Adaptive condition has lower possible help avoid-
ance, and higher possible help appropriateness (a higher chance of receiving
help when it was likely to be needed) than the Control. The improved training
productivity of the Adaptive condition saves them about half an hour on av-
erage (about 20% speedup) and enables them to perform better on a posttest
when compared to the Control.

The main contribution of this paper is the simple yet effective method
of incorporating students’ hint usage in modeling their training productivity.
Further, while much research has explored ways to incorporate help usage
to improve student models, to the best of our knowledge, no prior work has
investigated and contrasted the impact of delivering proactive assistance in a
well-structured open-ended domain using student modeling with and without
incorporating students’ help usage. Our second contribution is an extensive
analysis of a controlled study carried out to investigate the impact of providing
adaptive hints proactively using a HelpNeed predictor that takes into account
students’ help usage, and contrasting it with a predictor that does not.

In the remainder of the paper, we survey the related work. Next, we elabo-
rate the HelpNeed predictor and how we incorporate students’ hint usage. We
present an Adaptive hint policy that uses the revised HelpNeed predictor in
a controlled study, its impact on students’ training productivity and posttest
performance. We also investigate whether incorporating students’ help usage
helps solve the assistance dilemma more effectively than our prior HelpNeed
study.

2 Related Work

2.1 Data-driven User-Adaptive Assistance

Researchers have extensively explored data-driven methods to provide adap-
tive support to students in ITSs. Data-driven assistance has shown to save
time and resources by reducing the need for an expert to construct hints for
every possible student situation [42]. For example, consider the task of gen-
erating hints in the domain of logic proofs. Deep Thought has N = 72,560
unique problem-solving states in the prior student data. It would be infeasible
for an expert to generate a hint for each of these states. Instead, we use the
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Hint Factory, a data-driven approach to generate next-step hints [7], and our
recent modification to it guarantees a 100% hint availability [33].

While data-driven hint generation is crucial in providing adaptive assis-
tance for open-ended domains, an equally important tutoring aspect is to
determine when to administer help. Much research on hints has explored the
impact of on-demand demand hints, i.e., when students request them [45].
Since students may not seek hints optimally, several studies have explored the
impact of agency, i.e., whether hints are requested by the student or proac-
tively provided by the tutor. While some studies suggest that student-initiated
on-demand hints lead to better learning [45], other studies suggest that tutor-
initiated proactive help is better [3, 40]. The conflicting results from different
studies highlight the need to explore tutor-initiated assistance in more detail,
especially because educational psychology suggests that tutor is an active par-
ticipant in scaffolding [55], where learning first occurs at a social level [48,52]
when a tutor brings a concept within students’ zone of proximal develop-
ment [52]. A study by Brawner on unsolicited assistance showed that while
humans naturally intervene when students need help, it is not as easy to in-
corporate in ITSs, and that unsolicited assistance is relatively unexplored for
ITs because they need additional resources [16]. The following section details
the challenge in determining when ITSs should intervene, and provides exam-
ples of how researchers have employed student modeling to do so.

2.2 Assistance Dilemma

According to Koedinger et al., assistance dilemma is about determining the
amount and timing of help to achieve optimal student outcomes [30]. While
withholding more information than needed can lead to frustration and wasted
time, giving more information than needed can lead to shallow learning and
a lack of motivation to learn by oneself [30, 37]. Koedinger and Aleven [30]
worked towards addressing this dilemma in a cognitive tutor by initially with-
holding information about problem solutions and steps, and then interactively
adding information, only as needed, through yes/no feedback, explanatory
hints, and dynamic problem selection. McLaren et al. explored solving the as-
sistance dilemma in an ill-structured inquiry-based chemistry tutor [36]. They
experimented with three levels of problem-level assistance: high (worked exam-
ples - tutor showing sample solutions), mid-level (less assistance than worked
examples), and low (untutored problem solving). Their study suggests that,
among the three levels, mid-level assistance leads to the highest learning.

Researchers have also used student modeling techniques to address the
assistance dilemma [19, 29, 41, 50]. For example, Conati et al. used Bayesian
Networks to model student behavior in Andes, a physics tutor, to, in part, de-
termine when to provide students with unsolicited mini-lessons [19]. In another
study, Kardan and Conati modeled student behavior using clustering and asso-
ciation rule mining for determining when to provide unsolicited adaptive hints
in an exploratory interactive tutor for constraint satisfaction problems [27].
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They found that the adaptive support helped students to have significantly
higher learning than those without, but it did not lead to improved task per-
formance. Fratamico et al. applied Kardan and Conati’s 2015 framework in an
electronic circuits simulator and found that it successfully classified students
into groups of high and low learners [24]. In our prior work on solving the
assistance dilemma in a logic tutor, we introduced a data-driven method to
determine and predict unproductive or HelpNeed steps. We used this Help-
Need predictor to determine when to intervene to provide partially worked
steps. Our findings suggest that such interventions enabled students to form
shorter (more efficient) solutions in a posttest in less time than those without
proactive interventions [34].

2.3 Modeling Unproductivity

Unproductivity refers to undesirable training behavior that is often associ-
ated with poor performance [15, 26]. One of the most widely used definitions
of unproductive behavior was introduced by Beck and Gong [10]. They de-
fine wheel-spinning or unproductive persistence based on whether a student
achieves mastery (three correct problems) in ten problem attempts. This def-
inition has been used in recent studies to predict unproductive behavior with
decision trees [26] and recurrent neural networks [15]. Despite its widespread
use, this definition is not appropriate for our task of determining step-level
productivity (to provide step-level assistance) because it assesses students on
a problem-level. Even on a problem-level, this definition is not suitable for
open-ended problems that value shorter, more efficient solutions.

McLaren in a study on an ill-structured open-ended chemistry tutor de-
fined unproductive events as actions that are unlikely to advance students’
understanding [37]. In our prior work, we developed a model of productiv-
ity to identify problem-solving steps that are not likely to advance students’
problem-solving strategies [32]. But our definition is different from McLaren’s
definition because we do not use a predefined domain-specific metric for effi-
cient and inefficient strategies.

Efficient strategies in many open-ended multi-step domains (both ill- and
well-structured) are reflected in shorter solutions with less problem-solving
time [35,46]. Our model of productivity extends the data-driven Hint Factory
approach [34] to determine efficient steps, and uses pedagogical theory to com-
bine step efficiency and duration for determining HelpNeed, i.e, steps where
students need help. More details about our HelpNeed approach relevant to
this study are presented in section 3 below.

2.4 Hint Usage in Student Modeling

This work assesses the impact of incorporating hint usage in predicting stu-
dent behavior. While researchers have extensively explored predictive student
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modeling tasks such as predicting student performance [18,53], problem selec-
tion [38], and adaptive assistance [19], less attention has been paid to the role
of students’ hint usage in such modeling tasks. The work by Beck et al. in [11]
was one of the first to assess the impact of tutor help on predictive modeling.
They showed that taking into account students’ help requests improved the
predictive power of a reading tutor. Later, they developed the Help model [9],
an extension of a basic knowledge tracing model [20], to explicitly model the
role of help in student knowledge and performance. This work was the first to
jointly model tutor intervention and student knowledge, and learn the param-
eters of a Bayesian network by incorporating students’ help usage. Most work
on knowledge tracing models before this either ignored students’ hint intake or
labelled hint intake as incorrect response [9]. A recent study by Chaudhry et
al. developed a multi-task memory augmented deep learning model to jointly
predict students’ hint-taking and knowledge tracing tasks [18]. Their proposed
model significantly outperformed other models that do not take into account
hint usage by at least 12%.

One group has conducted several studies evaluating the role of help-seeking
in predicting student performance in ASSISTment, a math tutor [22,25,53,54].
One of their earlier works by Feng et al. dealt with building regression mod-
els using student-tutor interaction data to estimate student performance on a
high-stakes state test [23]. They found a significant and negative correlation
between hint requests and test score. Later, they found more evidence to sug-
gest that the online assessment system can do a better job of predicting student
knowledge by taking into account the tutoring assistance needed [22]. Another
study by Wang and Heffernan showed evidence to support that incorporat-
ing students’ hint requests and attempts contributes to more predictive power
than binary performance, and suggested that incorporating such features can
have the potential to enhance student modeling techniques [54]. They also
introduced the Assistance Model (AM) for predicting student performance us-
ing information about the number of hints and attempts a student needed to
answer the previous question [53]. They showed that, while this model alone
did not lead to better prediction performance than other models, ensembling
it with other models reliably improves the predictive accuracy.

A study by Emerson et al. on predictive student modeling for PRIME, a
block-based programming environment, mentions that there is a need to de-
velop predictive models that can accurately identify negative student behaviors
to evolve beyond providing on-demand hints [21].They created a predictive
model for student-activity completion informed by four families of features
including hint usage, prior performance, activity progress, and interface inter-
action, and found that it consistently outperformed their baselines.

While the above mentioned studies evaluated the role of hint usage in
either predicting student performance or attrition, they do not show the effect
of using such models to proactively intervene. In this study, we present both
a method to incorporate hint usage for modeling student productivity in a
well-structured open-ended domain, and a controlled study that investigates
the impact of proactive interventions using this model.
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3 HelpNeed Policy

In this section, we briefly discuss the HelpNeed policy – why it was built, how
it was built, its impact on students, and drawbacks.

The HelpNeed policy was developed for Deep Thought, a data-driven intel-
ligent logic tutor where students practice constructing multi-step propositional
logic proofs in discrete math courses, with 200-350 students per semester, since
2008. Our prior work shows that even though Deep Thought provides hints
with user-adaptive content, students, in general, avoided seeking help [33]. To
reduce help avoidance and address the assistance dilemma in Deep Thought,
we built an adaptive hint policy [34], which at the start of each problem-
solving step uses a HelpNeed (HN) predictor to predict if students will need
help learning efficient problem-solving strategies in the next step. If the pre-
dictor predicts HelpNeed, the adaptive hint policy intervenes with a proactive
hint. This proactive hint is a partially worked step that provides students in-
formation on the next, most optimal, logic statement they can derive to move
towards the solution. To use the proactive hints, students must justify or de-
rive the hinted statement by selecting the appropriate existing statements and
logic rule.

The HelpNeed definition is based on step efficiency and duration. Efficiency
is our data-driven metric that reflects a step’s quality and how well it promotes
progress to a good solution. We provide more details on step efficiency relevant
to this study in section 3.1. Duration is the time taken by a student to carry
out a step, which in the HelpNeed model is said to be long if it is above the
threshold of the 75th percentile, or quick otherwise.

In our prior HelpNeed policy [34], we defined five step behaviors (from
most expert to least expert): (1) Expert-like: quick efficient step, (2) Strategic:
long efficient step, (3) Opportunistic: one quick inefficient step, (4) Far Off :
consecutive quick inefficient steps, and (5) Futile: long inefficient step. Among
these five, Far Off and Futile are HelpNeed steps as prior research suggests
that students can benefit from help either when they are far off track [14]
or when they spend a long time without making progress towards learning
the concepts being taught [10, 26]. Note, we do not consider Opportunistic
steps as needing help because they represent guess-and-check opportunistic
strategy and literature suggests that students should be given opportunities
to use guess-and-check strategies and they can learn from effectively checking
their guesses in semi open-ended domains [44] but prolonged guessing without
progress needs intervention [28].

Next, we briefly describe our HelpNeed predictor. This predictor has two
random forest binary classifiers: state-based and state-free, with class 1 repre-
senting HelpNeed. A problem-solving state is a snapshot of students’ on-going
or complete proof at any given time. Each logic statement derivation or dele-
tion causes a change in the state, and this transition between states is called a
step. We use the state-based classifier when a student’s problem-solving state
can be matched to historical data (logs recorded for 796 students) to leverage
more informative data-driven step efficiency related features for predictions
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(see section 3.1). However, since the domain of logic is open-ended, we may
not always find a state-match. The state-free classifier is used when we don’t
have that information. This two-classifier architecture, described in more de-
tail in [34], ensures that a HelpNeed prediction can be made regardless of
whether or not we find a state match.

We found that the HN predictor and the adaptive hint policy based on
it shows promising results in a controlled study [34], where students in the
HN Adaptive condition, who receive adaptive hints based on the HN model,
perform better in the posttest, and form significantly more optimal proofs in
less time, than those in the HN Control condition who do not receive this
proactive intervention. The HN Adaptive condition shows significantly less
help avoidance and abuse than the control. However, the HN predictor has a
higher proportion of false negatives for students in the HN Adaptive condi-
tion than the Control. We hypothesize that the predictor is strongly biased
towards efficient steps, and when students incorporate the proactive hints in
their proofs, i.e. they use the hints, their solutions appear more expert-like,
which fools the predictor into inferring that more interventions are not needed,
even when they are. In this study, we incorporate students’ hint usage in the
HN predictor to create a HelpNeed and Use (HNU predictor). To do so, we
revised how we compute step efficiency to account for hint usage in our pre-
dictive modeling. We first detail the step efficiency metric in the next section
and then describe how we incorporate hint usage to predict HelpNeed.

3.1 Step Efficiency

This section provides a brief review of the data-driven step efficiency metric
we defined in our prior HelpNeed study [34]. Step efficiency is an extension
of the Hint Factory [6] that measures whether a student’s most recent step
contributes to an efficient (short) solution.

Since the domain of logic is open-ended, students can follow a variety of
solution paths at any given problem-solving state. While some paths may not
lead to solutions, some may lead to a solution that can be highly inefficient.
Further, while a student can be in a state that leads to an efficient solution,
there may be low probability for the student to select that path. Our step
efficiency method takes these aspects into account and has two parts. First,
an interaction network is generated using prior student data, where each node
is a state, each edge is a step (state transition), and the probability of each
state-transition is recorded. A state transition occurs upon deriving a new
logic statement or deleting one from the proof. Next, we carry out the Bell-
man backup for value iteration (used in reinforcement learning) on the states
to determine their quality values. This involves assigning large rewards to so-
lution states, large penalties to states that never lead to solutions, and small
penalty for carrying a step (to penalize longer solutions). Note that the Bell-
mann backup also considers the probability of transition between states while
assigning state quality values. Our prior work defined two types of state qual-
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ity metrics - local which compares states one step away, and global quality
compares all states [34].

As described in our prior work, each problem can have a different range
of state quality values (dependent on its state-space and difficulty). So, to
measure step efficiency, we need a reference state against which we can com-
pare a students’ current state quality. There can be two reference states - the
previous state, in which case we say that we are measuring relative progress,
or the start state, in which case we measure the absolute progress. A step is
called efficient if the progress, using either quality metric, is a non-negative
number. Since there are two ways to measure quality and two ways to measure
progress, we investigated the use of all four combinations to define step effi-
ciency. More details on the four types as well as sample solutions comparing
these types is provided in [34]. We used the global quality and absolute progress
measure of step efficiency to define HelpNeed because these metrics led to the
strongest (and significant) correlation between students’ training unproductiv-
ity and their posttest performance (more details provided in [34]). However,
each combination of quality and progress captures a different perspective on
step efficiency, and was found to significantly predict posttest performance, so
we included all four as features for predicting HelpNeed. Next, we elaborate
how we updated these quality and progress features to account for students’
hint usage in predicting their HelpNeed.

4 Method

We now describe the design of our new HelpNeed and Use (HNU) predictor,
how we train it, and the methods we use to evaluate it.

We modified the HN model to incorporate help usage to reduce the number
of false negatives – times when the prior HN model falsely determined that
students would not need help, but actually did. We also changed the state
representation for reducing the number of false positives – times when the
prior HN model predicted HelpNeed, but students could accomplish the next
step without help. We detail these two modifications in the next two sections.

4.1 Reducing False Negatives: Incorporating Hint Usage

While exploring ways to incorporate students’ hint usage in predicting their
HelpNeed, we examined the prior work by other researchers and their findings.
One common way researchers employed to carry out this task was to include
the number of hint requests [22, 25, 53, 54]. However, this was not sufficient
for our task. In fact, we included the hint request count as a feature to pre-
dict HelpNeed but this feature was weeded out by all the feature selection
approaches we applied (more details of the list of features and the feature
selection process are available in [34]). There are two reasons for this observa-
tion. First, in multi-step open-ended domains, a hint request is not equivalent
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to hint usage – a student can request a hint and then solve the problem with-
out using it. We have several semesters of data suggesting that students can
request hints, not use them, and still complete problems [33,34]. So, the num-
ber of hint requests is not a reliable feature for predicting HelpNeed. Second,
we have six features that record the most recent step’s quality and progress.
These features are highly predictive of the HelpNeed in the next step. The
predictive power of these features was so high that it overshadowed the small
contributions made by not only the hint request features but also the features
that counted the number of hints used. So, in order to incorporate the hint
usage, we improved the signal for the predictor, i.e., the method for computing
these quality and progress features for predicting HelpNeed. We also improved
the distribution used to train the model by employing the HN Adaptive condi-
tion’s data (explained in previous section). These modifications are discussed
below.

4.1.1 Improving the Signal by Reducing Gains Estimates by Half

We improved the signal for HNU predictor by updating the quality and progress
features upon hint usage. Our method presented here is motivated by the study
carried out by Beck et al. on the Help model [9]. More specifically, they pre-
sented knowledge tracing parameters with estimated values for steps both with
and without help. They found that the probability of a student already know-
ing a concept upon carrying out a step decreased to about half its value when
help was given. Furthermore, more literature suggests that the probability
of a student knowing a concept is lower with help than that without [5]. In
our model, this translates to penalizing (reducing) the quality of a problem-
solving state, and the step progress upon hint usage, i.e., we want to train the
model to interpret an efficient step upon hint usage as having less quality, i.e.
demonstrating less knowledge than an efficient step derived without help.

The next question is: how much do we penalize state quality and step
progress upon hint usage? To answer this question, we look at the amount of
information we provide in a hint for carrying out the next step. Each step con-
sists of two parts: the justification and the derived statement. The justification
is applying a rule to a set of 1-2 existing nodes, and the derived statement is
the result. We hint students on what statement to derive next. So, we provide
about half the information needed to carry out the next step. Therefore, we
reduce the improvement in state quality and progress by half when a step is
completed with hint justification (which is our hint usage metric, see section
5.5). Note that we do not reduce a step’s post-state quality and progress by
half, but rather, we penalize the gain in quality and progress from the pre-
vious state. We illustrate this concept in the following example. Consider a
step carried out with hint justification. The pre-state of the step has a global
quality of 81. The post-state’s original global quality is 87 but because of hint
justification, their penalized global quality is 81 + (87 - 81)/2 = 84 instead
of 87. This modified credit (absolute progress) for the most recent step is 10
(84-74) instead of 13 (87-74), since the start state’s global quality is 74. We
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Test
State-based State-free

Recall AUC Recall AUC

3CV-HN-A .86 .83 .75 .63

3CV-HN-AC .81 .80 .71 .62

Holdout-HN-A .87 .80 .77 .63

Holdout-HN-AC .88 .79 .79 .61

Table 1: Understanding the impact of data used in training the HNU predictor
for both state-based and state-free predictions

hypothesize that this reduction in the quality and progress values can enable
the tutor to differentiate between efficient steps carried out with and without
help.

4.1.2 Improving the Distribution

We also improved the distribution used to train the HNU predictor. We used
the HN Adaptive group’s dataset to train the HNU predictor. While we have
several dataset with proactive hints given either randomly or using reinforce-
ment learning, the dataset on the HN Adaptive group is the only one that uses
a proactive hint policy with a HN predictor, and hence, it is most indicative
of student behavior in such an adaptive hint policy.

We performed a 3-fold cross validation on the HN Adaptive dataset (3CV-
HN-A) to assess the effectiveness of using this dataset in predicting HelpNeed.
Table 1 shows the result of carrying out this test on Random Forest models for
both state-based and state-free predictions. Note that we experimented with
classifiers including Random Forest, Decision Tree, Support Vector Classifier,
Multi-layer Perceptron, Quadratic Discriminant Analysis, K-Nearest Neigh-
bours, AdaBoost, Naive Bayes, and XGBoost. We also experimented with
parameters such as class weights to maximize both recall (proportion of Help-
Need steps correctly predicted) and area under the ROC curve (AUC, the
ability of a model to distinguish between HelpNeed and non-HelpNeed steps).
We selected Random Forest models because they had the highest recall, i.e.,
they maximized the chances of predicting HelpNeed when help was needed.
Table 1 shows the results for this analysis. As in our previous work with state-
based and state-free classifiers for HelpNeed, the state-based random forest
model has a higher AUC than the state-free random forest model.

In addition to 3CV-HN-A, we performed three additional tests to under-
stand the impact of training predictive models on different datasets. First, we
performed the test 3CV-HN-AC where both HN Adaptive and Control (HN-
AC) datasets were split into 3 folds (3CV-HN-AC); the models were trained on
four folds (two folds per HN Adaptive and Control) and tested on the remain-
ing two folds (one per HN Adaptive and Control). This testing was performed
to understand how well a classifier trained on data with and without proac-
tive help would perform in predicting both policies. Similar to 3CV-HN-A,
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in the 3CV-HN-AC test, the state-based predictor has a better AUC than
the state-free predictor. Though 3CV-HN-A and 3CV-HN-AC are not directly
comparable because they are tested on different datasets, the higher recall and
AUC in 3CV-HN-A suggests that there may be differences in student behav-
ior between the HN Adaptive and Control groups that lower the performance
of 3CV-HN-AC models in predicting HelpNeed for HN Adaptive and Control
together than it is for 3CV-HN-A models in predicting HelpNeed for the HN
Adaptive group alone.

Next, we performed the test Holdout-HN-A, a holdout testing with train-
ing on HN Adaptive and testing on the dataset that was used to train the
HN predictor. This testing was performed to assess the generalizability of the
model trained on the HN Adaptive dataset in predicting prior datasets with
randomly-given proactive hints. Finally, we performed the test Holdout-HN-
AC, a holdout test with training on HN Adaptive and Control (HN-AC), and
testing on prior datasets. This test was performed to assess how models trained
on HN Adaptive are at predicting prior semesters in comparison with models
trained on the combination of HN Adaptive and Control.

Table 1 also shows the results of Holdout-HN-A and Holdout-HN-AC which
can be compared because they are tested on the same datasets. The results
of these tests are similar for both state-based and state-free predictions, with
Holdout-HN-A showing a slightly lower recall and slightly higher AUC than
Holdout-HN-AC. These results suggest training the models on HN Adaptive
alone does not significantly reduce the performance of a classifier in predicting
prior semesters’ HelpNeed.

These holdout test results, in conjunction with 3-fold cross validation on
the HN Adaptive group (3CV-HN-A) results, suggest that training the HNU
predictor on HN Adaptive group can result in an effective classifier for pro-
viding proactive hints, which is also generalizable over prior semesters. Before
we present the controlled study that tests this hypothesis, we present another
modification we employed in the HNU predictor. Note that, unlike the mod-
ification of incorporating hint usage that aims to reduce false negatives, the
following modification aims to reduce false positives.

4.2 Reducing False Positives: Updating State Representation

Recall that the HelpNeed predictor comprises the state-based and state-free
classifiers (see section 3). The state-free predictor is used when a student’s
problem-solving state cannot be found in the historical student data. Since the
state-free predictor cannot use step efficiency features (quality and progress),
we modeled it to have a high recall at the expense of a higher false positive rate.
We made this trade-off because we want to correctly predict most HelpNeed
steps so that timely intervention is given to students. While we were not able to
improve the state-free predictor in this study, we use a method that can reduce
the usage of the state-free classifier. Since the state-free predictor is used when
a student’s problem-solving state cannot be matched in the historical student
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data, we aimed to reduce its usage by devising a method to increase state
matches with historical data.

The HelpNeed predictor uses ordered state matches, where we take into
account the order of statement derivation while finding a matching state in the
historical student data. Prior work on the Hint Factory reveals that performing
unordered state matches with historical data can drastically increase these
matches [6]. For unordered matches, we do not take into account the order of
statement derivation while finding a state matching that of a new student.

In the next section, we present an experiment carried out to evaluate the
HNU predictor that (1) penalizes quality and progress features upon hint usage
(improved signal), (2) is trained on the HN Adaptive condition (improved
distribution), and (3) uses unordered state representation for finding state-
matches with the historical data (to reduce false positives).

5 Experiment

To understand the impact of incorporating students’ hint usage in the HNU
predictor, we conducted a controlled study where the HNU Adaptive condi-
tion received proactive hints upon predictions of HelpNeed using the HNU
predictor, while the HNU Control did not receive proactive hints. Students
in both the HNU conditions could request hints on-demand during training.
For comparison purposes, this study was setup similar to our prior HN study,
where students in the HN Adaptive condition received hints using the original
HN predictor, and HN Control, where students did not receive any proactive
hints.

5.1 Hypotheses

We have the following hypotheses:

– Posttest

– H1 (efficiency and time): Students in the HNU Adaptive condition
will form shorter (more efficient) proofs faster in the posttest than those
in the HNU Control condition

– Training

– H2 (false negatives): The HNU predictor will have a lower proportion
of false negatives (FN) for the HNU Adaptive condition than the HN
predictor

– H3 (false positives): Using unordered state representation will sig-
nificantly increase the number of state-matches, thereby, significantly
increase calls to the state-based classifier (which has a lower rate of
false positives (FP) than the state-free classifier).

– H4 (training productivity): Compared to the HNU Control, stu-
dents in the HNU Adaptive condition will have a better training be-
havior with fewer HelpNeed steps
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– H5 (help usage) Compared to the HNU Control, students in the
HNU Adaptive condition will have a lower possible help avoidance, and
higher possible help appropriateness, as measured using the HelpNeed
classification and predictor.

5.2 Participants

The tutor is given as a homework assignment every semester in a discrete math
course (CSC 226) at North Carolina State University to undergraduate stu-
dents in the College of Engineering majoring in Computer Science, Computer
Engineering, or Electrical Engineering. The HNU study experiment was con-
ducted with 84 participants in the Spring 2020 semester, and the students were
initially given ten days to complete the tutor comprising seven days before the
Spring break and three days after it. However, the COVID-19 related lockdown
extended the Spring break by a week, so we extended the assignment deadline
by a week. We do not have precise demographics for the Spring 2020 HNU
study. However, according to the instructor of this course, the demograph-
ics for the Spring 2020 HNU study were similar to that of the Fall 2019 HN
study; note that the two semesters are within the same Academic Year 2019-
2020, and are about 4 months apart. The Fall 2019 College of Engineering
demographics included 25.9% women, 65.9% white, 9.2% Asian, 6.2% Non-
resident Alien, 0.3% American Indian/Native American, 3.4% Black/African
American, 5.7% Hispanic/Latino, 3.5% from two or more under-represented
minorities, and 5.8% with unknown race/ethnicity 1. The CSC 226 course is
typically composed of about 60% sophomores, 30% juniors, 9% seniors, and
1% freshmen.

5.3 Procedure

The tutor is divided into four sections: introduction, pretest, training, and
posttest. The introduction presents two worked examples to familiarize stu-
dents with the tutor interface. Next, we determine students’ incoming com-
petence in a pretest comprising two easy and short problems, solvable with
short optimal solution lengths (Mean = 3.5, SD = 0.71). Stratified random
sampling based on pretest performance (see section 5.4) is used to partition
84 HNU study participants into the two conditions, resulting in 42 in Adaptive
and 42 in Control. Next, students go through the training section with fifteen
problems of varying difficulty. The difficulty of the training problems is be-
tween that of the pretest and the posttest, assessed on averaging the optimal
solution lengths over all the training problems (Mean = 4.99, SD = 1.32).
Students in both the conditions can request on-demand hints in training but

1 Their website does not display demographics for the Spring semesters. More de-
tails on Fall 2018, 2019, and 2020 student demographics at NCSU can be found at
https://www.engr.ncsu.edu/ir/fast-facts/.
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only the Adaptive condition is given proactive hints using the revised Help-
Need predictor – the HNU predictor. Finally, students take a posttest with
five problems that are more difficult with longer optimal solution lengths than
the other sections (Mean = 7.25, SD = 1.89). Note that the tutor is designed
to provide immediate feedback on rule application errors in all the sections.
Among the 84 participants, 74 (36 in Adaptive and 38 in Control) completed
the tutor and one Control group participant’s data was removed because of
log errors. We performed a χ2 test of independence to examine the impact
of completion rate and system errors on the groups and found no significant
differences among the two groups: χ2 (2,N = 84) = .03, p = .99. This implies
that the group sizes were not significantly impacted by the tutor completion
rate or logging errors. Finally, we analyzed the HNU study data for 73 partic-
ipants (36 in Adaptive and 37 in Control).

5.4 Performance Metrics

We measure performance using three metrics: solution length, problem-solving
time, and rule application accuracy [33,34]. In open-ended well-structured do-
mains such as logic, forming shorter (more efficient) proofs, taking less time,
and making fewer mistakes reflects more expert-like problem-solving. We now
define each of the three performance metrics. Length of a solution is the num-
ber of statements derived in that solution. To calculate the length of a tutor
section (pretest, training, or posttest), we sum the length of solutions to all
problems solved in that section. We measure length only for the problems
that are complete. Since we analyze the dataset for students who completed
the tutoring assignment, i.e., they completed all the problems, so we can use
this metric to compare the conditions. Next, similar to other studies [27, 49],
we assess students on their problem-solving time. We cap each click-based ac-
tion time to five minutes (to reduce noise)2 and sum this capped action time
over a section to calculate the time metric. Finally, the performance metric of
accuracy is defined as the number of correct rule applications divided by the
total number of rule applications.

To check that the data met assumptions for t-tests, we used the Shapiro-
Wilk’s test and Levene’s test, as well as visually inspecting the data via Q-Q
plots. We used Welch’s t-test for distributions that passed the Shapiro Wilk’s
test but not the Levenes’ test. Data that did not meet the assumptions were
transformed using log or square-root transformations, then reinspected. For
data that still did not meet assumptions, either Mann-Whitney U test or
Kruskal-Wallis test with Dunn post hoc test and Bonferroni corrections were
used. For clarity, all data in tables are reported before transformation.

2 The 3rd quartile of action time in the HNU study is 4.1s, and only 2721 out of 214575
actions had an action time greater than five minutes
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Table 2: Definition of possible help avoidance, abuse, and appropriateness
using the HelpNeed classification, described in our prior work [34]

Help Behavior Metric Definition

Possible Help Avoidance
%steps with observed HelpNeed

but no hints were requested or received

Possible Help Abuse
%steps with no predicted or observed HelpNeed

but hints were requested

Possible Help Appropriateness
%steps with predicted HelpNeed

and hints were received

5.5 Hint Usage

As mentioned earlier, we use hint justification as the measure of hint usage.
The process of hint justification involves selecting existing statements and rules
to derive the hinted statement. Hint justification rate (HJR) is defined as the
proportion of hints given (on-demand or proactive) that are correctly justified.
We also investigate student help behaviors such as possible help avoidance,
abuse, and appropriateness. We defined them in our prior HelpNeed study [34],
and are provided in Table 2. Note that we add a prefix possible to these
behaviors because HelpNeed does not represent ground truth as classified by
experts. Rather, HelpNeed is our classification of steps needing help, and the
prediction is a heuristic measure.

6 Results

In this section, we present the analyses investigating our five hypotheses: H1
on improved posttest performance, H2 on fewer false negatives, H3 on fewer
false positive, H4 reduced training HelpNeed, and H5 on improved help usage.

6.1 Performance Metrics

This section provides an overview of student performance in the two HNU
conditions {Adaptive, Control} using the metrics {Length, Time, Accuracy}
discussed in section 5.4. We first investigate hypothesis H1 on whether the
HNU Adaptive students have better posttest length and time than their Con-
trol peers. We also briefly contrast this comparison with that of the HN study.

Table 3 shows the distribution parameters of students’ pretest, training,
and posttest performance in the two HNU Conditions {Adaptive, Control}.
As expected, no significant differences were found between the two conditions
in the pretest performance metric of (1) length: U = 659, p = .47, (2) time:
U = 649, p = .43, and (3) rule application accuracy : t(72) = 0.30, p = .77.
This confirms that our stratified random sampling assignment balanced HNU
Adaptive vs. Control conditions’ incoming competence (see section 5.3).
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Table 3: Distribution parameters for the performance metrics of the two HNU
conditions in the pretest, training, and posttest section of the tutor

Section Metric Adaptive Control p

Pretest

Length (#nodes) 16 (5) 16 (5) .47

Time (min) 54 (49) 57 (46) .43

Accuracy .41 (.16) .45 (.2) .77

Training

Length (#nodes) 86 (9) 92 (15) .04*

Time (min) 64 (27) 90 (43) .01*

Accuracy .74 (.10) .69 (.13) .05*

Posttest

Length (#nodes) 39 (8) 44 (12) .06

Time (min) 31 (30) 30 (27) .98

Accuracy .76 (.11) .71 (.11) .04*

Next we examine the differences in the training performance between the
HNU Adaptive and Control conditions. Significant differences were found be-
tween the two conditions in the training (1) length: t(72) = 1.75, p = .04,
Cohen’s d = .49, (2) time: t(72) = 2.25, p = .01, Cohen’s d = .72, and (3)
accuracy : t(72) = 1.65, p = .05, Cohen’s d = .43. This is a marked difference
from the HN study, where the HN Adaptive condition was only marginally
significantly better in solution length than the HN Control, with no signifi-
cant differences in the training time or accuracy. This provides evidence to
support that the HNU predictor improved the training performance for the
HNU Adaptive condition. We further investigate students’ training behavior
within the HNU study as well as contrast the differences in the Adaptive and
Control conditions between HNU and HN studies in section 6.2.

Next, a Mann-Whitney U test on posttest length shows a marginally sig-
nificant difference between the two HNU conditions (U = 495, p = .06) with
the Adaptive condition (Mean = 39, SD = 8) forming marginally significantly
shorter proofs than the Control (Mean = 44, SD = 12), and a moderate effect
size (Cohen’s d = .49). Next, on the transformed posttest time, no significant
differences (t(72) = .03, p = .98) were found between the two conditions, with
students in the Adaptive condition (Mean = 31min, SD = 30min) spending
a similar amount of time on the posttest as the Control (Mean = 30min, SD
= 27min). These observations partly confirm our H1 hypothesis. Interestingly,
we found significant differences in the posttest accuracy between the two HNU
conditions (t(72) = 1.75, p = .04), with the Adaptive condition (Mean = .76,
SD = .11) having significantly higher accuracy than the Control (Mean = .71,
SD = .11), with a moderate effect size (Cohen’s d = .45). We hypothesize that
this result may be a consequence of effectively predicting when students need
help so that they get more practice with the targeted rules and less distrac-
tion from rules that are present on the screen but are rarely used in efficient
solutions. We further discuss this improved accuracy in section 7.

Note that in the HN study, students in the HN Adaptive condition formed
significantly shorter proofs in the posttest in significantly less time (11 min-
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Fig. 1: The HNU predictor has significantly lower percentage of false negatives
on the HNU Adaptive condition data when compared to the HN predictor (p
= .002)

utes faster on average) than the Control. The HNU predictor led the HNU
Adaptive condition to save 26 minutes in training compared to the HNU Con-
trol. We further investigated students’ training behavior in the next section to
understand the impact of the revisions made in the HNU predictor and how
it may have impacted the posttest results.

6.2 Training

In this section, we investigate whether incorporating students’ help usage in
the HNU model led to improved HelpNeed predictions during training (H2
and H3), students’ training unproductivity (H4), as well as their help-usage
behaviors (H5) such as help avoidance, help appropriateness, and help abuse.

6.2.1 Did we improve the predictor?

In this section, we investigate hypothesis H2 (false negatives) and H3 (false
positives), i.e., whether incorporating students’ help usage in our model leads
to improved HelpNeed predictions during the tutor’s training section. H2 states
that the HNU predictor has a lower proportion of false negatives (FN) for the
HNU Adaptive condition participants than the HN predictor. Note, we don’t
compare the false negatives observed in the HN study with that of HNU, but
rather, compare both predictors on the HNU Adaptive condition’s data. By
using the same data, we can control for extraneous factors. We also don’t
compare the two predictors on the HN Adaptive condition’s data because the
HNU predictor was trained on that data. Hence, comparing the two predictors
on the HNU Adaptive condition ensures an honest assessment.

Figure 1 shows that, on average, the HNU predictor has 7.1% instances with
a false negative (SD = 4.2), and the HN predictor has 11.5% false negatives
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(SD = 9.2). A Mann Whitney test shows a significant difference (U = 768.5,
z = 2.93, p = .002) between the two predictors in the percentage of false
negatives, with the HNU predictor performing significantly better than the
HN predictor. This confirms our H2 hypothesis.

Next, we investigate the impact of unordered state representation on the
HNU predictor. Recall, we hypothesized (H3) that unordered state represen-
tation will increase the number of state matches which will, in turn, increase
the calls made to the state-based classifier (which has a lower rate of False
Positives (FP) than the state-free classifier). The HN study used ordered state-
matches leading to 70.6% calls to the state-based predictor. Whereas, in the
HNU study, we were able to attain 90.3% state-based calls because of the un-
ordered state representation. A chi-squared test shows a significant difference
in the proportion of calls to the state-based vs. state-free classifiers between
the two studies (χ2 (1,N = 24, 311) = 32.82, p < .001). This confirms our
H3 hypothesis. The reduction in the number of state-free calls because of the
unordered state representation is noteworthy because the state-free classifier
errs on the side of higher recall at the expense of more false negatives, i.e., it
errs on the side of providing more proactive hints to ensure a high recall. So,
increasing the number of state-based calls ensures that we reduce the number
of unnecessary proactive hints given to students. We discuss the number of
hints given to students (proactive or on-demand) in section 6.2.3.

6.2.2 Did the improvement in the predictor reduce training unproductivity?

In the HN study, even though the Adaptive condition had significantly fewer
Far Off steps than the Control, there were no significant differences in the total
number of HelpNeed training steps between the HN Adaptive and Control
conditions [34]. We hypothesized that HNU’s improved predictions will lead
the HNU Adaptive condition to have significantly fewer HelpNeed training
steps than the HNU Control (H4). We found a significant difference (p = .02)
in the HelpNeed steps between the HNU Adaptive condition (Mean = 25, SD
= 18) and the HNU Control (Mean = 43, SD = 49). This suggests that the
HNU predictor successfully predicted and prevented training unproductivity
(HelpNeed steps) for the HNU Adaptive condition, confirming hypothesis H4.

We now drill down on the step behavior and compare the number of each
training step-type between HNU Adaptive and Control conditions, as shown in
Table 4. The HNU Adaptive group has significantly more Expert steps than the
HNU Control (Adaptive: 82, Control: 74, p = .02). Further, the HNU Adaptive
condition not only has significantly fewer Far Off (Adaptive: 15, Control: 26, p
= .04) but also has significantly fewer Futile steps than the Control (Adaptive:
10, Control: 17, p = .02). Finally, on the total training steps, a t-test shows
that the HNU Adaptive condition took marginally significantly fewer total
training steps on average compared to the HNU Control condition: t(72) =
1.4, p = .08. It is interesting that the HNU Adaptive condition has marginally
significantly fewer total steps even when they have significantly more Expert
steps. This is because when students follow expert-like strategies, they can
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Table 4: Distribution parameters for students’ training steps in the two HNU
conditions. T-tests show significant differences between the two conditions in
the Expert (p = .02), Far Off (p = .04), and Futile (p = .02) steps.

Step Behavior Description Adaptive Control p

non-HelpNeed

Expert quick efficient steps 82 (17) 74 (16) .02*

Strategic long efficient steps 21 (7) 22 (10) .23

Opportunistic singular quick inefficient steps 8 (5) 8 (5) .38

HelpNeed
Far Off consec. quick inefficient steps 15 (13) 26 (34) .04*

Futile long inefficient steps 10 (7) 17 (18) .02*

Total Training Steps 136 (31) 148 (52) .08

Table 5: Distribution parameters for the number of hints given and the hint
justification rate in the two HNU Adaptive and Control conditions

Adaptive Control p

Proactive 27 (5) - -

On-demand 10 (11) 9 (11) .28
# Hints

Received
Total Hints 37 (12) 9 (11) <.01*

Proactive 93% (6%) - -

On-demand 96% (8%) 86% (25%) .02*

% Hint

Justification

Rate (HJR) Total HJR 93% (6%) 86% (25%) .44

solve the problems more efficiently with fewer steps overall. The significantly
higher Far Off and Futile steps in the HNU Control condition may be a result
of help avoidance because students may not know when to seek help [4, 43].
More details on student help avoidance are discussed in section 6.2.4.

6.2.3 How many hints were given and used?

In this section, we further investigate the sources of differences in the training
behavior between the HNU Adaptive and Control conditions. Table 5 shows
the mean and standard deviation of the total number of proactive, on-demand,
and overall hints received by students in the two HNU conditions across train-
ing problems (the top part), and their hint justification rate (HJR, the bottom
part). Note that the HNU Control condition was not provided with proactive
hints, and thus only their on-demand hints count toward their total hints.

Students in the HNU Adaptive condition on average received 27 proactive
hints (19.6% of steps). This is similar to the average number of proactive hints
received by the HN Adaptive Condition (Mean = 28; 22.8% of steps). This
is particularly interesting because even though the two predictors lead to a
similar proactive hint count, only the HNU predictor significantly reduced the
unproductive HelpNeed steps (see 6.2.2). We believe this is a result of reducing
both the false negatives (and thereby increasing the chances of students re-
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ceiving hints when they are needed), and false positives (and thereby reducing
the chances of providing unnecessary help).

Next, we observed no significant differences in the number of on-demand
hint between the two HNU conditions (U = 583.5, z = 1,1, p = .28), with
HNU Adaptive condition having Mean = 10 (SD = 11), and Control having
Mean = 9 (SD = 11). Next, a Mann Whitney U test on the total hints for
the two HNU conditions shows a significant difference (U = 82, z = 6.5, p
< .01). While one can argue that the increased number of total hints could
have improved the HNU Adaptive condition’s posttest performance, our prior
study [34] suggested that simply receiving more proactive hints at random
times can be harmful, so it is important to identify when help is needed.
Ideally, we would compare the HNU policy with a policy that provides the
same number of proactive hints randomly. However, this is difficult to achieve,
since the policy is adapting to individual students and the number of proactive
hints per student is neither predetermined nor consistent.

For the HJR in the HNU study, the total hints HJRs are high for both
conditions (Adaptive: Mean = 93%, SD = 6%; Control: Mean = 86%, SD =
25%), and no significant differences were found between the two conditions (U
= 562.5, z = 0.16, p = .44), which suggests that our hints are well-accepted by
students in both the HNU conditions. The HNU Adaptive condition justified
most of their proactive hints (mean proactive HJR = 93%). This affirms our
prior results that students in the Adaptive condition find it easy to incorporate
the unsolicited hints in their solutions [33]. Interestingly, unlike the HN study,
we observed a significantly higher on-demand HJR for the HNU Adaptive
condition than the HNU Control (HNU means : Adaptive: 96%, and Control:
86%, U = 375.5, z = 2.0, p = .02). Further, compared to HN study, students
in HNU study had a higher on-demand HJR for the Adaptive condition (HN
Adaptive: 87%, HNU Adaptive: 96%) and a lower on-demand HJR for the
Control condition (HN Control: 90%, HNU Control: 86%). We further looked
into students’ on-demand hint usage to understand what may have caused this
behavior. We found that on average, the HNU Adaptive group received an on-
demand hint to derive the conclusion in 39% of their on-demand hints, with an
SD = 40%, and max = 95% for an on-demand hint count = 21. Since students
requested these hints, it suggests that, in these situations, the Adaptive group
was not aware that they could derive the conclusion in the next step. On the
other hand, not a single student in the HNU Control group received an on-
demand hint to derive the conclusion. This may suggest that some Adaptive
group students may have gamed the on-demand hints. We discuss it further
in the next section.

6.2.4 Did we reduce help avoidance and increase help appropriateness?

In this section, we investigate H5 that students in the HNU Adaptive condi-
tion will have lower possible help avoidance, and higher possible appropriate
help, as measured using the HelpNeed classification and predictor, when com-
pared to the Control. We compare possible help abuse as well to determine
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Fig. 2: Comparing students’ help behavior across the four conditions: HN
Adaptive, HN Control, HNU Adaptive, and HNU Control

(a) HNU Adaptive condition has signifi-
cantly lower possible help avoidance than
the other three conditions

(b) HNU Adaptive condition has signif-
icantly higher possible help appropriate-
ness than the other three conditions

(c) HNU Adaptive condition has signifi-
cantly high possible help abuse than the
HN Adaptive condition

whether the Adaptive hints impacted gaming behaviors, where students game
or overuse hints to complete the problems faster without learning. We also
compared the HNU conditions with that of HN to understand the impact of
incorporating help usage into the HNU predictor.

Figure 2 shows a comparison in possible avoidance, abuse, and appropri-
ateness between the four conditions. We used Kruskal-Wallis test with Dunn
post hoc test and Bonferroni corrections. We first discuss possible help avoid-
ance shown in Figure 2a. A significant difference (H (3, N = 184) = 30.3, p
< .001) was found between the four conditions. The Dunn post hoc test with
Bonferroni corrections shows a significant or marginally significant difference
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between all pairs except HNU and HN control conditions (p = 1.0). The HNU
Adaptive condition (Mean = 6.5%, SD = 4.3%) has significantly less possible
help avoidance than all other conditions: HNU Control (Mean = 21.4%, SD
= 4.3%, p < .001), HN Control (Mean = 26.6%, SD = 5.2%, p < .001), and
the HN Adaptive condition (Mean = 12.5%, SD = 3.5%, p = .0).

Next, Figure 2b shows possible help appropriateness, i.e., the proportion of
steps where HelpNeed was predicted, and help was either given or requested.
A Kruskal-Wallis test shows a significant difference in possible help appropri-
ateness between the four conditions (H (3, N = 184) = 135.9, p < .001). The
Dunn post hoc test with Bonferroni corrections shows a significant difference
between all pairs except HNU and HN control conditions (p = 1.0). The HNU
Adaptive condition (Mean = 28.9%, SD = 6.4%) has significantly (p < .001)
higher possible help appropriateness than all other conditions: HNU Control
(Mean = 1.7%, SD = 1.3%), HN Control (Mean = 2.3%, SD = 1.5%), and the
HN Adaptive condition (Mean = 15.0%, SD = 7.4%). These results confirm
our H5 hypothesis that students in the HNU Adaptive condition will have
lower possible help avoidance, and higher possible appropriate help compared
to the Control. It is interesting to note that while we only hypothesize sig-
nificant differences between HNU Adaptive and Control conditions, the HNU
Adaptive condition had significantly lower possible help avoidance and higher
possible appropriate help than the HN Adaptive condition as well.

Finally, we look into possible help abuse shown in Figure 2c. A Kruskal-
Wallis test shows a significant difference in possible help abuse between the
four conditions (H (3, N = 184) = 8.6, p = .03). Next, we applied the Dunn
post hoc test with Bonferroni corrections. Interestingly, we found that the
HNU Adaptive condition (Mean = 5.5%, SD = 4.2%) has a significantly (p
= .02) higher possible help abuse than the HN Adaptive condition (Mean =
1.2%, SD = 1.1%) . Further, we found no significant differences in the possible
help abuse between the HNU Adaptive and Control conditions (p = 1.0). It is
possible that COVID-19 lockdown may have interacted with HNU Adaptive
students’ dependence on hints. We further discuss this in the next section. We
also hypothesize that the increased possible help abuse in the HNU Adaptive
condition may have negatively impacted their posttest time.

7 Discussion

7.1 Adaptive Hint Policy: HN vs. HNU

In this section, we discuss the results of providing partially worked steps as
proactive hints using our HNU predictor (HelpNeed predictor that takes into
account students help usage), and our post-hoc comparison between the HN
(without incorporating help usage) and HNU (with incorporating help usage)
studies for solving the assistance dilemma in Deep Thought.

A direct consequence of incorporating help usage in predicting HelpNeed is
the significantly lower proportion of false negatives. This is important because
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it increases the chances of students receiving help when it is needed. A conse-
quence of this reduction in false negatives is that the HNU Adaptive hint policy
successfully delivered proactive hints more appropriately than the HN Adap-
tive hint policy. While the HN predictor significantly reduced Opportunistic
and Far Off steps in training for the HN Adaptive condition when compared
to the HN Control, their total training HelpNeed steps did not significantly
reduce. However, unlike the HN study, the HNU predictor did lead students
in the HNU Adaptive condition to have significantly fewer training HelpNeed
steps than their Control peers. Therefore, incorporating students’ help usage
in modeling student behavior effectively reduced their training unproductivity.

A result of the reduced training unproductivity is that the HNU Adaptive
condition performed significantly better on the training performance metrics
of time, length, and accuracy than the HNU Control condition. Similar to the
HN study, students in the HNU Adaptive condition effectively learned efficient
strategies in training and formed shorter solutions in the posttest than their
Control peers. But unlike the HN study, the HNU Adaptive condition was
not significantly faster than the Control. However, overall, the HNU Adaptive
policy helped students save more time (about half an hour) on the tutor than
the HN Adaptive policy (about eleven minutes). We suspect that the increased
possible help abuse in the HNU Adaptive condition could have negatively
impacted their overall posttest time.

The HNU Adaptive condition received proactive hints on average in only
19.6% of training steps (see section 6.2.3), and yet it led to a significantly lower
possible help avoidance and significantly higher possible help appropriateness
when compared to the HNU control and the HN Adaptive conditions. This
suggests that the revisions in the HNU predictor helped ensure tutor assis-
tance was administered more appropriately. However, students in the HNU
Adaptive condition requested more on-demand hints and had a significantly
higher possible help abuse than the HN Adaptive condition (Mean Possible
Help Abuse - HN Adaptive: 1.3% steps, HNU Adaptive: 5.5% steps). It is pos-
sible that receiving proactive hints when they were needed increased student
reliance on hints. It is also possible that the COVID-19 related lockdown con-
tributed towards increased stress among students [13,47], which may have led
the Adaptive condition students (who were more prone to train with hints as
reflected in their higher HJR) to game the on-demand hints more often than
they otherwise would. Several studies have suggested ways to deal with such
gaming behavior. For example, one strategy is to introduce mandatory delays
before a student could request a hint [1, 39].

7.2 HNU Predictor and Targeted Rule Practice

Next, we investigate our post-hoc hypothesis that the HNU Adaptive condi-
tion formed shorter solutions than their Control peers because they received
more practice on the targeted rules. Targeted rules per problem are the ones
that lead to the most efficient (shortest) solutions. Since students are pro-
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Fig. 3: The HNU Adaptive has significantly fewer incorrect targeted rule ap-
plications (p = .02), and significantly more correct targeted rule applications
(p = .02) than HNU Control. And, there are no significant differences in non-
targeted correct and incorrect rule applications between the two groups

(a) Incorrect Targeted Rule Application
(b) Correct Targeted Rule Application

s

(c) Non-targeted Rule Application

vided a list of about twenty rule options, one important aspect of learning to
solve logic proofs is to differentiate between applicable rules that will never
lead to a solution, rules that lead to inefficient solutions, and those that lead
to efficient solutions. We hypothesized that more practice with the targeted
rules helped students in the HNU Adaptive condition to build effective proof
solving strategies. More practice with targeted rules would also explain the un-
expected consequence of the HNU Adaptive condition having a significantly
higher posttest accuracy than the Control. We tested this hypothesis by com-
paring the number of correct and incorrect rule applications on the targeted
rules in the training section between the two HNU conditions.

When we compare the total targeted rule applications (correct + incorrect)
between the two HNU conditions, we see no significant differences: Adaptive
with Mean = 117 (SD = 21), Control with Mean = 123 (SD = 30), U = 609,
p = .42. But, interestingly, we found a significant difference in the number of
both incorrect and correct targeted rule applications between the two HNU
conditions with the HNU Adaptive condition performing better, as shown in
Figure 3a and 3b respectively. On the correct applications of targeted rules, the
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HNU Adaptive (Mean = 91, SD = 11) had significantly higher application (U
= 485, p = .02) than the HNU Control (Mean = 85, SD = 12). Furthermore,
on the incorrect application of targeted rules, the HNU Adaptive (Mean = 26,
SD = 15) had significantly lower rule applications (U = 490, p = .02) than
the HNU Control (Mean = 38, SD = 26). These observations are interesting
because we provide all students with a list of targeted rules in each training
problem. It seems that both groups tried to use targeted rules in training prob-
lems, but the HNU Adaptive group was more effective in applying them. The
HNU Adaptive condition not only has significantly more correct application
of targeted rules during training than the HNU Control condition, they also
have significantly fewer incorrect applications of targeted rules. We suspect
that hinting students on what to derive next using the HNU predictor allows
them to limit their search to just the problem’s targeted rules.

Next, on the total non-targeted rules, we observe no significant differences
in total (correct + incorrect) application between the two HNU conditions (U
= 640, p = .64), with the HNU Adaptive condition (Mean = 57, SD = 32)
having fewer, albeit insignificantly, such applications than the HNU Control
(Mean = 74, SD = 75). Figure 3c compares the correct and incorrect non-
targeted rule applications individually, we again see no significant differences
between the two HNU conditions (correct: p = .28, incorrect: p = .32). The
slightly higher correct and incorrect non-targeted rule applications for the
HNU Control condition suggests that they were more likely to attempt and/or
follow non-optimal solution paths during training.

The students in the HNU Adaptive group formed significantly shorter
proofs in training with significantly higher accuracy than the Control. To-
gether with the data on targeted and non-targeted rule applications, this im-
plies that the HNU Adaptive group was more likely to correctly apply targeted
rules when they were needed for more efficient proofs in training than the Con-
trol, and it confirms this post-hoc hypothesis.

7.3 Impact of Improved Signal on the HNU Predictor

The HN Adaptive condition’s data was most indicative of students’ help usage
under an adaptive hint policy that used a HelpNeed predictor. So, we knew
training the HNU predictor on this data would make the predictor more ef-
fective. However, is it necessary to collect and apply ML to the HN Adaptive
condition’s data to form an effective HNU Adaptive policy? Answering this
question is important because, as an ML community, we are trying to move
away from having to generate a large amount of data before we can see a
significant impact of our ML methods. We believe that the improved signal
to the HNU predictor (by penalizing the data-driven features of state qual-
ity and step progress upon hint usage) is significant enough to justify its use
without collecting and learning from a new dataset. To assess whether the
change in the signal because of incorporating hint usage is significant, we ran
the Kolmogorov-Smirnov tests (KS test). We found that the distributions of
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these quality and progress features with and without penalties for hint usage
are significantly different (p < .05). Further, these features contribute to about
95% of the predictive power of the HN predictor [34]. These results suggest
that the significant change in the distributions of these features must have
had a significant impact on the HNU predictor’s HelpNeed predictions. This
analysis provides evidence to support that it is possible to develop an effective
predictor of HelpNeed by only improving the signal, i.e. feedback about stu-
dent behavior. That is, we don’t need to wait a semester for gathering data
before we can have a significant impact on student learning.

7.4 Limitations

A limitation of this work is that we only assess our method in one ITS for
one domain. As mentioned in our prior work [34], the requirements to apply
our HelpNeed model in a new domain are to have state and state-transition
representations (so we can define steps) and scoring for final solutions so the
state-based and state-free classifiers can learn values for the HelpNeed pre-
dictor. Deriving state representations, and therefore, the HelpNeed methods,
should be relatively straightforward in well-structured domains such as multi-
step math, physics, or statistics problems. Further, our method for incorpo-
rating hint usage in predicting HelpNeed can be translated to such domains
because they have problem-solving steps comprising two components: the next
statement and its justification. However, studies are needed to confirm the ef-
fectiveness of our method in these domains.

Another limitation of this study is that the comparisons of help behaviors
(possible avoidance, possible aptness, and possible abuse) rely on our Help-
Need classification and predictor, which are only shown to be correlated to
posttest performance, but have not been proven to correspond directly to ex-
pert measures of help need.

A final limitation of this study is the impact of the COVID-19 related
lockdown. As mentioned earlier, the lockdown happened in the middle of the
study which resulted in all the classes to go fully online. We had a lower
assignment completion rate (88%) than other semesters (above 95%). While
most COVID-19 lockdown related factors would have affected both the HNU
conditions in a similar manner, there could have been some differences. For
example, students in the HNU Adaptive condition may have become more
dependent on hints to finish the assignment, causing a higher possible help
abuse than expected, while students in the HNU Control condition may have
been so focused on solving problems that they forgot to request help, causing
a lower number of on-demand hints than the previous semester.

8 Conclusion

This paper investigates a method to incorporate students’ hint usage to more
effectively determine when a student most needs assistance. Our HNU study
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suggests that incorporating student help usage behavior by simply including
the number of hints used is not as useful as understanding and modifying the
highly predictive features of the HelpNeed model (i.e., quality and progress
features). We present a simple yet effective method to incorporate hint usage
into our prior HelpNeed model [34] to create a new HelpNeed and Use (HNU)
model. Our empirical results suggest that incorporating hint usage into the
model achieved our goal to significantly reduce incorrect HelpNeed predic-
tions, meaning that we can provide more targeted help – especially when it
is needed. As a result, the HNU adaptive hint policy was successfully able
to significantly reduce training unproductivity (HelpNeed steps) in the Adap-
tive condition when compared to the Control. In comparison with the HNU
Control, the HNU Adaptive condition formed shorter, more efficient solutions
faster and with higher accuracy, in the training section. This, in turn, enabled
them to form shorter solutions with higher accuracy in the posttest (with-
out hints). Furthermore, the adaptive hint policy helped save students in the
HNU Adaptive condition about half an hour during training, in comparison
with the Control, with the Adaptive group taking 64 min on average, and
Control taking 90 min on average. These results suggest that our HNU model
successfully addresses the assistance dilemma. Recall that, according to the
assistance dilemma, withholding more information than needed can lead to
frustration and wasted time, and giving more information than needed can
lead to shallow learning and a lack of motivation to learn by oneself. The
results of our experiment suggest that our method addresses the assistance
dilemma because it prevents both of these negative impacts.

We further investigated the impact of the adaptive hint system through
the lens of the assistance dilemma, looking at possible help avoidance, help
appropriateness, and help abuse. We observe a significantly lower possible
help avoidance, and significantly higher possible help appropriateness in the
HNU Adaptive condition compared to not only the HNU Control but also
the HN Adaptive condition (where HelpNeed predictions did not incorporate
hint usage). However, we also observed significantly more possible help abuse
in the HNU Adaptive condition than the HN Adaptive condition. While the
COVID-19 related lockdown may have impacted these results, we list design
changes that may help reduce this gaming behavior.
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