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In this work, a dataset including structural and mechanical properties of
refractory multicomponent alloys was developed by fusing computations of
phase diagram (CALPHAD) and density functional theory (DFT). The refractory
multicomponent alloys, also named refractory complex concentrated alloys
(CCAs) which contain 2–5 types of refractory elements were constructed based
on Special Quasi-random Structure (SQS). The phase of alloys was predicted
using CALPHAD and the mechanical property of alloys with stable and single
body-centered cubic (BCC) at high temperature (over 1,500°C) was investigated
using DFT-based simulation. As a result, a dataset with 393 refractory alloys and
12 features, including volume, melting temperature, density, energy, elastic
constants, mechanical moduli, and hardness, were produced. To test the
capability of the dataset on supporting machine learning (ML) study to
investigate the property of CCAs, CALPHAD, and DFT calculations were
compared with principal components analysis (PCA) technique and rule of
mixture (ROM), respectively. It is demonstrated that the CALPHAD and DFT
results are more in line with experimental observations for the alloy phase,
structural and mechanical properties. Furthermore, the data were utilized to
train a verity of ML models to predict the performance of certain CCAs with
advanced mechanical properties, highlighting the usefulness of the dataset for
ML technique on C C A  property prediction.
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1 Introduction

Complex concentrated alloys (CCAs) (Yeh et al., 2004a; Tsai
and Yeh, 2014; Ye et al., 2016; Miracle and Senkov, 2017), the
multicomponent alloys containing five or more elements with

equal or near-equal concentrations, have recently received
increased attention due to their new and important properties,
such as high strength at both room temperature and elevated
temperatures (Senkov et al., 2011; Kang et al., 2018), exceptional
ductility (Yao et al., 2014), and toughness (Patriarca et al., 2016).
Numerous studies on CCAs were motivated by the possibility
that the high configurational entropy may simply favor a single

phase, such as face-centered cubic (FCC) or body-centered cubic
(BCC) phases (Yeh et al., 2004b). Thus, research on CCAs has
become tightly associated with finding single-phase solid

solutions by controlling their configurational entropy.

Based on the elements contained in CCAs, they can be

classified into: 1) 3d transition metal alloys (formed of 4 or

more of the following elements: Al, Co, Cr, Cu, Fe, Mn, Ni, Ti,
and V), 2) refractory metal alloys (formed of 4 or more of the
following elements: Cr, Hf, Mo, Nb, Ta, Ti, V, W, Re, and Zr),
and 3) other alloys that include light metal and lanthanide
transition metal (Miracle and Senkov, 2017). 3d transition

10.3389/ftmal.2022.1036656

technique, the mixing entropy (ΔSmix), valence electron

concentration (VEC), atomic size difference (δ), and mixing

enthalpy (ΔHmix ) were utilized as critical conditions for the

formation of the CCA solid solutions. The formation of BCC
CCAs requires that the following conditions are satisfied (Zhang

et al., 2008; Guo et al., 2011; Guo and Liu, 2011; Zhang et al.,
2014): −15 ≤ ΔHmix  ≤ 5 kJ/mol, δ ≤ 6.6%, 12 ≤ ΔSmix ≤ 17.5

J/(Kmol) for CCAs that contain 5 or more elements, and VEC
< 6.87. On the other hand, the calculation of phase diagrams

using CALPHAD was widely used to predict phase stability of CCAs
and to understand their formation mechanisms. Thermo-Calc’s
High Entropy Alloy database (Andersson et al., 2002; Chen et al.,
2018) was used in CALPHAD software along with the high
entropy alloy database. These have been claimed to lead to good
agreement with the experimental observations on the phase of
refractory CCAs, such as MoNbTaTiVW and TixNbMoTaW

(Andersson et al., 2002; Gao et al., 2015; Zhang et al., 2015; Yao
et al., 2016b; Yao et al., 2017; Chen et al., 2018; Han et al., 2018).

Thanks to the increase of computational capacity, the
utilization of machine learning (ML) accelerates the study of
CCA phases (Lederer et al., 2018; Huang et al., 2019; Zhou et al.,
2019; Zhang et al., 2020). Additionally, ML has also been used in
prediction of CCAs with predefined properties, such as high

metal alloys, for example, Ni-based alloys have been strength and high hardness, (Chang et al., 2019; Himanen et al.,
developed for high temperature applications in aircrafts, 2019; Wen et al., 2019; Hu et al., 2022; Vazquez et al., 2022) and
power     generation     turbines,     rocket     engines     and     other high elasticity (Kim et al., 2019). However, designing CCAs with

challenging environments (Ezugwu et al., 1999; Griffiths, 2019;

Morinaga, 2019). A recent key goal for generating metallic alloys
with high melting temperatures, which could potentially be
employed in nuclear reactors and comparable applications,
has motivated the development of refractory alloys. Alloys
with single phase or dual phase were reported to have high
strength (Li et al., 2016; Singh et al., 2018; Maresca and Curtin,
2020) and high hardness (Borkar et al., 2016). Additionally, the
variety of refractory elemental characteristics offers significant

design flexibility for refractory multicomponent alloys. For

instance, BCC MoNbTaVW has demonstrated high Vickers
micro-hardness of 11.4 GPa at 1,150°C (Xin et al., 2018) and
strong yield strength of 1,246 MPa at room temperature which

desirable properties by ML urgently requires statistical analysis of
these alloys. Many of the current databases for ML studies were
built using only mathematical models such as rule of mixture
(ROM) (Couzinié et al., 2018; Roy et al., 2020; Li et al., 2021).
ROM is a weighted mean method used to predict the properties

of alloys, the parameter of an alloy f m i x  can be estimated by
equation f m i x   C i f i  , where Ci  and f i  are the atomic fraction and
the parameter of element i. While forming alloys lattice
distortion may occur because of atomic level mismatches
between components (e.g., atom size, valence electrons, etc.). In
this case, the potentially novel mechanical, electronic, and

thermal properties of CCAs may be missed, leading to significant

deviation of mathematical models from reality. Therefore,
decreases to 842 MPa at 1,000°C (Senkov et al., 2011). This           physics-based optimizations which accurately characterize
demonstrates        promising        mechanical        property        of           atomic interactions and atomic scale features are critically
refractory CCAs.                                                                                     needed for building databases. For example, Lederer et al.

CCAs with simple crystal symmetry and remarkable           (2018) used the Lederer-Toher-Vecchio-Curtarolo (LTVC)
mechanical properties is one of the areas that draw attention of
scientists worldwide. The principal components analysis
(PCA) technique was employed to predict the single phase of
the multicomponent alloys (Zhang et al., 2008; Guo et al., 2011;
Guo and Liu, 2011; Murty et al., 2014; Zhang et al., 2014). By
using this statistical technique, the variables of the dataset can be
reduced into principal components. The original database is
preserved as much as correlation will allow in the principal

method to create a dataset for predicting refractory alloys
with stable single phase by incorporating ab initio computed

energies into a mean-field statistical mechanics model. To create

a comprehensive dataset that can be used to train ML models to
predict performance, more computational studies of CCAs are
needed.

In a recent research, the phase and melting temperature of
quaternary and quinary refractory CCAs with equivalent atomic

components, which are made up of orthogonal linear           numbers were reported by using CALPHAD, and the results were
combinations of the original variables. Based on the PCA           compared with those obtained by ROM (Shaikh et al., 2020),
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demonstrating the advance of CALPHAD in CCA prediction. In
this work, we integrated CALPHAD and the density functional
theory (DFT) to examine the structural and mechanical
properties for not only quaternary and quinary, but many

more binary and ternary refractory alloys with stable single

10.3389/ftmal.2022.1036656

refractory multicomponent alloys are described as follows: 1)
construct possible prototype binary, ternary, quaternary, and
quinary alloys based on the Special Quasi-random Structure
(SQS) (Zunger et al., 1990). The binary and ternary SQSs

were provided by MedeA software, and the quaternary and
phase as well. The calculated structural and mechanical quinary SQSs were generated through Alloy Theoretic
properties were compared with ROM and experimental Automated Toolkit (ATAT) (van de Walle et al., 2002; van de
observations. A dataset was built based on the calculations, Walle, 2009) (Figure 1A). The reliability of SQS models on
and it was used to train ML models to predict mechanical calculating     the     vibrational,     electronic,     and     mechanical

properties of CCAs such as hardness and elastic constants.

2 Methodology

Since most pure refractory metals have stable BCC crystals, it

is desirable that multicomponent alloys which contain only

properties of alloys were validated by Gao et al. (2016)
through hybrid Monte Carlo/molecular dynamics simulations.
2) analyze the possibility of forming stable solid state for each

configuration based on the critical factors for forming solid

solutions of high entropy alloys; 3) calculate phase diagram
using CALPHAD to determine the solid solution phases at
various thermodynamic conditions, screen out the alloys that

refractory elements have a predominantly BCC crystal have only BCC phase at high temperature (Figure 1B); and 4)
structure. In this paper, the general procedures for building

the dataset of structural and mechanical properties for BCC

predict the structural and mechanical properties of alloys with

stable BCC phase by DFT calculations (Figure 1C). The dataset

FIGURE 1
Workflow of machine learning based prediction of CCAs with advanced performance.
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would be used to train ML models to anticipate CCAs with
advanced mechanical properties once it had been built (Figures
1D, E). When building the dataset by DFT calculation, two

10.3389/ftmal.2022.1036656

The dataset was further screened by the Pearson correlation
coefficient (Schober et al., 2018) in Pandas library to determine

the association between any two features:
questions that have come up are answered: 1) Do alloys with
less than five different types of elements still adhere to the critical

factors (VEC, , ΔSmix , and ΔHmix ) obtained by PCA? 2) How

1 i1 (xi � x) � yi � y n � 1
σxσy

(1)

much of an advantage do DFT calculations have over the ROM
method?

The possible SQS configurations of the alloys include AB,

A3B, ABC, A2BC, ABCD, and ABCDE, in which A, B, C, D, E

represent the refractory elements Cr, Hf, Mo, Nb, Re, Ta, Ti, V,
W, and Zr. There were 1,077 alloys altogether, with initial
configurations for 135 binary, 480 ternary, 210 quaternary,

and 252 quinary alloys. CALPHAD calculations helped to

where n is the sample size, x  and y  are the mean values of two

input features, σ x and σ y are the standard deviation of the two

features. When the correlation coefficient’s absolute value is near
to 1, it suggests that the properties are tightly connected. A
correlation coefficient that is close to zero, on the other hand,
indicates completely unconnected facts.

Through the Scikit-learn library (Pedregosa et al., 2011), the
dataset was used to train the ML models, which comprise the

eliminate alloys with stable single BCC phase at high           Neural Network (NN), Random Forest (RF) regressor, Gradient
temperature.                                                                                            Boosting Regressor (GBR), and XGBoost (XGB) (Chen and

The structural and mechanical properties of BCC           Guestrin, 2016). Information is sent from the input layer,
refractory multicomponent alloys at ground states were
checked by the DFT (Hohenberg and Kohn, 1964; Kohn
and Sham, 1965) calculations. The unit cell of each BCC

alloys defined by SQS was analyzed using Vienna Ab Initio
Simulation Package (VASP 5.4) (Kresse and Furthmuller,
1996). The electron-ion interactions were described by the
projector augmented wave (PAW) (Perdew et al., 1992), while
electron exchange-correlation interactions were described by
the generalized gradient approximation (GGA) (Perdew et al.,

hidden layer, and output layer by the NN model in order to
create the output. The RF model uses a large number of decision
trees in an ensemble technique to increase prediction accuracy

and decrease over-fitting by averaging the trees. The GBR model

is a kind of ensemble model that consists of an iterative collection
of tree models and is able to draw lessons from the mistakes made
by the preceding model. The XGB mode is a potent machine

learning technique that quickly decides by efficiently and

effectively deploying boosted decision trees. 90% of the data
1996)     in     the     Perdew-Burke-Ernzerhof     (PBE)     scheme were used for training ML models that were used to predict the
(Monkhorst and Pack, 1976). The relaxation of the alloy
atomic structures was performed using congregate-gradient
algorithm (Gonze, 1997) implemented in VASP. An energy
cutoff was set to be 300 eV for the plane wave basis in all
calculations, and the criteria for the convergences of energy
and force in relaxation processes were set to be 10–5 eV and
10–5 eV/Å, respectively. A smearing parameter of ~0.2 eV was
used for the Methfessel-Paxton (Methfessel and Paxton, 1989)
technique.

Bulk modulus (B), shear modulus (G), and Pugh’s ratio (B/G)
(Pugh, 1954) of all alloys screened out by CALPHAD were
calculated at 0 K, using the Voigt-Reuss-Hill averaging scheme
(Zuo et al., 1992). In addition, Young’s modulus (E) and

Poisson’s ratio (]) were calculated using the following

equations: E   9BG/(3B + G) and  (3B � 2G)/2(3b + G) . The

Vickers hardness (Hv) was obtained by Tian’s model (Tian

et al., 2012). Consequently, a dataset of alloys which contains
properties including the mentioned features can be built. In
this dataset, Tm      implies the alloy temperature resistance,

E describes the tendency of alloys to deform when stress is

applied along a given axis, B denotes the deformation in all

directions, and G represents deformation at constant volume. All
features are essential for quantifying the alloy resistance to
deformation.

performance of refractory alloys, and 10% were used for testing
and validating the outcomes. With a cross-validation score of 5,
the GridSearchCV function from the Sklearn package was utilized
to enhance the machine learning model. Each ML model’s
performance is assessed using the mean absolute error, average
coefficient of determination, and root-mean-squared error.

3 Results

According to the PCA technique as mentioned before, the
parameters VEC, and ΔHmix  of alloy should reach the following

requirement to have stable BCC phase: VEC < 6.87, −15 ≤
ΔHmix  ≤ 5 kJ/mol, and δ ≤ 6.6%. 545 out of 1,077 alloys were

predicted to have stable BCC phase based on the PCA analysis.
CALPHAD was then employed to calculate the phase diagram of
alloys. It was found that most alloys, especially at low
temperature, have more than one stable phase. Possible phase at
low temperature may include BCC, hexagonal close-packed
(HCP), sigma phase, and so on. Given that some pure refractory
metals (Hf, Re, Ti, and Zr) are HCP crystals and others (Cr, Mo,
Nb, Ta, V, and W) are BCC crystals, the observation is probable.
Alloys made up of different element types tend to have more
stable phases at low temperature due to their complex
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4 Discussion

4.1 Phase prediction by CALPHAD and PCA

Significant mismatch was found between PCA and

FIGURE 2
Melting and Transition temperature of (�) binary, (�) ternary,
(�) quaternary, and (�) quinary multicomponent alloys. The

111 alloys (which appear lined-up at transition temperature equals
to 0°C) have only B C C  phase.

interactions. While the proportion of BCC phase increase with
temperature for most refractory alloys. As a result, 393 refractory
alloys appeared to have only BCC phase at high temperature.

Figure 2 demonstrates the transition temperature and
melting temperature of alloys with only BCC phase present
prior to melting, where the transition temperature represents
the temperature at which other phases dissolve. The binary alloys
were marked by black triangles; ternary alloys were marked by
red triangles; quaternary alloys were marked by green triangles;
and quinary alloys were marked by blue triangles, respectively. It
has been found that BCC crystal formation in multicomponent
alloys is promoted when only BCC type elements are present. In
this work, the phase diagram of alloys was investigated in the

CALPHAD on predicting phase of alloys. As mentioned
above, 545 alloys out of 1,077 appeared to have stable BCC

structure based on PCA correlation studies of VEC, ΔHmix  and δ .
While according to the CALPHAD prediction, only 393 alloys
have stable single BCC phase before melting. In detail, 18.7%
binary, 20.5% trinary, 26.5% quaternary and 22.1% quinary
alloys from the PCA estimation do not have a stable BCC
single phase based on the CALPHAD calculations. Especially,

the two methods differed significantly in predicting the phase of

alloys containing Re, Hf, and Zr. It is reasonable since the PCA
were studied based on only a small group of CCAs (Guo et al.,
2011; Guo and Liu, 2011) (less than 100 alloys), in which

insufficient data related to the Re, Hf, and Zr in their

database were collected. While the database of CALPHAD
calculation was built for CCAs involving a 15-element
thermodynamic database. Meanwhile, nearly all of the stable
solution phases of refractory binaries and trinaries in each of the
evaluated systems are present in the database (Chen et al., 2018).
In this case, the phases predicted by CALPHAD are more
reliable.

4.2 Structure and mechanical properties
by DFT and ROM

The SQS models for BCC crystal structures are shown in
Figure 1A, where elements are represented in different colors.
Based on SQS, there are 8 atoms per unit cell for AB binary alloys,
16 atoms in AB3, 36 atoms in ABC, 32 atoms in A2BC, 64 atoms
in ABCD, and 125 atoms in ABCDE. The calculated structural

temperature range 0°C–3,500°C, where the transition and mechanical properties, as well as the melting temperature

temperature is 0°C for 111 out of 393 alloys. It indicates that
111 multicomponent alloys exclusively contain BCC phase.

obtained by CALPHAD, are listed in the Supplementary Table
S1. The structural properties of refractory alloys, including

As shown in Figure 2, the melting temperature of all density and volume, obtained by DFT and ROM are
multicomponent alloys are above 1,300°C. These refractory compared in Figures 3A,B. The diagonal line in Figure 3
alloys exhibit extremely high temperature resistance, 245 of indicates excellent matching of the density and volume

them even have high melting temperature above 2000°C.
Some of high melting temperature alloys are shown in the

figure for reference. It should be noticed refractory alloys

with high concentrations of W, Re, and Ta are anticipated to
also have high melting temperatures since W has a high
melting temperature above 3,000°C, followed by Re and Ta.
For instance, the TaW3     alloy has the highest melting

temperature of 3,315°C. The ternary alloy MoTaW2 has

calculated by DFT and ROM, respectively. It is no surprise
that the obtained refractory alloys are made of refractory
elements with large densities. Both density and volume data
are very close to the diagonal lines with trend functions of
DensityDFT = 1.007 × DensityROM + 0.131 and VolumeROM =

0.939 × VolumeDFT + 0.859, and correlation coefficients of

0.996 and 0.995, respectively. These indicate that structural
properties predicted by DFT and ROM are similar. The

the     highest     melting     temperature     of     3,036°C.     Even maximum difference of density between DFT and ROM

quaternary and quinary alloys MoReTaW, MoReTaVW
and MoNbReTaW, also show high melting temperature
above 2,500°C.

calculation is 7.54%, and the maximum difference of volume
between these two methods is 6.82%. Table 1 lists the DFT, ROM,
and experimental density of selected refractory alloys. The error
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FIGURE 3
(A) Density and (B) Volume of refractory alloys calculated by ROM as a function of those calculated by DFT; red lines are the trends for each
dataset.

TABLE 1 The experimental observation (expt) of density and Young’s moduli of refractory alloys. The error percentage (e%) for DFT and ROM to
experiments are listed in the table.

Alloys Density (g/cm3) Young’s modulus (GPa) Ref.

Expt DFT/ROM e% Expt. DFT/ROM e%

CrTaVW 13.0

HfMoNbTiZr 8.7

HfNbTaTiZr 9.9

HfNbTaZr 11.1

HfNbTiZr 8.4

MoNbTaTiV 9.4

MoNbTaV 10.7

MoNbTaVW 12.4

MoNbTiV 7.3

NbTaTiV 9.2

NbTaVW 12.9

DFT 13.056

ROM 12.289

DFT 8.809

ROM 8.608

DFT 9.965

ROM 9.763

DFT 11.23

ROM 11.182

DFT 8.533

ROM 8.205

DFT 9.435

ROM 9.223

DFT 10.673

ROM 10.382

DFT 12.311

ROM 12.079

DFT 7.431

ROM 7.405

DFT 9.216

ROM 8.973

DFT 12.824

ROM 12.544

0.43 —

5.47

1.25 —

1.06

0.66 99.2

1.38

1.17 —

0.74

1.58 —

2.32

0.37 130.5

1.88

0.25 —

2.97

0.72 180.0

2.59

1.79 161.1

1.44

0.17 108

2.47

0.59 —

2.76

- —

— —

DFT 77.51

ROM 154.71

— —

— —

DFT 135.36

ROM 166.38

— —

DFT 161.79

ROM 214.89

DFT 149.31

ROM 161.18

DFT 104.11

ROM 123.05

— —

— Waseem et al. (2018)

— Guo et al. (2015)

21.86 Lin et al. (2015)

55.96

— Maiti and Steurer. (2016)

— Wu et al. (2014)

3.72 Yao et al. (2017)

27.49

— Yao et al. (2016a)

10.12 Senkov et al. (2011)

19.38

7.32 Chen et al. (2014)

0.05

3.60 Yang et al. (2012)

13.94

— Yao et al. (2016b)
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FIGURE 4
Ratios of DFT and ROM calculated elastic constants (A) C11, (B) C12, and (C) C 4 4 ,  (D) bulk, (E) shear, and (F) Young’s moduli.

percentage (%), which accounts for the deviation of DFT/ROM

from experimental data are also listed for comparison. The low

error percentages are less than 5.5%, indicating that both DFT

Table 1 lists Young’s moduli of various refractory alloys that

were determined experimentally, by DFT, and ROM calculations
in order to more thoroughly assess the predictions made by these

and ROM calculations are close to experimental data.           methods. It is clearly shown that DFT calculations have a lower

Particularly, the overall error percentages for DFT to           error percentage than that of ROM, is much lower than that of

experiment data are less than 1%, whereas they are greater
than 2% for ROM estimation, demonstrating higher accuracy
of DFT.

ROM, which indicates that DFT calculations are more in line
with experimental data for Young’s modulus. This is reasonable

since DFT takes into account how atoms interact physically while
Different understanding of the mechanical properties based on ROM calculations average the mechanical properties

DFT and ROM are presented in Figure 4, where the elastic
constants C11, C12, and C44, bulk moduli, shear moduli and

Young’s     moduli     determined     by     DFT     and     ROM     are

demonstrated. Even through the correlation coefficients of

certain parameters are close to 1, The significant difference
between DFT and ROM can be obtained. The data in each
figure are scattered with the correlation coefficients less than

0.97. The correlation coefficients of shear moduli and Young’s
moduli are much lower, which represent that DFT and ROM

mathematically.

4.3 Evaluation of the quality of the dataset

As discussed above, in this paper, a dataset that contains
phase, structural, and mechanical properties of refractory alloys
was built based on CALPHAD and DFT calculations. The
correlation between each key parameters in the dataset are

simulation produced unrelated results. Furthermore, the shown in the Heatmap diagram in the upper part of Figure 5,

tendencies of data in each figure are off the diagonal line with

the coefficient of tendency less than 0.925, therefore indicating
difference of DFT and ROM on calculating the mentioned
property of alloys. The poor correlation coefficients, especially

for C44, shear moduli and Young’s moduli, represent the difference
between DFT and ROM for predicting mechanical properties.

and the associated data scatter plots are given at the lower part of
the matrix. In the heatmap diagram, the data dots in scatter plots
matrix that are near to the diagonal or anti-diagonal lines show
the absolute value of correlation coefficient close to 1, which

implies features are highly correlated. On the other hand, the
correlation coefficient close to 0 represents disordered data in the
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FIGURE 5
Heatmap diagram and scatter plots matrix for one to one correlation between features.

scatter plots matrix, which indicates the feature pairs are not
correlated or, at most, weakly correlated. As shown in Figure 5,
the majority of the analyzed traits had correlations between

0.3 and 0.8. These findings show that no irrelevant or

redundant features exist in the developed database, suggesting
that the DFT dataset of refractory alloy properties could yield
reliable predictions for brand-new high-performance CCAs
by ML.

4.4 ML study based on the dataset

The ML method is a rapidly developed technique for predicting
materials with advanced performance. The dataset produced in this
study has been utilized to predict the properties of CCAs such as

hardness and elastic constants based on the workflow as shown in

Figure 1. Various ML models were trained to investigate the
mechanical properties of CCAs as illustrated in Figure 1D. Based
on the dataset, the Neural Network (NN) model was trained to
predict the Vickers hardness of alloys. It was predicted that
C0.1Cr3Mo11.9Nb20Re15Ta30W20 have hardness of 686 HV by

(Bhandari et al., 2021), which lead to an error around 10% to the
experimental test of 622.60 HV(Tian et al., 2012). The dataset
was further used to train various ML models, including random

those ML models (Bhandari et al., 2022) which were evaluated by the

root-mean-squared error, the average coefficient of determination,

and mean absolute error. It is found that gradient boosting regressor
has higher prediction accuracy on elastic constants. The elastic
constants of NbTaTiV predicted by gradient boosting regressor
based on the dataset matches the experimental values well (Lee et al.,
2020). Both examples highlight the excellent quality of the dataset
and the potential of training ML models to predict CCA properties.

5 Conclusion

In this work, a dataset for 393 refractory alloys containing 2 to
5 different element types was assembled by combing CALPHAD
and DFT simulations. For each refractory alloy, the phase type,
atomic structure, and mechanical properties were determined,
which include melting temperature (Tm), volume (V), density (ρ),

total energy (Etot), elastic constant (C11, C12, and C44), bulk modulus

(B), shear modulus (G), Young’s modulus (E), Poisson’s ratio (]) and

Vickers hardness (Hv). For predicting the stable single-phase of

alloys under high temperature, CALPHAD and PCA techniques
were evaluated. Since its database includes more information about
the phase of refractory alloys, CALPHAD calculations are more
trusted than the current PCA results for predicting the phase of

forest regressor, gradient boosting regressor, and XGBoost alloys at various temperatures. The structural and mechanical

regression models, to predict the mechanical properties of CCAs.
For example, the elastic constants in the dataset were used to train

properties were determined by DFT and ROM were compared.
It is found that the DFT prediction of the structural properties of
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refractory alloy are comparable to those predicted by ROM, while
the DFT prediction are more precise on mechanical property
predictions. The dataset has been employed on predicting CCAs
with advanced mechanical properties by ML technique such as
hardness and elastic constants. Since CCAs performance predicted
by ML trained by the refractory alloy dataset are compatible with
experiments, the refractory alloys dataset can support the refractory
alloy design based on ML model training and property prediction.
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