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Abstract

Oceanic nutrient cycles are coupled, yet carbon-nitrogen-phosphorus (C:N:P) stoichiometry in
marine ecosystems is variable through space and time, with no clear consensus on the controls on
variability. Here, we analyze hydrographic, plankton genomic diversity, and particulate organic
matter data from 1970 stations sampled during a global ocean observation program (Bio-GO-
SHIP) to investigate the biogeography of surface ocean particulate organic matter stoichiometry.
We find latitudinal variability in C:N:P stoichiometry, with surface temperature and
macronutrient availability as strong predictors of stoichiometry at high latitudes. Genomic
observations indicated community nutrient stress and suggested that nutrient supply rate and
nitrogen-versus-phosphorus stress are predictive of hemispheric and regional variations in
stoichiometry. Our data-derived statistical model suggests that C:P and N:P ratios will increase at
high latitudes in the future, however, changes at low latitudes are uncertain. Our findings suggest
systematic regulation of elemental stoichiometry among ocean ecosystems, but that future
changes remain highly uncertain.

Introduction

Carbon-Nitrogen-Phosphorus (CNP) stoichiometry is widely used in oceanographic studies to
provide critical linkages between the availability of key nutrients, primary productivity, and
carbon sequestration'2. C:P, N:P, and C:N ratios of suspended particulate organic matter (POM)
in the surface ocean, reflecting the ecosystem elemental composition, vary systematically
between regions. The ratios are commonly below the canonical Redfield ratio of 106, 16, and
6.7, respectively, in the cold, nutrient replete high-latitude regions and above the Redfield ratios
in the warm, nutrient deplete subtropical gyres**. Observed C:N:P ratios also display temporal
variability on daily>$, seasonal’, and inter-annual timescales®’. As changes in C:N:P ratios can
have cascading effects on the carbon cycle!®!!, nitrogen cycle'>!3, and marine food-web
dynamics'4, identifying the environmental drivers of C:N:P has become a pressing challenge.

There are several alternate, although not necessarily mutually exclusive hypotheses for
mechanisms controlling the C:N:P of suspended POM in marine ecosystems'>-'7. Temperature
and nutrients can modulate cellular C:N:P of phytoplankton on the timescales of days to
weeks!81. Furthermore, change in the plankton biodiversity from selection to temperature and
nutrient variations can alter bulk ecosystem C:N:P?°2! because different taxonomic lineages of
plankton may have unique optimal C:N:P?2. The challenge is that the relative importance of
temperature versus nutrients is not currently well quantified, stemming from limited spatial
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coverage and the dearth of direct measurements for nutrient stress experienced by plankton
communities in mid-low latitude oligotrophic regions'!?32*. Previous global synthesis studies*!!
relied on dissolved nitrate and phosphorus concentrations to measure nutrient stress, but nutrients
are often below analytical detection limits in many low latitude ecosystems?*, prohibiting
accurate diagnosis of N vs. P limitation®. The nutrient limitation type (e.g., N vs. P limitation) is
critical as phytoplankton C:P and N:P cellular ratios can vary by as much as a factor of three
between P-limited and N-limited conditions under otherwise the same growth environment?*-%’.
As aresult of these shortcomings, we still lack a quantitative understanding of what drives
marine ecosystem C:N:P stoichiometry.

Here, we quantify the global variation and identify key environmental predictors for surface
ocean ecosystem C:N:P. We collected and analyzed POM samples across all major ocean basins
as part of the biological initiative for the Global Ocean Ship-based Hydrographic Investigations
Program or Bio-GO-SHIP?#. The Bio-GO-SHIP dataset greatly expanded the spatial coverage
from previous global CNP studies®!'* (Fig. 1) and now includes samples from regions like the
South Subtropical Pacific, South Atlantic, and the Indian Ocean. We identified relationships
between C:N:P and diverse environmental predictors, including phytoplankton nutrient stress,
from paired metagenomics observations®! (Supplementary Figure 1). Finally, we applied our
data-derived statistical models to the output from the Community Earth System Model Large
Ensemble Simulation (CESM2-LENS)* to project surface ecosystem C:N:P for the historical
period (years, 2010-2014) and end of the 21* century (years, 2095-2100, shared socioeconomic
pathways SSP3-7.0) to identify areas that may undergo the most drastic change in ocean
elemental stoichiometry. SSP3-7.0 scenario is the second most pessimistic, high-greenhouse-gas
emission trajectory®, where CO, doubles compared to preindustrial by 2100 and radiative
forcing level reaches 7.0 W/m?2. Our projections from the data-derived statistical model show
consistent increases in C:P and N:P under the future climate scenario in the high latitude
ecosystems, which agrees with projections made by Earth system models'#**3>. However,
projections made by two modeling approaches diverge considerably in lower latitude
ecosystems, indicating that future changes in C:N:P, especially at low latitudes, are highly
uncertain.

The data-driven statistical approach, which first establishes relationships amongst C:N:P and
environmental factors along contemporary ocean environmental gradients and then applies the
same statistical relationship to the future environmental condition, is an alternative to Earth
system models for predicting future changes to C:N:P. Although data-driven statistical
approaches lack a mechanistic basis, they can integrate poorly understood biological
mechanisms. For example, this approach implicitly embraces the plankton diversity, interactions
between different environmental factors, and poorly understood biotic effects of higher trophic
levels®*. Earth system models, on the other hand, are mechanistic and anchored in theory but
often rely on simplistic assumptions and parametrizations owing to our incomplete
understanding of biological systems. Divergent future projections amongst the two modeling
approaches in low latitude ecosystems suggest that there are critical knowledge gaps for the
regulation of C:N:P.

Results
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We collected 1970 paired POM samples (C, N, and P) in the top 30 m across a broad latitudinal
range from 70 °S to 50 °N (Fig. 1, Supplementary Table 1) and analyzed them using consistent
protocols. The global area-weighted mean C:N:P was 137:21:1 (Supplementary Table 2-3),
which largely agrees with a previous data compilation of surface ecosystem C:N:P of 146:20:1°.
Ecosystem C:N:P ratios exhibited a robust latitudinal pattern, highest in the subtropical gyres,
intermediate in equatorial regions, and low towards higher latitudes (Fig. 2, Supplementary
Table 4). The highest C:P and N:P were observed in the western North Atlantic, where mean
values reached 225 and 32, respectively. The lowest values were observed in areas poleward of
the Southern subtropical convergence, with the lowest observed C:P and N:P ratios of ~60 and
~10, respectively. The latitudinal trends in C:P and N:P were mirrored in both hemispheres, but
peak C:P and N:P ratios were commonly higher in the Northern vs. Southern Hemisphere. C:N
was close to the canonical Redfield ratio of 6.6 in most regions but noticeably elevated in the
eastern parts of the southern subtropical gyres in the Atlantic, Indian, and Pacific Oceans, with
C:N exceeding 8. In contrast, C:N was slightly lower than the Redfield ratio in the Southern
Ocean, with a mean of ~6. Thus, C:N:P showed a latitudinal gradient and clear hemispheric and
longitudinal deviations.

To identify environmental predictors of C:N:P, we conducted a combination of correlation
analysis and generalized additive models (GAMs). While the correlation analysis can capture
first-order, monotonic relationships between predictors and C:N:P, GAMs detected nonlinear,
non-monotonic relationships amongst C:N:P and in situ measurements of sea surface
temperature (SST), nutrient availability, and nutrient limitation type. Nutricline depth (here
defined as the depth at which nitrate concentration equals 1 umol kg™!) is used as a proxy of
nutrient supply rate, where deeper nutricline indicates a lower nutrient supply rate to the upper
mixed layer of the ocean’’. Overall, we found that the dominant environmental predictors of
surface ecosystem C:N:P differed between high and low-latitude regions (Fig. 3). In (sub)polar
regions, SST was strongly positively correlated with C:P and N:P (Fig. 3a, Supplementary Table
5-6), and SST captured 67% and 65% of the total explained variances for C:P (R’ = 0.55), and
N:P (R’ = 0.46), respectively (Fig. 3b, Supplementary Table 7). C:P and N:P increased linearly
from the coldest polar regions to the warmer subpolar regions, coinciding with a gradual
community composition shift from diatom to coccolithophore dominance (Fig. 3a). Here,
phytoplankton-group relative abundance was obtained from the NASA Ocean Biogeochemical
Model3%*° at the closest grid point to the spatial position of each POM sampling point. Nitrate
and phosphate concentrations were significantly negatively correlated with C:N:P across high
latitudes, but macronutrient concentrations were not as good of a predictor for C:N:P as SST
(Fig. 3b, Supplementary Figure 2). Nutricline could not explain variances in C:N:P as the surface
nitrate concentrations exceeded 1 umol kg™! in large parts of the high latitude ecosystems.
Similarly, the element-specific nutrient stress (i.e., N vs. P vs. Fe stress) could not explain C:N:P
variability in the high latitudes because regions from which samples were collected were
uniformly Fe-limited (Supplementary Figure 1a). To summarize, temperature and macronutrient
availability were primary predictors of C:N:P variability in high latitudes, coinciding with a
noticeable shift in the phytoplankton community through fractional decreases in diatom and the
concomitant increases in coccolithophore and cyanobacteria abundances.

In (sub)tropical ecosystems, nutricline depth and the element-specific nutrient stress were the
strongest environmental predictors for C:N:P. In these warm regions, we observed that 77 - 87%
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of the explained variance for C:N:P was attributed to the nutricline depth plus element-specific
nutrient stress (Fig. 3d). However, total deviance explained by GAM was noticeably lower in the
low latitude ecosystems (R? = 0.39, 0.37, and 0.14 for C:P, N:P, and C:N) than in the high
latitude ecosystems (Supplementary Table 8). Without considering nutrient stress, GAMs
predicted that C:P and N:P increased monotonically with warming until ~20 °C and then
plateaued (Fig. 4, Supplementary Figure 3a). C:P and N:P were highest with interaction with a
deep nutricline and P-stress or P/N co-stress (Fig. 4b, Supplementary Figure 3b). C:N was
highest when the nutricline was deep and phytoplankton were N-stressed (Fig. 4d). Regardless of
nutrient limitation types, C:P, N:P, and C:N converged to similar values of 125, 18, and 6.7,
respectively, when nutricline depth approached 0 m and thus where nitrate remained abundant at
the surface. Nitrate and phosphate concentrations explained little C:N:P variability as
macronutrient concentrations were at or below detection limits across most low latitude sites
(Supplementary Figure 2). In summary, the global synthesis of surface ecosystem C:N:P
revealed a transition from a temperature and macronutrient dependency at high latitudes to a
multi-dimensional nutrient stress control in mid-to-low latitudes.

We next projected the present and future global distributions of surface C:P and N:P
stoichiometry. These projections were made by combining the observation-constrained GAMs
with projections of present and future oceanic conditions under shared socioeconomic pathways
SSP3-7.0 scenario (Fig. 5, Supplementary Figure 4). We predicted a general future increase in
C:P at high latitudes but a decrease in the subtropics and tropics (Fig. 5c). This spatial pattern
was similar for N:P (Supplementary Figure 5). Overall, the global area-weighted mean C:N:P
changed little from 120:19:1 in the 2010s to 124:19:1 in the 2090s (Supplementary Table 9).
However, the area-weighted mean C:P poleward of 45° increased from 83 in the 2010s to 94 in
the 2090s. This high latitude increase was predominantly due to a 2-3 °C warming
(Supplementary Figure 5) and largely agrees with projections made by fully prognostic ocean
biogeochemical models (Supplementary Figure 6). In the mid-low latitudes (equatorward of
45°), our data-driven statistical model projected an overall constant C:P. However, there are
large geographical differences leading to regions with strong declines (e.g., western North
Atlantic due to a shoaling nutricline) or increases (e.g., western North Pacific shifting to P-
limitation and South Pacific with a deepening nutricline). Moreover, model agreement, which
reflects the predictability of C:P by the data-derived statistical model, rarely exceeded 70% in the
mid-low latitudes (Fig. 5b,d). Regions with the lowest model C:P predictability corresponded to
areas with the smallest projected change in C:P, such as the boundary between subpolar and
subtropics, where the annual mean SST was 15-20 °C. Similarly, projections from
biogeochemical models are not in agreement with each other in low latitude ecosystems
(Supplementary Figure 6). To summarize, independent model projections made by data-derived
approach and mechanistic approaches suggest an increase in C:P and N:P in the high latitude
ecosystems but changes in low latitude ecosystems remain uncertain under the future climate
scenario.

Discussion

Our global analysis supports a link between temperature, surface nutrient depletion, and N vs. P
stress with C:N:P stoichiometry. A strong temperature dependency of C:P and N:P in high
latitude ecosystems is consistent with the translation compensation hypothesis'’#°, where
plankton increase allocation to P-rich ribosomes for biosynthesis at low temperature, leading to
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lower C:P and N:P. Lower temperature also leads to lower C:N of phytoplankton by slowing
down the metabolism of phytoplankton and decreasing their ability to consume nitrate, thus
increasing residual nitrate concentrations*!. The transition from a strong temperature dependency
at higher latitudes to a strong nutrient dependency at low latitudes may be due to a weakened
temperature control on phytoplankton growth under low nutrient supply rate conditions*>#3,
Thus, our data support the translation compensation hypothesis and the strong temperature
dependency on C:N:P but only in nutrient-replete environments. This study did not consider the
effect of temperature in cold regions that are depleted in surface macronutrients. Therefore we
suggest expanding sample coverage to the Arctic Ocean to understand further how low
temperature affects C:N:P.

In low latitude ecosystems, our global data suggest C:N:P is regulated to a large extent by an
interaction between the overall nutrient supply and the elemental nutrient stress type. There is
compelling support in theoretical and lab culture experiments for this multi-dimensional nutrient
control of C:N:P. Chemostat models predict a more flexible stoichiometry of phytoplankton cells
at lower nutrient supply and growth but a fixed C:N:P at umax**#4. Similarly, culture experiments
show that cellular C:N:P is very sensitive to N vs. P stress at low growth rates, but this flexibility
narrows with higher growth rates?”*. Although we cannot directly measure nutrient supply, a
deeper nutricline likely reflects a lower overall nutrient supply rate*”. Thus, the observed
interactive relationships between C:N:P, nutricline depth, and N vs. P stress seem to align well
with these theoretical and laboratory culture predictions.

An inter-hemisphere contrast in ecosystem C:N:P in low latitude ecosystems may be linked to
differences in the N:P:Fe supply ratio and the relative degree of N vs. P stress®. More
pronounced C:P and N:P peaks are observed in the northern vs. southern hemisphere subtropical
gyres. We associate the higher ecosystem C:P and N:P in the northern hemisphere with a more
substantial surface phosphate depletion in the North Atlantic and Pacific gyres from the higher
Fe supply and N fixation?*. In contrast, we more commonly observed regions of high C:N in the
Southern Hemisphere, including the eastern South Atlantic, eastern South Pacific, and eastern
South Indian Oceans. These are strongly N-stressed regions with depressed Fe supply and N»
fixation'2#%47, In addition to cellular level changes in C:N:P, low latitude ecosystems typically
favor slow-growing cyanobacteria with higher C:P and N:P ratios over eukaryotes with lower
stoichiometric ratios?®*®, Indeed, we globally observed a significant positive correlation between
C:P and N:P with % cyanobacteria and a negative correlation with % diatoms (Fig. 3a, c).
However, hemisphere differences in C:N:P rule out that community shifts alone control the
observed C:N:P. In summary, nutrient supply rate and ratios are potentially the best predictors of
large C:N:P variability in low latitude marine ecosystems, while temperature and macronutrient
availability seem to shape the overall latitudinal gradient.

We observe a mild decrease in C:P and N:P in low latitude ecosystems at high temperatures
above 20 °C. This decrease in C:P and N:P may be related to an increase in cellular RNA
content to meet a greater demand of chaperones required for the repair of heat-induced damage!'®
or to the disproportionate increase in the respiration over photosynthesis leading to lower carbon
fixation at higher temperature®. However, we currently lack the observations from regions with
a surface temperature above 30 °C to fully constrain the relationship between warming and
C:N:P leading to uncertain model projections. Thus, we suggest sampling in extremely warm
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regions like the western Pacific Ocean or marginal seas with a surface temperature above 30 °C,
providing analog conditions for a future warm world.

There are several important caveats to our observation and the data-driven statistical approach
for projecting C:N:P. First, data-driven statistical models assume that plankton physiology and
community will share the same relationship to environmental conditions in the present and future
ocean. These projections incur considerable uncertainties when extrapolating the statistical
models outside the currently observed/observable state of the system. Second, we did not
consider the roles of dissolved organic matter. Plankton’s ability to access dissolved organic
matter, particularly at high temperatures, may be an important driver for shifting the balance
between C, N, and P in areas such as North Atlantic and western South and North Pacific®’.
However, dissolved organic matter is chemically diverse®!, and we were unable to incorporate it
as a predictor here. Thirdly, we solely used Prochlorococcus genomes to diagnose nutrient stress
for the plankton community. As Prochlorococcus make up a large percentage of community
biomass in the tropics and subtropics®?, their physiological status is likely important for the total
phytoplankton community. However, in regions with lower Prochlorococcus abundance, other
lineages are likely important for the ecosystem state and may deviate from Prochlorococcus.
Fourth, a change in the nutrient supply ratio could lead to an abrupt shift in plankton community
composition®, which in turn may abruptly shift the ecosystem C:N:P. Such changes in nutrient
supply ratios may be driven by anthropogenic N emission®*, shifting nitrogen fixation>, and
atmospheric nutrient deposition®®. As these abrupt ecological shifts are expected to precede early
warning signals from temperature and nutrients?, it is critical to expand monitoring of ecosystem
C:N:P through long-term monitoring’-’, shipboard measurements®’, and remote sensing®®. These
spatial and temporal sampling efforts are critical for narrowing down the degree of uncertainty in
model projections of C:N:P.
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POM, hydrography, and metagenomes from Bio-GO-SHIP cruises used in this study are publicly
available?®>°, Nutrient stress data of phytoplankton can be accessed from the original publication
cited in the main text*!. GLODAP version2.2016b data is publicly available
(https://doi.org/10.5194/essd-8-297-2016). The model output from the CEMS2 Large Ensemble
Simulation is available here (https://doi.org/10.26024/kgmp-c556).

Code availability

All codes (data manipulation, analyses, figures, and tables) can be downloaded from the GitHub
repository https://github.com/tanio003/CNPGlobal paper_repo/tree/CommsEarthEnv. When
using the data or code from this project, please cite https://doi.org/10.5281/zenodo.7076407.

Methods

POM Sample Collection

In this study, we use paired observations of particulate organic phosphorus (POP), nitrogen
(PON), and carbon (POC) samples from 1970 stations collected between 2014 and 2020 as a part
of a biological initiative for the Global Ocean Ship-Based Hydrographic Investigations Program
(Bio-GO-SHIP)?%, Samples used in this study are from cruises AMT-28, C13.5, I07N, I09N,
NH1418, and P18 (Supplementary Table 1). Samples were collected across all major oceanic
provinces from 70 °S to 50 °N using the consistent sampling method described
previously>28-6%-61 Briefly, 2-10 L seawater for the POM samples was collected from the onboard
flow-through underway system at the sea surface (< 30 m) and was divided into POC/PON and
POP triplicates after removing large plankton and particles using 30 um nylon mesh. Each
replicate was then filtered on precombusted Whatman GF/F filters with a nominal pore size of
0.7 um. POP filters were rinsed with 5 mL of 0.17 M Na»SO4 prior to analysis to remove traces
of dissolved organic phosphorus. All filtered POM samples were sealed in precombusted
aluminum packets and were immediately frozen at -20 °C until analysis. The detection limit for
POP measurement was ~ 0.3 pg.

POC and PON samples were measured using Control Equipment 240-XA/440-XA elemental
analyzer standardized to acetanilide or a CN Flash 1112 EA elemental analyzer against an
atropine (C17H23NO3) standard curve. The POC analysis included an acidification step in
concentrated HCI fumes to remove particulate inorganic carbonates. POC and PON
measurements had a mean detection limit of ~2.4 ng and ~3.0 pg, respectively. POP was
analyzed using the ash-hydrolysis colorimetric method described previously®? using a
spectrophotometer at 885 nm.

Following the criteria used in a previous study®!, we discarded any anomalous samples with
POC:POP > 500, PON:POP < 1, and PON:POP > 100 after the stoichiometric ratios were
calculated. These selection processes led to the 1970 final C-N-P paired POM measurements. To
evaluate the influence of spatial autocorrelation, we binned the samples into 1° by 1° grid cell
and computed globally area-weighted values with this dataset. Our analysis showed that the
global area-weighted means of binned and unbinned data are indistinguishable and concluded
that such spatial autocorrelation was not a problem in our data analysis (Supplementary Table 2-
3). Based on previous studies®3?, a large proportion of POM pools collected are assumed to be
made up of living planktonic materials consisting of Prochlorococcus, Synechococcus,
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eukaryotic phytoplankton, and bacteria with a minor contribution from microzooplankton and
heterotrophic nanoflagellates.

Hydrography Measurements

Hydrographic measurements (salinity, temperature, and pressure) were taken at each station with
a CTD-rosette vertical profiling system. Ambient nitrate, phosphate, and silicate concentrations
were determined onboard using an auto-analyzer following the GO-SHIP nutrient protocol®® for
cruises AMT-28, I07N, I09N, and P18. Macronutrients (N or P) in cruise NH1418 were
measured in the lab%, and the detection limits were 0.05 pmol kg™!. Bottle data for
macronutrients were extrapolated horizontally where necessary to match the sampling resolution
of underway data (i.e., POM data). For the C13/A13.5 section in which in situ nutrient
measurements were not measured due to logistical issues, we substituted missing values with
mapped annual mean average values from the GLODAP version2.2016b from the nearest
longitude and latitude at 1° resolution®-%¢, We set consistent detection limits for phosphate and
nitrate at 0.01 and 0.1 pmol kg™, respectively, for all the hydrographic measurements and
corrected any measured concentrations below these values are assumed to be equal to the
threshold concentrations for use in statistical analysis. Nutricline depth, here defined as the depth
at which nitrate equals 1 umol kg'!, was determined by vertically and horizontally interpolating
nitrate concentration. We set nutricline as 0 m when the bottle nitrate concentration at the
shallowest depth was greater than 1 umol kg'!. Previous studies®”%” have revealed that nutricline
depth, where deeper nutricline indicates a lower nutrient supply rate to the upper mixed layer of
the ocean, serves as a good proxy for an overall nutrient supply rate in the surface water than
ambient macronutrient concentrations, which are often at detection limits.

Contextual Environmental Variables

We complemented in situ measurements with (i) mixed-layer averaged photosynthetically
available radiation (PAR)®, which was estimated using surface PAR, Chl-a, and monthly
climatology of mixed layer depth®, (ii) the average phytoplankton community composition
(diatoms, coccolithophores, chlorophyte, and cyanobacteria) between 1998-2017, which we
obtained from NASA Ocean Biogeochemical Model***°, and (iii) the annual mean total
dissolved iron, which we derived from Community Earth System Model v1.2.1. Both NASA
Ocean Biogeochemical Model and CESM were calibrated with observations and have been used
extensively in previous global biogeochemistry studies?*3!. The model phytoplankton
community composition from NASA Ocean Biogeochemical Model only exists from 1998 to
2017. For data from 2018 onwards, we used the model output from 2004, which is the year with
the minimum sum of deviations from the monthly mean, following the previous study?’. PAR
and Chl-a are 8-day averaged values retrieved by NASA MODIS-Aqua at the nearest location (4
km resolution) (http://oceancolor.gsfc.nasa.gov (last access: July 29, 2021)). Climatological
mixed layer depth is derived from more than 1.2 million Argo profiles® and provides accurate
information about the seasonal patterns of global mixed layer depth.

Metagenomics-Informed Nutrient Limitation

We used the previously published global genome content of Prochlorococcus and its inferred
element-specific nutrient stress!. Specifically, we selected data from 562 stations, where
metagenome samples were collected concomitantly with POM (Supplementary Figure 1). We
used metagenome samples collected in the regions encompassing 51.5 °S and 47.9 °N, where the
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abundance of Prochlorococcus was sufficient. Briefly, sequences from the surface metagenomes
were recruited to known strains of Prochlorococcus, and the frequency of established nutrient
acquisition genes determined a priori were used as a proxy for nutrient stress type (i.e., limiting
nutrient element) and severity. For example, the presence of marker genes phoX and phoA,
responsible for regulating alkaline phosphatases required for the assimilation of dissolved
organic P (DOP), are associated with high phosphorus stress. A previous study has shown a
significant correlation between Prochlorococcus nutrient stress index and growth/turnover rate
from nutrient bottle incubation experiments®!. An ordination of nutrient genes based on the
angles from the principal component analysis can broadly categorize six types of limitation and
co-limitation: (1) Fe limitation, (2) Fe/P co-limitation, (3) P limitation, (4) P/N co-limitation, (5)
N limitation, and (6) N/Fe co-limitation. As the number of samples for Fe/P co-limitation and
N/Fe co-limitation samples was noticeably smaller than other stress types, we merged Fe/P and
N/Fe with P and N limitation samples, respectively. Our dataset consists of 101 P-limitation
samples, 337 N-limitation samples, 67 P/N co-limitation samples, and 57 Fe-limitation samples
that are geographically and temporally paired with POM samples. The global map of nutrient
limitation from metagenomes is largely consistent with the nutrient limitation pattern of the
small phytoplankton from the CESM model output (Supplementary Figure 1).

Data Analysis and Modeling

All the statistical analyses were conducted using R ver. 4.1.07°. To determine the relative
importance of different contextual variables required to explain C:N:P, we first conducted
multiple pairwise correlation analyses using the Pearson correlation test, which allowed us to
determine a first-order linear relationship between a covariate and C:N:P. We used natural log-
transformed values of elemental stoichiometric ratios and nutrient concentrations throughout the
data analysis. For fair comparison across variables, we removed any rows containing the missing
value from the dataset and standardized all the variables so that the mean equaled zero and the
standard deviation equaled one. We correlated C:N:P with various environmental drivers
including in situ measurements of SST, surface phosphate, surface nitrate, and nutricline depth;
mixed-layer depth, mixed-layer averaged PAR, nutricline depth, modeled surface plankton
community composition, and total dissolved iron from the model simulations (Supplementary
Table 5-6). We performed separate analyses for the (1) polar/subpolar (n = 145) and (2)
tropical/subtropical regions (n = 1825) which were delineated based on the absolute latitude of
45°.

We subsequently conducted analyses with generalized additive models (GAMs) to identify the
relative strength of four main environmental variables in explaining C:N:P ratios: these were (1)
SST, (2) surface nitrate concentration, (3) nutricline depth, and (4) the limiting nutrient type of
Prochlorococcus determined from the metagenome analysis. We chose these variables based on
the correlation analysis and the previous understanding of ecological stoichiometry. For the
GAM analysis, we used the R package mgcev’!. For GAM analyses in (sub)tropical regions, we
used the subset of POM data where both POM and metagenomes were collected (n = 554). We
conducted cross-validation (100 random partitions holding out 20% of observations) on different
possible hierarchical GAM formulations’?: (1) Model G (A global smoother for all observations),
(2) Model GS (Single common smoother plus group-level smoothers that have the same
wiggliness), (3) Model GI (Single common smoother plus group-level smoothers that have the
different wiggliness), (4) Model S (Group-specific smoothers without a global smoother, but all
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smoothers have the same wiggliness), (5) Model I (Group-specific smoothers with different
wiggliness), and (6) Model C (Control, no dependence on nutrient limitation types)
(Supplementary Methods). We found that the models with the interactive effect of nutricline and
element-specific nutrient limitation type (model GI and I) outperformed the models with either
independent (model G) or null effects (model C) of nutrient limitation type in terms of Akaike
information criterion, root-mean-square error, and the coefficient of determination
(Supplementary Table 10-12). Specifically, the model GI performed best out of all the possible
model types of functional variation for hierarchical GAM. Thus, we decided to use the model GI
to describe the interaction between nutricline and element-specific nutrient limitations
throughout the paper. The additive contribution of each contextual variable (SST, nitrate,
nutricline, and the interaction between nutricline and nutrient limitation type) to the total
deviance explained was calculated by sequentially removing different parameters and averaging
sequential sums of squares over all ordering of regressors before normalizing with deviance
explained by a null model. This approach ensures that the sum of each regressor’s deviance
explained adds up to the full model deviance explained”.

We repeated GAM analyses with the previous global C:N:P compilation® binned by longitude
and latitude at 1° resolution (n = 204), combined with SST, nitrate, and nutricline depth from
GLODAP version2.2016b%-6 and small phytoplankton nutrient limitation pattern from CESM2
Large Ensemble Simulation at the 2010s. We found the overall consistency in the explained
deviances in the current and previous C:N:P compilation: SST and nitrate were the most critical
drivers in the high latitudes. At the same time, the interaction between nutrient availability and
nutrient limitation were the primary drivers in the low latitudes.

Future Projections of Ecosystem C:N:P

We first derived the global GAM formulation of C:P and N:P, covering the entire parameter
space of SST, surface nitrate, nutricline, and nutrient limitation. We supplemented POM-
metagenome paired samples with 46 POM-only samples collected in high latitudes poleward of
51.5 °S. In doing so, we assumed that these 40 samples were collected from Fe-limited regions
based on a comparison with CESM model output (Supplementary Figure 1a) and prior
biogeochemical knowledge?’.

To evaluate the effects of future climatic change on surface community C:P and N:P, we used as
input to our GAM derived above the values of SST, surface nitrate concentration, nutricline
depth, and nutrient limitation output from CESM2-LENS, which consists of 100 ensemble model
simulations which take into the account of the ocean and atmospheric interannual variabilities.
The ensemble simulation includes four independent Atlantic Meridional Overturning Circulation
states and 20 microstates for each scenario®?. At the time of writing this paper, 90 out of 100
model outputs were publicly available, and we extracted environmental variables for each grid
cell for each of the 90 model run and computed ensemble means for the historic period (averaged
values for the years 2010-2014) and the end of the 21 century (averaged values for years 2095-
2099), the latter considering Shared Socioeconomic Pathway SSP3-7.0 scenario. SSP3-7.0
scenario is the second most pessimistic, high-greenhouse-gas emission trajectory??, where CO,
doubles compared to preindustrial by 2100 and radiative forcing level reaches 7.0 W/m?. To
obtain ensemble mean SST and surface nitrate concentrations for each grid point, we first
computed mean values in the top 30 m for each grid point of every model realization and
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computed the ensemble mean. In each model realization, nutricline was determined first by
interpolating the vertical depth profile of nitrate to 1 m in the top 500 m of the water column,
then the shallowest depth at which nitrate concentration exceeds 1 pmol kg™! was determined.
After the initial inspection, we found that the nutricline depth obtained from CESM2-LENS
systematically underestimated GLODAP. Thus, we multiplied nutricline depth by the scaling
factor of 1.54 for every grid point for historical and future projections. The coefficient of
determination between GLODAP and CESM2 historic nutricline depth was 0.8.

The limiting nutrient for each grid point is the element with the lowest ratio between the ambient
nutrient concentration and the Michaelis-Menten half-saturation constant of the respective
element for the small phytoplankton functional type. We defined P/N co-limitation when the
ratios between the ambient nutrient concentration and the Michaelis-Menten half-saturation
constant for P and N are within 5% and are not Fe-limited. As the nutrient limitation information
is a discrete, categorical variable, we computed the ensemble mode across 90 model runs as the
representative nutrient limitation for each grid point. The nutrient limitation map from CESM2-
LENS for the historic period generally agreed well with the metagenome-based observation®!
(Supplementary Figure 1a).

To ensure the reliability of our projections, we generated 1000 historic and future C:P and N:P
models from the posterior distribution and randomly selected 2000 models with replacements to
account for the uncertainties in the parameters of the GAMs. Here, we report averaged
predictions from these 2000 models, and we define model confidence by calculating how many
of the 2000 pairs of model projections predict the same sign of change in AC:P and AN:P from
the 2010s to 2090s. For example, if all 2000 randomly selected pairs predict an increase
(decrease) in C:P, the model confidence is 100%+ (100%-). The null case (i.e., 50% model
confidence) is when half of the model pairs predicted an increase, and the other half predicted a
decrease. Note that the model uncertainty only considers the uncertainties in the parameters of
GAMs, not the variance associated with the ensembled environmental variables from the
CESM2-LENS output.

We compared future projections of C:P from the data-derived statistical model with three
previously published prognostic ocean biogeochemical outputs under future climate scenarios
(Supplementary Figure 6). These were (1) Minnesota Earth System Model for Ocean
biogeochemistry version 3 (MESMO3) under SSP2 scenario®*, (2) Minnesota Earth System
Model for Ocean biogeochemistry version 2 (MESMO2) under RCP8.5 scenario®, (3) Pelagic
Interactions Scheme for Carbon and Ecosystem Studies Quota (PISCES-QUOTA) ocean
biogeochemistry model under RCP8.5 scenario'4.
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Figure Captions

Fig. 1: Geographical sampling stations of particulate organic matter in the global ocean.
Red points are stations from Bio-GO-SHIP (n = 1970) and blue points are from a previous global
compilation® (n = 733).

Fig. 2: Global distribution and latitudinal trends of surface ecosystem C:N:P. (a-c)
Individual sampling locations are shown with black points in the global map of C:P, N:P, and
C:N. Multi-color shadings in (a) — (¢) are based on weighted-average gridding from Ocean Data
View. (d-f) Measurements of C:P, N:P, and C:N are plotted against latitude and solid lines
represent the Generalized Additive Model (GAM) smooth trends and ribbons corresponding to
the 95% confidence intervals of latitudinal trends predicted by the GAMs. The dotted vertical
lines show the canonical C:N:P Redfield ratio of 106:16:1.

Fig. 3: Predictors of ecosystem C:N:P. (a, ¢) Correlation of contextual variables with the
C:N:P ratios. The color of the tiles is the Pearson r correlation coefficient. Asterisks represent the
statistical significance (***: p <0.001, **: p <0.01, *: p <0.05, NA: Not Applicable). (b, d) The
individual explained deviance and additive contribution of the four main contextual variables
normalized to the total explained deviance in GAMs. The bracket number is deviance explained
(R?), by the full model, which equals the sum of deviance explained by the individual variable.
(a) and (b) corresponds to the data collected in the (sub)polar regions with |Latitude| > 45° (n =
145), and the (¢) and (d) corresponds to the data collected in the (sub)tropical regions with
|Latitude| < 45° (n = 1825).

Fig. 4: Observed C:P and C:N as a function of environmental variation. Dots are observed
values and colors represent the nutrient limitation type inferred from metagenomes (Purple = Fe-
limited, Blue = N-limited, Green = P/N co-limited, Red = P-limited, Grey = Unknown). (a, ¢)
C:P and C:N against SST. Black line and shade represent GAM prediction and uncertainty (+
2SE) under the constant nutricline depth and surface nitrate values at the observed mean values
of 70 m and 0.2 umol kg!, respectively. (b, d) C:P and C:N against nutricline depth for different
nutrient limitation types. GAM is fitted separately for each limiting nutrient type under constant
SST and surface nitrate at the observed mean values of 25 °C and 0.2 umol kg™, respectively.

Fig. 5: Projected surface ecosystem C:P using a data-derived statistical model. (a)
Difference in surface ecosystem C:P estimated for the 2090s and 2010s projected using a data-
derived statistical model coupled to sea surface temperature, surface nitrate concentration,
nutricline, and nutrient limitation type of small phytoplankton from CESM2-LENS under the
shared socioeconomic pathways SSP3-7.0 and historic scenarios, respectively. (b) Model
agreement on the sign of change in C:P amongst 2000 randomly generated model projections
based on the posterior distribution of the GAM parameters. 100%+ represents the case when all
2000 models predict the positive change in C:P, and 100%- represents the case when all models
predict the negative change in C:P. Note that 50%+/50%- corresponds to the minimum
agreement between 2000 models. Violin plots for change in (¢) C:P and (d) model agreement for
regions separated by latitude. Regions: Polar (|Latitude| > 65°), Subpolar (45° < |Latitude| < 65°),
Subtropical (15° < |Latitude| < 45°), and Tropical (|Latitude| < 15°).
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(a) AC:P (2090s - 2010s, SSP3-7.0) (b) Model agreement on the sign of AC:P

S 2
=gl
‘h

Latitude

-100 0 100 -100 0 100
Longitude Longitude
a;am - L ]
-25-20-15-10-5 0 5 10 15 20 25 100%~86%— 71%~— 57%— 57%+ 71%-+ 86%+100%+
(c) (d)
[} [}
< <
Nl g‘\% @ 1 —b
o o
N4 . | N . ;
O\’b - : <>— o\’b - : <>—
‘QQ 1 *QQ 1
&> A | >
d — 1T R
K il K < >
$ 1 & 1
> p QP |
’Q T T T T ko ]

« T T ] T T
10 20 30 100%— 75%— 50%—/50%+ 75%+ 100%+

-30 -20 -10 O
AC:P (molar) Model agreement



