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We present a new implementation for computing spin-orbit couplings (SOCs)
within time-dependent density-functional theory (TD-DFT) framework in the stan-
dard spin-conserving formulation as well in the spin-flip variant (SF-TD-DFT). This
approach employs the Breit-Pauli Hamiltonian and Wigner-Eckart’s theorem ap-
plied to the reduced one-particle transition density matrices, together with the
spin—orbit mean-field (SOMF) treatment of the two-electron contributions. We use
state-interaction procedure and compute the SOC matrix elements using zero-order
non-relativistic states. Benchmark calculations using several closed-shell organic
molecules, diradicals, and a single-molecule magnet (SMM) illustrate the efficiency
of the SOC protocol. The results for organic molecules (described by standard TD-
DFT) show that SOCs are insensitive to the choice of the functional or basis sets,
as long as the states of the same characters are compared. In contrast, the SF-TD-
DFT results for small diradicals (CHg, NH;, SiHs, and PH;“) show strong functional
dependence. The spin-reversal energy barrier in a Fe(III) SMM computed using non-
collinear SF-TD-DFT (PBEO, wPBEhL/cc-pVDZ) agrees well with the experimental

estimate.

I. INTRODUCTION

Spin-orbit coupling (SOC) is a relativistic effect arising from the interaction of the orbital

angular momentum of an electron with its intrinsic spin angular momentum. SOC plays



a crucial role in various chemical phenomena. For example, SOC determines magnetic
properties of single-molecule magnets (SMMs) and rates of spin-forbidden processes' ¢ such
as phosphorescence, intersystem crossing, and, more generally, nonadiabatic dynamics of
molecules and materials.” ! In SMMs, it leads to magnetic anisotropy, thereby affecting the
spin-reversal energy barrier and magnetic relaxation. Although SOC is much larger in heavy
atoms, it also plays a role in systems composed of light atoms, such as organic molecules.!?

An accurate quantum-mechanical treatment of SOC is required in many applications.'? '8
SOC is commonly computed using the state interaction scheme—often called a perturbative
approach—in which a small number of zero-order non-relativistic states are used to compute
the matrix elements of the Breit-Pauli Hamiltonian, followed by the diagonalization of the
resulting matrix to yield the spin-—orbit coupled states and energies.!®?® The Breit-Pauli
Hamiltonian contains one- and two-electron parts, with the latter being about 50 % of the
total contribution in light molecules. The costs of computing the two-electron contribution
can be be significantly reduced using an effective one-electron spin—orbit mean-field (SOMF)
approximation.?! 23

Various implementations employing full and approximate Breit-Pauli SOC opera-
tors have been reported for density-functional theory (DFT),?42% density-functional the-
ory /multireference configuration interaction (DFT/MRCI),3%3! coupled-cluster (CC),3?
equation-of-motion CC (EOM-CC),33 3¢ multireference CC (MRCC),3” complete active-
space self-consistent field (CASSCF),'93839 restricted active space self-consistent field
(RASSCF),% restricted active space configuration interaction (RASCI),*t MRCL* and
density-matrix renormalization group (DMRG)**4* methods.

In contrast to matrix elements describing non-relativistic transition properties—such as
nonadiabatic couplings or transition dipole moments—SOCs are tensorial quantities requir-
ing calculations between all the components of the interacting multiplets. Wigner-Eckart’s

theorem*® 47

allows one to circumvent the explicit calculation of all multiplet components
by providing a recipe for generating the full set of the SOC matrix elements from just one
spin projection, for example, the My = 0 component. Using this strategy, Pokhilko et al. de-
veloped a framework for computing SOCs by the application of Wigner-Eckart’s theorem to
the reduced one-particle density matrices.?¢ The efficiency of this protocol was illustrated by

application to the EOM-CC wave-functions. Formulated in spin-orbital representation, this

approach is ansatz-agnostic and can be applied to any electronic structure method that can



provide transition density matrices. Following this work, SOCs for frozen-core core-valence
separated EOM-CCSD (fe-CVS-EOM-CCSD),*® RASCI, and RAS-spin-flip (RAS-SF)41:49
wave functions were implemented.

Here, we extend this algorithm3® to compute SOCs using time-dependent DFT (TD-
DFT)® in its standard spin-conserving and spin-flipping (SF-TD-DFT)? % variants within
the Tamm-Dancoff approximation (TDA).5® Owing to its favorable computational scaling,
TD-DFT is often employed to calculate excited states in extended systems. Implementations
of SOCs between the TD-DFT states are available in program packages such as MolSOC?®
and PySOC?8, however, the SOCs for SF-TD-DFT have not yet been reported. The SF
approach extends Kohn-Sham TD-DFT to treat certain types of strong correlation, such as
bond-breaking, conical intersections, and systems with two or more unpaired electrons.?>57 59
This work describes the implementation of SOCs using TD-DFT and SF-TD-DFT within

60,61 and presents benchmark results for molecules

the Q-Chem electronic structure package
featuring different types of electronic structure: e.g., closed-shell organic molecules, dirad-
icals, and a molecular magnet. We compare the results obtained with different DFT and
wave-function-based methods and assess the effect of specific density functionals and ba-
sis sets on the SOC. The paper is organized as follows. Section II presents the theory of
TD-DFT/TDA and SF-TD-DFT/TDA, and the key equations for the calculation of the
Breit-Pauli SOC matrix elements using Wigner—Eckart’s theorem. The computational de-
tails are given in Section III. Sections IV A and IV B provide the benchmark results obtained
using TD-DFT and SF-TD-DFT, respectively. Our concluding remarks are given in Section

V.

II. THEORY
A. TD-DFT/TDA and SF-TD-DFT/TDA

Within TDA, TD-DFT treatment involves solving the following Hermitian eigenvalue
equation:

AX = XQ, (1)

with
A= 5ab5z’j (Ea - 62‘) + (ia|jb) + (ia!fmcljb) ) (2)



where indexes 7, j denote the occupied orbitals, a, b denote the virtual orbitals, ¢, and ¢;
are the orbital energies of the virtual and occupied Kohn-Sham orbitals, respectively, f.. is
the adiabatic exchange-correlation kernel, €2 is a diagonal matrix with excitation energies on
the diagonal, X contains the eigen-vectors of A, and the two-electron integrals are given in
Mulliken’s notation. TD-DFT/TDA yields excitation energies very close to the correspond-
ing (linear response) TD-DFT excitation energies for closed- and open-shell molecules.? In
SF-TD-DFT, a high-spin reference is used to describe target multi-configurational lower-spin

states by spin-flipping excitations as:
5,5—
\:[IM S 1 RMsz_l\I[MS S (3)

where the spin-flip operator ]%Msz_l generates singly excited determinants in which the spin
of one electron is flipped with respect to the high-spin reference.

In the standard collinear formulation, the target spin-flipped determinants can only be
coupled by the Hartree-Fock exchange; hence, in the original SF-TD-DFT method func-
tionals with high fractions of the exact exchange—such as B5050LYP—were employed®!.
This limitation was overcome by using non-collinear formulation.’?>* Previous benchmark
studies for organic diradicals®®, binuclear Cu(I1)%? and Fe(II1)*® SMMs illustrated robust
performance of the non-collinear SF-TD-DFT, especially when combined with the func-
tionals from the PBE family. Here, we use the best performing functionals to assess the

performance of the SF-TD-DFT for computing SOCs in selected diradicals and in a Fe(III)
SMM.

B. Spin—orbit Hamiltonian

Originally derived by Pauli,%3%* the Breit-Pauli Hamiltonian describes the relativistic
effects. In particular, it can be used to evaluate spin—orbit matrix elements between non-
relativistic electronic states. In atomic units, the spin—orbit part of the Breit-Pauli Hamil-

tonian has the following form:

o | R - S BB a1



where c is the speed of light, r; and p; denote the coordinate and momentum operators of
the ith electron respectively, s(i) is the spin operator, and Rx and Zx are the coordinates
and the charge of the Kth nucleus. The first term, the one-electron part of the Breit-
Pauli Hamiltonian, is proportional to the nuclear charge and, therefore, dominates in heavy
elements. The second term, the two-electron part of the Hamiltonian, describes spin-same-
orbit and spin-other-orbit interactions; it is significant in molecules composed of light atoms,
such as typical organic molecules.?’ Full calculations of SOC involves computation of one-
and two-particle transition density matrices and contracting them with appropriate spin-
orbit integrals.®® Fortunately, the cost of the evaluation of the two-electron contribution can
be significantly reduced by invoking spin—orbit mean-field (SOMF) approximation.?! The
SOMF approximation amounts to considering only the contributions from the separable part
of the two-particle density matrix,?> which captures most of the effect leading to insignificant
erTors.

The symmetry of the one-electron term in Eq. (4) is such that one can write down the
second-quantized form of it using triplet excitation operators. Here, we use the irreducible
spherical tensor operators to represent the SOMF Hamiltonian. The triplet excitation op-

erators are given in the second quantization as:

Tt = —al,aqs, (5)

1
7.0 = 7 (a;maqa — a:)ﬁaq[g) : (6)
T = al g, (7)

where the T1*! are spin-flipping (change the spin-projection) and T° conserves the spin

projection. Using these operators, the SOMF Hamiltonian can be written as:

1
SOMF SOMF1,—1 SOMF 71,0 SOMF 1,1
HSOME — =3 [BEOMET 4 BSONPTR0 4 SO (8)

2 L+,pq 2,pq L_.,pq
Pq

where h%?l\ﬁ are constructed using the sum of one-electron and mean-field contributions:



In the above expression, the two-electron spin—orbit integrals are contracted with the density
matrix of the reference state (hence, mean-field).

Through the application of Wigner—Eckart’s theorem to the triplet excitation operators,
Eq. (8) can be implemented as:

<I,S/M/|T]}(}M|]//SHM”> —_ <S//M//; 1M|S/M/> <],S/||Tplq’||1//8”> ’ (11>

where |I'S’M’) denotes the I'th electronic state with spin S” and spin-projection M’ respec-
tively, (S”M";1M|S"M’) is a Clebsh-Gordan coefficient, and (I'S"||T,;|[1”S") is a spinless
triplet transition density matrix (denoted as wu,, below). wu,, can be obtained*® from the

one-particle transition density matrix between the states with the same spin projection as:

. 1 _ _
g = {ISNT'S") = 5 (pged™ = o) /(S"M10ISM), - (12)

where the transition density matrix ,, is defined as:
Vog = (I'S'M|ala,|I"S" M) . (13)
The SOC matrix elements between any two spin-states can then be obtained as:

1
<[/S/M/|HSOMF|I//S//M//> _ 5 Z [hSOMF <SHM”; 1 — 1‘S/M/> + \/§hSOMF <S”M”; 10|S’M’> N

L4 ,pq 2,pq
Pq

hSOMF <S//M//; 11|S/M/> Upg-

L_,pq

(14)

We use the u,, matrix between spin-multiplets |S’M’) and |S”M’) to compute the entire set
of the SOC matrix elements for all pairs of the interacting spin-states: —S’ < M’ < S’ and
—S" < M"” < S”. Further details of the theory can be found in Ref. 36.

The key quantity involved in the calculation of inter-system crossing rates and oscillator
strengths is the SOC constant (SOCC). While couplings between different multiplet compo-

nents are dependent on spatial orientation, the SOCC is rotationally invariant and can be



computed by taking the sum over all projections as:

SOCC = | > [(S'M'|HSO|S"M") |, (15)

M/,MII

In this work, we use the SOCC values to benchmark with those previously available in the

literature.

III. COMPUTATIONAL DETAILS

Fig. 1 shows the structures of the molecules used for benchmarking in this work; below,
we refer to the molecules by the letters shown in the figure.

Molecules a-g are representative closed-shell organic molecules. Their excited states and
SOCs are calculated using standard TD-DFT/TDA. Ground-state optimized geometries of
formaldehyde and acetone (molecules a and b, at wB97XD/ TZVP) and psoralens (molecules
e-g, at PBEQ/TZVP) are taken from Ref. 28, and biacetyl (BIA) and (2Z)-2-buten-2-ol
(BOL) (molecules ¢ and d, at B3LYP /cc-pVDZ) are taken from Ref. 41.

Molecules h-q feature electronic degeneracies of the frontier orbitals and, therefore, can-
not be described by standard Kohn-Sham TD-DFT. To compute relevant spin-states in this
set, we use the non-collinear formulation of SF-TD-DFT/TDA. For diradicals h-k we use
equilibrium triplet-state geometries (°By), following the previous studies.®® % Experimental
structures are used for molecules 1-p, taken from Ref. 32, and the structure of the trigonal
bipyramidal Fe(III) SMM (molecule q) is taken from Ref. 69. High-spin triplet reference
was used to compute target triplet and singlet spin-flip states in molecules h-p. To access
the quartet ground state in molecule q, a high-spin hextet reference was used.

We tested functional dependencies of the SOC for formaldehyde and acetone by consider-
ing BSLYP,” PBE0,”" wPBEh,” wB97X-D,”™ and wB97M-V™ and basis set dependencies
by considering cc-pVTZ and aug-cc-pVTZ. For organic molecules ¢, d and e-g we used
B3LYP with the cc-pVTZ and cc-pVDZ bases, respectively. Similarly, for diradicals h-k
we tested the effect of the functional choice on SOCs using the cc-pVTZ basis. We used
PBEO and wPBEh functionals with the cc-pCVTZ and cc-pVDZ basis sets for molecules 1-p
and q, respectively. Cartesian coordinates for all molecules are given in the supplementary

information (SI).
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FIG. 1: Molecules studied in this work. BIA and BOL denote biacetyl and (2Z)-2-buten-2-ol,
respectively.

To assign the state characters, we used natural transition orbitals (NTOs), the respective
leading singular values (o), and NTO participation ratio (PRnto),”” " which defines the
number of NTO pairs necessary to describe the excitation. o? gives the weights of the elec-
tronic transitions between the NTOs. Using dominant excitations, NTOs and descriptors,
we carefully compare the states obtained in this work with those reported in previous studies
in order to make meaningful comparisons of the respective SOCs.

We use the following acronyms for SOCs taken from previous studies: ‘le-eff” for SOCs
obtained using effective charges with the one-electron part of the Breit-Pauli Hamiltonian,
‘1e’ for SOCs computed with only the one-electron part of the Breit-Pauli Hamiltonian,
‘SOME” for SOCs obtained using spin—orbit mean-field approximation, ‘full BP’ for SOCs
obtained using the full Breit-Pauli Hamiltonian.

60,61

All calculations were performed using the Q-Chem software in which the presented



approach was implemented and released in version 6.0.

IV. RESULTS AND DISCUSSION
A. Spin—orbit couplings in selected organic molecules
1. Formaldehyde and acetone

We first consider carbonyl compounds formaldehyde and acetone and investigate the ef-
fect of the functional and basis sets on the SOC. We use hybrid functionals (B3LYP, PBEOQ)
and range-separated hybrid functionals (LRC-wPBEh, wB97X-D, and wB97M-V) and the
cc-pVTZ and aug-cc-pVTZ basis sets. The results for formaldehyde and acetone have been
reported previously by Gao et al. (employing the one-electron Breit-Pauli operator with
an effective charge approximation) using TD-DFT and TD-DFTB,* by de Carvalho et al.
(using one-electron Breit-Pauli operator) using TD-DFT,?” by Dinkelbach et al. (using
SOMF) using TD-DFT,? and Liu et al. (‘le-eff’) using semiempirical orthogonalization-
corrected methods (OMx) combined with configuration interaction with single excitations
(CIS) OMx/CIS and LR-TD-DFT. Below, we compare the spin—orbit coupling constants
from PySOC by Gao et al. with our TD-DFT/TDA calculations.?® We also perform calcu-
lations using the highly accurate EOM-EE-CCSD method, which we use as a reference for

this study.
Formaldehyde
Acetone
HOMO -1 (m) HOMO (n) LUMO (™)

FIG. 2: Canonical Kohn-Sham molecular orbitals (m, n, and 7*) of formaldehyde and acetone (the
shapes of the NTOs from the excited-state calculations are very similar); B3LYP /cc-pVTZ.
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Fig. 2 shows the relevant molecular orbitals involved in the S;, Ty, and Ts excited states.
With the cc-pVTZ basis, irrespective of the choice of the functional, the lowest singlet
state, Sy is of nm* character, and triplet states T; and Ty are of n7* and 7w7n* character,
respectively. Tables S1 and S2 present the vertical excitation energies calculated using
different functionals with cc-pVTZ and aug-cc-pVTZ as well as the EOM-EE-CCSD values.
The excitation energies computed with different functionals are within 0.3 eV, with S; lying
between T; and T, states. The choice of the basis, cc-pVTZ versus aug-cc-pVTZ, has a
small effect on the excitation energies with a difference of less than 0.06 eV.

Tables I and IT show the SOMF SOCCs computed between the ground state, excited
singlet and triplet states in formaldehyde and acetone using the cc-pVTZ and aug-cc-pVTZ
bases with different functionals. The one-electron SOCC computed with cc-pV'TZ is reported
in Table S6. In agreement with El-Sayed’s rules,”®™ the SOC is large for transitions involving
a change of the orbital type, i.e., SOC is large between the 'n7*/37w7* states and negligible
between 'nm*/nm* states. Both one-electron and SOMF SOCCs are insensitive to the
choice of functionals and basis sets, with a variation of less than 2 cm~!. While the SOCC
between the ground state and *n7* computed using different functionals matches perfectly
with the EOM-EE-CCSD value, the SOCC between the 'nz7* and 3n7* states differ by
about 12 cm™! and 8 cm™!, with the EOM-CCSD for the one-electron and SOMF parts.
A comparison with le-eff values (obtained using effective charges by Gao et al.?®) shows
a close match with SOMF SOCCs in this study, however, the full Breit-Pauli SOCC (full
BP-B3LYP/DALTON) differs by about 10 cm™! for the 'nz*/3>77* transition.
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TABLE I: SOMF SOCCs in formaldehyde and acetone computed with TD-DFT/TDA (B3LYP,
PBEO, wPBEh, wB97XD, and wB97M-V) and EOM-EE-CCSD using cc-pVTZ compared with
values from Ref. 28.
Transition B3LYP PBEO wPBEh wB97 wB97 EOM-EE- B3LYP/ B3LYP/
X-D M-V CCSD PySOC* Dalton®

Formaldehyde
GS/3nm*  62.45 61.63 61.66 62.12 61.07 61.41 - -
GS/3rr* 0 0 0 0 0 0 - -
nm* Bnm* 0 0 0 0 0 0 0 0
Inm* 3rr* 44.68 43.8  43.92 44.13 43.36  51.48 45 54
Acetone

GS/?nm*  59.14 585 58.74 59.16 58.41  59.28 - -
GS/3rr* 0.27 0.26 0.25 0.26 0.31 0.24 - -
Inm*3nm* 0.03  0.04 0.04 0.04 0.04 0.05 0 0
Ing* 3rr* 4375 43.18 43.36 43.47 42.72  50.57 44 54
TTe-off SOCC (B3LYP/TZVDP)
®full Breit-Pauli SOCC (B3LYP/cc-pVTZ) using response theory

TABLE II: SOMF SOCCs in formaldehyde and acetone computed with TD-DFT/TDA (B3LYP,
PBEO, wPBEh, wB97XD, and wB97M-V) and EOM-EE-CCSD using aug-cc-pVTZ compared with
values from Ref. 28.
Transition B3LYP PBEO wPBEh wB97 wB97 EOM-EE- B3LYP/ B3LYP/
X-D M-V CCSD PySOC* Dalton®

Formaldehyde
GS/3nm*  60.62 60.00 60.03 60.67 59.25  59.52 - -
GS/3rr* 0 0 0 0 0 0 - -
Ing* Pnz* 0 0 0 0 0 0 0 0
Inm* 3pn* 44. 33 43.47 4356 43.81 42.93  50.88 45 54
Acetone

GS/3n7T* 57.61 57.16 57.40 57.92 56.81 57.63 - -
GS/37T7T* 0.17 0.18 0.18 0.20 0.23 0.15 - -
1n7T*/3n7r* 0.02 0.01 0.01 0.01 0.01 0.01 0 0
1n7T*/37T7T* 43.08 42.71 4296 43.07 42.16  49.92 44 54
TTe-off SOCC (B3LYP/TZVD)
bfull Breit-Pauli SOCC (B3LYP/cc-pVTZ) using response theory
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2. Biacetyl (BIA) and (2Z)-2-buten-2-ol (BOL)

Our next benchmark set comprises a diketone (BIA) and conjugated alcohol (BOL) pre-
viously studied by Carreras et al. using the RASCI and EOM-CCSD methods with SOMF
approximation.*! Fig. 3 shows the relevant frontier MOs: 7 , n, and 7*. The LUMO in BIA
and LUMO+1 in BOL are of 7n* character, whereas the HOMO in BIA is of n type and in
BOL it is of w character. Following this MO energy order, the lowest singlet and triplet

states in BIA are of n7* character, in BOL, they are of n#* character.

SR X

HOMO -2 (1) HOMO -1 (n") HOMO (n) LUMO (r*)

e & H

HOMO -1 (n) HOMO (1) LUMO +1 (%)

FIG. 3: Canonical Kohn-Sham molecular orbitals (m, n, 7*) of BIA and BOL; B3LYP/cc-pVTZ

Table S3 presents the vertical excitation energies, and NTO descriptors of low-lying singlet
and triplet excited states computed using BSLYP /cc-pVTZ in BIA and BOL. Except for
m* state (Sg state) of BIA for which PRy1o=2.08, all other singlet and triplet states have
PRxto close to 1, meaning that all computed excited states, except for S¢ in BIA, can
be described by a single excitation. Table III shows the one-electron and SOMF SOCCs
computed using B3LYP, comparing the results with EOM-CCSD and RASCI couplings.*!
The trends in SOCCs follow El-Sayed’s rules,”®™ featuring large SOCCs between states of
different orbital characters, such as 'w7* /*n7* and 'n7* />77* transitions. In BIA, the SOMF
SOCC between the '77* and *nn* states computed with B3LYP differs by about 22 cm™!
from those evaluated by the EOM-CCSD and RASCI methods. This can be explained by the
different character of the Sg state—at the B3LYP level, this state shows configuration mixing
whereas the EOM-CCSD and RASCI wave-function retain pure '7n* character. All other
computed SOMF DFT couplings are within 6 em ! from the EOM-CCSD SOMF couplings.
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Overall, the SOCs computed with BSLYP show good agreement with the SOCs computed

with EOM-EE-CCSD. The differences between RASCI and EOM-CCSD couplings observed

in BOL can be attributed to insufficient treatment of dynamic correlation by RASCI.*!

TABLE III: SOCC in BIA and BOL computed with TD-DFT/TDA (B3LYP/cc-pVTZ) compared
with the EOM-CCSD and RASCI values.
Transition B3LYP

EOM-CCSD® RASCT®

le SOMF  SOMF SOMF
BIA
GS/>nr* 0.00  0.00 0.00 0.00
GS/3n/7*  130.31 82.05 85.79 81.25
GS/3mm* 0.00  0.00 0.00 0.00
nmg*/ 3nr* 1.01  0.66 0.17 0.16
nm*/ 3n/7* 0.00  0.00 0.00 0.00
ng*/ 3xr* 71.09  45.62 51.84 55.33
n/z* Bnr* 0.00  0.00 0.00 0.00
n'm* 30’7 0.68  0.43 0.02 0.45
n'm* 3e* 0.00  0.00 0.00 0.00
Yrm*/ 3nr* 33.65 21.72 44.19 44.6
Lre*/ 3n/7* 0.00  0.00 0.00 0.00
Yre*/ 3pm* 0.23 0.02 0.13 0.04
BOL

GS/3mm* 0.67 0.01 0.01 0.00
GS/3nm* 43.34 24.77 23.14 18.57
Yrem*/ 3em* 0.09  0.02 0.02 0.03
Yren*/ 3nm* 24.73  16.22 15.43 7.06
Inr*/ Srat 2052 1334 11.07 3.44
nm*/ 3nr* 243 1.41 0.10 0.02

“EOM-CCSD/cc-pVTZ; from Ref. 41

"RASCI/cc-pVTZ; from Ref. 41
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8. Psoralens

Psoralens are photosensitizers used in pharmaceutical applications.®” They are naturally
occurring in some plants, such as Heracleum mazimum (commonly known as cow parsnip)®.
Contained in the skin of the plant, psoralens are responsible for the ability of cow parsnip to
cause skin rashes and blistering, initiated by sunlight (phytophotodermatitis). An important
aspect of psoralens’ pharmacological action is that it can react with DNA, and the reaction,
initiated by UV light, proceeds in the triplet state.®?

SOCs in psoralen and its thio-derivatives (psoralenOO, psoralenOS, and psoralenSO)
have been characterized theoretically in previous studies by Tatchen et al. (SOMF) using
DFT/MRCL? by Chiodo and Russo (full Breit-Pauli) using TD-DFT,?® and, more recently,
by Gao et al. (le-eff) using TD-DFT and TD-DFTB,?® and by Liu et al. (le-eff) using
OM2/CIS and TD-DFT.! Here, we use B3LYP/cc-pVDZ and compare the results with
some of the previously available SOCCs between low-lying singlet and triplet states. Fig.
4 shows the frontier molecular orbitals involved in the low-lying excited states for psoralen
compounds. In all three compounds, the HOMO-2 is of n type, HOMO-1 and HOMO are
of m type, and LUMO, LUMO+1, and LUMO+2 are 7* orbitals

PsoralenOOr
G 98 e e T S
L PsoralenOS .
Gt IR AN® 6 e S5
PsoralenSO
G Sy RO Ny N S
HOMO-2(n) HOMO-1(m) HOMO (1) LUMO (r*) LUMO+1(7*) LUMO+2 (")

FIG. 4: Canonical Kohn-Sham molecular orbitals (7, n, 7*) of psoralen compounds; B3LYP/cc-
pVDZ.

Tables S4 and S5 show the vertical excitation energies and NTO analysis of the low-

lying singlet and triplet excited states. To make meaningful comparisons with previous

25,28,83

studies , we carefully analyzed excited-state characters in our calculations. We found
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that the reported state numbering does not match ours—apparently, some states were missed
in earlier studies. Tables S4 and S5 give the state labels from Q-Chem calculations, whereas

in Table IV we give both sets of state labels.

TABLE IV: SOCCs in psoralen and its thio derivatives computed with B3LYP/cc-pVDZ and
compared with previous calculations.

B3LYP DFT/MRCI® B3LYP® PBE0?
lel SOMF SOMF lel-eff full BP
PsoralenOO
GS/T; 1.60 0.03 - - -
GS/Ty 0.24 0.03 0.05 1 (GS/Ty) 0.07 (GS/Ty)
GS/T3 0.58 0.05 - - -
GS/T,4 66.09 41.85 50.01 43 33.46
S1/Ty 0.97 0.00 0.01 1(S:/Ty) 0.08 (S1/Ty)
S;/T4 10.99 6.70 10.22 8 12.45
So/Ty  6.44 4.22 28.1 19 (S3/Tq) 9.96 (S2/T4)
PsoralenOS
GS/T; 1.31 0.01 - - -
GS/Ty 0.25 0.02 0.04 1 (GS/Ty) 0.05 (GS/Ty)
GS/T5 99.15 69.48 78.53 70 (GS/Ty) 71.45 (GS/Ty)
GS/T4 0.69 0.30 - - -
S1/Ty 1.01 0.00 0.04 0 (Sy/T1) 0.08 (S;/Th)
S:/T3 38.13 34.51 35.6 37 (S1/Ty) 45 (S1/Ty)
So/Ty 35.36 27.49 11.13 10 (S2/Ty) 22.81 (S9/T)
PsoralenSO
GS/T; 1.12 0.13 0.04 0 0.03
GS/T, 1.18 0.22 - - -
GS/T5 0.74 0.20 - - -
GS/T4 64.76 40.89 49.44 42 (GS/Ts) 31.70
S:/Ty 1.03 0.03 0.01 1 0.08
S1/Ty 6.34 4.12 6.21 4 (S;/Ts) 5.99
S3/ Ty 28.00 17.93 25.88 16 13.74 (S9/Ty)

"DFT-MRCI/TZVP; Ref. 83
“le-eff SOCC with TD-DFT/B3LYP/TZVP, Ref. 28; reported state labels are given in
parenthesis
full Breit-Pauli SOCC with TD-DFT/PBE0/TZVP, Ref. 25; reported state labels are
given in parenthesis

Table IV shows the lel and SOMF SOCCs for psoralen compounds. For all three pso-
ralen molecules, most of the computed SOMF SOCCs agree with the le-eft-B3LYP values
(computed with PySOC) within 3 cm™!. Only the Sy/T5 couplings in psoralenOO and pso-
ralenOS show the largest deviation from the le-eff treatment, but agree well with the full

Breit-Pauli treatment. For the larger SOCCs that are greater than 1 cm™!, DFT/MRCI val-
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ues are larger than our SOMF B3LYP values, while the couplings that are less than 1 cm™*

agree within 0.1 em~!. While the couplings between the ground state and excited triplets are
typically overestimated in this work with respect to the full Breit-Pauli treatment (computed
with MoISOC), those between singlet and triplet excited states are usually smaller. Overall,
we observe a good qualitative agreement between our values and the SOCCs computed with

previous studies.

B. Spin-orbit couplings calculated with SF-TD-DFT
1. CHy, NHy, SiHy, and PHy

In these molecules, the description of the low-lying states using standard Kohn-Sham DFT
and TD-DFT is inadequate because of the diradical character of the singlet states®. This
problem can be circumvented by using SF-TD-DFT with a high-spin triplet reference®. In
contrast to other types of organic diradicals, methylene-like diradicals are highly sensitive

5154 Specifi-

to the functional employed, as documented in previous SF-TD-DFT studies
cally, only non-collinear SF-TD-DFT (NC-SF-TD-DFT) can yield accurate results for these
species, and only with functionals that do not use Becke’s exchange. The best results
were obtained with the functionals from the PBE family. Benchmark calculations on other
classes of molecules have also shown superior performance of NC-SF-TD-DFT with PBEO

35,3641 we computed SOCCs between the lowest

and wPBEh.?®52 Following previous studies,
triplet (*Bs) and singlet ('A;) states of these diradicals (CH,, NH;, SiH,, and PH;). We

used NC-SF-TD-DFT and considered B3LYP, PBE(O, wPBEh, wB97X-D, and wB97M-V.

TABLE V: SOCCs (cm™!) between B and 'A; states in CHy, NHS, SiHy, and PHJ computed
using SOMF with NC-SF-TD-DFT.

Method® CH, NH] SiH, PHJ
PBEO 10.36 15.15 68.67 135.38
wPBEh 10.32 15.03 68.93 135.66
B3LYP 12.29 19.83 75.69 150.12
wB97x-D 12.85 18.11 75.20 157.21
wBITM-V 13.16 20.20 79.73 155.90

EOM-SF-CCSD? 10.86 18.26 56.74 119.97
®cc-pV'TZ basis
"From Ref. 36

Table V presents the SOMF SOCCs in these diradicals using NC-SF-TD-DFT, com-
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paring them with SOMF SOCCs obtained with EOM-SF-CCSD.3¢ In contrast to TD-DFT
calculations of formaldehyde and acetone discussed above, here we observed a strong func-
tional dependence, with PBEO and wPBEh performing similarly and B3LYP, wB97x-D, and
wBITM-V showing small differences in couplings with each other. For CH,, SiHy, and PHY,
PBEO and wPBEh compare well with EOM-SF-CCSD, with differences increasing with an
increase in atomic number, 0.5 cm™! in the case of CHJ and 16 cm™! in the case of PHJ.
Overall, we confirm previous recommendation® to use PBEO and wPBEh in NC-SF-TD-
DFT calculations—as these functionals yield accurate estimates of both energy differences

between the states and the respective SOCCs.

2. BH, AlH, HSiF, HSiCl, HSiBr

Next, we consider closed-shell molecules with moderate diradical character, BH, AIH,
HSiF, HSiCl, and HSiBr, previously studied by Christiansen et al. using linear response
CCSD (LR-CCSD, equivalent to EOM-EE-CCSD for the energies and slightly different for
properties) and Epifanovsky et al. using EOM-SF-CCSD/EOM-EE-CCSD methods.??3
Here, we consider SOCs between the 1'S* and 1°II states for BH, AlIH, and between 1'A’
and 1°A” states for silylenes HSiX, X = F, Cl, Br. We use NC-SF-TD-DFT with PBEO/cc-
pCVTZ and wPBEh/cc-pCVTZ. Table V shows the results for these molecules. As one
can see, there is an excellent agreement between SOCCs computed using PBEO/wPBEhQ
and EOM-SF-CCSD, with differences less than 3 cm™ (except for HSiBr for which we
observe 15 cm™! and 31 cm™! difference between PBE(Q and wPBEh with EOM-SF-CCSD
respectively). Similarly, there is a good agreement between the SOCCs computed with
LR-CCSD and PBEO/wPBEh.

3. Spin reversal energy barrier in Fe(I1II) SMM

Finally, we consider a mononuclear Fe(III) SMM, (PMe;)Fe(III)Cl;, which is reported
to have the highest effective energy barrier U.;;= 81 cm™! among Fe(III)-based SMMs.%
This energy barrier for spin inversion arises because of the splitting of the ground state
due to SOC. The experimental spin-reversal barrier is U = 100, as computed from the

magnetic anisotropy (D = —50 cm™!) and ground-state spin (S = 3/2), with U = |D|(S? —
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TABLE VI: SOCCs (cm™1) in BH, AIH, HSiF, HSiCl, and HSiBr computed using SOMF with
NC-SF-TD-DFT (PBEO/wPBEh;cc-pcVTZ).

Method BH AlH HSiF HSiCl ~ HSiBr
'St/ P 1St/ 1P 1A /1A 1747 /1347 1'A' /13 A"

PBEO 4.39 34.98 79.52 106.85  267.78

wPBEh 4.41 35.17 79.87 105.47  252.40

EOM-SF-CCSD*  4.10 32.94 78.28 108.43  283.47

LR-CCSD? 3.48¢ 27.06° 71104 99.38¢  270.93¢

*EOM-CCSD/cc-pCVTZ, from Ref. 35
"LR-CCSD, from Ref. 32
caug-cc-pV'TZ
IANO2 basis.
1/4).% Alessio and Krylov used the EOM-SF-CCSD treatment to calculate the spin reversal
energy barrier and magnetic properties of this complex.®® Following this study, here we

compute the energy barrier using the spin-orbit coupling obtained with SOMF NC-SF-TD-
DFT treatment.

TABLE VII: Energy gaps (AE, in cm™!) and < S? > of the target spin-flip states obtained from
the high spin hextet reference state computed with PBEO, wPBEh /cc-pVDZ.
Ref SF1 SF2 SF3 SF4 SF5

PBEO < S?> 8.76 3.84 3.85 8.74 3.83 3.82
AE - 0 398 553 4122 4471
wPBEh < S5%> 8.76 3.82 3.82 8.77 3.81 3.82
AE - 0 344 715 4116 4495
EOM-SF-CCSD* < §2 > 8.75 3.81 3.81 8.73 3.83 3.83
AE - 0 92 2074 7245 7447

*EOM-SF-CCSD/cc-pVDZ, from Ref. 85.

For this complex, we use PBEO and wPBEh functionals to access the quartet ground
state (S = 3/2) and other closely lying excited states by spin-flip excitations from a high-
spin reference of S = 5/2. We obtain three spin-flip states (see Table VII) lying within 715
cm~!; SF; and SF, are quartet states while SF; is a hextet state. This differs from the EOM-
SF-CCSD results, where SF5 is about 2000 cm ™! above SF5.%% We then proceed to compute
the spin reversal energy barrier with 2, 3, and 5 low-lying SF states by including the SOC
effects using the state-interaction procedure.®® The inclusion of only two states is insufficient
to characterize the energy barrier with SF-TD-DFT (see Table VIII), however, the energy
barrier calculated with 3 states gives a value of 97 (PBE(O) cm™! and 100 (wPBEh) cm™,

1

in excellent agreement with the experimental estimate of 100 ecm™". The energy barrier
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FIG. 5: Energy levels arising from the splitting of two lowest SF states induced by SOC.

computed with EOM-SF-CCSD converges to 130 cm ™! with the inclusion of 5 states. To
assess the effects of energy gaps of the SF states, we computed the energy barrier using
PBEO SOCs and EOM-SF-CCSD energy gaps (denoted as EOM/PBEQ in Table VIII). This
combined EOM /PBEQ calculation gives energy barriers close to the EOM-SF-CCSD results.
Therefore, we conclude that the differences in energy barriers computed using PBEO/wPBEhQ
and EOM-SF-CCSD result from the different energy gaps of the SF states predicted by these
methods.

TABLE VIII: Energy barrier U (cm ') computed using 2, 3, and 5 lowest SF states in trigonal
bipyramidal (PMe3)Fe(III)Cl; complex with NC-SF-DFT /PBE0/cc-pVDZ.

No. of states PBEO wPBEh EOM-SF-CCSD? EOM /PBE0¢ Exp-U¢

2 52 29 103 99
3 97 100 130 119
5) 94 92 128 117 100

"EOM-SF-CCSD, Ref. 85
“Energy barrier calculated with EOM-SF-CCSD energies and PBEO SOCs
dexperimental value, Ref. 69

V. CONCLUSIONS

We presented the implementation of SOCs with TD-DFT and SF-TD-DFT and bench-
mark calculations for several organic molecules of a closed-shell character as well as diradi-

cals and one SMM. The algorithm is based on evaluating matrix elements of the Breit-Pauli
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operator by the application of Wigner—Eckart’s theorem to reduced one-particle density ma-
trices. We used NTO analysis to characterize the nature of the interacting states. We tested
functional and basis set dependencies for formaldehyde and acetone with TD-DFT using
B3LYP, PBEO, LRC-wPBEh, wB97X-D, and wB97M-V functionals and the cc-pVTZ and
aug-cc-pV'TZ basis sets. The results demonstrate that SOCCs are rather insensitive to the
choice of functionals and basis sets, with a variation of less than 2 cm™!. In agreement with
El-Sayed’s rules, SOCs are large for transitions involving a change of the orbital type. We
validated our SOMF SOCC results by comparisons with the reference values from TD-DFT,
EOM-EE-CCSD, RASCI, DFT/MRCI, EOM-SF-CCSD, and LR-CCSD studies. Calcula-
tions for diradicals with NC-SF-TD-DFT show strong functional dependencies, with PBEO
and wPBEh performing similar to EOM-SF-CCSD, and B3LYP, wB97X-D, and wB97M-
V performing similar to each other; this is in agreement with previous benchmark studies
in which energy gaps and state characters were considered.?*® Using the state-interaction
approach, we computed the spin-reversal energy barrier in Fe(III) SMM with PBEO and
LRC-wPBEh, which matches the experimental estimate when the three lowest SF states are
included in the calculation.

This new implementation extends the scope of computational tools for modeling spin-
forbidden processes in large molecular systems, as illustrated by our recent study in which
we applied this SF-TD-DFT SOC code to describe the magnetic behavior of nickelocene

molecular magnet adsorbed on the MgO(001) surfaces using the state-interaction scheme.?
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