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Abstract 13 
Oceanic nutrient cycles are coupled, yet carbon-nitrogen-phosphorus (C:N:P) stoichiometry in 14 
marine ecosystems is variable through space and time, with no clear consensus on the controls on 15 
variability. Here, we analyze hydrographic, plankton genomic diversity, and particulate organic 16 
matter data from 1970 stations sampled during a global ocean observation program (Bio-GO-17 
SHIP) to investigate the biogeography of surface ocean particulate organic matter stoichiometry. 18 
We find latitudinal variability in C:N:P stoichiometry, with surface temperature and 19 
macronutrient availability as strong predictors of stoichiometry at high latitudes. Genomic 20 
observations indicated community nutrient stress and suggested that nutrient supply rate and 21 
nitrogen-versus-phosphorus stress are predictive of hemispheric and regional variations in 22 
stoichiometry. Our data-derived statistical model suggests that C:P and N:P ratios will increase at 23 
high latitudes in the future, however, changes at low latitudes are uncertain. Our findings suggest 24 
systematic regulation of elemental stoichiometry among ocean ecosystems, but that future 25 
changes remain highly uncertain. 26 
 27 
Introduction 28 
Carbon-Nitrogen-Phosphorus (CNP) stoichiometry is widely used in oceanographic studies to 29 
provide critical linkages between the availability of key nutrients, primary productivity, and 30 
carbon sequestration1,2. C:P, N:P, and C:N ratios of suspended particulate organic matter (POM) 31 
in the surface ocean, reflecting the ecosystem elemental composition, vary systematically 32 
between regions. The ratios are commonly below the canonical Redfield ratio of 106, 16, and 33 
6.7, respectively, in the cold, nutrient replete high-latitude regions and above the Redfield ratios 34 
in the warm, nutrient deplete subtropical gyres3,4. Observed C:N:P ratios also display temporal 35 
variability on daily5,6, seasonal7, and inter-annual timescales8,9. As changes in C:N:P ratios can 36 
have cascading effects on the carbon cycle10,11, nitrogen cycle12,13, and marine food-web 37 
dynamics14, identifying the environmental drivers of C:N:P has become a pressing challenge.  38 
 39 
There are several alternate, although not necessarily mutually exclusive hypotheses for 40 
mechanisms controlling the C:N:P of suspended POM in marine ecosystems15–17. Temperature 41 
and nutrients can modulate cellular C:N:P of phytoplankton on the timescales of days to 42 
weeks18,19. Furthermore, change in the plankton biodiversity from selection to temperature and 43 
nutrient variations can alter bulk ecosystem C:N:P20,21 because different taxonomic lineages of 44 
plankton may have unique optimal C:N:P22. The challenge is that the relative importance of 45 
temperature versus nutrients is not currently well quantified, stemming from limited spatial 46 
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coverage and the dearth of direct measurements for nutrient stress experienced by plankton 47 
communities in mid-low latitude oligotrophic regions11,23,24. Previous global synthesis studies3,11 48 
relied on dissolved nitrate and phosphorus concentrations to measure nutrient stress, but nutrients 49 
are often below analytical detection limits in many low latitude ecosystems24, prohibiting 50 
accurate diagnosis of N vs. P limitation25. The nutrient limitation type (e.g., N vs. P limitation) is 51 
critical as phytoplankton C:P and N:P cellular ratios can vary by as much as a factor of three 52 
between P-limited and N-limited conditions under otherwise the same growth environment26,27. 53 
As a result of these shortcomings, we still lack a quantitative understanding of what drives 54 
marine ecosystem C:N:P stoichiometry.  55 
 56 
Here, we quantify the global variation and identify key environmental predictors for surface 57 
ocean ecosystem C:N:P. We collected and analyzed POM samples across all major ocean basins 58 
as part of the biological initiative for the Global Ocean Ship-based Hydrographic Investigations 59 
Program or Bio-GO-SHIP28,29. The Bio-GO-SHIP dataset greatly expanded the spatial coverage 60 
from previous global CNP studies3,11,30 (Fig. 1) and now includes samples from regions like the 61 
South Subtropical Pacific, South Atlantic, and the Indian Ocean. We identified relationships 62 
between C:N:P and diverse environmental predictors, including phytoplankton nutrient stress, 63 
from paired metagenomics observations31 (Supplementary Figure 1). Finally, we applied our 64 
data-derived statistical models to the output from the Community Earth System Model Large 65 
Ensemble Simulation (CESM2-LENS)32 to project surface ecosystem C:N:P for the historical 66 
period (years, 2010-2014) and end of the 21st century (years, 2095-2100, shared socioeconomic 67 
pathways SSP3-7.0) to identify areas that may undergo the most drastic change in ocean 68 
elemental stoichiometry. SSP3-7.0 scenario is the second most pessimistic, high-greenhouse-gas 69 
emission trajectory33, where CO2 doubles compared to preindustrial by 2100 and radiative 70 
forcing level reaches 7.0 W/m2. Our projections from the data-derived statistical model show 71 
consistent increases in C:P and N:P under the future climate scenario in the high latitude 72 
ecosystems, which agrees with projections made by Earth system models14,34,35. However, 73 
projections made by two modeling approaches diverge considerably in lower latitude 74 
ecosystems, indicating that future changes in C:N:P, especially at low latitudes, are highly 75 
uncertain.  76 
 77 
The data-driven statistical approach, which first establishes relationships amongst C:N:P and 78 
environmental factors along contemporary ocean environmental gradients and then applies the 79 
same statistical relationship to the future environmental condition, is an alternative to Earth 80 
system models for predicting future changes to C:N:P. Although data-driven statistical 81 
approaches lack a mechanistic basis, they can integrate poorly understood biological 82 
mechanisms. For example, this approach implicitly embraces the plankton diversity, interactions 83 
between different environmental factors, and poorly understood biotic effects of higher trophic 84 
levels36. Earth system models, on the other hand, are mechanistic and anchored in theory but 85 
often rely on simplistic assumptions and parametrizations owing to our incomplete 86 
understanding of biological systems. Divergent future projections amongst the two modeling 87 
approaches in low latitude ecosystems suggest that there are critical knowledge gaps for the 88 
regulation of C:N:P.  89 
 90 
Results 91 
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We collected 1970 paired POM samples (C, N, and P) in the top 30 m across a broad latitudinal 92 
range from 70 °S to 50 °N (Fig. 1, Supplementary Table 1) and analyzed them using consistent 93 
protocols. The global area-weighted mean C:N:P was 137:21:1 (Supplementary Table 2-3), 94 
which largely agrees with a previous data compilation of surface ecosystem C:N:P of 146:20:13. 95 
Ecosystem C:N:P ratios exhibited a robust latitudinal pattern, highest in the subtropical gyres, 96 
intermediate in equatorial regions, and low towards higher latitudes (Fig. 2, Supplementary 97 
Table 4). The highest C:P and N:P were observed in the western North Atlantic, where mean 98 
values reached 225 and 32, respectively. The lowest values were observed in areas poleward of 99 
the Southern subtropical convergence, with the lowest observed C:P and N:P ratios of ~60 and 100 
~10, respectively. The latitudinal trends in C:P and N:P were mirrored in both hemispheres, but 101 
peak C:P and N:P ratios were commonly higher in the Northern vs. Southern Hemisphere. C:N 102 
was close to the canonical Redfield ratio of 6.6 in most regions but noticeably elevated in the 103 
eastern parts of the southern subtropical gyres in the Atlantic, Indian, and Pacific Oceans, with 104 
C:N exceeding 8. In contrast, C:N was slightly lower than the Redfield ratio in the Southern 105 
Ocean, with a mean of ~6. Thus, C:N:P showed a latitudinal gradient and clear hemispheric and 106 
longitudinal deviations. 107 
 108 
To identify environmental predictors of C:N:P, we conducted a combination of correlation 109 
analysis and generalized additive models (GAMs). While the correlation analysis can capture 110 
first-order, monotonic relationships between predictors and C:N:P, GAMs detected nonlinear, 111 
non-monotonic relationships amongst C:N:P and in situ measurements of sea surface 112 
temperature (SST), nutrient availability, and nutrient limitation type. Nutricline depth (here 113 
defined as the depth at which nitrate concentration equals 1 µmol kg-1) is used as a proxy of 114 
nutrient supply rate, where deeper nutricline indicates a lower nutrient supply rate to the upper 115 
mixed layer of the ocean37. Overall, we found that the dominant environmental predictors of 116 
surface ecosystem C:N:P differed between high and low-latitude regions (Fig. 3). In (sub)polar 117 
regions, SST was strongly positively correlated with C:P and N:P (Fig. 3a, Supplementary Table 118 
5-6), and SST captured 67% and 65% of the total explained variances for C:P (R2 = 0.55), and 119 
N:P (R2 = 0.46), respectively (Fig. 3b, Supplementary Table 7). C:P and N:P increased linearly 120 
from the coldest polar regions to the warmer subpolar regions, coinciding with a gradual 121 
community composition shift from diatom to coccolithophore dominance (Fig. 3a). Here, 122 
phytoplankton-group relative abundance was obtained from the NASA Ocean Biogeochemical 123 
Model38,39 at the closest grid point to the spatial position of each POM sampling point. Nitrate 124 
and phosphate concentrations were significantly negatively correlated with C:N:P across high 125 
latitudes, but macronutrient concentrations were not as good of a predictor for C:N:P as SST 126 
(Fig. 3b, Supplementary Figure 2). Nutricline could not explain variances in C:N:P as the surface 127 
nitrate concentrations exceeded 1 µmol kg-1 in large parts of the high latitude ecosystems. 128 
Similarly, the element-specific nutrient stress (i.e., N vs. P vs. Fe stress) could not explain C:N:P 129 
variability in the high latitudes because regions from which samples were collected were 130 
uniformly Fe-limited (Supplementary Figure 1a). To summarize, temperature and macronutrient 131 
availability were primary predictors of C:N:P variability in high latitudes, coinciding with a 132 
noticeable shift in the phytoplankton community through fractional decreases in diatom and the 133 
concomitant increases in coccolithophore and cyanobacteria abundances. 134 
 135 
In (sub)tropical ecosystems, nutricline depth and the element-specific nutrient stress were the 136 
strongest environmental predictors for C:N:P. In these warm regions, we observed that 77 - 87% 137 
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of the explained variance for C:N:P was attributed to the nutricline depth plus element-specific 138 
nutrient stress (Fig. 3d). However, total deviance explained by GAM was noticeably lower in the 139 
low latitude ecosystems (R2 = 0.39, 0.37, and 0.14 for C:P, N:P, and C:N) than in the high 140 
latitude ecosystems (Supplementary Table 8). Without considering nutrient stress, GAMs 141 
predicted that C:P and N:P increased monotonically with warming until ~20 °C and then 142 
plateaued (Fig. 4, Supplementary Figure 3a). C:P and N:P were highest with interaction with a 143 
deep nutricline and P-stress or P/N co-stress (Fig. 4b, Supplementary Figure 3b). C:N was 144 
highest when the nutricline was deep and phytoplankton were N-stressed (Fig. 4d). Regardless of 145 
nutrient limitation types, C:P, N:P, and C:N converged to similar values of 125, 18, and 6.7, 146 
respectively, when nutricline depth approached 0 m and thus where nitrate remained abundant at 147 
the surface. Nitrate and phosphate concentrations explained little C:N:P variability as 148 
macronutrient concentrations were at or below detection limits across most low latitude sites 149 
(Supplementary Figure 2). In summary, the global synthesis of surface ecosystem C:N:P 150 
revealed a transition from a temperature and macronutrient dependency at high latitudes to a 151 
multi-dimensional nutrient stress control in mid-to-low latitudes.  152 
 153 
We next projected the present and future global distributions of surface C:P and N:P 154 
stoichiometry. These projections were made by combining the observation-constrained GAMs 155 
with projections of present and future oceanic conditions under shared socioeconomic pathways 156 
SSP3-7.0 scenario (Fig. 5, Supplementary Figure 4). We predicted a general future increase in 157 
C:P at high latitudes but a decrease in the subtropics and tropics (Fig. 5c). This spatial pattern 158 
was similar for N:P (Supplementary Figure 5). Overall, the global area-weighted mean C:N:P 159 
changed little from 120:19:1 in the 2010s to 124:19:1 in the 2090s (Supplementary Table 9). 160 
However, the area-weighted mean C:P poleward of 45° increased from 83 in the 2010s to 94 in 161 
the 2090s. This high latitude increase was predominantly due to a 2-3 °C warming 162 
(Supplementary Figure 5) and largely agrees with projections made by fully prognostic ocean 163 
biogeochemical models (Supplementary Figure 6). In the mid-low latitudes (equatorward of 164 
45°), our data-driven statistical model projected an overall constant C:P. However, there are 165 
large geographical differences leading to regions with strong declines (e.g., western North 166 
Atlantic due to a shoaling nutricline) or increases (e.g., western North Pacific shifting to P-167 
limitation and South Pacific with a deepening nutricline). Moreover, model agreement, which 168 
reflects the predictability of C:P by the data-derived statistical model, rarely exceeded 70% in the 169 
mid-low latitudes (Fig. 5b,d). Regions with the lowest model C:P predictability corresponded to 170 
areas with the smallest projected change in C:P, such as the boundary between subpolar and 171 
subtropics, where the annual mean SST was 15-20 °C. Similarly, projections from 172 
biogeochemical models are not in agreement with each other in low latitude ecosystems 173 
(Supplementary Figure 6). To summarize, independent model projections made by data-derived 174 
approach and mechanistic approaches suggest an increase in C:P and N:P in the high latitude 175 
ecosystems but changes in low latitude ecosystems remain uncertain under the future climate 176 
scenario.  177 
 178 
Discussion 179 
Our global analysis supports a link between temperature, surface nutrient depletion, and N vs. P 180 
stress with C:N:P stoichiometry. A strong temperature dependency of C:P and N:P in high 181 
latitude ecosystems is consistent with the translation compensation hypothesis17,40, where 182 
plankton increase allocation to P-rich ribosomes for biosynthesis at low temperature, leading to 183 
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lower C:P and N:P. Lower temperature also leads to lower C:N of phytoplankton by slowing 184 
down the metabolism of phytoplankton and decreasing their ability to consume nitrate, thus 185 
increasing residual nitrate concentrations41. The transition from a strong temperature dependency 186 
at higher latitudes to a strong nutrient dependency at low latitudes may be due to a weakened 187 
temperature control on phytoplankton growth under low nutrient supply rate conditions42,43. 188 
Thus, our data support the translation compensation hypothesis and the strong temperature 189 
dependency on C:N:P but only in nutrient-replete environments. This study did not consider the 190 
effect of temperature in cold regions that are depleted in surface macronutrients. Therefore we 191 
suggest expanding sample coverage to the Arctic Ocean to understand further how low 192 
temperature affects C:N:P. 193 
 194 
In low latitude ecosystems, our global data suggest C:N:P is regulated to a large extent by an 195 
interaction between the overall nutrient supply and the elemental nutrient stress type. There is 196 
compelling support in theoretical and lab culture experiments for this multi-dimensional nutrient 197 
control of C:N:P. Chemostat models predict a more flexible stoichiometry of phytoplankton cells 198 
at lower nutrient supply and growth but a fixed C:N:P at µmax26,44. Similarly, culture experiments 199 
show that cellular C:N:P is very sensitive to N vs. P stress at low growth rates, but this flexibility 200 
narrows with higher growth rates27,45. Although we cannot directly measure nutrient supply, a 201 
deeper nutricline likely reflects a lower overall nutrient supply rate37. Thus, the observed 202 
interactive relationships between C:N:P, nutricline depth, and N vs. P stress seem to align well 203 
with these theoretical and laboratory culture predictions.  204 
 205 
An inter-hemisphere contrast in ecosystem C:N:P in low latitude ecosystems may be linked to 206 
differences in the N:P:Fe supply ratio and the relative degree of N vs. P stress5. More 207 
pronounced C:P and N:P peaks are observed in the northern vs. southern hemisphere subtropical 208 
gyres. We associate the higher ecosystem C:P and N:P in the northern hemisphere with a more 209 
substantial surface phosphate depletion in the North Atlantic and Pacific gyres from the higher 210 
Fe supply and N2 fixation24. In contrast, we more commonly observed regions of high C:N in the 211 
Southern Hemisphere, including the eastern South Atlantic, eastern South Pacific, and eastern 212 
South Indian Oceans. These are strongly N-stressed regions with depressed Fe supply and N2 213 
fixation12,46,47. In addition to cellular level changes in C:N:P, low latitude ecosystems typically 214 
favor slow-growing cyanobacteria with higher C:P and N:P ratios over eukaryotes with lower 215 
stoichiometric ratios20,48. Indeed, we globally observed a significant positive correlation between 216 
C:P and N:P with % cyanobacteria and a negative correlation with % diatoms (Fig. 3a, c). 217 
However, hemisphere differences in C:N:P rule out that community shifts alone control the 218 
observed C:N:P. In summary, nutrient supply rate and ratios are potentially the best predictors of 219 
large C:N:P variability in low latitude marine ecosystems, while temperature and macronutrient 220 
availability seem to shape the overall latitudinal gradient.  221 
 222 
We observe a mild decrease in C:P and N:P in low latitude ecosystems at high temperatures 223 
above 20 °C. This decrease in C:P and N:P may be related to an increase in cellular RNA 224 
content to meet a greater demand of chaperones required for the repair of heat-induced damage18 225 
or to the disproportionate increase in the respiration over photosynthesis leading to lower carbon 226 
fixation at higher temperature49. However, we currently lack the observations from regions with 227 
a surface temperature above 30 °C to fully constrain the relationship between warming and 228 
C:N:P leading to uncertain model projections. Thus, we suggest sampling in extremely warm 229 
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regions like the western Pacific Ocean or marginal seas with a surface temperature above 30 °C, 230 
providing analog conditions for a future warm world. 231 
 232 
There are several important caveats to our observation and the data-driven statistical approach 233 
for projecting C:N:P. First, data-driven statistical models assume that plankton physiology and 234 
community will share the same relationship to environmental conditions in the present and future 235 
ocean. These projections incur considerable uncertainties when extrapolating the statistical 236 
models outside the currently observed/observable state of the system. Second, we did not 237 
consider the roles of dissolved organic matter. Plankton’s ability to access dissolved organic 238 
matter, particularly at high temperatures, may be an important driver for shifting the balance 239 
between C, N, and P in areas such as North Atlantic and western South and North Pacific50.  240 
However, dissolved organic matter is chemically diverse51, and we were unable to incorporate it 241 
as a predictor here. Thirdly, we solely used Prochlorococcus genomes to diagnose nutrient stress 242 
for the plankton community. As Prochlorococcus make up a large percentage of community 243 
biomass in the tropics and subtropics52, their physiological status is likely important for the total 244 
phytoplankton community. However, in regions with lower Prochlorococcus abundance, other 245 
lineages are likely important for the ecosystem state and may deviate from Prochlorococcus. 246 
Fourth, a change in the nutrient supply ratio could lead to an abrupt shift in plankton community 247 
composition53, which in turn may abruptly shift the ecosystem C:N:P. Such changes in nutrient 248 
supply ratios may be driven by anthropogenic N emission54, shifting nitrogen fixation55, and 249 
atmospheric nutrient deposition56. As these abrupt ecological shifts are expected to precede early 250 
warning signals from temperature and nutrients53, it is critical to expand monitoring of ecosystem 251 
C:N:P through long-term monitoring7,57, shipboard measurements29, and remote sensing58. These 252 
spatial and temporal sampling efforts are critical for narrowing down the degree of uncertainty in 253 
model projections of C:N:P. 254 
 255 
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Methods 471 
 472 
POM Sample Collection 473 
In this study, we use paired observations of particulate organic phosphorus (POP), nitrogen 474 
(PON), and carbon (POC) samples from 1970 stations collected between 2014 and 2020 as a part 475 
of a biological initiative for the Global Ocean Ship-Based Hydrographic Investigations Program 476 
(Bio-GO-SHIP)28,29. Samples used in this study are from cruises AMT-28, C13.5, I07N, I09N, 477 
NH1418, and P18 (Supplementary Table 1). Samples were collected across all major oceanic 478 
provinces from 70 °S  to 50 °N using the consistent sampling method described 479 
previously5,28,60,61. Briefly, 2-10 L seawater for the POM samples was collected from the onboard 480 
flow-through underway system at the sea surface (< 30 m) and was divided into POC/PON and 481 
POP triplicates after removing large plankton and particles using 30 µm nylon mesh. Each 482 
replicate was then filtered on precombusted Whatman GF/F filters with a nominal pore size of 483 
0.7 µm. POP filters were rinsed with 5 mL of 0.17 M Na2SO4 prior to analysis to remove traces 484 
of dissolved organic phosphorus. All filtered POM samples were sealed in precombusted 485 
aluminum packets and were immediately frozen at -20 °C until analysis. The detection limit for 486 
POP measurement was ~ 0.3 µg.  487 
 488 
POC and PON samples were measured using Control Equipment 240-XA/440-XA elemental 489 
analyzer standardized to acetanilide or a CN Flash 1112 EA elemental analyzer against an 490 
atropine (C17H23NO3) standard curve. The POC analysis included an acidification step in 491 
concentrated HCl fumes to remove particulate inorganic carbonates. POC and PON 492 
measurements had a mean detection limit of ~2.4 µg and ~3.0 µg, respectively. POP was 493 
analyzed using the ash-hydrolysis colorimetric method described previously62 using a 494 
spectrophotometer at 885 nm.  495 
 496 
Following the criteria used in a previous study61, we discarded any anomalous samples with 497 
POC:POP > 500, PON:POP < 1, and PON:POP > 100 after the stoichiometric ratios were 498 
calculated. These selection processes led to the 1970 final C-N-P paired POM measurements. To 499 
evaluate the influence of spatial autocorrelation, we binned the samples into 1° by 1° grid cell 500 
and computed globally area-weighted values with this dataset. Our analysis showed that the 501 
global area-weighted means of binned and unbinned data are indistinguishable and concluded 502 
that such spatial autocorrelation was not a problem in our data analysis (Supplementary Table 2-503 
3). Based on previous studies3,30, a large proportion of POM pools collected are assumed to be 504 
made up of living planktonic materials consisting of Prochlorococcus, Synechococcus, 505 
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eukaryotic phytoplankton, and bacteria with a minor contribution from microzooplankton and 506 
heterotrophic nanoflagellates.  507 
 508 
Hydrography Measurements 509 
Hydrographic measurements (salinity, temperature, and pressure) were taken at each station with 510 
a CTD-rosette vertical profiling system. Ambient nitrate, phosphate, and silicate concentrations 511 
were determined onboard using an auto-analyzer following the GO-SHIP nutrient protocol63 for 512 
cruises AMT-28, I07N, I09N, and P18. Macronutrients (N or P) in cruise NH1418 were 513 
measured in the lab64, and the detection limits were 0.05 μmol kg-1. Bottle data for 514 
macronutrients were extrapolated horizontally where necessary to match the sampling resolution 515 
of underway data (i.e., POM data). For the C13/A13.5 section in which in situ nutrient 516 
measurements were not measured due to logistical issues, we substituted missing values with 517 
mapped annual mean average values from the GLODAP version2.2016b from the nearest 518 
longitude and latitude at 1° resolution65,66. We set consistent detection limits for phosphate and 519 
nitrate at 0.01 and 0.1 µmol kg-1, respectively, for all the hydrographic measurements and 520 
corrected any measured concentrations below these values are assumed to be equal to the 521 
threshold concentrations for use in statistical analysis. Nutricline depth, here defined as the depth 522 
at which nitrate equals 1 μmol kg-1, was determined by vertically and horizontally interpolating 523 
nitrate concentration. We set nutricline as 0 m when the bottle nitrate concentration at the 524 
shallowest depth was greater than 1 μmol kg-1. Previous studies37,67 have revealed that nutricline 525 
depth, where deeper nutricline indicates a lower nutrient supply rate to the upper mixed layer of 526 
the ocean, serves as a good proxy for an overall nutrient supply rate in the surface water than 527 
ambient macronutrient concentrations, which are often at detection limits.  528 
 529 
Contextual Environmental Variables 530 
We complemented in situ measurements with (i) mixed-layer averaged photosynthetically 531 
available radiation (PAR)68, which was estimated using surface PAR, Chl-a, and monthly 532 
climatology of mixed layer depth69, (ii) the average phytoplankton community composition 533 
(diatoms, coccolithophores, chlorophyte, and cyanobacteria) between 1998-2017, which we 534 
obtained from NASA Ocean Biogeochemical Model38,39, and (iii) the annual mean total 535 
dissolved iron, which we derived from Community Earth System Model v1.2.1. Both NASA 536 
Ocean Biogeochemical Model and CESM were calibrated with observations and have been used 537 
extensively in previous global biogeochemistry studies20,31. The model phytoplankton 538 
community composition from NASA Ocean Biogeochemical Model only exists from 1998 to 539 
2017. For data from 2018 onwards, we used the model output from 2004, which is the year with 540 
the minimum sum of deviations from the monthly mean, following the previous study20. PAR 541 
and Chl-a are 8-day averaged values retrieved by NASA MODIS-Aqua at the nearest location (4 542 
km resolution) (http://oceancolor.gsfc.nasa.gov (last access: July 29, 2021)). Climatological 543 
mixed layer depth is derived from more than 1.2 million Argo profiles69 and provides accurate 544 
information about the seasonal patterns of global mixed layer depth.  545 
 546 
Metagenomics-Informed Nutrient Limitation  547 
We used the previously published global genome content of Prochlorococcus and its inferred 548 
element-specific nutrient stress31. Specifically, we selected data from 562 stations, where 549 
metagenome samples were collected concomitantly with POM (Supplementary Figure 1). We 550 
used metagenome samples collected in the regions encompassing 51.5 °S and 47.9 °N, where the 551 
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abundance of Prochlorococcus was sufficient. Briefly, sequences from the surface metagenomes 552 
were recruited to known strains of Prochlorococcus, and the frequency of established nutrient 553 
acquisition genes determined a priori were used as a proxy for nutrient stress type (i.e., limiting 554 
nutrient element) and severity. For example, the presence of marker genes phoX and phoA, 555 
responsible for regulating alkaline phosphatases required for the assimilation of dissolved 556 
organic P (DOP), are associated with high phosphorus stress. A previous study has shown a 557 
significant correlation between Prochlorococcus nutrient stress index and growth/turnover rate 558 
from nutrient bottle incubation experiments31. An ordination of nutrient genes based on the 559 
angles from the principal component analysis can broadly categorize six types of limitation and 560 
co-limitation: (1) Fe limitation, (2) Fe/P co-limitation, (3) P limitation, (4) P/N co-limitation, (5) 561 
N limitation, and (6) N/Fe co-limitation. As the number of samples for Fe/P co-limitation and 562 
N/Fe co-limitation samples was noticeably smaller than other stress types, we merged Fe/P and 563 
N/Fe with P and N limitation samples, respectively. Our dataset consists of 101 P-limitation 564 
samples, 337 N-limitation samples, 67 P/N co-limitation samples, and 57 Fe-limitation samples 565 
that are geographically and temporally paired with POM samples. The global map of nutrient 566 
limitation from metagenomes is largely consistent with the nutrient limitation pattern of the 567 
small phytoplankton from the CESM model output (Supplementary Figure 1). 568 
 569 
Data Analysis and Modeling 570 
All the statistical analyses were conducted using R ver. 4.1.070. To determine the relative 571 
importance of different contextual variables required to explain C:N:P, we first conducted 572 
multiple pairwise correlation analyses using the Pearson correlation test, which allowed us to 573 
determine a first-order linear relationship between a covariate and C:N:P. We used natural log-574 
transformed values of elemental stoichiometric ratios and nutrient concentrations throughout the 575 
data analysis. For fair comparison across variables, we removed any rows containing the missing 576 
value from the dataset and standardized all the variables so that the mean equaled zero and the 577 
standard deviation equaled one. We correlated C:N:P with various environmental drivers 578 
including in situ measurements of SST, surface phosphate, surface nitrate, and nutricline depth; 579 
mixed-layer depth, mixed-layer averaged PAR, nutricline depth, modeled surface plankton 580 
community composition, and total dissolved iron from the model simulations (Supplementary 581 
Table 5-6). We performed separate analyses for the (1) polar/subpolar (n = 145) and (2) 582 
tropical/subtropical regions (n = 1825) which were delineated based on the absolute latitude of 583 
45°.  584 
 585 
We subsequently conducted analyses with generalized additive models (GAMs) to identify the 586 
relative strength of four main environmental variables in explaining C:N:P ratios: these were (1) 587 
SST, (2) surface nitrate concentration, (3) nutricline depth, and (4) the limiting nutrient type of 588 
Prochlorococcus determined from the metagenome analysis. We chose these variables based on 589 
the correlation analysis and the previous understanding of ecological stoichiometry. For the 590 
GAM analysis, we used the R package mgcv71. For GAM analyses in (sub)tropical regions, we 591 
used the subset of POM data where both POM and metagenomes were collected (n = 554). We 592 
conducted cross-validation (100 random partitions holding out 20% of observations) on different 593 
possible hierarchical GAM formulations72: (1) Model G (A global smoother for all observations), 594 
(2) Model GS (Single common smoother plus group-level smoothers that have the same 595 
wiggliness), (3) Model GI (Single common smoother plus group-level smoothers that have the 596 
different wiggliness), (4) Model S (Group-specific smoothers without a global smoother, but all 597 
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smoothers have the same wiggliness), (5) Model I (Group-specific smoothers with different 598 
wiggliness), and (6) Model C (Control, no dependence on nutrient limitation types) 599 
(Supplementary Methods). We found that the models with the interactive effect of nutricline and 600 
element-specific nutrient limitation type (model GI and I) outperformed the models with either 601 
independent (model G) or null effects (model C) of nutrient limitation type in terms of Akaike 602 
information criterion, root-mean-square error, and the coefficient of determination 603 
(Supplementary Table 10-12). Specifically, the model GI performed best out of all the possible 604 
model types of functional variation for hierarchical GAM. Thus, we decided to use the model GI 605 
to describe the interaction between nutricline and element-specific nutrient limitations 606 
throughout the paper. The additive contribution of each contextual variable (SST, nitrate, 607 
nutricline, and the interaction between nutricline and nutrient limitation type) to the total 608 
deviance explained was calculated by sequentially removing different parameters and averaging 609 
sequential sums of squares over all ordering of regressors before normalizing with deviance 610 
explained by a null model. This approach ensures that the sum of each regressor’s deviance 611 
explained adds up to the full model deviance explained73.  612 
 613 
We repeated GAM analyses with the previous global C:N:P compilation3 binned by longitude 614 
and latitude at 1° resolution (n = 204), combined with SST, nitrate, and nutricline depth from 615 
GLODAP version2.2016b65,66 and small phytoplankton nutrient limitation pattern from CESM2 616 
Large Ensemble Simulation at the 2010s. We found the overall consistency in the explained 617 
deviances in the current and previous C:N:P compilation: SST and nitrate were the most critical 618 
drivers in the high latitudes. At the same time, the interaction between nutrient availability and 619 
nutrient limitation were the primary drivers in the low latitudes.  620 
 621 
Future Projections of Ecosystem C:N:P 622 
We first derived the global GAM formulation of C:P and N:P, covering the entire parameter 623 
space of SST, surface nitrate, nutricline, and nutrient limitation. We supplemented POM-624 
metagenome paired samples with 46 POM-only samples collected in high latitudes poleward of 625 
51.5 °S. In doing so, we assumed that these 40 samples were collected from Fe-limited regions 626 
based on a comparison with CESM model output (Supplementary Figure 1a) and prior 627 
biogeochemical knowledge25. 628 
 629 
To evaluate the effects of future climatic change on surface community C:P and N:P, we used as 630 
input to our GAM derived above the values of SST, surface nitrate concentration, nutricline 631 
depth, and nutrient limitation output from CESM2-LENS, which consists of 100 ensemble model 632 
simulations which take into the account of the ocean and atmospheric interannual variabilities. 633 
The ensemble simulation includes four independent Atlantic Meridional Overturning Circulation 634 
states and 20 microstates for each scenario32. At the time of writing this paper, 90 out of 100 635 
model outputs were publicly available, and we extracted environmental variables for each grid 636 
cell for each of the 90 model run and computed ensemble means for the historic period (averaged 637 
values for the years 2010-2014) and the end of the 21st century (averaged values for years 2095-638 
2099), the latter considering Shared Socioeconomic Pathway SSP3-7.0 scenario. SSP3-7.0 639 
scenario is the second most pessimistic, high-greenhouse-gas emission trajectory33, where CO2 640 
doubles compared to preindustrial by 2100 and radiative forcing level reaches 7.0 W/m2. To 641 
obtain ensemble mean SST and surface nitrate concentrations for each grid point, we first 642 
computed mean values in the top 30 m for each grid point of every model realization and 643 
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computed the ensemble mean. In each model realization, nutricline was determined first by 644 
interpolating the vertical depth profile of nitrate to 1 m in the top 500 m of the water column, 645 
then the shallowest depth at which nitrate concentration exceeds 1 µmol kg-1 was determined. 646 
After the initial inspection, we found that the nutricline depth obtained from CESM2-LENS 647 
systematically underestimated GLODAP. Thus, we multiplied nutricline depth by the scaling 648 
factor of 1.54 for every grid point for historical and future projections. The coefficient of 649 
determination between GLODAP and CESM2 historic nutricline depth was 0.8.  650 
 651 
The limiting nutrient for each grid point is the element with the lowest ratio between the ambient 652 
nutrient concentration and the Michaelis-Menten half-saturation constant of the respective 653 
element for the small phytoplankton functional type. We defined P/N co-limitation when the 654 
ratios between the ambient nutrient concentration and the Michaelis-Menten half-saturation 655 
constant for P and N are within 5% and are not Fe-limited. As the nutrient limitation information 656 
is a discrete, categorical variable, we computed the ensemble mode across 90 model runs as the 657 
representative nutrient limitation for each grid point. The nutrient limitation map from CESM2-658 
LENS for the historic period generally agreed well with the metagenome-based observation31 659 
(Supplementary Figure 1a).  660 
 661 
To ensure the reliability of our projections, we generated 1000 historic and future C:P and N:P 662 
models from the posterior distribution and randomly selected 2000 models with replacements to 663 
account for the uncertainties in the parameters of the GAMs. Here, we report averaged 664 
predictions from these 2000 models, and we define model confidence by calculating how many 665 
of the 2000 pairs of model projections predict the same sign of change in ΔC:P and ΔN:P from 666 
the 2010s to 2090s. For example, if all 2000 randomly selected pairs predict an increase 667 
(decrease) in C:P, the model confidence is 100%+ (100%-). The null case (i.e., 50% model 668 
confidence) is when half of the model pairs predicted an increase, and the other half predicted a 669 
decrease. Note that the model uncertainty only considers the uncertainties in the parameters of 670 
GAMs, not the variance associated with the ensembled environmental variables from the 671 
CESM2-LENS output.  672 
 673 
We compared future projections of C:P from the data-derived statistical model with three 674 
previously published prognostic ocean biogeochemical outputs under future climate scenarios 675 
(Supplementary Figure 6). These were (1) Minnesota Earth System Model for Ocean 676 
biogeochemistry version 3 (MESMO3) under SSP2 scenario34, (2) Minnesota Earth System 677 
Model for Ocean biogeochemistry version 2 (MESMO2) under RCP8.5 scenario35, (3) Pelagic 678 
Interactions Scheme for Carbon and Ecosystem Studies Quota (PISCES-QUOTA) ocean 679 
biogeochemistry model under RCP8.5 scenario14.  680 
 681 
 682 
  683 
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Figure Captions 684 
 685 
Fig. 1: Geographical sampling stations of particulate organic matter in the global ocean. 686 
Red points are stations from Bio-GO-SHIP (n = 1970) and blue points are from a previous global 687 
compilation3 (n  = 733). 688 
 689 
Fig. 2: Global distribution and latitudinal trends of surface ecosystem C:N:P. (a-c) 690 
Individual sampling locations are shown with black points in the global map of C:P, N:P, and 691 
C:N. Multi-color shadings in (a) – (c) are based on weighted-average gridding from Ocean Data 692 
View. (d-f) Measurements of C:P, N:P, and C:N are plotted against latitude and solid lines 693 
represent the Generalized Additive Model (GAM) smooth trends and ribbons corresponding to 694 
the 95% confidence intervals of latitudinal trends predicted by the GAMs. The dotted vertical 695 
lines show the canonical C:N:P Redfield ratio of 106:16:1.  696 
 697 
Fig. 3: Predictors of ecosystem C:N:P. (a, c) Correlation of contextual variables with the 698 
C:N:P ratios. The color of the tiles is the Pearson r correlation coefficient. Asterisks represent the 699 
statistical significance (***: p < 0.001, **: p < 0.01, *: p < 0.05, NA: Not Applicable). (b, d) The 700 
individual explained deviance and additive contribution of the four main contextual variables 701 
normalized to the total explained deviance in GAMs. The bracket number is deviance explained 702 
(R2), by the full model, which equals the sum of deviance explained by the individual variable. 703 
(a) and (b) corresponds to the data collected in the (sub)polar regions with |Latitude| ≥ 45° (n = 704 
145), and the (c) and (d) corresponds to the data collected in the (sub)tropical regions with 705 
|Latitude| < 45° (n = 1825). 706 
 707 
Fig. 4: Observed C:P and C:N as a function of environmental variation. Dots are observed 708 
values and colors represent the nutrient limitation type inferred from metagenomes (Purple = Fe-709 
limited, Blue = N-limited, Green = P/N co-limited, Red = P-limited, Grey = Unknown). (a, c) 710 
C:P and C:N against SST. Black line and shade represent GAM prediction and uncertainty (± 711 
2SE) under the constant nutricline depth and surface nitrate values at the observed mean values 712 
of 70 m and 0.2 μmol kg-1, respectively. (b, d) C:P and C:N against nutricline depth for different 713 
nutrient limitation types. GAM is fitted separately for each limiting nutrient type under constant 714 
SST and surface nitrate at the observed mean values of 25 °C and 0.2 μmol kg-1, respectively.  715 
 716 
Fig. 5: Projected surface ecosystem C:P using a data-derived statistical model. (a) 717 
Difference in surface ecosystem C:P estimated for the 2090s and 2010s projected using a data-718 
derived statistical model coupled to sea surface temperature, surface nitrate concentration, 719 
nutricline, and nutrient limitation type of small phytoplankton from CESM2-LENS under the 720 
shared socioeconomic pathways SSP3-7.0 and historic scenarios, respectively. (b) Model 721 
agreement on the sign of change in C:P amongst 2000 randomly generated model projections 722 
based on the posterior distribution of the GAM parameters. 100%+ represents the case when all 723 
2000 models predict the positive change in C:P, and 100%- represents the case when all models 724 
predict the negative change in C:P. Note that 50%+/50%- corresponds to the minimum 725 
agreement between 2000 models. Violin plots for change in (c) C:P and (d) model agreement for 726 
regions separated by latitude. Regions: Polar (|Latitude| ≥ 65°), Subpolar (45° ≤ |Latitude| < 65°), 727 
Subtropical (15° ≤ |Latitude| < 45°), and Tropical (|Latitude| < 15°). 728 
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