

1 **Global patterns and predictors of C:N:P in marine ecosystems**

2
3 Tatsuro Tanioka¹, Catherine A. Garcia^{1,2}, Alyse A. Larkin¹, Nathan S. Garcia¹, Adam J. Fagan¹,
4 and Adam C. Martiny^{1,3,*}

5 ¹ Department of Earth System Science, University of California Irvine, Irvine, California 92697,
6 USA

7 ² Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii
8 at Manoa, Honolulu, Hawaii 96822, USA

9 ³ Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine,
10 California 92697, USA

11 * Corresponding author (amartiny@uci.edu)

12 **Abstract**

13 Oceanic nutrient cycles are coupled, yet carbon-nitrogen-phosphorus (C:N:P) stoichiometry in
14 marine ecosystems is variable through space and time, with no clear consensus on the controls on
15 variability. Here, we analyze hydrographic, plankton genomic diversity, and particulate organic
16 matter data from 1970 stations sampled during a global ocean observation program (Bio-GO-
17 SHIP) to investigate the biogeography of surface ocean particulate organic matter stoichiometry.
18 We find latitudinal variability in C:N:P stoichiometry, with surface temperature and
19 macronutrient availability as strong predictors of stoichiometry at high latitudes. Genomic
20 observations indicated community nutrient stress and suggested that nutrient supply rate and
21 nitrogen-versus-phosphorus stress are predictive of hemispheric and regional variations in
22 stoichiometry. Our data-derived statistical model suggests that C:P and N:P ratios will increase at
23 high latitudes in the future, however, changes at low latitudes are uncertain. Our findings suggest
24 systematic regulation of elemental stoichiometry among ocean ecosystems, but that future
25 changes remain highly uncertain.

26 **Introduction**

27 Carbon-Nitrogen-Phosphorus (CNP) stoichiometry is widely used in oceanographic studies to
28 provide critical linkages between the availability of key nutrients, primary productivity, and
29 carbon sequestration^{1,2}. C:P, N:P, and C:N ratios of suspended particulate organic matter (POM)
30 in the surface ocean, reflecting the ecosystem elemental composition, vary systematically
31 between regions. The ratios are commonly below the canonical Redfield ratio of 106, 16, and
32 6.7, respectively, in the cold, nutrient replete high-latitude regions and above the Redfield ratios
33 in the warm, nutrient deplete subtropical gyres^{3,4}. Observed C:N:P ratios also display temporal
34 variability on daily^{5,6}, seasonal⁷, and inter-annual timescales^{8,9}. As changes in C:N:P ratios can
35 have cascading effects on the carbon cycle^{10,11}, nitrogen cycle^{12,13}, and marine food-web
36 dynamics¹⁴, identifying the environmental drivers of C:N:P has become a pressing challenge.

37
38 There are several alternate, although not necessarily mutually exclusive hypotheses for
39 mechanisms controlling the C:N:P of suspended POM in marine ecosystems¹⁵⁻¹⁷. Temperature
40 and nutrients can modulate cellular C:N:P of phytoplankton on the timescales of days to
41 weeks^{18,19}. Furthermore, change in the plankton biodiversity from selection to temperature and
42 nutrient variations can alter bulk ecosystem C:N:P^{20,21} because different taxonomic lineages of
43 plankton may have unique optimal C:N:P²². The challenge is that the relative importance of
44 temperature versus nutrients is not currently well quantified, stemming from limited spatial
45 and temporal coverage of the ocean²³.

47 coverage and the dearth of direct measurements for nutrient stress experienced by plankton
48 communities in mid-low latitude oligotrophic regions^{11,23,24}. Previous global synthesis studies^{3,11}
49 relied on dissolved nitrate and phosphorus concentrations to measure nutrient stress, but nutrients
50 are often below analytical detection limits in many low latitude ecosystems²⁴, prohibiting
51 accurate diagnosis of N vs. P limitation²⁵. The nutrient limitation type (e.g., N vs. P limitation) is
52 critical as phytoplankton C:P and N:P cellular ratios can vary by as much as a factor of three
53 between P-limited and N-limited conditions under otherwise the same growth environment^{26,27}.
54 As a result of these shortcomings, we still lack a quantitative understanding of what drives
55 marine ecosystem C:N:P stoichiometry.

56
57 Here, we quantify the global variation and identify key environmental predictors for surface
58 ocean ecosystem C:N:P. We collected and analyzed POM samples across all major ocean basins
59 as part of the biological initiative for the Global Ocean Ship-based Hydrographic Investigations
60 Program or Bio-GO-SHIP^{28,29}. The Bio-GO-SHIP dataset greatly expanded the spatial coverage
61 from previous global CNP studies^{3,11,30} (Fig. 1) and now includes samples from regions like the
62 South Subtropical Pacific, South Atlantic, and the Indian Ocean. We identified relationships
63 between C:N:P and diverse environmental predictors, including phytoplankton nutrient stress,
64 from paired metagenomics observations³¹ (Supplementary Figure 1). Finally, we applied our
65 data-derived statistical models to the output from the Community Earth System Model Large
66 Ensemble Simulation (CESM2-LENS)³² to project surface ecosystem C:N:P for the historical
67 period (years, 2010-2014) and end of the 21st century (years, 2095-2100, shared socioeconomic
68 pathways SSP3-7.0) to identify areas that may undergo the most drastic change in ocean
69 elemental stoichiometry. SSP3-7.0 scenario is the second most pessimistic, high-greenhouse-gas
70 emission trajectory³³, where CO₂ doubles compared to preindustrial by 2100 and radiative
71 forcing level reaches 7.0 W/m². Our projections from the data-derived statistical model show
72 consistent increases in C:P and N:P under the future climate scenario in the high latitude
73 ecosystems, which agrees with projections made by Earth system models^{14,34,35}. However,
74 projections made by two modeling approaches diverge considerably in lower latitude
75 ecosystems, indicating that future changes in C:N:P, especially at low latitudes, are highly
76 uncertain.

77
78 The data-driven statistical approach, which first establishes relationships amongst C:N:P and
79 environmental factors along contemporary ocean environmental gradients and then applies the
80 same statistical relationship to the future environmental condition, is an alternative to Earth
81 system models for predicting future changes to C:N:P. Although data-driven statistical
82 approaches lack a mechanistic basis, they can integrate poorly understood biological
83 mechanisms. For example, this approach implicitly embraces the plankton diversity, interactions
84 between different environmental factors, and poorly understood biotic effects of higher trophic
85 levels³⁶. Earth system models, on the other hand, are mechanistic and anchored in theory but
86 often rely on simplistic assumptions and parametrizations owing to our incomplete
87 understanding of biological systems. Divergent future projections amongst the two modeling
88 approaches in low latitude ecosystems suggest that there are critical knowledge gaps for the
89 regulation of C:N:P.

90
91 **Results**

92 We collected 1970 paired POM samples (C, N, and P) in the top 30 m across a broad latitudinal
93 range from 70 °S to 50 °N (Fig. 1, Supplementary Table 1) and analyzed them using consistent
94 protocols. The global area-weighted mean C:N:P was 137:21:1 (Supplementary Table 2-3),
95 which largely agrees with a previous data compilation of surface ecosystem C:N:P of 146:20:1³.
96 Ecosystem C:N:P ratios exhibited a robust latitudinal pattern, highest in the subtropical gyres,
97 intermediate in equatorial regions, and low towards higher latitudes (Fig. 2, Supplementary
98 Table 4). The highest C:P and N:P were observed in the western North Atlantic, where mean
99 values reached 225 and 32, respectively. The lowest values were observed in areas poleward of
100 the Southern subtropical convergence, with the lowest observed C:P and N:P ratios of ~60 and
101 ~10, respectively. The latitudinal trends in C:P and N:P were mirrored in both hemispheres, but
102 peak C:P and N:P ratios were commonly higher in the Northern vs. Southern Hemisphere. C:N
103 was close to the canonical Redfield ratio of 6.6 in most regions but noticeably elevated in the
104 eastern parts of the southern subtropical gyres in the Atlantic, Indian, and Pacific Oceans, with
105 C:N exceeding 8. In contrast, C:N was slightly lower than the Redfield ratio in the Southern
106 Ocean, with a mean of ~6. Thus, C:N:P showed a latitudinal gradient and clear hemispheric and
107 longitudinal deviations.

108 To identify environmental predictors of C:N:P, we conducted a combination of correlation
109 analysis and generalized additive models (GAMs). While the correlation analysis can capture
110 first-order, monotonic relationships between predictors and C:N:P, GAMs detected nonlinear,
111 non-monotonic relationships amongst C:N:P and in situ measurements of sea surface
112 temperature (SST), nutrient availability, and nutrient limitation type. Nutricline depth (here
113 defined as the depth at which nitrate concentration equals 1 $\mu\text{mol kg}^{-1}$) is used as a proxy of
114 nutrient supply rate, where deeper nutricline indicates a lower nutrient supply rate to the upper
115 mixed layer of the ocean³⁷. Overall, we found that the dominant environmental predictors of
116 surface ecosystem C:N:P differed between high and low-latitude regions (Fig. 3). In (sub)polar
117 regions, SST was strongly positively correlated with C:P and N:P (Fig. 3a, Supplementary Table
118 5-6), and SST captured 67% and 65% of the total explained variances for C:P ($R^2 = 0.55$), and
119 N:P ($R^2 = 0.46$), respectively (Fig. 3b, Supplementary Table 7). C:P and N:P increased linearly
120 from the coldest polar regions to the warmer subpolar regions, coinciding with a gradual
121 community composition shift from diatom to coccolithophore dominance (Fig. 3a). Here,
122 phytoplankton-group relative abundance was obtained from the NASA Ocean Biogeochemical
123 Model^{38,39} at the closest grid point to the spatial position of each POM sampling point. Nitrate
124 and phosphate concentrations were significantly negatively correlated with C:N:P across high
125 latitudes, but macronutrient concentrations were not as good of a predictor for C:N:P as SST
126 (Fig. 3b, Supplementary Figure 2). Nutricline could not explain variances in C:N:P as the surface
127 nitrate concentrations exceeded 1 $\mu\text{mol kg}^{-1}$ in large parts of the high latitude ecosystems.
128 Similarly, the element-specific nutrient stress (i.e., N vs. P vs. Fe stress) could not explain C:N:P
129 variability in the high latitudes because regions from which samples were collected were
130 uniformly Fe-limited (Supplementary Figure 1a). To summarize, temperature and macronutrient
131 availability were primary predictors of C:N:P variability in high latitudes, coinciding with a
132 noticeable shift in the phytoplankton community through fractional decreases in diatom and the
133 concomitant increases in coccolithophore and cyanobacteria abundances.

134

135 In (sub)tropical ecosystems, nutricline depth and the element-specific nutrient stress were the
136 strongest environmental predictors for C:N:P. In these warm regions, we observed that 77 - 87%

137

138 of the explained variance for C:N:P was attributed to the nutricline depth plus element-specific
139 nutrient stress (Fig. 3d). However, total deviance explained by GAM was noticeably lower in the
140 low latitude ecosystems ($R^2 = 0.39, 0.37$, and 0.14 for C:P, N:P, and C:N) than in the high
141 latitude ecosystems (Supplementary Table 8). Without considering nutrient stress, GAMs
142 predicted that C:P and N:P increased monotonically with warming until ~ 20 °C and then
143 plateaued (Fig. 4, Supplementary Figure 3a). C:P and N:P were highest with interaction with a
144 deep nutricline and P-stress or P/N co-stress (Fig. 4b, Supplementary Figure 3b). C:N was
145 highest when the nutricline was deep and phytoplankton were N-stressed (Fig. 4d). Regardless of
146 nutrient limitation types, C:P, N:P, and C:N converged to similar values of 125, 18, and 6.7,
147 respectively, when nutricline depth approached 0 m and thus where nitrate remained abundant at
148 the surface. Nitrate and phosphate concentrations explained little C:N:P variability as
149 macronutrient concentrations were at or below detection limits across most low latitude sites
150 (Supplementary Figure 2). In summary, the global synthesis of surface ecosystem C:N:P
151 revealed a transition from a temperature and macronutrient dependency at high latitudes to a
152 multi-dimensional nutrient stress control in mid-to-low latitudes.
153

154 We next projected the present and future global distributions of surface C:P and N:P
155 stoichiometry. These projections were made by combining the observation-constrained GAMs
156 with projections of present and future oceanic conditions under shared socioeconomic pathways
157 SSP3-7.0 scenario (Fig. 5, Supplementary Figure 4). We predicted a general future increase in
158 C:P at high latitudes but a decrease in the subtropics and tropics (Fig. 5c). This spatial pattern
159 was similar for N:P (Supplementary Figure 5). Overall, the global area-weighted mean C:N:P
160 changed little from 120:19:1 in the 2010s to 124:19:1 in the 2090s (Supplementary Table 9).
161 However, the area-weighted mean C:P poleward of 45° increased from 83 in the 2010s to 94 in
162 the 2090s. This high latitude increase was predominantly due to a 2-3 °C warming
163 (Supplementary Figure 5) and largely agrees with projections made by fully prognostic ocean
164 biogeochemical models (Supplementary Figure 6). In the mid-low latitudes (equatorward of
165 45°), our data-driven statistical model projected an overall constant C:P. However, there are
166 large geographical differences leading to regions with strong declines (e.g., western North
167 Atlantic due to a shoaling nutricline) or increases (e.g., western North Pacific shifting to P-
168 limitation and South Pacific with a deepening nutricline). Moreover, model agreement, which
169 reflects the predictability of C:P by the data-derived statistical model, rarely exceeded 70% in the
170 mid-low latitudes (Fig. 5b,d). Regions with the lowest model C:P predictability corresponded to
171 areas with the smallest projected change in C:P, such as the boundary between subpolar and
172 subtropics, where the annual mean SST was 15-20 °C. Similarly, projections from
173 biogeochemical models are not in agreement with each other in low latitude ecosystems
174 (Supplementary Figure 6). To summarize, independent model projections made by data-derived
175 approach and mechanistic approaches suggest an increase in C:P and N:P in the high latitude
176 ecosystems but changes in low latitude ecosystems remain uncertain under the future climate
177 scenario.
178

179 Discussion

180 Our global analysis supports a link between temperature, surface nutrient depletion, and N vs. P
181 stress with C:N:P stoichiometry. A strong temperature dependency of C:P and N:P in high
182 latitude ecosystems is consistent with the translation compensation hypothesis^{17,40}, where
183 plankton increase allocation to P-rich ribosomes for biosynthesis at low temperature, leading to

184 lower C:P and N:P. Lower temperature also leads to lower C:N of phytoplankton by slowing
185 down the metabolism of phytoplankton and decreasing their ability to consume nitrate, thus
186 increasing residual nitrate concentrations⁴¹. The transition from a strong temperature dependency
187 at higher latitudes to a strong nutrient dependency at low latitudes may be due to a weakened
188 temperature control on phytoplankton growth under low nutrient supply rate conditions^{42,43}.
189 Thus, our data support the translation compensation hypothesis and the strong temperature
190 dependency on C:N:P but only in nutrient-replete environments. This study did not consider the
191 effect of temperature in cold regions that are depleted in surface macronutrients. Therefore we
192 suggest expanding sample coverage to the Arctic Ocean to understand further how low
193 temperature affects C:N:P.
194

195 In low latitude ecosystems, our global data suggest C:N:P is regulated to a large extent by an
196 interaction between the overall nutrient supply and the elemental nutrient stress type. There is
197 compelling support in theoretical and lab culture experiments for this multi-dimensional nutrient
198 control of C:N:P. Chemostat models predict a more flexible stoichiometry of phytoplankton cells
199 at lower nutrient supply and growth but a fixed C:N:P at μ_{\max} ^{26,44}. Similarly, culture experiments
200 show that cellular C:N:P is very sensitive to N vs. P stress at low growth rates, but this flexibility
201 narrows with higher growth rates^{27,45}. Although we cannot directly measure nutrient supply, a
202 deeper nutricline likely reflects a lower overall nutrient supply rate³⁷. Thus, the observed
203 interactive relationships between C:N:P, nutricline depth, and N vs. P stress seem to align well
204 with these theoretical and laboratory culture predictions.
205

206 An inter-hemisphere contrast in ecosystem C:N:P in low latitude ecosystems may be linked to
207 differences in the N:P:Fe supply ratio and the relative degree of N vs. P stress⁵. More
208 pronounced C:P and N:P peaks are observed in the northern vs. southern hemisphere subtropical
209 gyres. We associate the higher ecosystem C:P and N:P in the northern hemisphere with a more
210 substantial surface phosphate depletion in the North Atlantic and Pacific gyres from the higher
211 Fe supply and N₂ fixation²⁴. In contrast, we more commonly observed regions of high C:N in the
212 Southern Hemisphere, including the eastern South Atlantic, eastern South Pacific, and eastern
213 South Indian Oceans. These are strongly N-stressed regions with depressed Fe supply and N₂
214 fixation^{12,46,47}. In addition to cellular level changes in C:N:P, low latitude ecosystems typically
215 favor slow-growing cyanobacteria with higher C:P and N:P ratios over eukaryotes with lower
216 stoichiometric ratios^{20,48}. Indeed, we globally observed a significant positive correlation between
217 C:P and N:P with % cyanobacteria and a negative correlation with % diatoms (Fig. 3a, c).
218 However, hemisphere differences in C:N:P rule out that community shifts alone control the
219 observed C:N:P. In summary, nutrient supply rate and ratios are potentially the best predictors of
220 large C:N:P variability in low latitude marine ecosystems, while temperature and macronutrient
221 availability seem to shape the overall latitudinal gradient.
222

223 We observe a mild decrease in C:P and N:P in low latitude ecosystems at high temperatures
224 above 20 °C. This decrease in C:P and N:P may be related to an increase in cellular RNA
225 content to meet a greater demand of chaperones required for the repair of heat-induced damage¹⁸
226 or to the disproportionate increase in the respiration over photosynthesis leading to lower carbon
227 fixation at higher temperature⁴⁹. However, we currently lack the observations from regions with
228 a surface temperature above 30 °C to fully constrain the relationship between warming and
229 C:N:P leading to uncertain model projections. Thus, we suggest sampling in extremely warm

230 regions like the western Pacific Ocean or marginal seas with a surface temperature above 30 °C,
231 providing analog conditions for a future warm world.

232
233 There are several important caveats to our observation and the data-driven statistical approach
234 for projecting C:N:P. First, data-driven statistical models assume that plankton physiology and
235 community will share the same relationship to environmental conditions in the present and future
236 ocean. These projections incur considerable uncertainties when extrapolating the statistical
237 models outside the currently observed/observable state of the system. Second, we did not
238 consider the roles of dissolved organic matter. Plankton's ability to access dissolved organic
239 matter, particularly at high temperatures, may be an important driver for shifting the balance
240 between C, N, and P in areas such as North Atlantic and western South and North Pacific⁵⁰.
241 However, dissolved organic matter is chemically diverse⁵¹, and we were unable to incorporate it
242 as a predictor here. Thirdly, we solely used *Prochlorococcus* genomes to diagnose nutrient stress
243 for the plankton community. As *Prochlorococcus* make up a large percentage of community
244 biomass in the tropics and subtropics⁵², their physiological status is likely important for the total
245 phytoplankton community. However, in regions with lower *Prochlorococcus* abundance, other
246 lineages are likely important for the ecosystem state and may deviate from *Prochlorococcus*.
247 Fourth, a change in the nutrient supply ratio could lead to an abrupt shift in plankton community
248 composition⁵³, which in turn may abruptly shift the ecosystem C:N:P. Such changes in nutrient
249 supply ratios may be driven by anthropogenic N emission⁵⁴, shifting nitrogen fixation⁵⁵, and
250 atmospheric nutrient deposition⁵⁶. As these abrupt ecological shifts are expected to precede early
251 warning signals from temperature and nutrients⁵³, it is critical to expand monitoring of ecosystem
252 C:N:P through long-term monitoring^{7,57}, shipboard measurements²⁹, and remote sensing⁵⁸. These
253 spatial and temporal sampling efforts are critical for narrowing down the degree of uncertainty in
254 model projections of C:N:P.

255 256 References

- 257 1. Redfield, A. C., Ketchum, B. H. & Richards, F. A. The influence of organisms on the
258 composition of Seawater. in *The composition of seawater: Comparative and descriptive
259 oceanography. The sea: ideas and observations on progress in the study of the seas* (ed.
260 Hill, M. N.) vol. 2 26–77 (Interscience Publishers, 1963).
- 261 2. Deutsch, C. & Weber, T. Nutrient Ratios as a Tracer and Driver of Ocean
262 Biogeochemistry. *Ann. Rev. Mar. Sci.* **4**, 113–141 (2012).
- 263 3. Martiny, A. C. *et al.* Strong latitudinal patterns in the elemental ratios of marine plankton
264 and organic matter. *Nat. Geosci.* **6**, 279–283 (2013).
- 265 4. Teng, Y.-C., Primeau, F. W., Moore, J. K., Lomas, M. W. & Martiny, A. C. Global-scale
266 variations of the ratios of carbon to phosphorus in exported marine organic matter. *Nat.
267 Geosci.* **7**, 895–898 (2014).
- 268 5. Garcia, C. A. *et al.* Nutrient supply controls particulate elemental concentrations and
269 ratios in the low latitude eastern Indian Ocean. *Nat. Commun.* **9**, 4868 (2018).
- 270 6. Garcia, N. S. *et al.* The diel cycle of surface ocean elemental stoichiometry has
271 implications for ocean productivity. *Global Biogeochem. Cycles* e2021GB007092 (2022)
272 doi:10.1029/2021GB007092.
- 273 7. Singh, A. *et al.* C : N : P stoichiometry at the Bermuda Atlantic Time-series Study station
274 in the North Atlantic Ocean. *Biogeosciences* **12**, 6389–6403 (2015).

276 8. Karl, D. M. *et al.* Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA.
277 *Deep Sea Res. Part II Top. Stud. Oceanogr.* **48**, 1529–1566 (2001).

278 9. Fagan, A. J., Moreno, A. R. & Martiny, A. C. Role of ENSO Conditions on Particulate
279 Organic Matter Concentrations and Elemental Ratios in the Southern California Bight.
280 *Front. Mar. Sci.* **6**, 386 (2019).

281 10. Matsumoto, K., Tanioka, T. & Rickaby, R. Linkages Between Dynamic Phytoplankton
282 C:N:P and the Ocean Carbon Cycle Under Climate Change. *Oceanography* **33**, 44–52
283 (2020).

284 11. Galbraith, E. D. & Martiny, A. C. A simple nutrient-dependence mechanism for predicting
285 the stoichiometry of marine ecosystems. *Proc. Natl. Acad. Sci.* **112**, 8199–8204 (2015).

286 12. Wang, W.-L., Moore, J. K., Martiny, A. C. & Primeau, F. W. Convergent estimates of
287 marine nitrogen fixation. *Nature* **566**, 205–211 (2019).

288 13. Mills, M. M. & Arrigo, K. R. Magnitude of oceanic nitrogen fixation influenced by the
289 nutrient uptake ratio of phytoplankton. *Nat. Geosci.* **3**, 412–416 (2010).

290 14. Kwiatkowski, L., Aumont, O., Bopp, L. & Caias, P. The Impact of Variable Phytoplankton
291 Stoichiometry on Projections of Primary Production, Food Quality, and Carbon Uptake in
292 the Global Ocean. *Global Biogeochem. Cycles* **32**, 516–528 (2018).

293 15. Sterner, R. W. & Elser, J. J. *Ecological stoichiometry: the biology of elements from
294 molecules to the biosphere*. (Princeton University Press, 2002).

295 16. Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the
296 metabolic theory of ecology to better understand nutrient cycling. *Ecol. Lett.* **12**, 369–384
297 (2009).

298 17. Moreno, A. R. & Martiny, A. C. Ecological Stoichiometry of Ocean Plankton. *Ann. Rev.
299 Mar. Sci.* **10**, 43–69 (2018).

300 18. Schaum, C.-E., Buckling, A., Smirnoff, N., Studholme, D. J. & Yvon-Durocher, G.
301 Environmental fluctuations accelerate molecular evolution of thermal tolerance in a
302 marine diatom. *Nat. Commun.* **9**, 1719 (2018).

303 19. Geider, R. & La Roche, J. Redfield revisited: variability of C:N:P in marine microalgae
304 and its biochemical basis. *Eur. J. Phycol.* **37**, 1–17 (2002).

305 20. Sharoni, S. & Halevy, I. Nutrient ratios in marine particulate organic matter are predicted
306 by the population structure of well-adapted phytoplankton. *Sci. Adv.* **6**, eaaw9371 (2020).

307 21. Lomas, M. W. *et al.* Varying influence of phytoplankton biodiversity and stoichiometric
308 plasticity on bulk particulate stoichiometry across ocean basins. *Commun. Earth Environ.*
309 **2**, 143 (2021).

310 22. Quigg, A. *et al.* The evolutionary inheritance of elemental stoichiometry in marine
311 phytoplankton. *Nature* **425**, 291–4 (2003).

312 23. Yvon-Durocher, G., Dossena, M., Trimmer, M., Woodward, G. & Allen, A. P.
313 Temperature and the biogeography of algal stoichiometry. *Glob. Ecol. Biogeogr.* **24**, 562–
314 570 (2015).

315 24. Martiny, A. C. *et al.* Biogeochemical controls of surface ocean phosphate. *Sci. Adv.* **5**,
316 eaax0341 (2019).

317 25. Moore, C. M. *et al.* Processes and patterns of oceanic nutrient limitation. *Nat. Geosci.* **6**,
318 701–710 (2013).

319 26. Klausmeier, C. A., Litchman, E. & Levin, S. A. Phytoplankton growth and stoichiometry
320 under multiple nutrient limitation. *Limnol. Oceanogr.* **49**, 1463–1470 (2004).

321 27. Garcia, N. S., Bonachela, J. A. & Martiny, A. C. Interactions between growth-dependent

322 changes in cell size, nutrient supply and cellular elemental stoichiometry of marine
323 *Synechococcus*. *ISME J.* **10**, 1–10 (2016).

324 28. Larkin, A. A. *et al.* High spatial resolution global ocean metagenomes from Bio-GO-SHIP
325 repeat hydrography transects. *Sci. Data* **8**, 107 (2021).

326 29. Clayton, S. *et al.* Bio-GO-SHIP: The Time Is Right to Establish Global Repeat Sections of
327 Ocean Biology. *Front. Mar. Sci.* **8**, (2022).

328 30. Martiny, A. C., Vrugt, J. A., Primeau, F. W. & Lomas, M. W. Regional variation in the
329 particulate organic carbon to nitrogen ratio in the surface ocean. *Global Biogeochem.*
330 *Cycles* **27**, 723–731 (2013).

331 31. Ustick, L. J. *et al.* Metagenomic analysis reveals global-scale patterns of ocean nutrient
332 limitation. *Science* (80-.). **372**, 287–291 (2021).

333 32. Rodgers, K. *et al.* Ubiquity of human-induced changes in climate variability. *Earth Syst.*
334 *Dyn. Discuss.* 1–22 (2021) doi:10.5194/ESD-2021-50.

335 33. O'Neill, B. C. *et al.* A new scenario framework for climate change research: the concept
336 of shared socioeconomic pathways. *Clim. Change* **122**, 387–400 (2014).

337 34. Matsumoto, K. & Tanioka, T. Shifts in regional production as a driver of future global
338 ocean production stoichiometry. *Environ. Res. Lett.* **15**, 124027 (2020).

339 35. Tanioka, T. & Matsumoto, K. Buffering of Ocean Export Production by Flexible
340 Elemental Stoichiometry of Particulate Organic Matter. *Global Biogeochem. Cycles* **31**,
341 1528–1542 (2017).

342 36. Flombaum, P., Wang, W.-L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton
343 niche partitioning predicts overall positive response to ocean warming. *Nat. Geosci.* **13**,
344 116–120 (2020).

345 37. Cermeno, P. *et al.* The role of nutricline depth in regulating the ocean carbon cycle. *Proc.*
346 *Natl. Acad. Sci.* **105**, 20344–20349 (2008).

347 38. Gregg, W. W. & Casey, N. W. Sampling biases in MODIS and SeaWiFS ocean
348 chlorophyll data. *Remote Sens. Environ.* **111**, 25–35 (2007).

349 39. Gregg, W. W., Ginoux, P., Schopf, P. S. & Casey, N. W. Phytoplankton and iron:
350 validation of a global three-dimensional ocean biogeochemical model. *Deep Sea Res. Part*
351 *II Top. Stud. Oceanogr.* **50**, 3143–3169 (2003).

352 40. Toseland, A. *et al.* The impact of temperature on marine phytoplankton resource
353 allocation and metabolism. *Nat. Clim. Chang.* **3**, 979–984 (2013).

354 41. Sauterey, B. & Ward, B. A. Environmental control of marine phytoplankton stoichiometry
355 in the North Atlantic Ocean. *Proc. Natl. Acad. Sci.* **119**, e2114602118 (2022).

356 42. Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation
357 suppresses the temperature dependence of phytoplankton metabolic rates. *ISME J.* **12**,
358 1836–1845 (2018).

359 43. Thomas, M. K. *et al.* Temperature–nutrient interactions exacerbate sensitivity to warming
360 in phytoplankton. *Glob. Chang. Biol.* **23**, 3269–3280 (2017).

361 44. Droop, M. R. The nutrient status of algal cells in continuous culture. *J. Mar. Biol. Assoc.*
362 *United Kingdom* **54**, 825–855 (1974).

363 45. Hillebrand, H. *et al.* Goldman revisited: Faster growing phytoplankton has lower N:P and
364 lower stoichiometric flexibility. *Limnol. Oceanogr.* **58**, 2076–2088 (2013).

365 46. Gruber, N. & Sarmiento, J. L. Global patterns of marine nitrogen fixation and
366 denitrification. *Global Biogeochem. Cycles* **11**, 235–266 (1997).

367 47. Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron

368 cycling in a global three-dimensional model. *Global Biogeochem. Cycles* **18**, (2004).

369 48. Weber, T. S. & Deutsch, C. Oceanic nitrogen reservoir regulated by plankton diversity

370 and ocean circulation. *Nature* **489**, 419–422 (2012).

371 49. Barton, S. *et al.* Evolutionary temperature compensation of carbon fixation in marine

372 phytoplankton. *Ecol. Lett.* **23**, 722–733 (2020).

373 50. Liang, Z., Letscher, R. T. & Knapp, A. N. Dissolved organic phosphorus concentrations in

374 the surface ocean controlled by both phosphate and iron stress. *Nat. Geosci.* 1–7 (2022)

375 doi:10.1038/s41561-022-00988-1.

376 51. Moran, M. A. *et al.* Deciphering ocean carbon in a changing world. *Proc. Natl. Acad. Sci.*

377 **113**, 3143–3151 (2016).

378 52. Flombaum, P. *et al.* Present and future global distributions of the marine Cyanobacteria

379 Prochlorococcus and Synechococcus. *Proc. Natl. Acad. Sci.* **110**, 9824–9829 (2013).

380 53. Cael, B. B., Dutkiewicz, S. & Henson, S. A. Abrupt shifts in 21st-century plankton

381 communities. *Sci. Adv.* **7**, 8593–8622 (2021).

382 54. Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M. & Sardans, J. Anthropogenic global

383 shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity,

384 ecosystem productivity, food security, and human health. *Glob. Chang. Biol.* **26**, 1962–

385 1985 (2020).

386 55. Jiang, H.-B. *et al.* Ocean warming alleviates iron limitation of marine nitrogen fixation.

387 *Nat. Clim. Chang.* **8**, 709–712 (2018).

388 56. Krishnamurthy, A., Moore, J. K., Mahowald, N., Luo, C. & Zender, C. S. Impacts of

389 atmospheric nutrient inputs on marine biogeochemistry. *J. Geophys. Res.* **115**, G01006

390 (2010).

391 57. Talarmin, A. *et al.* Seasonal and long-term changes in elemental concentrations and ratios

392 of marine particulate organic matter. *Global Biogeochem. Cycles* **30**, 1699–1711 (2016).

393 58. Tanioka, T., Fichot, C. G. & Matsumoto, K. Toward Determining the Spatio-Temporal

394 Variability of Upper-Ocean Ecosystem Stoichiometry From Satellite Remote Sensing.

395 *Front. Mar. Sci.* **7**, 604893 (2020).

396 59. Tanioka, T. *et al.* Global Ocean Particulate Organic Phosphorus, Carbon, Oxygen for

397 Respiration, and Nitrogen (GO-POPCORN) data from Bio-GO-SHIP cruises. (2022)

398 doi:<https://doi.org/10.5061/dryad.05qfttf5h>.

399 60. Garcia, C. A. *et al.* Linking regional shifts in microbial genome adaptation with surface

400 ocean biogeochemistry. *Philos. Trans. R. Soc. B Biol. Sci.* **375**, 20190254 (2020).

401 61. Lee, J. A., Garcia, C. A., Larkin, A. A., Carter, B. R. & Martiny, A. C. Linking a

402 Latitudinal Gradient in Ocean Hydrography and Elemental Stoichiometry in the Eastern

403 Pacific Ocean. *Global Biogeochem. Cycles* **35**, (2021).

404 62. Lomas, M. W. *et al.* Sargasso Sea phosphorus biogeochemistry: An important role for

405 dissolved organic phosphorus (DOP). *Biogeosciences* **7**, 695–710 (2010).

406 63. Becker, S. *et al.* GO-SHIP Repeat Hydrography Nutrient Manual: The Precise and

407 Accurate Determination of Dissolved Inorganic Nutrients in Seawater, Using Continuous

408 Flow Analysis Methods. *Front. Mar. Sci.* **7**, 908 (2020).

409 64. Baer, S. E. *et al.* Carbon and nitrogen productivity during spring in the oligotrophic Indian

410 Ocean along the GO-SHIP IO9N transect. *Deep Sea Res. Part II Top. Stud. Oceanogr.*

411 **161**, 81–91 (2019).

412 65. Lauvset, S. K. *et al.* A new global interior ocean mapped climatology: The $1^\circ \times 1^\circ$

413 GLODAP version 2. *Earth Syst. Sci. Data* **8**, 325–340 (2016).

414 66. Key, R. M. *et al. Global ocean data analysis project, version 2 (GLODAPv2).*
415 *Ornl/Cdiac-162, Ndp-093* (2015) doi:10.3334/CDIAC/OTG.NDP093_GLODAPv2.

416 67. Richardson, K. & Bendtsen, J. Vertical distribution of phytoplankton and primary
417 production in relation to nutricline depth in the open ocean. *Mar. Ecol. Prog. Ser.* **620**,
418 33–46 (2019).

419 68. Brun, P. *et al.* Ecological niches of open ocean phytoplankton taxa. *Limnol. Oceanogr.* **60**,
420 1020–1038 (2015).

421 69. Holte, J., Talley, L. D., Gilson, J. & Roemmich, D. An Argo mixed layer climatology and
422 database. *Geophys. Res. Lett.* **44**, 5618–5626 (2017).

423 70. R Core Team. R: A Language and Environment for Statistical Computing. (2021).

424 71. Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation
425 of semiparametric generalized linear models. *J. R. Stat. Soc. Ser. B Stat. Methodol.* **73**, 3–
426 36 (2011).

427 72. Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive
428 models in ecology: An introduction with mgcv. *PeerJ* **2019**, (2019).

429 73. Lindeman, R. H., Merenda, P. F. & Gold, R. Z. *Introduction to bivariate and multivariate*
430 *analysis*, Glenview, IL. Scott: Foresman and company vol. 119 (1980).

431

432 Acknowledgments

433 We thank the many contributing GO-SHIP researchers for the oceanographic data; J.K. Moore
434 and N.A. Wiseman for sharing CESM simulation results; G. Hagstrom and F. Primeau for
435 providing technical advice; and K. Matsumoto and E. Galbraith for valuable comments and
436 suggestions. We gratefully acknowledge financial support by the Simons Foundation
437 (Postdoctoral Fellowship in Marine Microbial Ecology Award 724483 to T.T), NOAA (101813-
438 Z7554214 to A.C.M), NASA (FINESST to C.A.G and 80NSSC21K1654 to A.C.M), and the
439 National Science Foundation (OCE-1046297, 1559002, 1848576, and 1948842 to A.C.M). The
440 PML AMT is funded by the UK Natural Environment Research Council through its National
441 Capability Long-term Single Centre Science Program, Climate Linked Atlantic Sector Science
442 (grant number NE/R015953/1). This study contributes to the international IMBeR project and is
443 contribution number 376 of the AMT programme.

444 Author contributions

445 T.T compiled metadata, conducted data analysis and wrote the manuscript with substantial input
446 from all co-authors. C.A.G coordinated sample collection, processed samples, and compiled
447 metadata. A.A.L coordinated sample collection, processed samples, and compiled metadata.
448 N.S.G coordinated sample collection. A.J.F processed samples. A.C.M designed and supervised
449 the study, secured funding, and coordinated the Bio-GO-SHIP program.

452 Competing interests

453 The authors declare no competing interests

455 Additional information

456 **Supplementary information** is available for this paper.

457 Correspondence and requests for materials should be addressed to A.C.M.

459 Data availability

460 POM, hydrography, and metagenomes from Bio-GO-SHIP cruises used in this study are publicly
461 available^{28,59}. Nutrient stress data of phytoplankton can be accessed from the original publication
462 cited in the main text³¹. GLODAP version2.2016b data is publicly available
463 (<https://doi.org/10.5194/essd-8-297-2016>). The model output from the CEMS2 Large Ensemble
464 Simulation is available here (<https://doi.org/10.26024/kgmp-c556>).

465 **Code availability**

466 All codes (data manipulation, analyses, figures, and tables) can be downloaded from the GitHub
467 repository https://github.com/tanio003/CNPGlobal_paper_repo/tree/CommsEarthEnv. When
468 using the data or code from this project, please cite <https://doi.org/10.5281/zenodo.7076407>.

469 **Methods**

470 **POM Sample Collection**

471 In this study, we use paired observations of particulate organic phosphorus (POP), nitrogen
472 (PON), and carbon (POC) samples from 1970 stations collected between 2014 and 2020 as a part
473 of a biological initiative for the Global Ocean Ship-Based Hydrographic Investigations Program
474 (Bio-GO-SHIP)^{28,29}. Samples used in this study are from cruises AMT-28, C13.5, I07N, I09N,
475 NH1418, and P18 (Supplementary Table 1). Samples were collected across all major oceanic
476 provinces from 70 °S to 50 °N using the consistent sampling method described
477 previously^{5,28,60,61}. Briefly, 2-10 L seawater for the POM samples was collected from the onboard
478 flow-through underway system at the sea surface (< 30 m) and was divided into POC/PON and
479 POP triplicates after removing large plankton and particles using 30 µm nylon mesh. Each
480 replicate was then filtered on precombusted Whatman GF/F filters with a nominal pore size of
481 0.7 µm. POP filters were rinsed with 5 mL of 0.17 M Na₂SO₄ prior to analysis to remove traces
482 of dissolved organic phosphorus. All filtered POM samples were sealed in precombusted
483 aluminum packets and were immediately frozen at -20 °C until analysis. The detection limit for
484 POP measurement was ~ 0.3 µg.

485 POC and PON samples were measured using Control Equipment 240-XA/440-XA elemental
486 analyzer standardized to acetanilide or a CN Flash 1112 EA elemental analyzer against an
487 atropine (C₁₇H₂₃NO₃) standard curve. The POC analysis included an acidification step in
488 concentrated HCl fumes to remove particulate inorganic carbonates. POC and PON
489 measurements had a mean detection limit of ~2.4 µg and ~3.0 µg, respectively. POP was
490 analyzed using the ash-hydrolysis colorimetric method described previously⁶² using a
491 spectrophotometer at 885 nm.

492 Following the criteria used in a previous study⁶¹, we discarded any anomalous samples with
493 POC:POP > 500, PON:POP < 1, and PON:POP > 100 after the stoichiometric ratios were
494 calculated. These selection processes led to the 1970 final C-N-P paired POM measurements. To
495 evaluate the influence of spatial autocorrelation, we binned the samples into 1° by 1° grid cell
496 and computed globally area-weighted values with this dataset. Our analysis showed that the
497 global area-weighted means of binned and unbinned data are indistinguishable and concluded
498 that such spatial autocorrelation was not a problem in our data analysis (Supplementary Table 2-
499 3). Based on previous studies^{3,30}, a large proportion of POM pools collected are assumed to be
500 made up of living planktonic materials consisting of *Prochlorococcus*, *Synechococcus*,

506 eukaryotic phytoplankton, and bacteria with a minor contribution from microzooplankton and
507 heterotrophic nanoflagellates.

508

509 **Hydrography Measurements**

510 Hydrographic measurements (salinity, temperature, and pressure) were taken at each station with
511 a CTD-rosette vertical profiling system. Ambient nitrate, phosphate, and silicate concentrations
512 were determined onboard using an auto-analyzer following the GO-SHIP nutrient protocol⁶³ for
513 cruises AMT-28, I07N, I09N, and P18. Macronutrients (N or P) in cruise NH1418 were
514 measured in the lab⁶⁴, and the detection limits were 0.05 $\mu\text{mol kg}^{-1}$. Bottle data for
515 macronutrients were extrapolated horizontally where necessary to match the sampling resolution
516 of underway data (i.e., POM data). For the C13/A13.5 section in which in situ nutrient
517 measurements were not measured due to logistical issues, we substituted missing values with
518 mapped annual mean average values from the GLODAP version2.2016b from the nearest
519 longitude and latitude at 1° resolution^{65,66}. We set consistent detection limits for phosphate and
520 nitrate at 0.01 and 0.1 $\mu\text{mol kg}^{-1}$, respectively, for all the hydrographic measurements and
521 corrected any measured concentrations below these values are assumed to be equal to the
522 threshold concentrations for use in statistical analysis. Nutricline depth, here defined as the depth
523 at which nitrate equals 1 $\mu\text{mol kg}^{-1}$, was determined by vertically and horizontally interpolating
524 nitrate concentration. We set nutricline as 0 m when the bottle nitrate concentration at the
525 shallowest depth was greater than 1 $\mu\text{mol kg}^{-1}$. Previous studies^{37,67} have revealed that nutricline
526 depth, where deeper nutricline indicates a lower nutrient supply rate to the upper mixed layer of
527 the ocean, serves as a good proxy for an overall nutrient supply rate in the surface water than
528 ambient macronutrient concentrations, which are often at detection limits.

529

530 **Contextual Environmental Variables**

531 We complemented in situ measurements with (i) mixed-layer averaged photosynthetically
532 available radiation (PAR)⁶⁸, which was estimated using surface PAR, Chl-a, and monthly
533 climatology of mixed layer depth⁶⁹, (ii) the average phytoplankton community composition
534 (diatoms, coccolithophores, chlorophyte, and cyanobacteria) between 1998-2017, which we
535 obtained from NASA Ocean Biogeochemical Model^{38,39}, and (iii) the annual mean total
536 dissolved iron, which we derived from Community Earth System Model v1.2.1. Both NASA
537 Ocean Biogeochemical Model and CESM were calibrated with observations and have been used
538 extensively in previous global biogeochemistry studies^{20,31}. The model phytoplankton
539 community composition from NASA Ocean Biogeochemical Model only exists from 1998 to
540 2017. For data from 2018 onwards, we used the model output from 2004, which is the year with
541 the minimum sum of deviations from the monthly mean, following the previous study²⁰. PAR
542 and Chl-a are 8-day averaged values retrieved by NASA MODIS-Aqua at the nearest location (4
543 km resolution) (<http://oceancolor.gsfc.nasa.gov> (last access: July 29, 2021)). Climatological
544 mixed layer depth is derived from more than 1.2 million Argo profiles⁶⁹ and provides accurate
545 information about the seasonal patterns of global mixed layer depth.

546

547 **Metagenomics-Informed Nutrient Limitation**

548 We used the previously published global genome content of *Prochlorococcus* and its inferred
549 element-specific nutrient stress³¹. Specifically, we selected data from 562 stations, where
550 metagenome samples were collected concomitantly with POM (Supplementary Figure 1). We
551 used metagenome samples collected in the regions encompassing 51.5 °S and 47.9 °N, where the

552 abundance of *Prochlorococcus* was sufficient. Briefly, sequences from the surface metagenomes
553 were recruited to known strains of *Prochlorococcus*, and the frequency of established nutrient
554 acquisition genes determined *a priori* were used as a proxy for nutrient stress type (i.e., limiting
555 nutrient element) and severity. For example, the presence of marker genes *phoX* and *phoA*,
556 responsible for regulating alkaline phosphatases required for the assimilation of dissolved
557 organic P (DOP), are associated with high phosphorus stress. A previous study has shown a
558 significant correlation between *Prochlorococcus* nutrient stress index and growth/turnover rate
559 from nutrient bottle incubation experiments³¹. An ordination of nutrient genes based on the
560 angles from the principal component analysis can broadly categorize six types of limitation and
561 co-limitation: (1) Fe limitation, (2) Fe/P co-limitation, (3) P limitation, (4) P/N co-limitation, (5)
562 N limitation, and (6) N/Fe co-limitation. As the number of samples for Fe/P co-limitation and
563 N/Fe co-limitation samples was noticeably smaller than other stress types, we merged Fe/P and
564 N/Fe with P and N limitation samples, respectively. Our dataset consists of 101 P-limitation
565 samples, 337 N-limitation samples, 67 P/N co-limitation samples, and 57 Fe-limitation samples
566 that are geographically and temporally paired with POM samples. The global map of nutrient
567 limitation from metagenomes is largely consistent with the nutrient limitation pattern of the
568 small phytoplankton from the CESM model output (Supplementary Figure 1).
569

570 Data Analysis and Modeling

571 All the statistical analyses were conducted using R ver. 4.1.0⁷⁰. To determine the relative
572 importance of different contextual variables required to explain C:N:P, we first conducted
573 multiple pairwise correlation analyses using the Pearson correlation test, which allowed us to
574 determine a first-order linear relationship between a covariate and C:N:P. We used natural log-
575 transformed values of elemental stoichiometric ratios and nutrient concentrations throughout the
576 data analysis. For fair comparison across variables, we removed any rows containing the missing
577 value from the dataset and standardized all the variables so that the mean equaled zero and the
578 standard deviation equaled one. We correlated C:N:P with various environmental drivers
579 including in situ measurements of SST, surface phosphate, surface nitrate, and nutricline depth;
580 mixed-layer depth, mixed-layer averaged PAR, nutricline depth, modeled surface plankton
581 community composition, and total dissolved iron from the model simulations (Supplementary
582 Table 5-6). We performed separate analyses for the (1) polar/subpolar ($n = 145$) and (2)
583 tropical/subtropical regions ($n = 1825$) which were delineated based on the absolute latitude of
584 45°.
585

586 We subsequently conducted analyses with generalized additive models (GAMs) to identify the
587 relative strength of four main environmental variables in explaining C:N:P ratios: these were (1)
588 SST, (2) surface nitrate concentration, (3) nutricline depth, and (4) the limiting nutrient type of
589 *Prochlorococcus* determined from the metagenome analysis. We chose these variables based on
590 the correlation analysis and the previous understanding of ecological stoichiometry. For the
591 GAM analysis, we used the R package *mgcv*⁷¹. For GAM analyses in (sub)tropical regions, we
592 used the subset of POM data where both POM and metagenomes were collected ($n = 554$). We
593 conducted cross-validation (100 random partitions holding out 20% of observations) on different
594 possible hierarchical GAM formulations⁷²: (1) Model G (A global smoother for all observations),
595 (2) Model GS (Single common smoother plus group-level smoothers that have the same
596 wiggliness), (3) Model GI (Single common smoother plus group-level smoothers that have the
597 different wiggliness), (4) Model S (Group-specific smoothers without a global smoother, but all

598 smoothers have the same wigginess), (5) Model I (Group-specific smoothers with different
599 wigginess), and (6) Model C (Control, no dependence on nutrient limitation types)
600 (Supplementary Methods). We found that the models with the interactive effect of nutricline and
601 element-specific nutrient limitation type (model GI and I) outperformed the models with either
602 independent (model G) or null effects (model C) of nutrient limitation type in terms of Akaike
603 information criterion, root-mean-square error, and the coefficient of determination
604 (Supplementary Table 10-12). Specifically, the model GI performed best out of all the possible
605 model types of functional variation for hierarchical GAM. Thus, we decided to use the model GI
606 to describe the interaction between nutricline and element-specific nutrient limitations
607 throughout the paper. The additive contribution of each contextual variable (SST, nitrate,
608 nutricline, and the interaction between nutricline and nutrient limitation type) to the total
609 deviance explained was calculated by sequentially removing different parameters and averaging
610 sequential sums of squares over all ordering of regressors before normalizing with deviance
611 explained by a null model. This approach ensures that the sum of each regressor's deviance
612 explained adds up to the full model deviance explained⁷³.
613

614 We repeated GAM analyses with the previous global C:N:P compilation³ binned by longitude
615 and latitude at 1° resolution ($n = 204$), combined with SST, nitrate, and nutricline depth from
616 GLODAP version2.2016b^{65,66} and small phytoplankton nutrient limitation pattern from CESM2
617 Large Ensemble Simulation at the 2010s. We found the overall consistency in the explained
618 deviances in the current and previous C:N:P compilation: SST and nitrate were the most critical
619 drivers in the high latitudes. At the same time, the interaction between nutrient availability and
620 nutrient limitation were the primary drivers in the low latitudes.
621

622 Future Projections of Ecosystem C:N:P

623 We first derived the global GAM formulation of C:P and N:P, covering the entire parameter
624 space of SST, surface nitrate, nutricline, and nutrient limitation. We supplemented POM-
625 metagenome paired samples with 46 POM-only samples collected in high latitudes poleward of
626 51.5 °S. In doing so, we assumed that these 40 samples were collected from Fe-limited regions
627 based on a comparison with CESM model output (Supplementary Figure 1a) and prior
628 biogeochemical knowledge²⁵.
629

630 To evaluate the effects of future climatic change on surface community C:P and N:P, we used as
631 input to our GAM derived above the values of SST, surface nitrate concentration, nutricline
632 depth, and nutrient limitation output from CESM2-LENS, which consists of 100 ensemble model
633 simulations which take into the account of the ocean and atmospheric interannual variabilities.
634 The ensemble simulation includes four independent Atlantic Meridional Overturning Circulation
635 states and 20 microstates for each scenario³². At the time of writing this paper, 90 out of 100
636 model outputs were publicly available, and we extracted environmental variables for each grid
637 cell for each of the 90 model run and computed ensemble means for the historic period (averaged
638 values for the years 2010-2014) and the end of the 21st century (averaged values for years 2095-
639 2099), the latter considering Shared Socioeconomic Pathway SSP3-7.0 scenario. SSP3-7.0
640 scenario is the second most pessimistic, high-greenhouse-gas emission trajectory³³, where CO₂
641 doubles compared to preindustrial by 2100 and radiative forcing level reaches 7.0 W/m². To
642 obtain ensemble mean SST and surface nitrate concentrations for each grid point, we first
643 computed mean values in the top 30 m for each grid point of every model realization and

644 computed the ensemble mean. In each model realization, nutricline was determined first by
645 interpolating the vertical depth profile of nitrate to 1 m in the top 500 m of the water column,
646 then the shallowest depth at which nitrate concentration exceeds $1 \mu\text{mol kg}^{-1}$ was determined.
647 After the initial inspection, we found that the nutricline depth obtained from CESM2-LENS
648 systematically underestimated GLODAP. Thus, we multiplied nutricline depth by the scaling
649 factor of 1.54 for every grid point for historical and future projections. The coefficient of
650 determination between GLODAP and CESM2 historic nutricline depth was 0.8.
651

652 The limiting nutrient for each grid point is the element with the lowest ratio between the ambient
653 nutrient concentration and the Michaelis-Menten half-saturation constant of the respective
654 element for the small phytoplankton functional type. We defined P/N co-limitation when the
655 ratios between the ambient nutrient concentration and the Michaelis-Menten half-saturation
656 constant for P and N are within 5% and are not Fe-limited. As the nutrient limitation information
657 is a discrete, categorical variable, we computed the ensemble mode across 90 model runs as the
658 representative nutrient limitation for each grid point. The nutrient limitation map from CESM2-
659 LENS for the historic period generally agreed well with the metagenome-based observation³¹
660 (Supplementary Figure 1a).
661

662 To ensure the reliability of our projections, we generated 1000 historic and future C:P and N:P
663 models from the posterior distribution and randomly selected 2000 models with replacements to
664 account for the uncertainties in the parameters of the GAMs. Here, we report averaged
665 predictions from these 2000 models, and we define model confidence by calculating how many
666 of the 2000 pairs of model projections predict the same sign of change in $\Delta\text{C:P}$ and $\Delta\text{N:P}$ from
667 the 2010s to 2090s. For example, if all 2000 randomly selected pairs predict an increase
668 (decrease) in C:P, the model confidence is 100%+ (100%−). The null case (i.e., 50% model
669 confidence) is when half of the model pairs predicted an increase, and the other half predicted a
670 decrease. Note that the model uncertainty only considers the uncertainties in the parameters of
671 GAMs, not the variance associated with the ensembled environmental variables from the
672 CESM2-LENS output.
673

674 We compared future projections of C:P from the data-derived statistical model with three
675 previously published prognostic ocean biogeochemical outputs under future climate scenarios
676 (Supplementary Figure 6). These were (1) Minnesota Earth System Model for Ocean
677 biogeochemistry version 3 (MESMO3) under SSP2 scenario³⁴, (2) Minnesota Earth System
678 Model for Ocean biogeochemistry version 2 (MESMO2) under RCP8.5 scenario³⁵, (3) Pelagic
679 Interactions Scheme for Carbon and Ecosystem Studies Quota (PISCES-QUOTA) ocean
680 biogeochemistry model under RCP8.5 scenario¹⁴.
681
682
683

684 **Figure Captions**
685686 **Fig. 1: Geographical sampling stations of particulate organic matter in the global ocean.**687 Red points are stations from Bio-GO-SHIP ($n = 1970$) and blue points are from a previous global
688 compilation³ ($n = 733$).
689690 **Fig. 2: Global distribution and latitudinal trends of surface ecosystem C:N:P. (a-c)**691 Individual sampling locations are shown with black points in the global map of C:P, N:P, and
692 C:N. Multi-color shadings in (a) – (c) are based on weighted-average gridding from Ocean Data
693 View. (d-f) Measurements of C:P, N:P, and C:N are plotted against latitude and solid lines
694 represent the Generalized Additive Model (GAM) smooth trends and ribbons corresponding to
695 the 95% confidence intervals of latitudinal trends predicted by the GAMs. The dotted vertical
696 lines show the canonical C:N:P Redfield ratio of 106:16:1.
697698 **Fig. 3: Predictors of ecosystem C:N:P. (a, c)** Correlation of contextual variables with the
699 C:N:P ratios. The color of the tiles is the Pearson r correlation coefficient. Asterisks represent the
700 statistical significance (***: $p < 0.001$, **: $p < 0.01$, *: $p < 0.05$, NA: Not Applicable). (b, d) The
701 individual explained deviance and additive contribution of the four main contextual variables
702 normalized to the total explained deviance in GAMs. The bracket number is deviance explained
703 (R^2), by the full model, which equals the sum of deviance explained by the individual variable.
704 (a) and (b) corresponds to the data collected in the (sub)polar regions with $|Latitude| \geq 45^\circ$ ($n =$
705 145), and the (c) and (d) corresponds to the data collected in the (sub)tropical regions with
706 $|Latitude| < 45^\circ$ ($n = 1825$).
707708 **Fig. 4: Observed C:P and C:N as a function of environmental variation.** Dots are observed
709 values and colors represent the nutrient limitation type inferred from metagenomes (Purple = Fe-
710 limited, Blue = N-limited, Green = P/N co-limited, Red = P-limited, Grey = Unknown). (a, c)
711 C:P and C:N against SST. Black line and shade represent GAM prediction and uncertainty (\pm
712 2SE) under the constant nutricline depth and surface nitrate values at the observed mean values
713 of 70 m and 0.2 $\mu\text{mol kg}^{-1}$, respectively. (b, d) C:P and C:N against nutricline depth for different
714 nutrient limitation types. GAM is fitted separately for each limiting nutrient type under constant
715 SST and surface nitrate at the observed mean values of 25 $^\circ\text{C}$ and 0.2 $\mu\text{mol kg}^{-1}$, respectively.
716717 **Fig. 5: Projected surface ecosystem C:P using a data-derived statistical model. (a)**
718 Difference in surface ecosystem C:P estimated for the 2090s and 2010s projected using a data-
719 derived statistical model coupled to sea surface temperature, surface nitrate concentration,
720 nutricline, and nutrient limitation type of small phytoplankton from CESM2-LENS under the
721 shared socioeconomic pathways SSP3-7.0 and historic scenarios, respectively. (b) Model
722 agreement on the sign of change in C:P amongst 2000 randomly generated model projections
723 based on the posterior distribution of the GAM parameters. 100%+ represents the case when all
724 2000 models predict the positive change in C:P, and 100%- represents the case when all models
725 predict the negative change in C:P. Note that 50%+/50%- corresponds to the minimum
726 agreement between 2000 models. Violin plots for change in (c) C:P and (d) model agreement for
727 regions separated by latitude. Regions: Polar ($|Latitude| \geq 65^\circ$), Subpolar ($45^\circ \leq |Latitude| < 65^\circ$),
728 Subtropical ($15^\circ \leq |Latitude| < 45^\circ$), and Tropical ($|Latitude| < 15^\circ$).









