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Abstract 22 
 23 
Concentrations and elemental stoichiometry of suspended particulate organic carbon, 24 
nitrogen, phosphorus, and oxygen demand for respiration (C:N:P:-O2) play a vital role in 25 
characterizing and quantifying marine elemental cycles. Here, we present Version 2 of the 26 
Global Ocean Particulate Organic Phosphorus, Carbon, Oxygen for Respiration, and Nitrogen 27 
(GO-POPCORN) dataset. Version 1 is a previously published dataset of particulate organic 28 
matter from 70 different studies between 1971 and 2010, while Version 2 is comprised of data 29 
collected from recent cruises between 2011 and 2020. GO-POPCORN dataset contains 2673 30 
paired surface POC/N/P measurements from 70°S to 73°N across all major ocean basins at 31 
high spatial resolution. Version 2 also includes 965 measurements of oxygen demand for 32 
organic carbon respiration. This new dataset can help validate and calibrate the next 33 
generation of global ocean biogeochemical models with flexible elemental stoichiometry. We 34 
expect that incorporating variable C:N:P:-O2 into models will help improve our estimates of 35 
key ocean biogeochemical fluxes such as carbon export, nitrogen fixation, and deoxygenation.  36 
 37 
Background & Summary 38 
 39 
The elemental ratio between carbon (C), nitrogen (N), phosphorus (P), and oxygen (O2) 40 
demand for respiration is a fundamental quantity that couples nutrient uptake by primary 41 
producers, organic carbon export, and remineralization1–3. Most ocean biogeochemical 42 
models from the pre-CMIP6 era have exclusively used the fixed canonical Redfield C:N:P and 43 
respiration quotient -O2:C of 106:16:1 and 1, respectively, to link nutrient uptake and convert 44 
to and from organic carbon. However, it is now widely accepted in the oceanographic 45 
community that C:N:P:-O2 in the surface ocean are variable through space and time. Previous 46 
global compilation studies4,5 have shown that C:P and N:P are systematically higher than the 47 
Redfield ratios of 106:1 and 16:1 in the nutrient-deplete subtropical gyres, lower in the 48 
nutrient-rich subpolar and polar regions, and approximately equal to the Redfield values in the 49 
tropical and upwelling regions. The respiration quotient of particulate organic matter (POM) 50 
in terms of -O2:C and -O2:P has also been shown to be spatially variable through direct 51 
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observations and inverse modeling6–8. In light of these recent observations, our understanding 52 
of the oceanic ecosystem elemental stoichiometry has evolved rapidly over the last ten years.  53 

Here we present Version 2 (“v2”) of the Global Ocean Particulate Organic Phosphorus, 54 
Carbon, Oxygen for Respiration, and Nitrogen (GO-POPCORN) dataset (Fig. 1). We refer to 55 
Version 1 (“v1”) as a previously published data compilation9, in which POC/N/P was collated 56 
from 70 cruises and time-series between 1971 and 2010. Version 1 has served multiple 57 
purposes, such as calibration and validation of ocean biogeochemical models, including those 58 
used in the latest coupled model intercomparison project (CMIP6)10–12, and identifying drivers 59 
of global-scale spatiotemporal variability in C:N:P13,14. However, several limitations of GO-60 
POPCORN v1 were identified. First, there was a significant bias towards regions of frequent 61 
oceanographic research, leading to samples being concentrated in the North Atlantic, Eastern 62 
North Pacific Ocean, Mediterranean Ocean, and near the Palmer Station in the Southern 63 
Ocean (Fig. 1). Second, aggregated data samples were collected using different techniques, 64 
such as differing blank measurements and detection limits. Third, a large proportion of 65 
measurements came from time-series studies at a fixed geographical location: Hawaiian 66 
Ocean Time-series (HOT), Bermuda Atlantic Time-series Study (BATS), and CARIACO Ocean 67 
Time-series program.  68 

GO-POPCORN v2 is a new compendium of global POC/N/P collected between 2011 69 
and 2020 as part of Bio-GO-SHIP (the Biological initiative for the Global Ocean Ship Based 70 
Hydrographic Investigation Program)15,16 and the Arctic Integrated Ecosystem Research 71 
Program (IERP)17. The v2 dataset contains 2581 paired measurements of POC/N/P and 965 72 
measurements of particulate chemical oxygen demand (PCOD), which is the oxygen needed 73 
for full respiration of organic matter7. The new version has a comprehensive geographic range, 74 
and the samples were collected across all major oceanic regions from 70 °S to 73°N (Fig. 2) 75 
across 2188 stations using a consistent methodology and quality control.  76 

Median C:N:P for paired surface CNP samples from GO-POPCORN v1 and v2 are 77 
140:19:1 and 136:21:1, respectively (Fig. 3). The data spread is noticeably smaller in v2 78 
compared to v1. Specifically, the interquartile range (IQR) in v2 is reduced by a factor of 2-3 79 
compared to that of v1 (IQR of C:P, N:P, C:N in versions 1 and 2 are [103, 13, 2] and [43, 6, 1], 80 
respectively). About 90% of observed C:P and N:P from v2 are above the Redfield ratios of 106 81 
and 16, respectively (Fig. 3a, b). This contrasts with v1, where only 75% of samples collected 82 
have C:P and N:P above the Redfield ratios. In both versions, the observed mode for C:N is 83 
around the Redfield C:N of 6.7, but values are more tightly clustered around 5 - 8 in v2 (Fig. 84 
3c). The median -O2:C from v2 is 1.14, with an IQR of 0.17 (Fig 3d). Thus, surface organic matter 85 
is generally more reduced than pure carbohydrate, with a respiration quotient of 1 (i.e., 86 
Redfield -O2:C)18,19. In summary, both the quantity and the quality of the data have significantly 87 
improved in v2 over v1. 88 
 89 
Methods 90 
 91 
GO-POPCORN v1 is an exhaustive compilation of POM collected by 70 independent studies 92 
and cruises from 1971 to 2010. Refer to the original description paper9 for more details on 93 
how the v1 dataset was compiled.  94 

GO-POPCORN v2 comprises samples from 12 recent cruises between 2011 and 2020 95 
(Table 1). These sampling efforts have been supported by GO-SHIP (C13.520, I07N21, I09N22, 96 
and P1823), SOCCOM and Plymouth Marine Laboratory Atlantic Meridional Transect (AMT-97 
2824), National Science Foundation Dimensions of Biodiversity (AE131925, BVAL4626, 98 
NH141827), and North Pacific Research Board Arctic Integrated Ecosystem Research Program 99 
(OS170128, OS190128, SKQ201709S29, SKQ201813S29). 100 

The POM samples were collected and analyzed using the consistent sampling method 101 
described previously30–33. Briefly, 3-8 L seawater was collected from the flow-through 102 
underway system or CTD. Samples from underway systems were filtered using 30 µm nylon 103 
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mesh to remove large particles from the sample. Samples were then collected on GF/F filters 104 
(Whatman, nominal pore size 0.7 µm) that were precombusted at 500 °C for 5h to remove any 105 
traces of inorganic carbon as well as organic contaminants. Whenever possible, POC, PON, and 106 
POP were sampled in triplicate, and PCOD was sampled in sextuplicate. Triplicate sampling 107 
occurred hourly in cruises AMT-28 and I07N; every 4 hours for C13.5, I09N, and P18; and once 108 
a day for AE1319, BVAL46, NH1418, OS1701, OS1901, SKQ201709S, and SKQ201813S. 109 
Differences in the sample collection are based on differences in the hypotheses being tested. 110 
For example, hourly sampling in AMT-28 and I07N is aimed toward capturing the diurnal 111 
changes in elemental stoichiometry34. 112 

POC and PON samples were measured using a CN Flash 1112 EA or 240-XA/440-XA 113 
elemental analyzer and were calibrated using a known quantity of atropine (C17H23NO3). 114 
Inorganic carbonates were removed using concentrated hydrochloric acid fumes before 115 
analysis by storing filters in a desiccator for 24 hours. The mean detection limits for POC and 116 
PON, defined as ~3x standard deviation of the low standards, are ~2.4 μg and ~3.0 μg, 117 
respectively. POP was analyzed using the modified ash-hydrolysis method described 118 
previously with spectrophotometric detection at 885 nm35,36. The detection limit for POP is 119 
~0.3 μg. It is important to note that measured particulate N and P are not devoid of inorganic 120 
N (e.g., aerosol-derived particulate nitrogen species) and P (e.g., polyphosphate granules), 121 
respectively. Furthermore, POM analyzed using this protocol includes contributions of dead 122 
materials in addition to live plankton cells, including a wide diversity of heterotrophs. 123 

Particulate chemical oxygen demand (PCOD) was quantified using the new, modified 124 
assay7 based on the determination of residual potassium dichromate following organic matter 125 
oxidation with silver sulfate as the catalyst under the strongly acidic condition at 150°C for 126 
2h37–39. As dichromate does not oxidize ammonium, the assay aims explicitly to quantify the 127 
oxygen demand from organic carbon (but not organic nitrogen). To remove the interference 128 
of chloride ions from the precipitation of silver chloride, mercuric sulfate was added40. 129 
Dichromate was quantified by absorbance at 600 nm using HACH-certified phthalate-based 130 
COD standards. We could not directly quantify the detection limit for PCOD as the PCOD 131 
chemistry method is highly sensitive (see Technical Validation).  132 
 133 
Data Records 134 
 135 
Data of GO-POPCORN are publicly available in CSV format uploaded to Dryad for Version 136 
1 (http://dx.doi.org/10.5061/dryad.d702p)41 and Version 2 137 
(https://doi.org/10.5061/dryad.05qfttf5h)42. GO-POPCORN datasets are distributed under a 138 
CC0 1.0 Universal Public Domain Dedication license.  139 
 140 
  141 
Technical Validation 142 
 143 
In GO-POPCORN v1, most studies used similar techniques and sample volumes, but there are 144 
many slight deviations in the technical approach, including the measurement sensitivity, 145 
detection limits, the number of replicates, and the overall cleanliness (i.e., contamination) of 146 
procedures. It is also worth noting that the POP measurements were grossly undersampled 147 
compared to POC and PON measurements in GO-POPCORN v1. 148 

In GO-POPCORN v2, the POM samples were collected and quantified using consistent 149 
protocols. Before POM sampling, all the carboys used were rinsed at least twice with the pre-150 
filtered underway seawater. The filtered volume of seawater was consistent between all POM 151 
(POC/N and POP) samples at each station and varied on a per-station basis to ensure that the 152 
amount of collected material was minimally impacted by the difference in filtration time. Initial 153 
rinsing and the large sampling volume were aimed at reducing the effect of a time delay 154 
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caused by the underway system. The methods used for quantifying POC/N43 and POP36 are 155 
based on previously described and validated standard techniques.  156 

POM described in this dataset are “small size-class” samples, where a 30 µm nylon 157 
mesh pre-filter was attached to the underway outlet to remove large plankton and 158 
particulates. In the Southern Ocean Section of the P18 cruise, we have separately collected 159 
“large-class” of POM > 30 µm and showed that the larger particles constitute, on average, 17% 160 
of the total POC and PON concentrations and 31% of total POP concentration32. The same 161 
study showed that a large size fraction of POM in P18 had statistically lower C:P, and C:N, N:P 162 
compared to a small size fraction of POM. However, the general effect of particle size on the 163 
C:N:P stoichiometry of POM is not yet clear.  164 

For the technical validation of the novel PCOD assay, we tested for (1) interference 165 
using standard additions of a HACH-certified phthalate-based COD standard, (2) a linear 166 
correspondence between input amounts and absorbance, (3) the degree of variance with 167 
respect to POC measurement technique, and (4) biases for different substrates. In summary, 168 
we found that (1) the sample interference is limited, (2) there is indeed a linear relationship 169 
between filtered sample volume and PCOD, (3) variance for PCOD is higher compared to POC; 170 
hence it is vital to prepare and oxidize the high volume of POC to minimize relative error and 171 
ensure accurate determination of -O2:C, and (4) a high correspondence between theoretical 172 
and observed values for different substrates. A full detailed description of PCOD assay 173 
validation is described elsewhere7. 174 
 175 
Usage Notes 176 

This dataset is the most comprehensive global compilation of surface POM and PCOD. By 177 
combining this dataset with datasets of temperature, nutrients, and plankton community 178 
composition, regional and global drivers of C:N:P:-O2 can be identified. The dataset is also 179 
useful for evaluating outputs from ocean biogeochemical models with flexible C:N:P:-O2 180 
stoichiometry, with important implications for future ocean carbon, nitrogen, and oxygen 181 
dynamics. 182 
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Figures 209 
 210 
Fig. 1. Distribution of paired POC/N/P measurements in the surface ocean. Samples from 211 
GO-POPCORN v1 and v2 are shown in blue and red, respectively. 212 
 213 
Fig. 2. Geographical distribution of paired POC/N/P measurements in the surface ocean. The 214 
number of paired POC/N/P measurements binned by (a) every 20° of latitude, (b) every 30° of 215 
longitude, and (c) by oceanographic basins for GO-POPCORN v1 (blue) and v2 (red). 216 
Abbreviations are: ATL = Atlantic Ocean, PAC = Pacific Ocean, IND = Indian Ocean, SO = 217 
Southern Ocean, ARC = Arctic Ocean.  218 
 219 
Fig. 3. Summary of observed C:N:P:-O2 in the surface ocean. The histogram of (a) C:P, (b) N:P, 220 
(c) C:N, and (d) -O2:C from GO-POPCORN v1 (blue) and v2 (red). Black dashed lines are Redfield 221 
C:N:P and -O2:C of 106:16:1 and 1.0, respectively, for comparison. Please note a difference in 222 
the total number of observations for each elemental ratio and that -O2:C was not measured in 223 
v1.  224 
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Tables 225 
Table 1. Summary of data in GO-POPCORN Version 2, including the number of stations and particulate organic matter (POM) samples and the mean elemental 226 
ratios. We operationally define the sampling station as a distinct pair of longitude and longitude. Similar descriptions for GO-POPCORN Version 1 are listed in 227 
Table 1 of Martiny et al.9. [Abbreviations: POC = Particulate Organic Carbon, PON = Particulate Organic Nitrogen, POP = Particulate Organic Phosphorus, PCOD 228 
= Particulate Chemical Oxygen Demand, BATS = Bermuda Atlantic Time-Series, GO-SHIP = Global Ocean Ship-based Hydrographic Investigations Program, NSF 229 
= National Science Foundation, PML AMT = Plymouth Marine Laboratory Atlantic Meridional Transect, SOCCOM = Southern Ocean Carbon and Climate 230 
Observations and Modeling project, IERP = Integrated Ecosystem Research Program].  231 
 232 

233 Cruise 
(Program) Year #Stations 

Latitude Longitude POC PON POP PCOD C:P N:P C:N -O2:C Ref. 

min max min max (# Samples) (Geometric mean) 
 

AE1319, 
(NSF) 2013 15 32 55 -69 -40 123 111 111 0 145 12 11.6 NA 

25,31,44 

AMT-28 
(PML AMT, 
SOCCOM, 
NSF) 2018 709 -48 50 -53 -6 741 741 775 771 155 23 6.7 1.2 

8,24,34 

BVAL46 
(BATS, NSF) 2011 18 20 39 -66 -64 0 0 197 0 NA NA NA NA 

26,31,44 

C13.5  
(GO-SHIP) 2020 112 -41 35 -74 17 112 112 112 0 155 22 7.1 NA 

This 
study 

I07N  
(GO-SHIP) 2018 719 -30 18 40 69 732 733 727 0 121 19 6.4 NA 

This 
study 

I09N  
(GO-SHIP) 2016 238 -31 18 85 110 235 235 236 0 134 19 7.1 NA 

22,30,31,

34 
NH1418 
(NSF) 2014 88 -3 19 -158 -150 159 159 180 0 142 23 6.1 NA 

27,31,33 

P18  
(GO-SHIP) 2016-2017 193 -70 29 -116 -100 194 194 194 194 130 21 6.2 1.1 

7,23,32 

OS1701 
(Arctic IERP) 2017 30 67 72 -169 -154 106 106 105 0 96 13 7.4 NA 

This 
study 

OS1901 
(Arctic IERP) 2019 38 63 73 -171 -154 137 137 137 0 150 21 7.2 NA 

This 
study 

SKQ201709S 
(Arctic IERP) 2017 14 63 69 -173 -165 72 72 72 0 142 18 8.0 NA 

This 
study 

SKQ201813S 
(Arctic IERP) 2018 14 63 69 -172 -164 53 53 53 0 113 17 6.7 NA 

This 
study 

Summary 2011-2020 2188 -70 73 -173 110 2664 2653 2899  965 137 21 6.7 1.1 
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Code Availability 234 
Code and data used to reproduce all the figures and tables are available in the GitHub 235 
repository https://github.com/tanio003/GOPOPCORN_Data_Codes and archived here 236 
(https://doi.org/10.5281/zenodo.6967484)45. 237 
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