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We present a new implementation for computing spin-orbit couplings (SOCs)

within time-dependent density-functional theory (TD-DFT) framework in the stan-

dard spin-conserving formulation as well in the spin-flip variant (SF-TD-DFT). This

approach employs the Breit-Pauli Hamiltonian and Wigner-Eckart’s theorem ap-

plied to the reduced one-particle transition density matrices, together with the

spin–orbit mean-field (SOMF) treatment of the two-electron contributions. We use

state-interaction procedure and compute the SOC matrix elements using zero-order

non-relativistic states. Benchmark calculations using several closed-shell organic

molecules, diradicals, and a single-molecule magnet (SMM) illustrate the efficiency

of the SOC protocol. The results for organic molecules (described by standard TD-

DFT) show that SOCs are insensitive to the choice of the functional or basis sets,

as long as the states of the same characters are compared. In contrast, the SF-TD-

DFT results for small diradicals (CH2, NH
+
2 , SiH2, and PH+

2 ) show strong functional

dependence. The spin-reversal energy barrier in a Fe(III) SMM computed using non-

collinear SF-TD-DFT (PBE0, ωPBEh/cc-pVDZ) agrees well with the experimental

estimate.

I. INTRODUCTION

Spin-orbit coupling (SOC) is a relativistic effect arising from the interaction of the orbital

angular momentum of an electron with its intrinsic spin angular momentum. SOC plays
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a crucial role in various chemical phenomena. For example, SOC determines magnetic

properties of single-molecule magnets (SMMs) and rates of spin-forbidden processes1–6 such

as phosphorescence, intersystem crossing, and, more generally, nonadiabatic dynamics of

molecules and materials.7–11 In SMMs, it leads to magnetic anisotropy, thereby affecting the

spin-reversal energy barrier and magnetic relaxation. Although SOC is much larger in heavy

atoms, it also plays a role in systems composed of light atoms, such as organic molecules.12

An accurate quantum-mechanical treatment of SOC is required in many applications.13–18

SOC is commonly computed using the state interaction scheme—often called a perturbative

approach—in which a small number of zero-order non-relativistic states are used to compute

the matrix elements of the Breit-Pauli Hamiltonian, followed by the diagonalization of the

resulting matrix to yield the spin–orbit coupled states and energies.19,20 The Breit-Pauli

Hamiltonian contains one- and two-electron parts, with the latter being about 50 % of the

total contribution in light molecules. The costs of computing the two-electron contribution

can be be significantly reduced using an effective one-electron spin–orbit mean-field (SOMF)

approximation.21–23

Various implementations employing full and approximate Breit-Pauli SOC opera-

tors have been reported for density-functional theory (DFT),24–29 density-functional the-

ory/multireference configuration interaction (DFT/MRCI),30,31 coupled-cluster (CC),32

equation-of-motion CC (EOM-CC),33–36 multireference CC (MRCC),37 complete active-

space self-consistent field (CASSCF),19,38,39 restricted active space self-consistent field

(RASSCF),40 restricted active space configuration interaction (RASCI),41 MRCI,42 and

density-matrix renormalization group (DMRG)43,44 methods.

In contrast to matrix elements describing non-relativistic transition properties—such as

nonadiabatic couplings or transition dipole moments—SOCs are tensorial quantities requir-

ing calculations between all the components of the interacting multiplets. Wigner-Eckart’s

theorem45–47 allows one to circumvent the explicit calculation of all multiplet components

by providing a recipe for generating the full set of the SOC matrix elements from just one

spin projection, for example, the Ms = 0 component. Using this strategy, Pokhilko et al. de-

veloped a framework for computing SOCs by the application of Wigner-Eckart’s theorem to

the reduced one-particle density matrices.36 The efficiency of this protocol was illustrated by

application to the EOM-CC wave-functions. Formulated in spin-orbital representation, this

approach is ansatz-agnostic and can be applied to any electronic structure method that can
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provide transition density matrices. Following this work, SOCs for frozen-core core-valence

separated EOM-CCSD (fc-CVS-EOM-CCSD),48 RASCI, and RAS-spin-flip (RAS-SF)41,49

wave functions were implemented.

Here, we extend this algorithm36 to compute SOCs using time-dependent DFT (TD-

DFT)50 in its standard spin-conserving and spin-flipping (SF-TD-DFT)51–55 variants within

the Tamm-Dancoff approximation (TDA).56 Owing to its favorable computational scaling,

TD-DFT is often employed to calculate excited states in extended systems. Implementations

of SOCs between the TD-DFT states are available in program packages such as MolSOC25

and PySOC28, however, the SOCs for SF-TD-DFT have not yet been reported. The SF

approach extends Kohn-Sham TD-DFT to treat certain types of strong correlation, such as

bond-breaking, conical intersections, and systems with two or more unpaired electrons.55,57–59

This work describes the implementation of SOCs using TD-DFT and SF-TD-DFT within

the Q-Chem electronic structure package60,61 and presents benchmark results for molecules

featuring different types of electronic structure: e.g., closed-shell organic molecules, dirad-

icals, and a molecular magnet. We compare the results obtained with different DFT and

wave-function-based methods and assess the effect of specific density functionals and ba-

sis sets on the SOC. The paper is organized as follows. Section II presents the theory of

TD-DFT/TDA and SF-TD-DFT/TDA, and the key equations for the calculation of the

Breit-Pauli SOC matrix elements using Wigner–Eckart’s theorem. The computational de-

tails are given in Section III. Sections IVA and IVB provide the benchmark results obtained

using TD-DFT and SF-TD-DFT, respectively. Our concluding remarks are given in Section

V.

II. THEORY

A. TD-DFT/TDA and SF-TD-DFT/TDA

Within TDA, TD-DFT treatment involves solving the following Hermitian eigenvalue

equation:

AX = XΩ, (1)

with

A = δabδij (ǫa − ǫi) + (ia|jb) + (ia|fxc|jb) , (2)
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where indexes i, j denote the occupied orbitals, a, b denote the virtual orbitals, ǫa and ǫi

are the orbital energies of the virtual and occupied Kohn-Sham orbitals, respectively, fxc is

the adiabatic exchange-correlation kernel, Ω is a diagonal matrix with excitation energies on

the diagonal, X contains the eigen-vectors of A, and the two-electron integrals are given in

Mulliken’s notation. TD-DFT/TDA yields excitation energies very close to the correspond-

ing (linear response) TD-DFT excitation energies for closed- and open-shell molecules.56 In

SF-TD-DFT, a high-spin reference is used to describe target multi-configurational lower-spin

states by spin-flipping excitations as:

ΨS,S−1
Ms=S−1 = R̂Ms=−1Ψ

S
Ms=S, (3)

where the spin-flip operator R̂Ms=−1 generates singly excited determinants in which the spin

of one electron is flipped with respect to the high-spin reference.55

In the standard collinear formulation, the target spin-flipped determinants can only be

coupled by the Hartree-Fock exchange; hence, in the original SF-TD-DFT method func-

tionals with high fractions of the exact exchange—such as B5050LYP—were employed51.

This limitation was overcome by using non-collinear formulation.52–54 Previous benchmark

studies for organic diradicals54, binuclear Cu(II)62 and Fe(III)58 SMMs illustrated robust

performance of the non-collinear SF-TD-DFT, especially when combined with the func-

tionals from the PBE family. Here, we use the best performing functionals to assess the

performance of the SF-TD-DFT for computing SOCs in selected diradicals and in a Fe(III)

SMM.

B. Spin–orbit Hamiltonian

Originally derived by Pauli,63,64 the Breit-Pauli Hamiltonian describes the relativistic

effects. In particular, it can be used to evaluate spin–orbit matrix elements between non-

relativistic electronic states. In atomic units, the spin–orbit part of the Breit-Pauli Hamil-

tonian has the following form:

HSO
BP =

1

2c2

[

∑

i

∑

K

Zk(ri −RK)× pi

|ri −RK |3
· s(i)−

∑

i 6=j

(ri − rj)× p
i

|ri − rj|3
· (s(i) + 2s(j))

]

(4)
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where c is the speed of light, ri and pi denote the coordinate and momentum operators of

the ith electron respectively, s(i) is the spin operator, and RK and ZK are the coordinates

and the charge of the Kth nucleus. The first term, the one-electron part of the Breit-

Pauli Hamiltonian, is proportional to the nuclear charge and, therefore, dominates in heavy

elements. The second term, the two-electron part of the Hamiltonian, describes spin-same-

orbit and spin-other-orbit interactions; it is significant in molecules composed of light atoms,

such as typical organic molecules.20 Full calculations of SOC involves computation of one-

and two-particle transition density matrices and contracting them with appropriate spin-

orbit integrals.35 Fortunately, the cost of the evaluation of the two-electron contribution can

be significantly reduced by invoking spin–orbit mean-field (SOMF) approximation.21 The

SOMF approximation amounts to considering only the contributions from the separable part

of the two-particle density matrix,35 which captures most of the effect leading to insignificant

errors.

The symmetry of the one-electron term in Eq. (4) is such that one can write down the

second-quantized form of it using triplet excitation operators. Here, we use the irreducible

spherical tensor operators to represent the SOMF Hamiltonian. The triplet excitation op-

erators are given in the second quantization as:

T 1,1
pq = −a†pαaqβ, (5)

T 1,0
pq =

1√
2

(

a†pαaqα − a†pβaqβ

)

, (6)

T 1,−1
pq = a†pβaqα, (7)

where the T 1,±1 are spin-flipping (change the spin-projection) and T 1,0 conserves the spin

projection. Using these operators, the SOMF Hamiltonian can be written as:

HSOMF =
1

2

∑

pq

[

hSOMF
L+,pq T

1,−1
pq + hSOMF

z,pq T 1,0
pq + hSOMF

L−,pq T
1,1
pq

]

, (8)

where hSOMF
L+,L−

are constructed using the sum of one-electron and mean-field contributions:

hSOMF
L+

= hSOMF
x + ihSOMF

y , (9)

hSOMF
L−

= hSOMF
x − ihSOMF

y . (10)
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In the above expression, the two-electron spin–orbit integrals are contracted with the density

matrix of the reference state (hence, mean-field).

Through the application of Wigner–Eckart’s theorem to the triplet excitation operators,

Eq. (8) can be implemented as:

〈I ′S ′M ′|T 1,M
pq |I ′′S ′′M ′′〉 = 〈S ′′M ′′; 1M |S ′M ′〉 〈I ′S ′||T 1,·

pq ||I ′′S ′′〉 , (11)

where |I ′S ′M ′〉 denotes the I ′th electronic state with spin S ′ and spin-projection M ′ respec-

tively, 〈S ′′M ′′; 1M |S ′M ′〉 is a Clebsh–Gordan coefficient, and 〈I ′S ′||T 1,·
pq ||I ′′S ′′〉 is a spinless

triplet transition density matrix (denoted as upq below). upq can be obtained36 from the

one-particle transition density matrix between the states with the same spin projection as:

upq ≡ 〈I ′S ′||T̂ 1,·
pq ||I ′′S ′′〉 = 1√

2

(

γ∆Ms=0
pq,αα − γ∆Ms=0

pq,ββ

)

/ 〈S ′′M ′; 10|S ′M ′〉 , (12)

where the transition density matrix γpq is defined as:

γpq = 〈I ′S ′M ′|a†paq|I ′′S ′′M ′〉 . (13)

The SOC matrix elements between any two spin-states can then be obtained as:

〈I ′S ′M ′|HSOMF|I ′′S ′′M ′′〉 = 1

2

∑

pq

[

hSOMF
L+,pq 〈S ′′M ′′; 1− 1|S ′M ′〉+

√
2hSOMF

z,pq 〈S ′′M ′′; 10|S ′M ′〉−

hSOMF
L−,pq 〈S ′′M ′′; 11|S ′M ′〉

]

upq.

(14)

We use the upq matrix between spin-multiplets |S ′M ′〉 and |S ′′M ′〉 to compute the entire set

of the SOC matrix elements for all pairs of the interacting spin-states: −S ′ ≤ M ′ ≤ S ′ and

−S ′′ ≤ M ′′ ≤ S ′′. Further details of the theory can be found in Ref. 36.

The key quantity involved in the calculation of inter-system crossing rates and oscillator

strengths is the SOC constant (SOCC). While couplings between different multiplet compo-

nents are dependent on spatial orientation, the SOCC is rotationally invariant and can be
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computed by taking the sum over all projections as:

SOCC =

√

∑

M ′,M ′′

| 〈S ′M ′|HSO|S ′′M ′′〉 |2, (15)

In this work, we use the SOCC values to benchmark with those previously available in the

literature.

III. COMPUTATIONAL DETAILS

Fig. 1 shows the structures of the molecules used for benchmarking in this work; below,

we refer to the molecules by the letters shown in the figure.

Molecules a-g are representative closed-shell organic molecules. Their excited states and

SOCs are calculated using standard TD-DFT/TDA. Ground-state optimized geometries of

formaldehyde and acetone (molecules a and b, at ωB97XD/ TZVP) and psoralens (molecules

e-g, at PBE0/TZVP) are taken from Ref. 28, and biacetyl (BIA) and (2Z)-2-buten-2-ol

(BOL) (molecules c and d, at B3LYP/cc-pVDZ) are taken from Ref. 41.

Molecules h-q feature electronic degeneracies of the frontier orbitals and, therefore, can-

not be described by standard Kohn-Sham TD-DFT. To compute relevant spin-states in this

set, we use the non-collinear formulation of SF-TD-DFT/TDA. For diradicals h-k we use

equilibrium triplet-state geometries (3B2), following the previous studies.65–68 Experimental

structures are used for molecules l-p, taken from Ref. 32, and the structure of the trigonal

bipyramidal Fe(III) SMM (molecule q) is taken from Ref. 69. High-spin triplet reference

was used to compute target triplet and singlet spin-flip states in molecules h-p. To access

the quartet ground state in molecule q, a high-spin hextet reference was used.

We tested functional dependencies of the SOC for formaldehyde and acetone by consider-

ing B3LYP,70 PBE0,71 ωPBEh,72 ωB97X-D,73 and ωB97M-V74, and basis set dependencies

by considering cc-pVTZ and aug-cc-pVTZ. For organic molecules c, d and e-g we used

B3LYP with the cc-pVTZ and cc-pVDZ bases, respectively. Similarly, for diradicals h-k

we tested the effect of the functional choice on SOCs using the cc-pVTZ basis. We used

PBE0 and ωPBEh functionals with the cc-pCVTZ and cc-pVDZ basis sets for molecules l-p

and q, respectively. Cartesian coordinates for all molecules are given in the supplementary

information (SI).
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Fig. 2 shows the relevant molecular orbitals involved in the S1, T1, and T2 excited states.

With the cc-pVTZ basis, irrespective of the choice of the functional, the lowest singlet

state, S1 is of nπ∗ character, and triplet states T1 and T2 are of nπ∗ and ππ∗ character,

respectively. Tables S1 and S2 present the vertical excitation energies calculated using

different functionals with cc-pVTZ and aug-cc-pVTZ as well as the EOM-EE-CCSD values.

The excitation energies computed with different functionals are within 0.3 eV, with S1 lying

between T1 and T2 states. The choice of the basis, cc-pVTZ versus aug-cc-pVTZ, has a

small effect on the excitation energies with a difference of less than 0.06 eV.

Tables I and II show the SOMF SOCCs computed between the ground state, excited

singlet and triplet states in formaldehyde and acetone using the cc-pVTZ and aug-cc-pVTZ

bases with different functionals. The one-electron SOCC computed with cc-pVTZ is reported

in Table S6. In agreement with El-Sayed’s rules,78,79 the SOC is large for transitions involving

a change of the orbital type, i.e., SOC is large between the 1nπ∗/3ππ∗ states and negligible

between 1nπ∗/3nπ∗ states. Both one-electron and SOMF SOCCs are insensitive to the

choice of functionals and basis sets, with a variation of less than 2 cm−1. While the SOCC

between the ground state and 3nπ∗ computed using different functionals matches perfectly

with the EOM-EE-CCSD value, the SOCC between the 1nπ∗ and 3ππ∗ states differ by

about 12 cm−1 and 8 cm−1, with the EOM-CCSD for the one-electron and SOMF parts.

A comparison with 1e-eff values (obtained using effective charges by Gao et al.
28) shows

a close match with SOMF SOCCs in this study, however, the full Breit-Pauli SOCC (full

BP-B3LYP/DALTON) differs by about 10 cm−1 for the 1nπ∗/3ππ∗ transition.
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TABLE I: SOMF SOCCs in formaldehyde and acetone computed with TD-DFT/TDA (B3LYP,

PBE0, ωPBEh, ωB97XD, and ωB97M-V) and EOM-EE-CCSD using cc-pVTZ compared with

values from Ref. 28.
Transition B3LYP PBE0 ωPBEh ωB97 ωB97 EOM-EE- B3LYP/ B3LYP/

X-D M-V CCSD PySOCa Daltonb

Formaldehyde

GS/3nπ∗ 62.45 61.63 61.66 62.12 61.07 61.41 - -
GS/3ππ∗ 0 0 0 0 0 0 - -
1nπ∗/3nπ∗ 0 0 0 0 0 0 0 0
1nπ∗/3ππ∗ 44.68 43.8 43.92 44.13 43.36 51.48 45 54

Acetone

GS/3nπ∗ 59.14 58.5 58.74 59.16 58.41 59.28 - -
GS/3ππ∗ 0.27 0.26 0.25 0.26 0.31 0.24 - -
1nπ∗/3nπ∗ 0.03 0.04 0.04 0.04 0.04 0.05 0 0
1nπ∗/3ππ∗ 43.75 43.18 43.36 43.47 42.72 50.57 44 54

a1e-eff SOCC (B3LYP/TZVP)
bfull Breit-Pauli SOCC (B3LYP/cc-pVTZ) using response theory

TABLE II: SOMF SOCCs in formaldehyde and acetone computed with TD-DFT/TDA (B3LYP,

PBE0, ωPBEh, ωB97XD, and ωB97M-V) and EOM-EE-CCSD using aug-cc-pVTZ compared with

values from Ref. 28.
Transition B3LYP PBE0 ωPBEh ωB97 ωB97 EOM-EE- B3LYP/ B3LYP/

X-D M-V CCSD PySOCa Daltonb

Formaldehyde

GS/3nπ∗ 60.62 60.00 60.03 60.67 59.25 59.52 - -
GS/3ππ∗ 0 0 0 0 0 0 - -
1nπ∗/3nπ∗ 0 0 0 0 0 0 0 0
1nπ∗/3ππ∗ 44. 33 43.47 43.56 43.81 42.93 50.88 45 54

Acetone

GS/3nπ∗ 57.61 57.16 57.40 57.92 56.81 57.63 - -
GS/3ππ∗ 0.17 0.18 0.18 0.20 0.23 0.15 - -
1nπ∗/3nπ∗ 0.02 0.01 0.01 0.01 0.01 0.01 0 0
1nπ∗/3ππ∗ 43.08 42.71 42.96 43.07 42.16 49.92 44 54

a1e-eff SOCC (B3LYP/TZVP)
bfull Breit-Pauli SOCC (B3LYP/cc-pVTZ) using response theory
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Overall, the SOCs computed with B3LYP show good agreement with the SOCs computed

with EOM-EE-CCSD. The differences between RASCI and EOM-CCSD couplings observed

in BOL can be attributed to insufficient treatment of dynamic correlation by RASCI.41

TABLE III: SOCC in BIA and BOL computed with TD-DFT/TDA (B3LYP/cc-pVTZ) compared

with the EOM-CCSD and RASCI values.
Transition B3LYP EOM-CCSDa RASCIb

1e SOMF SOMF SOMF
BIA

GS/3nπ∗ 0.00 0.00 0.00 0.00
GS/3n′π∗ 130.31 82.05 85.79 81.25
GS/3ππ∗ 0.00 0.00 0.00 0.00
1nπ∗/ 3nπ∗ 1.01 0.66 0.17 0.16
1nπ∗/ 3n′π∗ 0.00 0.00 0.00 0.00
1nπ∗/ 3ππ∗ 71.09 45.62 51.84 55.33
1n′π∗/3nπ∗ 0.00 0.00 0.00 0.00
1n′π∗/3n′π∗ 0.68 0.43 0.02 0.45
1n′π∗/3ππ∗ 0.00 0.00 0.00 0.00
1ππ∗/ 3nπ∗ 33.65 21.72 44.19 44.6
1ππ∗/ 3n′π∗ 0.00 0.00 0.00 0.00
1ππ∗/ 3ππ∗ 0.23 0.02 0.13 0.04

BOL

GS/3ππ∗ 0.67 0.01 0.01 0.00
GS/3nπ∗ 43.34 24.77 23.14 18.57
1ππ∗/ 3ππ∗ 0.09 0.02 0.02 0.03
1ππ∗/ 3nπ∗ 24.73 16.22 15.43 7.06
1nπ∗/ 3ππ∗ 20.52 13.34 11.07 3.44
1nπ∗/ 3nπ∗ 2.43 1.41 0.10 0.02

aEOM-CCSD/cc-pVTZ; from Ref. 41
bRASCI/cc-pVTZ; from Ref. 41
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that the reported state numbering does not match ours—apparently, some states were missed

in earlier studies. Tables S4 and S5 give the state labels from Q-Chem calculations, whereas

in Table IV we give both sets of state labels.

TABLE IV: SOCCs in psoralen and its thio derivatives computed with B3LYP/cc-pVDZ and

compared with previous calculations.

B3LYP DFT/MRCIb B3LYPc PBE0d

1el SOMF SOMF 1el-eff full BP
PsoralenOO

GS/T1 1.60 0.03 - - -
GS/T2 0.24 0.03 0.05 1 (GS/T1) 0.07 (GS/T1)
GS/T3 0.58 0.05 - - -
GS/T4 66.09 41.85 50.01 43 33.46
S1/T2 0.97 0.00 0.01 1 (S1/T1) 0.08 (S1/T1)
S1/T4 10.99 6.70 10.22 8 12.45
S2/T2 6.44 4.22 28.1 19 (S3/T1) 9.96 (S2/T1)

PsoralenOS

GS/T1 1.31 0.01 - - -
GS/T2 0.25 0.02 0.04 1 (GS/T1) 0.05 (GS/T1)
GS/T3 99.15 69.48 78.53 70 (GS/T4) 71.45 (GS/T4)
GS/T4 0.69 0.30 - - -
S1/T2 1.01 0.00 0.04 0 (S1/T1) 0.08 (S1/T1)
S1/T3 38.13 34.51 35.6 37 (S1/T4) 45 (S1/T4)
S2/T2 35.36 27.49 11.13 10 (S2/T1) 22.81 (S2/T1)

PsoralenSO

GS/T1 1.12 0.13 0.04 0 0.03
GS/T2 1.18 0.22 - - -
GS/T3 0.74 0.20 - - -
GS/T4 64.76 40.89 49.44 42 (GS/T5) 31.70
S1/T1 1.03 0.03 0.01 1 0.08
S1/T4 6.34 4.12 6.21 4 (S1/T5) 5.99
S3/T1 28.00 17.93 25.88 16 13.74 (S2/T1)

bDFT-MRCI/TZVP; Ref. 83
c1e-eff SOCC with TD-DFT/B3LYP/TZVP, Ref. 28; reported state labels are given in

parenthesis
dfull Breit-Pauli SOCC with TD-DFT/PBE0/TZVP, Ref. 25; reported state labels are

given in parenthesis

Table IV shows the 1el and SOMF SOCCs for psoralen compounds. For all three pso-

ralen molecules, most of the computed SOMF SOCCs agree with the 1e-eff-B3LYP values

(computed with PySOC) within 3 cm−1. Only the S2/T2 couplings in psoralenOO and pso-

ralenOS show the largest deviation from the 1e-eff treatment, but agree well with the full

Breit-Pauli treatment. For the larger SOCCs that are greater than 1 cm−1, DFT/MRCI val-
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ues are larger than our SOMF B3LYP values, while the couplings that are less than 1 cm−1

agree within 0.1 cm−1. While the couplings between the ground state and excited triplets are

typically overestimated in this work with respect to the full Breit-Pauli treatment (computed

with MolSOC), those between singlet and triplet excited states are usually smaller. Overall,

we observe a good qualitative agreement between our values and the SOCCs computed with

previous studies.

B. Spin-orbit couplings calculated with SF-TD-DFT

1. CH2, NH
+
2 , SiH2, and PH+

2

In these molecules, the description of the low-lying states using standard Kohn-Sham DFT

and TD-DFT is inadequate because of the diradical character of the singlet states84. This

problem can be circumvented by using SF-TD-DFT with a high-spin triplet reference55. In

contrast to other types of organic diradicals, methylene-like diradicals are highly sensitive

to the functional employed, as documented in previous SF-TD-DFT studies51,54. Specifi-

cally, only non-collinear SF-TD-DFT (NC-SF-TD-DFT) can yield accurate results for these

species, and only with functionals that do not use Becke’s exchange. The best results

were obtained with the functionals from the PBE family. Benchmark calculations on other

classes of molecules have also shown superior performance of NC-SF-TD-DFT with PBE0

and ωPBEh.58,62 Following previous studies,35,36,41 we computed SOCCs between the lowest

triplet (3B2) and singlet (1A1) states of these diradicals (CH2, NH
+
2 , SiH2, and PH+

2 ). We

used NC-SF-TD-DFT and considered B3LYP, PBE0, ωPBEh, ωB97X-D, and ωB97M-V.

TABLE V: SOCCs (cm−1) between 3B2 and 1A1 states in CH2, NH
+
2 , SiH2, and PH+

2 computed

using SOMF with NC-SF-TD-DFT.

Methoda CH2 NH+
2 SiH2 PH+

2

PBE0 10.36 15.15 68.67 135.38
ωPBEh 10.32 15.03 68.93 135.66
B3LYP 12.29 19.83 75.69 150.12
ωB97x-D 12.85 18.11 75.20 157.21
ωB97M-V 13.16 20.20 79.73 155.90
EOM-SF-CCSDb 10.86 18.26 56.74 119.97

acc-pVTZ basis
bFrom Ref. 36

Table V presents the SOMF SOCCs in these diradicals using NC-SF-TD-DFT, com-



17

paring them with SOMF SOCCs obtained with EOM-SF-CCSD.36 In contrast to TD-DFT

calculations of formaldehyde and acetone discussed above, here we observed a strong func-

tional dependence, with PBE0 and ωPBEh performing similarly and B3LYP, ωB97x-D, and

ωB97M-V showing small differences in couplings with each other. For CH2, SiH2, and PH+
2 ,

PBE0 and ωPBEh compare well with EOM-SF-CCSD, with differences increasing with an

increase in atomic number, 0.5 cm−1 in the case of CH+
2 and 16 cm−1 in the case of PH+

2 .

Overall, we confirm previous recommendation54 to use PBE0 and ωPBEh in NC-SF-TD-

DFT calculations—as these functionals yield accurate estimates of both energy differences

between the states and the respective SOCCs.

2. BH, AlH, HSiF, HSiCl, HSiBr

Next, we consider closed-shell molecules with moderate diradical character, BH, AlH,

HSiF, HSiCl, and HSiBr, previously studied by Christiansen et al. using linear response

CCSD (LR-CCSD, equivalent to EOM-EE-CCSD for the energies and slightly different for

properties) and Epifanovsky et al. using EOM-SF-CCSD/EOM-EE-CCSD methods.32,35

Here, we consider SOCs between the 11Σ+ and 13Π states for BH, AlH, and between 11A
′

and 13A
′′

states for silylenes HSiX, X = F, Cl, Br. We use NC-SF-TD-DFT with PBE0/cc-

pCVTZ and ωPBEh/cc-pCVTZ. Table V shows the results for these molecules. As one

can see, there is an excellent agreement between SOCCs computed using PBE0/ωPBEh

and EOM-SF-CCSD, with differences less than 3 cm−1 (except for HSiBr for which we

observe 15 cm−1 and 31 cm−1 difference between PBE0 and ωPBEh with EOM-SF-CCSD

respectively). Similarly, there is a good agreement between the SOCCs computed with

LR-CCSD and PBE0/ωPBEh.

3. Spin reversal energy barrier in Fe(III) SMM

Finally, we consider a mononuclear Fe(III) SMM, (PMe3)Fe(III)Cl3, which is reported

to have the highest effective energy barrier Ueff= 81 cm−1 among Fe(III)-based SMMs.69

This energy barrier for spin inversion arises because of the splitting of the ground state

due to SOC. The experimental spin-reversal barrier is U = 100, as computed from the

magnetic anisotropy (D = −50 cm−1) and ground-state spin (S = 3/2), with U = |D|(S2 −
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TABLE VI: SOCCs (cm−1) in BH, AlH, HSiF, HSiCl, and HSiBr computed using SOMF with

NC-SF-TD-DFT (PBE0/ωPBEh;cc-pcVTZ).

Method BH AlH HSiF HSiCl HSiBr
11Σ+/ 13Π 11Σ+/ 13Π 11A

′

/13A
′′

11A
′

/13A
′′

11A
′

/13A
′′

PBE0 4.39 34.98 79.52 106.85 267.78
ωPBEh 4.41 35.17 79.87 105.47 252.40

EOM-SF-CCSDa 4.10 32.94 78.28 108.43 283.47
LR-CCSDb 3.48c 27.06c 71.10d 99.38d 270.93d

aEOM-CCSD/cc-pCVTZ, from Ref. 35
bLR-CCSD, from Ref. 32

caug-cc-pVTZ
dANO2 basis.

1/4).69 Alessio and Krylov used the EOM-SF-CCSD treatment to calculate the spin reversal

energy barrier and magnetic properties of this complex.85 Following this study, here we

compute the energy barrier using the spin-orbit coupling obtained with SOMF NC-SF-TD-

DFT treatment.

TABLE VII: Energy gaps (∆E, in cm−1) and < S2 > of the target spin-flip states obtained from

the high spin hextet reference state computed with PBE0, ωPBEh/cc-pVDZ.

Ref SF1 SF2 SF3 SF4 SF5

PBE0 < S2 > 8.76 3.84 3.85 8.74 3.83 3.82
∆E - 0 398 553 4122 4471

ωPBEh < S2 > 8.76 3.82 3.82 8.77 3.81 3.82
∆E - 0 344 715 4116 4495

EOM-SF-CCSDa < S2 > 8.75 3.81 3.81 8.73 3.83 3.83
∆E - 0 92 2074 7245 7447

aEOM-SF-CCSD/cc-pVDZ, from Ref. 85.

For this complex, we use PBE0 and ωPBEh functionals to access the quartet ground

state (S = 3/2) and other closely lying excited states by spin-flip excitations from a high-

spin reference of S = 5/2. We obtain three spin-flip states (see Table VII) lying within 715

cm−1; SF1 and SF2 are quartet states while SF3 is a hextet state. This differs from the EOM-

SF-CCSD results, where SF3 is about 2000 cm−1 above SF2.
85 We then proceed to compute

the spin reversal energy barrier with 2, 3, and 5 low-lying SF states by including the SOC

effects using the state-interaction procedure.36 The inclusion of only two states is insufficient

to characterize the energy barrier with SF-TD-DFT (see Table VIII), however, the energy

barrier calculated with 3 states gives a value of 97 (PBE0) cm−1 and 100 (ωPBEh) cm−1,

in excellent agreement with the experimental estimate of 100 cm−1. The energy barrier
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operator by the application of Wigner–Eckart’s theorem to reduced one-particle density ma-

trices. We used NTO analysis to characterize the nature of the interacting states. We tested

functional and basis set dependencies for formaldehyde and acetone with TD-DFT using

B3LYP, PBE0, LRC-ωPBEh, ωB97X-D, and ωB97M-V functionals and the cc-pVTZ and

aug-cc-pVTZ basis sets. The results demonstrate that SOCCs are rather insensitive to the

choice of functionals and basis sets, with a variation of less than 2 cm−1. In agreement with

El-Sayed’s rules, SOCs are large for transitions involving a change of the orbital type. We

validated our SOMF SOCC results by comparisons with the reference values from TD-DFT,

EOM-EE-CCSD, RASCI, DFT/MRCI, EOM-SF-CCSD, and LR-CCSD studies. Calcula-

tions for diradicals with NC-SF-TD-DFT show strong functional dependencies, with PBE0

and ωPBEh performing similar to EOM-SF-CCSD, and B3LYP, ωB97X-D, and ωB97M-

V performing similar to each other; this is in agreement with previous benchmark studies

in which energy gaps and state characters were considered.54,86 Using the state-interaction

approach, we computed the spin-reversal energy barrier in Fe(III) SMM with PBE0 and

LRC-ωPBEh, which matches the experimental estimate when the three lowest SF states are

included in the calculation.

This new implementation extends the scope of computational tools for modeling spin-

forbidden processes in large molecular systems, as illustrated by our recent study in which

we applied this SF-TD-DFT SOC code to describe the magnetic behavior of nickelocene

molecular magnet adsorbed on the MgO(001) surfaces using the state-interaction scheme.59
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