

1 **Global Ocean Particulate Organic Phosphorus, Carbon, Oxygen for
2 Respiration, and Nitrogen (GO-POPCORN)**

3 **Authors**

4 Tatsuro Tanioka¹, Alyse A. Larkin¹, Allison R. Moreno^{2,3}, Melissa L. Brock², Adam J. Fagan¹,
5 Catherine A. Garcia^{1,4}, Nathan S. Garcia¹, Skylar D. Gerace¹, Jenna A. Lee^{1,5}, Michael W. Lomas⁶
6 & Adam C. Martiny^{1,2,*}

7 **Affiliations**

8 1. Department of Earth System Science, University of California, Irvine, Irvine, CA 92697, USA.
9 2. Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA
10 92697, USA.
11 3. Atmospheric & Oceanic Sciences, University of California, Los Angeles, Los Angeles, CA
12 90095, USA.
13 4. Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii
14 at Manoa, Honolulu, HI 96822, USA.
15 5. Department of Geosciences, Princeton University, Princeton, NJ 08544, USA.
16 6. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME 04544, USA.

17 * Corresponding author: Adam Martiny (amartiny@uci.edu)

18 **Abstract**

19 Concentrations and elemental stoichiometry of suspended particulate organic carbon,
20 nitrogen, phosphorus, and oxygen demand for respiration (C:N:P:-O₂) play a vital role in
21 characterizing and quantifying marine elemental cycles. Here, we present Version 2 of the
22 Global Ocean Particulate Organic Phosphorus, Carbon, Oxygen for Respiration, and Nitrogen
23 (GO-POPCORN) dataset. Version 1 is a previously published dataset of particulate organic
24 matter from 70 different studies between 1971 and 2010, while Version 2 is comprised of data
25 collected from recent cruises between 2011 and 2020. GO-POPCORN dataset contains 2673
26 paired surface POC/N/P measurements from 70°S to 73°N across all major ocean basins at
27 high spatial resolution. Version 2 also includes 965 measurements of oxygen demand for
28 organic carbon respiration. This new dataset can help validate and calibrate the next
29 generation of global ocean biogeochemical models with flexible elemental stoichiometry. We
30 expect that incorporating variable C:N:P:-O₂ into models will help improve our estimates of
31 key ocean biogeochemical fluxes such as carbon export, nitrogen fixation, and deoxygenation.

32 **Background & Summary**

33 The elemental ratio between carbon (C), nitrogen (N), phosphorus (P), and oxygen (O₂)
34 demand for respiration is a fundamental quantity that couples nutrient uptake by primary
35 producers, organic carbon export, and remineralization¹⁻³. Most ocean biogeochemical
36 models from the pre-CMIP6 era have exclusively used the fixed canonical Redfield C:N:P and
37 respiration quotient -O₂:C of 106:16:1 and 1, respectively, to link nutrient uptake and convert
38 to and from organic carbon. However, it is now widely accepted in the oceanographic
39 community that C:N:P:-O₂ in the surface ocean are variable through space and time. Previous
40 global compilation studies^{4,5} have shown that C:P and N:P are systematically higher than the
41 Redfield ratios of 106:1 and 16:1 in the nutrient-deplete subtropical gyres, lower in the
42 nutrient-rich subpolar and polar regions, and approximately equal to the Redfield values in the
43 tropical and upwelling regions. The respiration quotient of particulate organic matter (POM)
44 in terms of -O₂:C and -O₂:P has also been shown to be spatially variable through direct

52 observations and inverse modeling⁶⁻⁸. In light of these recent observations, our understanding
53 of the oceanic ecosystem elemental stoichiometry has evolved rapidly over the last ten years.

54 Here we present Version 2 ("v2") of the Global Ocean Particulate Organic Phosphorus,
55 Carbon, Oxygen for Respiration, and Nitrogen (GO-POPCORN) dataset (Fig. 1). We refer to
56 Version 1 ("v1") as a previously published data compilation⁹, in which POC/N/P was collated
57 from 70 cruises and time-series between 1971 and 2010. Version 1 has served multiple
58 purposes, such as calibration and validation of ocean biogeochemical models, including those
59 used in the latest coupled model intercomparison project (CMIP6)¹⁰⁻¹², and identifying drivers
60 of global-scale spatiotemporal variability in C:N:P^{13,14}. However, several limitations of GO-
61 POPCORN v1 were identified. First, there was a significant bias towards regions of frequent
62 oceanographic research, leading to samples being concentrated in the North Atlantic, Eastern
63 North Pacific Ocean, Mediterranean Ocean, and near the Palmer Station in the Southern
64 Ocean (Fig. 1). Second, aggregated data samples were collected using different techniques,
65 such as differing blank measurements and detection limits. Third, a large proportion of
66 measurements came from time-series studies at a fixed geographical location: Hawaiian
67 Ocean Time-series (HOT), Bermuda Atlantic Time-series Study (BATS), and CARIACO Ocean
68 Time-series program.

69 GO-POPCORN v2 is a new compendium of global POC/N/P collected between 2011
70 and 2020 as part of Bio-GO-SHIP (the Biological initiative for the Global Ocean Ship Based
71 Hydrographic Investigation Program)^{15,16} and the Arctic Integrated Ecosystem Research
72 Program (IERP)¹⁷. The v2 dataset contains 2581 paired measurements of POC/N/P and 965
73 measurements of particulate chemical oxygen demand (PCOD), which is the oxygen needed
74 for full respiration of organic matter⁷. The new version has a comprehensive geographic range,
75 and the samples were collected across all major oceanic regions from 70 °S to 73°N (Fig. 2)
76 across 2188 stations using a consistent methodology and quality control.

77 Median C:N:P for paired surface CNP samples from GO-POPCORN v1 and v2 are
78 140:19:1 and 136:21:1, respectively (Fig. 3). The data spread is noticeably smaller in v2
79 compared to v1. Specifically, the interquartile range (IQR) in v2 is reduced by a factor of 2-3
80 compared to that of v1 (IQR of C:P, N:P, C:N in versions 1 and 2 are [103, 13, 2] and [43, 6, 1],
81 respectively). About 90% of observed C:P and N:P from v2 are above the Redfield ratios of 106
82 and 16, respectively (Fig. 3a, b). This contrasts with v1, where only 75% of samples collected
83 have C:P and N:P above the Redfield ratios. In both versions, the observed mode for C:N is
84 around the Redfield C:N of 6.7, but values are more tightly clustered around 5 - 8 in v2 (Fig.
85 3c). The median -O₂:C from v2 is 1.14, with an IQR of 0.17 (Fig 3d). Thus, surface organic matter
86 is generally more reduced than pure carbohydrate, with a respiration quotient of 1 (i.e.,
87 Redfield -O₂:C)^{18,19}. In summary, both the quantity and the quality of the data have significantly
88 improved in v2 over v1.

90 Methods

91 GO-POPCORN v1 is an exhaustive compilation of POM collected by 70 independent studies
92 and cruises from 1971 to 2010. Refer to the original description paper⁹ for more details on
93 how the v1 dataset was compiled.

94 GO-POPCORN v2 comprises samples from 12 recent cruises between 2011 and 2020
95 (Table 1). These sampling efforts have been supported by GO-SHIP (C13.5²⁰, I07N²¹, I09N²²,
96 and P18²³), SOCCOM and Plymouth Marine Laboratory Atlantic Meridional Transect (AMT-
97 28²⁴), National Science Foundation Dimensions of Biodiversity (AE1319²⁵, BVAL46²⁶,
98 NH1418²⁷), and North Pacific Research Board Arctic Integrated Ecosystem Research Program
99 (OS1701²⁸, OS1901²⁸, SKQ201709S²⁹, SKQ201813S²⁹).

100 The POM samples were collected and analyzed using the consistent sampling method
101 described previously³⁰⁻³³. Briefly, 3-8 L seawater was collected from the flow-through
102 underway system or CTD. Samples from underway systems were filtered using 30 µm nylon

104 mesh to remove large particles from the sample. Samples were then collected on GF/F filters
105 (Whatman, nominal pore size 0.7 μm) that were precombusted at 500 °C for 5h to remove any
106 traces of inorganic carbon as well as organic contaminants. Whenever possible, POC, PON, and
107 POP were sampled in triplicate, and PCOD was sampled in sextuplicate. Triplicate sampling
108 occurred hourly in cruises AMT-28 and I07N; every 4 hours for C13.5, I09N, and P18; and once
109 a day for AE1319, BVAL46, NH1418, OS1701, OS1901, SKQ201709S, and SKQ201813S.
110 Differences in the sample collection are based on differences in the hypotheses being tested.
111 For example, hourly sampling in AMT-28 and I07N is aimed toward capturing the diurnal
112 changes in elemental stoichiometry³⁴.

113 POC and PON samples were measured using a CN Flash 1112 EA or 240-XA/440-XA
114 elemental analyzer and were calibrated using a known quantity of atropine ($\text{C}_{17}\text{H}_{23}\text{NO}_3$).
115 Inorganic carbonates were removed using concentrated hydrochloric acid fumes before
116 analysis by storing filters in a desiccator for 24 hours. The mean detection limits for POC and
117 PON, defined as ~3x standard deviation of the low standards, are ~2.4 μg and ~3.0 μg ,
118 respectively. POP was analyzed using the modified ash-hydrolysis method described
119 previously with spectrophotometric detection at 885 nm^{35,36}. The detection limit for POP is
120 ~0.3 μg . It is important to note that measured particulate N and P are not devoid of inorganic
121 N (e.g., aerosol-derived particulate nitrogen species) and P (e.g., polyphosphate granules),
122 respectively. Furthermore, POM analyzed using this protocol includes contributions of dead
123 materials in addition to live plankton cells, including a wide diversity of heterotrophs.

124 Particulate chemical oxygen demand (PCOD) was quantified using the new, modified
125 assay⁷ based on the determination of residual potassium dichromate following organic matter
126 oxidation with silver sulfate as the catalyst under the strongly acidic condition at 150°C for
127 2h³⁷⁻³⁹. As dichromate does not oxidize ammonium, the assay aims explicitly to quantify the
128 oxygen demand from organic carbon (but not organic nitrogen). To remove the interference
129 of chloride ions from the precipitation of silver chloride, mercuric sulfate was added⁴⁰.
130 Dichromate was quantified by absorbance at 600 nm using HACH-certified phthalate-based
131 COD standards. We could not directly quantify the detection limit for PCOD as the PCOD
132 chemistry method is highly sensitive (see Technical Validation).

133 **Data Records**

134 Data of GO-POPCORN are publicly available in CSV format uploaded to Dryad for Version
135 1 (<http://dx.doi.org/10.5061/dryad.d702p>)⁴¹ and Version 2
136 (<https://doi.org/10.5061/dryad.05qfttf5h>)⁴². GO-POPCORN datasets are distributed under a
137 CCO 1.0 Universal Public Domain Dedication license.

141 **Technical Validation**

142 In GO-POPCORN v1, most studies used similar techniques and sample volumes, but there are
143 many slight deviations in the technical approach, including the measurement sensitivity,
144 detection limits, the number of replicates, and the overall cleanliness (i.e., contamination) of
145 procedures. It is also worth noting that the POP measurements were grossly undersampled
146 compared to POC and PON measurements in GO-POPCORN v1.

147 In GO-POPCORN v2, the POM samples were collected and quantified using consistent
148 protocols. Before POM sampling, all the carboys used were rinsed at least twice with the pre-
149 filtered underway seawater. The filtered volume of seawater was consistent between all POM
150 (POC/N and POP) samples at each station and varied on a per-station basis to ensure that the
151 amount of collected material was minimally impacted by the difference in filtration time. Initial
152 rinsing and the large sampling volume were aimed at reducing the effect of a time delay
153

155 caused by the underway system. The methods used for quantifying POC/N⁴³ and POP³⁶ are
156 based on previously described and validated standard techniques.

157 POM described in this dataset are “small size-class” samples, where a 30 µm nylon
158 mesh pre-filter was attached to the underway outlet to remove large plankton and
159 particulates. In the Southern Ocean Section of the P18 cruise, we have separately collected
160 “large-class” of POM > 30 µm and showed that the larger particles constitute, on average, 17%
161 of the total POC and PON concentrations and 31% of total POP concentration³². The same
162 study showed that a large size fraction of POM in P18 had statistically lower C:P, and C:N, N:P
163 compared to a small size fraction of POM. However, the general effect of particle size on the
164 C:N:P stoichiometry of POM is not yet clear.

165 For the technical validation of the novel PCOD assay, we tested for (1) interference
166 using standard additions of a HACH-certified phthalate-based COD standard, (2) a linear
167 correspondence between input amounts and absorbance, (3) the degree of variance with
168 respect to POC measurement technique, and (4) biases for different substrates. In summary,
169 we found that (1) the sample interference is limited, (2) there is indeed a linear relationship
170 between filtered sample volume and PCOD, (3) variance for PCOD is higher compared to POC;
171 hence it is vital to prepare and oxidize the high volume of POC to minimize relative error and
172 ensure accurate determination of -O₂:C, and (4) a high correspondence between theoretical
173 and observed values for different substrates. A full detailed description of PCOD assay
174 validation is described elsewhere⁷.

175 **Usage Notes**

177 This dataset is the most comprehensive global compilation of surface POM and PCOD. By
178 combining this dataset with datasets of temperature, nutrients, and plankton community
179 composition, regional and global drivers of C:N:P:-O₂ can be identified. The dataset is also
180 useful for evaluating outputs from ocean biogeochemical models with flexible C:N:P:-O₂
181 stoichiometry, with important implications for future ocean carbon, nitrogen, and oxygen
182 dynamics.

183 **Acknowledgements**

185 We want to acknowledge the captains and crew of the R/V Atlantic Explorer, R/V New Horizon,
186 R/V Ronald H. Brown, R/V Roger Revelle, R/V Sikuliaq, R/V Ocean Star and the R.R.S. James
187 Clark Ross, as well as all the members of Bio-GO-SHIP and IERP. We also thank Andy Rees from
188 Plymouth Marine Laboratory. This work was supported by National Science Foundation (GRFP
189 to ARM, OCE-1046297, 1559002, 1848576, and 1948842 to ACM, OCE-1045966 and 1258836
190 to MWL), NASA (NESSF16R to CAG, 80NSSC21K1654 to ACM), NOAA (101813-Z7554214 to
191 ACM and NOAA Cooperative Institutes, Award #NA19NES4320002, at the Cooperative
192 Institute for Satellite Earth System Studies), National Institutes of Health (T32AI141346 to
193 MLB), UCI Graduate Division (Chancellor’s Club Fellowship to ARM), Simons Foundation
194 (Postdoctoral Fellowship in Marine Microbial Ecology #724483 to TT) and North Pacific
195 Research Board (Arctic IERP Project A92 & A96 to MWL). The Atlantic Meridional Transect is
196 funded by the UK Natural Environment Research Council through its National Capability Long-
197 term Single Centre Science Programme, Climate Linked Atlantic Sector Science (grant number
198 NE/R015953/1). This study contributes to the international IMBeR project and is contribution
199 number 383 of the AMT programme.

200 **Author contributions**

202 ACM and MWL conceived the study and supervised the investigation. TT, AAL, ARM, CAG,
203 MWL, and ACM developed the methodology and collected metadata. AAL, ARM, CAG, NSG,
204 JAL, AJF, MLB, SDG, and MWL processed and/or analyzed samples. TT wrote a draft and made
205 figures with substantial input from AAL, ARM, MWL, and ACM.

206

207 **Competing interests**

208 The authors declare that they have no competing interests.

209 **Figures**

210

211 **Fig. 1. Distribution of paired POC/N/P measurements in the surface ocean.** Samples from
212 GO-POPCORN v1 and v2 are shown in blue and red, respectively.

213

214 **Fig. 2. Geographical distribution of paired POC/N/P measurements in the surface ocean.** The
215 number of paired POC/N/P measurements binned by (a) every 20° of latitude, (b) every 30° of
216 longitude, and (c) by oceanographic basins for GO-POPCORN v1 (blue) and v2 (red).
217 Abbreviations are: ATL = Atlantic Ocean, PAC = Pacific Ocean, IND = Indian Ocean, SO =
218 Southern Ocean, ARC = Arctic Ocean.

219

220 **Fig. 3. Summary of observed C:N:P:-O₂ in the surface ocean.** The histogram of (a) C:P, (b) N:P,
221 (c) C:N, and (d) -O₂:C from GO-POPCORN v1 (blue) and v2 (red). Black dashed lines are Redfield
222 C:N:P and -O₂:C of 106:16:1 and 1.0, respectively, for comparison. Please note a difference in
223 the total number of observations for each elemental ratio and that -O₂:C was not measured in
224 v1.

225

Tables

226 **Table 1.** Summary of data in GO-POPCORN Version 2, including the number of stations and particulate organic matter (POM) samples and the mean elemental
 227 ratios. We operationally define the sampling station as a distinct pair of longitude and latitude. Similar descriptions for GO-POPCORN Version 1 are listed in
 228 Table 1 of Martiny et al.⁹ [Abbreviations: POC = Particulate Organic Carbon, PON = Particulate Organic Nitrogen, POP = Particulate Organic Phosphorus, PCOD
 229 = Particulate Chemical Oxygen Demand, BATS = Bermuda Atlantic Time-Series, GO-SHIP = Global Ocean Ship-based Hydrographic Investigations Program, NSF
 230 = National Science Foundation, PML AMT = Plymouth Marine Laboratory Atlantic Meridional Transect, SOCCOM = Southern Ocean Carbon and Climate
 231 Observations and Modeling project, IERP = Integrated Ecosystem Research Program].

232

233

Cruise (Program)	Year	#Stations	Latitude		Longitude		POC (# Samples)	PON	POP	PCOD	C:P	N:P	C:N	-O ₂ :C	Ref.
			min	max	min	max									
AE1319, (NSF)	2013	15	32	55	-69	-40	123	111	111	0	145	12	11.6	NA	25,31,44
AMT-28 (PML AMT, SOCCOM, NSF)	2018	709	-48	50	-53	-6	741	741	775	771	155	23	6.7	1.2	8,24,34
BVAL46 (BATS, NSF)	2011	18	20	39	-66	-64	0	0	197	0	NA	NA	NA	NA	26,31,44
C13.5 (GO-SHIP)	2020	112	-41	35	-74	17	112	112	112	0	155	22	7.1	NA	This study
I07N (GO-SHIP)	2018	719	-30	18	40	69	732	733	727	0	121	19	6.4	NA	This study
I09N (GO-SHIP)	2016	238	-31	18	85	110	235	235	236	0	134	19	7.1	NA	22,30,31, 34
NH1418 (NSF)	2014	88	-3	19	-158	-150	159	159	180	0	142	23	6.1	NA	27,31,33
P18 (GO-SHIP)	2016-2017	193	-70	29	-116	-100	194	194	194	194	130	21	6.2	1.1	7,23,32
OS1701 (Arctic IERP)	2017	30	67	72	-169	-154	106	106	105	0	96	13	7.4	NA	This study
OS1901 (Arctic IERP)	2019	38	63	73	-171	-154	137	137	137	0	150	21	7.2	NA	This study
SKQ201709S (Arctic IERP)	2017	14	63	69	-173	-165	72	72	72	0	142	18	8.0	NA	This study
SKQ201813S (Arctic IERP)	2018	14	63	69	-172	-164	53	53	53	0	113	17	6.7	NA	This study
Summary	2011-2020	2188	-70	73	-173	110	2664	2653	2899	965	137	21	6.7	1.1	

234 **Code Availability**

235 Code and data used to reproduce all the figures and tables are available in the GitHub
236 repository https://github.com/tanio003/GOPOPCORN_Data_Codes and archived here
237 (<https://doi.org/10.5281/zenodo.6967484>)⁴⁵.

238 **References**

1. Redfield, A. C., Ketchum, B. H. & Richards, F. A. The influence of organisms on the composition of Seawater. in *The composition of seawater: Comparative and descriptive oceanography. The sea: ideas and observations on progress in the study of the seas* (ed. Hill, M. N.) vol. 2 26–77 (Interscience Publishers, 1963).
2. Moreno, A. R. & Martiny, A. C. Ecological Stoichiometry of Ocean Plankton. *Ann Rev Mar Sci* **10**, 43–69 (2018).
3. Deutsch, C. & Weber, T. Nutrient Ratios as a Tracer and Driver of Ocean Biogeochemistry. *Ann Rev Mar Sci* **4**, 113–141 (2012).
4. Martiny, A. C. *et al.* Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. *Nat Geosci* **6**, 279–283 (2013).
5. Martiny, A. C., Vrugt, J. A., Primeau, F. W. & Lomas, M. W. Regional variation in the particulate organic carbon to nitrogen ratio in the surface ocean. *Global Biogeochem Cycles* **27**, 723–731 (2013).
6. DeVries, T. & Deutsch, C. Large-scale variations in the stoichiometry of marine organic matter respiration. *Nat Geosci* **7**, 890–894 (2014).
7. Moreno, A. R. *et al.* Latitudinal gradient in the respiration quotient and the implications for ocean oxygen availability. *Proceedings of the National Academy of Sciences* **117**, 22866–22872 (2020).
8. Moreno, A. R. *et al.* Regulation of the Respiration Quotient Across Ocean Basins. *AGU Advances* **3**, e2022AV000679 (2022).
9. Martiny, A. C., Vrugt, J. A. & Lomas, M. W. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. *Sci Data* **1**, 140048 (2014).
10. Teng, Y.-C., Primeau, F. W., Moore, J. K., Lomas, M. W. & Martiny, A. C. Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter. *Nat Geosci* **7**, 895–898 (2014).
11. Wang, W.-L., Moore, J. K., Martiny, A. C. & Primeau, F. W. Convergent estimates of marine nitrogen fixation. *Nature* **566**, 205–211 (2019).
12. Séférian, R. *et al.* Tracking Improvement in Simulated Marine Biogeochemistry Between CMIP5 and CMIP6. *Curr Clim Change Rep* **6**, 95–119 (2020).
13. Galbraith, E. D. & Martiny, A. C. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. *Proceedings of the National Academy of Sciences* **112**, 8199–8204 (2015).
14. Sharoni, S. & Halevy, I. Nutrient ratios in marine particulate organic matter are predicted by the population structure of well-adapted phytoplankton. *Sci Adv* **6**, eaaw9371 (2020).
15. Larkin, A. A. *et al.* High spatial resolution global ocean metagenomes from Bio-GO-SHIP repeat hydrography transects. *Sci Data* **8**, 107 (2021).
16. Clayton, S. *et al.* Bio-GO-SHIP: The Time Is Right to Establish Global Repeat Sections of Ocean Biology. *Front Mar Sci* **8**, (2022).
17. Baker, M. R. *et al.* Integrated ecosystem research in the Pacific Arctic – understanding ecosystem processes, timing, and change. *Deep Sea Research Part II: Topical Studies in Oceanography* **177**, 104850 (2020).
18. Anderson, L. A. On the hydrogen and oxygen content of marine phytoplankton. *Deep-Sea Research Part I* **42**, 1675–1680 (1995).

285 19. Paulmier, A., Kriest, I. & Oschlies, A. Stoichiometries of remineralisation and
286 denitrification in global biogeochemical ocean models. *Biogeosciences* **6**, 923–935
287 (2009).

288 20. Martiny, A., Garcia, N., Tanioka, T. & Fagan, A. POM concentrations for carbon,
289 nitrogen, and phosphorus from GO-SHIP Line C13.5/A13.5 in 2020. *Marine Biological
290 Laboratory/Woods Hole Oceanographic Institution Library*
291 <https://doi.org/10.26008/1912/bco-dmo.868908.1> (2022).

292 21. Martiny, A., Garcia, C., Moreno, A. R. & Tanioka, T. POM concentrations for carbon,
293 nitrogen, and phosphorus from GO-SHIP Line I07N RB1803 in the Western Indian Ocean
294 from April to June 2018 (Ocean Stoichiometry Project). *Marine Biological
295 Laboratory/Woods Hole Oceanographic Institution Library*
296 <https://doi.org/10.26008/1912/bco-dmo.879076.1> (2022).

297 22. Martiny, A. & Lomas, M. W. Particulate organic matter (PON, POC, POP) concentrations
298 collected on R/V Roger Revelle cruise RR1604 along the hydrographic line IO9 in the
299 Eastern Indian Ocean from March to April 2016. *Marine Biological Laboratory/Woods
300 Hole Oceanographic Institution Library* <https://doi.org/10.26008/1912/bco-dmo.734915.3> (2021).

302 23. Martiny, A., Garcia, C., Lee, J., Moreno, A. & Larkin, A. A. POM concentrations for
303 carbon, nitrogen, phosphorus, and chemical oxygen from GO-SHIP Line P18 Legs 1 and
304 2 in 2016 and 2017. *Marine Biological Laboratory/Woods Hole Oceanographic
305 Institution Library* <https://doi.org/10.26008/1912/bco-dmo.816347.1> (2020).

306 24. Larkin, A., Lee, J. A. & Martiny, A. POC, PON, and POP from surface underway water
307 samples collected during AMT28/JR18001. *British Oceanographic Data Centre,
308 National Oceanography Centre, NERC, UK* <https://doi.org/10.5285/d76d90bb-5d7a-5415-e053-6c86abc0d182> (2020).

310 25. Lomas, M. W. & Martiny, A. Depth profile data from R/V Atlantic Explorer AE1319 in
311 the NW Atlantic from Aug-Sept. 2013. *Marine Biological Laboratory/Woods Hole
312 Oceanographic Institution Library* <https://doi.org/10.26008/1912/bco-dmo.829797.1>
313 (2020).

314 26. Lomas, M. W. & Martiny, A. Depth profile data from Bermuda Atlantic Time-Series
315 Validation cruise 46 (BVAL46) in the Sargasso Sea from Sept-Oct. 2011. *Marine
316 Biological Laboratory/Woods Hole Oceanographic Institution Library*
317 <https://doi.org/10.26008/1912/bco-dmo.829843.1> (2020).

318 27. Lomas, M. W. & Martiny, A. Depth profile data from R/V New Horizons NH1418 in the
319 tropical Pacific from Sept-Oct. 2014. *Marine Biological Laboratory/Woods Hole
320 Oceanographic Institution Library* <https://doi.org/10.26008/1912/bco-dmo.829895.1>
321 (2020).

322 28. Stabeno, P. EcoFOCI hourly-averaged Ice Draft Data and statistics at Icy Cape, Alaska
323 station C2; 10/2017 to 08/2018 (3 parts/phases), and 08/2018 to 08/2019 (2
324 parts/phases), Arctic Integrated Ecosystem Research Program, 2017-2019. *DataONE*
325 <https://doi.org/10.24431/rw1k5al> (2021).

326 29. Danielson, S. Conductivity, temperature, and depth data from CTDs deployed on
327 mooring N1 for the ASGARD Project, Bering Sea, 2017-2019. *DataONE*
328 <https://doi.org/10.24431/rw1k5be> (2021).

329 30. Garcia, C. A. *et al.* Nutrient supply controls particulate elemental concentrations and
330 ratios in the low latitude eastern Indian Ocean. *Nat Commun* **9**, 4868 (2018).

331 31. Garcia, C. A. *et al.* Linking regional shifts in microbial genome adaptation with surface
332 ocean biogeochemistry. *Philosophical Transactions of the Royal Society B: Biological
333 Sciences* **375**, 20190254 (2020).

334 32. Lee, J. A., Garcia, C. A., Larkin, A. A., Carter, B. R. & Martiny, A. C. Linking a Latitudinal
335 Gradient in Ocean Hydrography and Elemental Stoichiometry in the Eastern Pacific
336 Ocean. *Global Biogeochem Cycles* **35**, (2021).

337 33. Lomas, M. W. *et al.* Varying influence of phytoplankton biodiversity and stoichiometric
338 plasticity on bulk particulate stoichiometry across ocean basins. *Commun Earth Environ*
339 **2**, 143 (2021).

340 34. Garcia, N. S. *et al.* The Diel Cycle of Surface Ocean Elemental Stoichiometry has
341 Implications for Ocean Productivity. *Global Biogeochem Cycles* **36**, e2021GB007092
342 (2022).

343 35. Solórzano, L. & Sharp, J. H. Determination of total dissolved phosphorus and particulate
344 phosphorus in natural waters. *Limnology and Oceanography* vol. 25 754–758 (1980).

345 36. Lomas, M. W. *et al.* Sargasso Sea phosphorus biogeochemistry: An important role for
346 dissolved organic phosphorus (DOP). *Biogeosciences* **7**, 695–710 (2010).

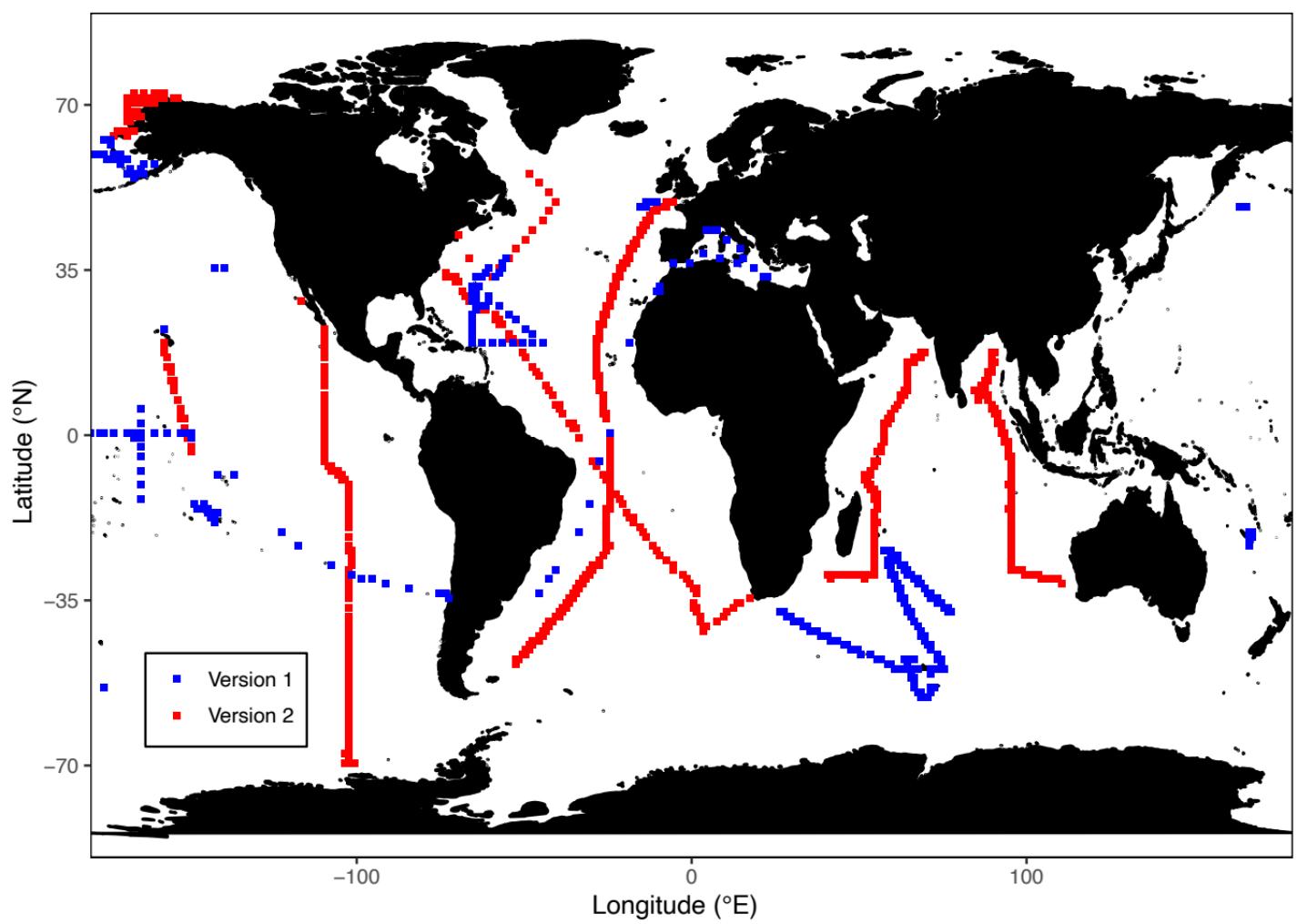
347 37. Vyrides, I. & Stuckey, D. C. A modified method for the determination of chemical
348 oxygen demand (COD) for samples with high salinity and low organics. *Bioresour
349 Technol* **100**, 979–982 (2009).

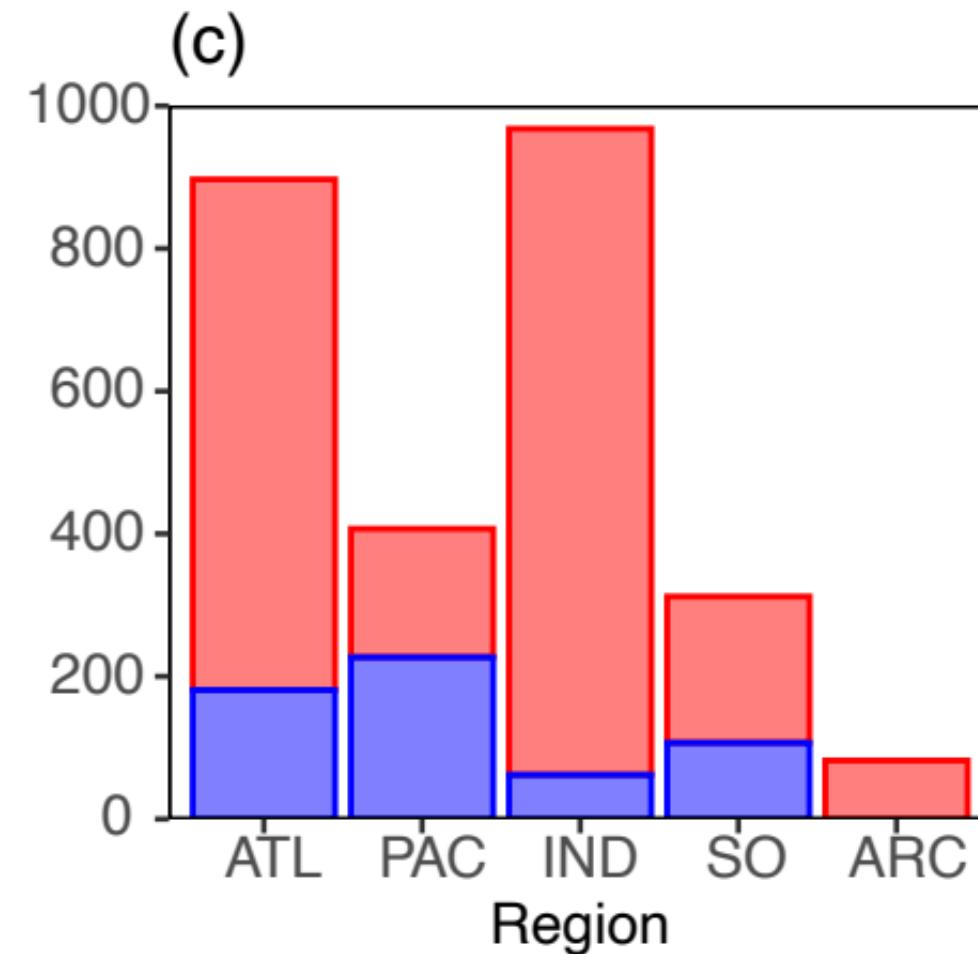
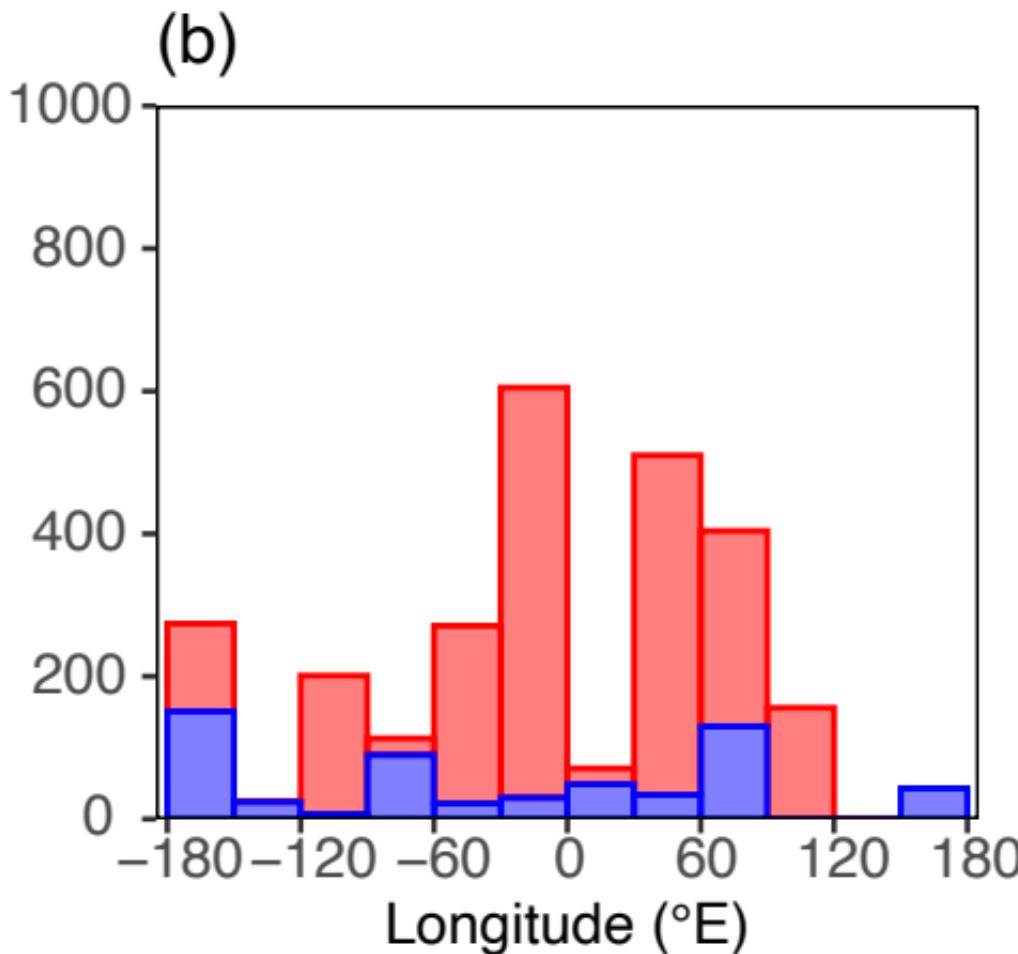
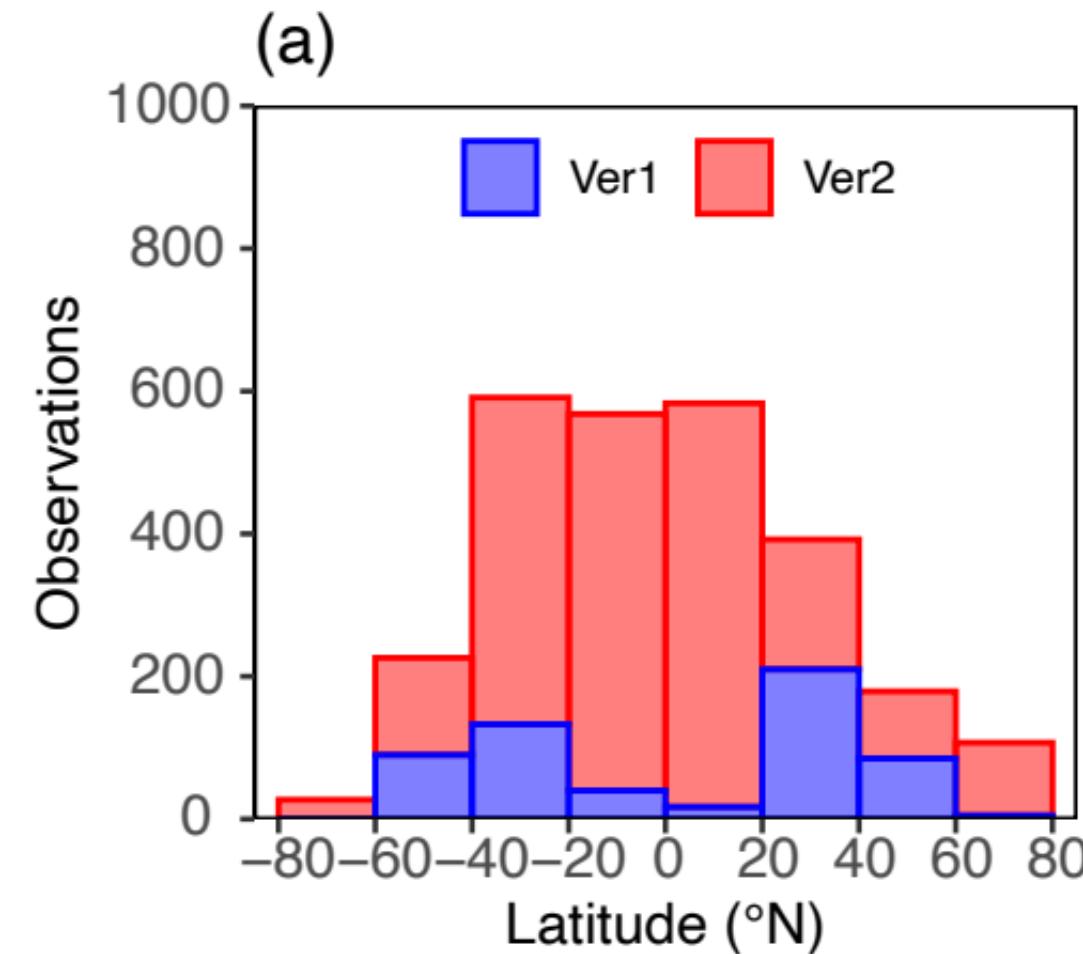
350 38. Moore, W. A., Kroner, R. C. & Ruchhoft, C. C. Dichromate Reflux Method for
351 Determination of Oxygen Consumed. *Anal Chem* **21**, 953–957 (1949).

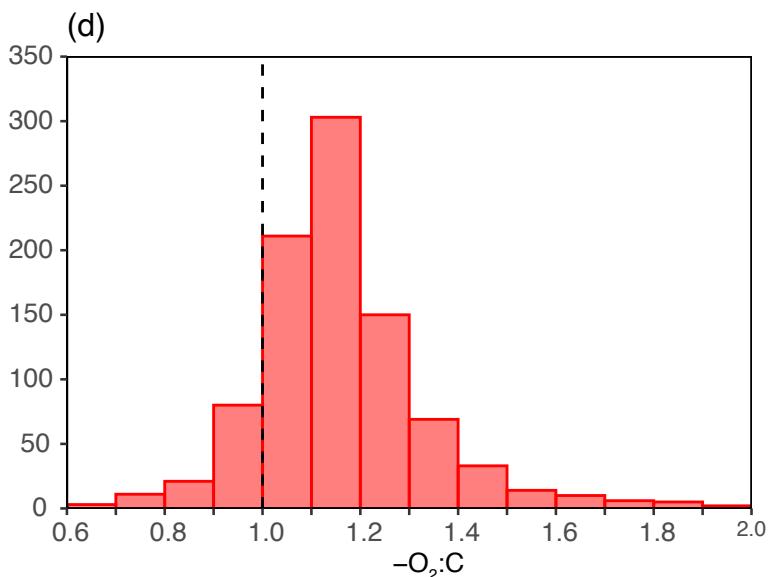
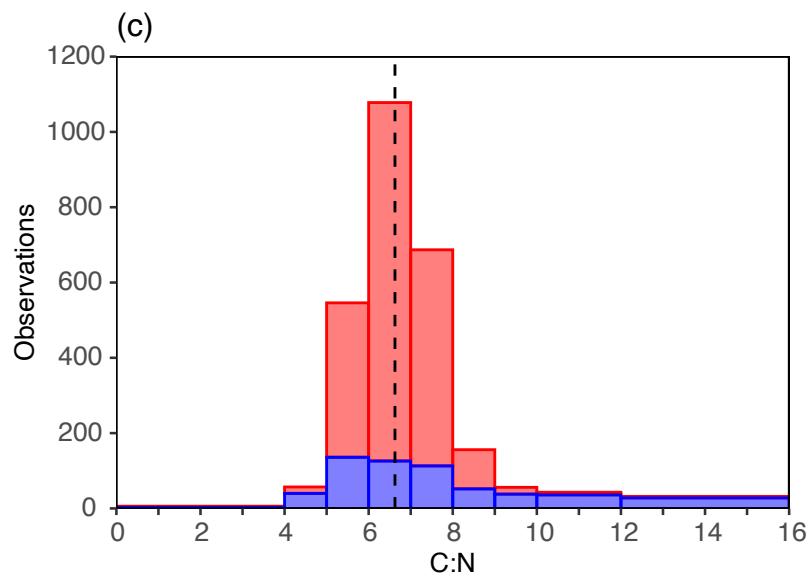
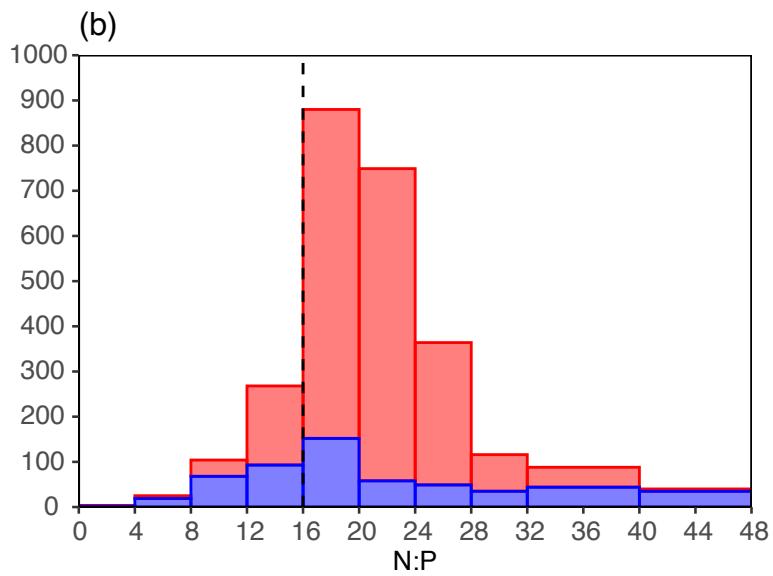
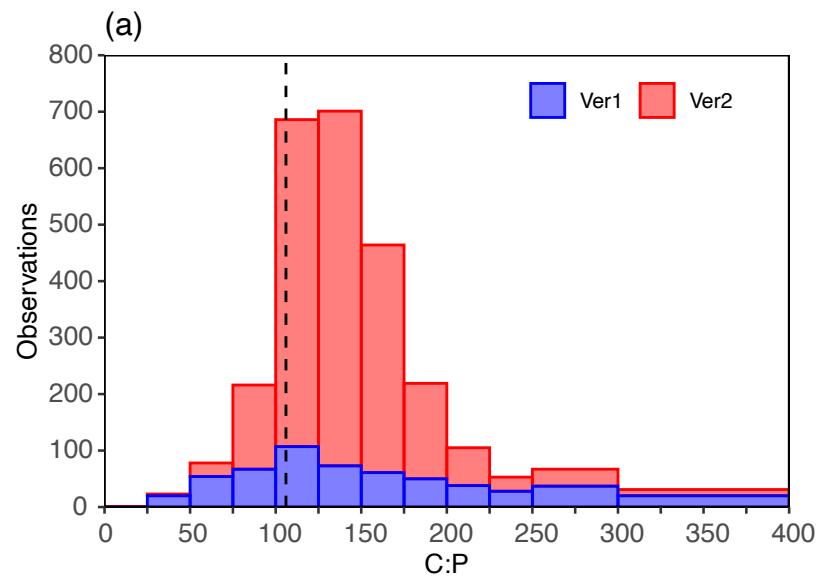
352 39. Baumann, F. J. Dichromate Reflux Chemical Oxygen Demand. Proposed Method for
353 Chloride Correction in Highly Saline Wastes. *Anal Chem* **46**, 1336–1338 (1974).

354 40. Dobbs, R. A. & Williams, R. T. Elimination of Chloride Interference in the Chemical
355 Oxygen Demand Test. *Anal Chem* **35**, 1064–1067 (1963).

356 41. Martiny, A. C., Vrugt, J. A. & Lomas, M. W. Data from: Concentrations and ratios of
357 particulate organic carbon, nitrogen, and phosphorus in the global ocean. *Dryad*
358 <https://doi.org/10.5061/dryad.d702p> (2015).


359 42. Tanioka, T. *et al.* Global Ocean Particulate Organic Phosphorus, Carbon, Oxygen for
360 Respiration, and Nitrogen (GO-POPCORN) data from Bio-GO-SHIP cruises. *Dryad*
361 <https://doi.org/10.5061/dryad.05qfttf5h> (2022).




362 43. Ducklow, H. & Dickson, A. Shipboard sampling procedures. *JGOFS* 1–210 (1994).





363 44. Baer, S. E., Lomas, M. W., Terpis, K. X., Mouginot, C. & Martiny, A. C. Stoichiometry of
364 Prochlorococcus, Synechococcus, and small eukaryotic populations in the western
365 North Atlantic Ocean. *Environ Microbiol* **19**, 1–23 (2017).

366 45. Tanioka, T. [tanioka003/GOPCORN_Data_Codes: Initial Submission](https://doi.org/10.5281/zenodo.6967484). *Zenodo*
367 <https://doi.org/10.5281/zenodo.6967484> (2022).

368

