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Abstract—Smart IoT-based systems often desire continuous
execution of multiple latency-sensitive Deep Learning (DL) appli-
cations. The edge servers serve as the cornerstone of such IoT-
based systems, however, their resource limitations hamper the
continuous execution of multiple (multi-tenant) DL applications.
The challenge is that, DL applications function based on bulky
“neural network (NN) models” that cannot be simultaneously
maintained in the limited memory space of the edge. Accordingly,
the main contribution of this research is to overcome the memory
contention challenge, thereby, meeting the latency constraints
of the DL applications without compromising their inference
accuracy. We propose an efficient NN model management frame-
work, called Edge-MultiAI, that ushers the NN models of the
DL applications into the edge memory such that the degree of
multi-tenancy and the number of warm-starts are maximized.
Edge-MultiAI leverages NN model compression techniques, such
as model quantization, and dynamically loads NN models for
DL applications to stimulate multi-tenancy on the edge server.
We also devise a model management heuristic for Edge-MultiAI,
called iWS-BFE, that functions based on the Bayesian theory
to predict the inference requests for multi-tenant applications,
and uses it to choose the appropriate NN models for loading,
hence, increasing the number of warm-start inferences. We
evaluate the efficacy and robustness of Edge-MultiAI under
various configurations. The results reveal that Edge-MultiAI can
stimulate the degree of multi-tenancy on the edge by at least 2×
and increase the number of warm-starts by ≈ 60% without any
major loss on the inference accuracy of the applications.

Index Terms—Edge computing, Multi-tenancy, Deep learning
applications, Memory contention.

I. INTRODUCTION

A. Motivation and Overview
With the expeditious advances of smart IoT-based systems,

they are becoming an indispensable part of our day-to-day

life. Such systems often provide their users with multiple

latency-sensitive Deep Learning (DL) services, such as object

detection, face recognition, and motion capture, that can

collectively unlock use cases to improve the human’s quality

of life. An exemplar use case of such IoT-based systems is

SmartSight [1], illustrated in Figure 1, that aims at providing

ambient perception for the blind and visually impaired people.

The system operates based on a smartglass (IoT device) and

a companion edge server (e.g., smartphone). The smartglass

continuously captures the inputs via its sensors (e.g., camera

and microphone) and requests the edge server to process

DL-based applications, such as object detection to identify

obstacles; face recognition to identify acquainted people;

speech recognition, and NLP to understand and react to the

IoT device

speech rec.

NLP

face rec.

memory

edge system

processors 
multi-tenant DL
applications

object det.
video

camera

voice

storage 

Fig. 1: Bird-eye view of SmartSight, an IoT-based system
that continuously receives various inputs from the smartglass
(IoT device) sensors, and processes them via multi-tenant DL
applications running on the edge server.

user’s commands. To make SmartSight usable, the edge server

has to continuously execute multiple (a.k.a. multi-tenant) DL

application to process incoming requests with low-latency and

high accuracy. It is noteworthy that, although cloud datacenters

can mitigate the inherent resource limitations of the edge, due

to the network latency overhead and data confidentiality [2],

[3], [4], offloading the latency-sensitive service requests to the

cloud is not a tractable approach in many use cases.

DL applications utilize bulky Neural Network (NN) models

at their kernel to infer on the inputs received from the sensors.

The NN models have to be kept in memory to enable low-

latency (a.k.a. warm-start [5]) inference operations. Otherwise,

because the NN model size is often huge, loading it into

the memory in an on-demand manner (a.k.a. cold-start) is

counterproductive and affects the latency constraint of the

DL applications. As the edge servers naturally have a limited

memory size (e.g., 4 GB in the case of Jetson Nano [6]),

multi-tenant execution of DL applications on them leads to

a memory contention challenge across the processes [2], [7].

Accordingly, the main challenge of this study is to resolve

the memory contention across multi-tenant DL applications

without compromising their latency and accuracy constraints.

In the deep learning context, there are techniques based on

the idea of approximate computing, such as quantization [8],

that make the model edge-friendly via compressing its NN

model, hence, reducing its inference time and accuracy. To
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TABLE I: Load time, inference time, and accuracy of popular
NN models individually running on Samsung Galaxy S20+ as
the edge server.

NN Models

Bit
Width

Size
(MB)

Loading
Time (ms)

Inference
Time (ms)

Accu-
racy (%)

InceptionV3
FP32 105 650 100 78.50
INT8 24 380 80 77.20

VGG16
FP32 528 820 52 71.30
INT8 132 185 40 70.18

MobileNetV1
FP32 89 600 15 70.56
INT8 23 192 8 65.70

MobileNetV2
FP32 26 110 10 72.08
INT8 9 65 7.5 63.70

MobileNetV3
FP32 14 80.3 7.80 74.04
INT8 8 47.45 6.21 71.32

MobileBERT
FP32 96 1100 62 81.23
INT8 26 890 40 77.08

understand the impact of such approximations, we conducted

a preliminary experiment using a Samsung Galaxy S20+ as

the edge server; and five popular DNN models, namely Incep-

tionV3, VGG16, MobileNetV1, MobileNetV2, MobileNetV3,

MobileBERT, each one at two quantization (precision) levels,

namely FP32 and INT8 bit widths. In Table I, we report the

average loading time, inference time, and accuracy for their

individual executions. We observe that: (A) for all the models,

the loading time is 8—17× more than its inference time; (B)

Loading the high-precision model (FP32 bit width) occupies

≈3.5× more memory than the low-precision (INT8 bit width)

one; and (C) Loading a low-precision model can reduce the in-

ference accuracy by around 3—6%. These results demonstrate

that the model compression has a considerable potential to mit-

igate the memory footprint of the DL applications. Moreover,

the model loading time invariably dominates the inference

time [9]. Accordingly, our hypothesis is that the efficient use
of model compression and the edge memory can enhance the
multi-tenancy and inference time of DL applications without
any major loss on their inference accuracy.

We propose each DL application to be equipped with

multiple NN models with different precision levels. The low-

precision models have a small memory footprint, hence, allow-

ing for a higher multi-tenancy of DL applications with their

models loaded into the memory (i.e., warm-start inference) that

enhances the service latency. However, loading overly low-

precision (over-quantized) models to maximize multi-tenancy

and warm-start inference is not viable, because it reduces the

inference accuracy and renders the multi-tenant DL appli-

cations to be futile. On the contrary, loading high-precision

(large) NN models on a memory-limited edge system for

an indefinite time period unnecessarily occupies an excessive

memory space that is detrimental for the multi-tenancy and

warm-start inference of other tenants. That is, other tenants

face a significant slow down (as noted in Table I), because

they cannot keep their NN model in memory and have to load

it from the storage (i.e., cold-start) to perform the inference

operation. Therefore, an ideal solution for a multi-tenant edge

system should be able to dynamically load a suitable model

from the set of models available to the application (a.k.a.

model zoo), such that it neither interrupts the execution of

other applications, nor causes a cold-start inference for them.

B. Problem Statement

The research question that we investigate is: how to max-
imize the number of warm-start inferences for multi-tenant
DL applications on edge without compromising the inference
accuracy? The question indicates a trade-off between two

objectives: fulfilling the latency constraint of DL applications

and maintaining their inference accuracy. The former objective

entails having the NN models of DL applications loaded into

the memory (i.e., warm-start inference), whereas, the latter

entails retaining high-precision NN models in the memory.

For application Ai ∈ A with Mi = {mk
i | 1 ≤ k ≤ qi} as

its model zoo, let ri(t) be a Boolean function that represents

an inference request for Ai at time t with value 1. Also,

let m∗
i ⊆ Mi be an NN model of Ai with size of s∗i

that is currently loaded in the memory. This means that, for

application Aj that does not have any of its NN models

currently in the memory, we have m∗
j = ∅ and s∗j = 0. Then,

M∗ =
⋃n

i=1m
∗
i represents the set of currently loaded NN

models that occupy S∗ =
∑n

i=1 s
∗
i of the memory space. A

cold start event for the request arrives at time t for Ai, denoted

Ci(M
∗, t) and shown in Equation (1), occurs when there is

no NN model in memory for Ai (i.e., Mi ∩M∗ = ∅).

Ci(M
∗, t) =

{
ri(t) Mi ∩M∗ = ∅

0 otherwise
(1)

Assume that utilizing m∗
i ∈ Mi results in an inference

accuracy that we denote it as χ∗
i . Then, based on Equation (2),

for n multi-tenant DL applications, we can formally state the

objective function as minimizing the total number of cold-start

inferences, while maximizing the accuracy of the inferences.

In this case, the total memory size available for the NN models

(denoted S) serves as the constraint.

min

(∫ ∞

t

n∑
i=1

Ci(M
∗, t) dt

)
, max

(∫ ∞

t

n∑
i=1

χ∗
i (t) dt

)

subject to: ∀t,
n∑

i=1

s∗i ≤ S

(2)

Note that optimal NN model management decisions do not

have a greedy nature. That is, minimizing the number of cold-

start inferences at a given time t does not necessarily lead

to the minimum total number of cold-starts with maximum

accuracy during the entire applications’ lifetime. In other

words, the system may experience a cold-start at time t to

prevent multiple ones at a later time. That is why, the objective

function of Equation 2 includes integrals over t to the ∞ to

encompass the impacts of the decisions at t on the future cold-

starts and accuracy levels. In the objectives, the NN models

of application Ai are only chosen from its model zoo (Mi),

thus, the accuracy (μi(t)) and size functions (si) are discrete

functions. It is needless to say that minimizing the number of
cold-start inferences is equivalent to maximizing the number
of warm-start events [10]. In the rest of this study, we use

these two interchangeably.
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C. Solution Statement and Contributions

To stimulate multi-tenancy on the limited edge memory,

we develop a framework, called Edge-MultiAI, that takes

advantage of a model zoo for each DL application and can

dynamically swap the NN models of the applications. To

maximize the number of warm-starts with high inference

accuracy across multi-tenant DL applications, our approach

is to proactively load the high-precision NN models for the

applications that are expected to receive inference requests,

while loading low-precision models for the others. We utilize

the recent memory usage information to predict the memory

availability for the next executions while not interrupting other

active applications. We develop model management heuristic

policies that make use of the expected memory availability and

the usage pattern of multi-tenant DL applications to choose a

suitable NN model for the requester application right before

the inference operation, thereby, both the latency and inference

accuracy of the application are fulfilled.

In summary, the contributions of this work are as follows:

• We develop an NN model management framework for

multi-tenant DL applications on the edge server, called

Edge-MultiAI, that efficiently utilizes the memory such

that the multi-tenancy degree and number of warm-start

inferences are maximized without any major compromise

on the inference accuracy. Edge-MultiAI dynamically

loads the high-precision NN model for the requester

application, while loading low-precision ones for others.

• We develop iWS-BFE policy along with three other base-

line heuristic policies within Edge-MultiAI to choose the

suitable model for the application performing inference,

and to decide how to allocate memory for it.

• We evaluate and analyze the efficacy of the proposed

heuristics in terms of their effectiveness and robustness

against uncertainties in the inference request prediction.

The rest of this paper is organized as follows. Section

II discusses background study and related prior works. We

explain the overview of Edge-MultiAI architecture in Section

III. Next, we discuss experimental evaluation and performance

analysis in Section IV. Finally, Section V concludes the paper

and provides a few avenues for the future studies.

II. BACKGROUND AND RELATED WORK

A. Edge AI

1) The Scope for Edge Intelligence: Numerous research

have been undertaken to explore the applications, scopes,

and benefits of edge-based AI for the seamless execution

of latency-sensitive smart applications [11], [12], [2], [13].

Murshed et al. discussed different DNN-based practical ap-

plications such as video analytics and image recognition for

enabling edge AI [12]. Zhou et al. surveyed on various training

and inference techniques for NN models on edge devices [13].

Chen and Ran discussed different techniques that can help

to accelerate the DL training and inference on the edge-

based systems [11]. Han et al. explored the ways to accelerate

the training convergence for the edge-based architectures [2].

Wang et al. surveyed the development of DL applications on

edge from the latency and bandwidth perspectives [14]. Zhou

et al. [13] claimed that although higher edge intelligence

reduces data offloading and improves the privacy, the latency

and energy consumption overhead can increase.

2) Multi-tenant Execution on Edge: Prior studies inves-

tigated AI multi-tenancy on the edge servers. Mao et al.

proposed a mobile computing framework, MoDNN, to exe-

cute DL applications simultaneously on resource-constrained

devices [15]. MoDNN can partition pre-trained DNN models

across several mobile devices to accelerate tensor processing

with reduced device-level computing cost and memory usage

while achieving 2.17×—4.28× speedup.

Multi-tenant execution across edge servers can lead to

undesirable latency in application execution. Ko et al. proposed

DisCo, a multi-tenant DL application execution offloading

framework that enables execution of both the compute- and

data-intensive parts of applications either on the device or

on the edge [16]. Hadidi et al. discussed that complex DNN

models are sensitive to data loss as they depend more on the

nuances in the data [17]. They mentioned losing one layer

of the Inception V3 model can deteriorate the accuracy by

more than 50%. They utilized distributed DNN models on IoT

systems to reduce the processing and the memory footprints.

The aforementioned research works addressed the problem

of accelerating multi-tenant applications without considering

the memory constraint of the edge servers. The only exception,

to the best of our knowledge is [18], in which the authors

explored the executing the obstacle detection application in

an autonomous vehicle with ultra low-latency constraint upon

compromising with other executing applications. They pro-

posed a reinforcement learning-based technique to scavenge

memory from a non-priority application, hence, executing

the obstacle detection application immediately and avoid ac-

cidents. Although their technique is effective to serve the

latency-sensitive task, multi-tenant executions is out of their

scope [18]. In contrast to these works, we investigate the prob-

lem of memory management to increase the degree of multi-

tenancy and the number of warm-start inferences, thereby,

improving the practical usability of IoT-based systems.

B. DNN Model Compression

Model compression techniques allow for running a model

on different resource-constrained devices. There are mainly

two techniques to reduce the complexity of a given DNN

model: making use of a fewer bit widths (a.k.a. quantization)

and using fewer weights (a.k.a. pruning). These techniques

have been considered individually and together to serve the

purpose of model compression.

Quantization. Quantization reduces the computational re-

source demand at the expense of a diminutive loss in accuracy.

By default, the model weights are float32 type variables which

means 4 bytes are associated with each model weight with a

significant amount of memory requirements. Model weights

can be reduced from 32 bits to 8 bits (or even shorter [7]) to

accelerate inference operation.
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Pruning. The pruning technique is applied to reduce the

memory consumption of the model to accelerate the inference

operations. An effective pruning technique removes redundant

connections and/or reduces the width of a layer while en-

suring a slight impact on the inference accuracy. Therefore,

the pruned models are retrained to compensates the loss

in accuracy. Failure of selecting proper pruning candidates

affects inference tasks and make the pruned model futile.

Some studies have also been conducted on the selection of

appropriate pruning candidates.

For compatibility with the IoT devices, Yao et al. proposed

DeepIoT [19], a reinforcement learning pruning technique for

DNN models in the IoT devices. However, during pruning

the model parameters, they only considered the execution

time speed-up, hence, the technique inevitably exhibits inferior

inference accuracy performance. As noted above, aggressive

pruning often substantially degrades the inference accuracy.

Training and inference with high pruning with negligible

impact on the accuracy is still an open research problem [7].

Warm-Start vs Cold-Start Inference. Provided the increas-

ing complexity of DNN models, loading even compressed

models to the edge memory is a burden. The problem is

further complicated in scenarios where the edge server has

to continuous maintain multiple applications in its memory

(i.e., multi-tenancy) which is cost-prohibitive.

Nonetheless, cold-start inferences should be avoided as they

bring about a remarkable inference latency (see loading time
in Table I for more details). Some research works have been

accomplished to avoid cold-start inferences. For instance, to

support latency-sensitive applications, in [20], the authors

proposed cold-start of a DNN model in the background while

the user is browsing a specific web page. By utilizing system

resources, their technique tracks the user’s browsing activity

and loads the task-specific model in parallel during browsing

activity to avoid the cold-start.

III. ALLOCATING MULTI-TENANT DEEP LEARNING

APPLICATIONS ON THE EDGE SYSTEMS

A. Architectural Overview & System Design of Edge-MultiAI

Figure 2 illustrates the architectural overview of Edge-

MultiAI that facilitates multi-tenancy of DL applications on a

resource-limited edge system via enabling the applications to

only swap their NN models, instead of the entire application.

The framework consists of three tiers: (i) Application tier, (ii)

NN model manager, and (iii) Memory tier.

Application Tier. The incoming multi-modal inputs from

the connected IoT devices trigger execution of multi-tenant

DL applications in the application tier. The model zoo for

each DL application acts as a repository that contains NN

models with different compression levels (sizes) and inference

accuracy (a.k.a. various precision levels). The model loader is

responsible for loading the chosen NN model from the model

zoo into the edge memory.

NN Model Manager. NN model manager comprises of three

components: (i) application request predictor, (ii) memory
predictor, and (iii) memory optimizer. “Application request

logic
businessmodel 

loader

NN Model 
Manager

N

A

B model

m1

m2

m3

m4

app request 

C

predictor
memory

predictor

Tier
Memory

multi-tenant DL
processes

manager
memory

A B C N

memory
optimizer

memory space of DL processes

zoo

Application 
 Tier

Fig. 2: Architectural overview of the Edge-MultiAI framework with
three tiers: Application, NN Model Manager, and Memory.

predictor” collects historical requests to each application and

trains a lightweight (edge-friendly) many-to-one vanilla re-

current neural network (RNN) time series prediction model,

similar to the one in [21], to periodically foresee the inference

request arrivals for each application. Upon arrival of each

request, “memory predictor” is in charge of predicting the

memory availability based on the recent memory allocations

in the entire edge system. We leverage the historical memory

allocation data and train another many-to-one vanilla RNN

time-series prediction model to predict the available memory.

Memory optimizer interacts with the application “request

predictor” and “memory predictor” to receive: (A) the request

arrival time for different applications plus the information of

their model zoo; and (B) the memory availability information.

Then, the memory optimizer feeds the received information to

an NN model management policy that determines the highest

possible precision NN model that can be loaded to serve

the inference request of a DL application with the minimum

impact (in terms of the prediction accuracy or latency) on the

execution of other applications. Upon facing memory short-

age for an arriving inference request, the memory optimizer

scavenges the memory allocated to the NN models of other

applications via either loading a lower-precision model or

forcing them to cold-start. After procuring adequate memory,

the memory optimizer informs the “model loader” to load the

appropriate NN model of the requested application.

Memory Tier. The tier includes the “memory spaces” allo-

cated to the applications; and a “memory manager” that keeps

track of the currently loaded models, the available memory

spaces, and the current status of the applications. The memory

manager communicates these information to the NN Model
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request time
window

A1
A2

A5

A3

A4

now

history window (H)
time

Fig. 3: A sample scenario of inference requests for five multi-
tenant applications, namely A1 to A5. Each pulse represents
the time window within which an inference request is ex-
pected. Solid lines expresses the event that has already hap-
pened and dashed lines after “now” are the request predictions.

Manager to efficiently allocates them to the arriving requests.

B. Heuristics to Manage Models of Multi-tenant Applications

1) Overview: Recall that the aim of NN model management

policy is to minimize the number of cold-start inferences

and maximize the inference accuracy for multi-tenant DL

applications on the edge servers. To that end, the memory

optimizer strives to maximize the time to retain the loaded

models in the edge memory. However, due to limitations in

the available memory space, it is not possible to retain the

highest precision NN model of all applications in the memory.

To resolve this memory contention, the NN models of the

applications that are unlikely to be requested in the near future

should be assigned a lower priority to remain in the memory.

Furthermore, Edge-MultiAI makes it possible to dynamically

load NN models for the applications. This means that, upon

predicting time t as the inference request time for a given DL

application, Edge-MultiAI can be instructed to load the high-

precision NN model of that application immediately before

performing the inference. Similarly, in the face of a memory

shortage, for the application(s) that are unlikely to be requested

at time t, Edge-MultiAI can be instructed to unload their

NN models or, more interestingly, replace them with a lower

precision one.

However, we know that the request arrivals are inherently

uncertain [1] and no prediction model can precisely capture

the exact request time for an application. To capture the

uncertainty, we consider a request time window, denoted as Δ,

around each predicted request time. The value of Δ is obtained

from profiling past request predictions and calculating the

mean difference of actual arrival time and the predicted ones

across all applications. In addition, there is a time overhead,

denoted as θi, to load the chosen NN model of an application

Ai into the memory. In sum, to prevent a cold-start for Ai

that is predicted to perform inference at time t, as shown in

Figure 3, the NN model has to be loaded at time (ti−Δ−θi)
and kept in memory until (ti + Δ). Furthermore, there is

uncertainty in predictions of “no request” for an application

at a given time. That is, at time t, there can be an inference

request for an application that was predicted not to have an

request at that time. To make the system robust against this

type of uncertainty and to avoid cold-start inferences in these

circumstances, an ideal policy should load low-precision NN

models for these applications. Hence, an unpredicted inference

request can be still served as a warm-start by the low-precision

model and the latency constraint is maintained.

In this work, the set of applications whose NN models are

retained in memory outside of their predicted request time

window are called the minimalist set, and denoted as A′.
Similarly, the set of applications that are in their request time

window and we load a high-precision model for them are

called maximalist, and denoted as A∗. To resolve the memory

contention, the policy can be based on scavenging memory

from the minimalist applications to procure the required mem-

ory space for the maximalist ones. That is, in the event that

application Ai is predicted to have an inference at time ti, it

becomes a member of A∗ set at time ti − Δ − θi, and then

becomes a member of A′ set after ti +Δ; thus, its model can

be evicted from the memory in the event the memory space

is needed for another maximalist application. The NN model

eviction is only permitted from A′ set and we aim at retaining

a low-precision model for the applications in this set. However,

due to high inference demand, A′ have to unload their models

(i.e., switch to cold-start) to free space for the model of the

applications that are in the maximalist set. In an extreme

situation, if A′ is empty, or the scavenged memory from A′

cannot procure sufficient space to load the suitable model for

application Ai, the next (smaller) model for Ai is considered,

and the aforementioned steps are repeated. Ultimately, if the

scavenged memory space is inadequate for the lowest precision

model of Ai, an inference failure occurs.

The memory contention problem can be reduced to the

classic binary Knapsack optimization problem [22] where

from a collection of items, each one with a weight and a value,

we need to select items such that the total value is maximized,

while the total weight is bounded to a limit. This problem is

known to be NP-Complete,hence, we can rely on the heuristic-

based solutions for it [23]. In the next part, we discuss four

NN model management (a.k.a. NN model eviction) policies to

manage the memory for multi-tenant DL applications such that

the number of warm-start inferences is maximized without any

major impact on the inference accuracy.

2) Policy 1: Largest-First Model Eviction (LFE): In this

policy, to allocate memory for the NN model of a maximalist

process, we first evict NN models from set (A′ that occupy

the highest memory space, until there is enough space to

allocate the high-precision NN model of A∗. For that purpose,

members of A′ are sorted based on the size of their currently

loaded NN model in the descending order. In the event that

evicting all the NN models of A′ does not free enough

memory space to allocate the NN model of the request, a lower

precision NN model (smaller in size) is tried for allocation.

This procedure continues until a model from the model zoo

can be allocated in the memory; otherwise, the edge system

is not able to serve that request at that time.
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3) Policy 2: Best-Fit Model Eviction (BFE): The limitation

of LFE is to evict the largest NN models of the minimalist

applications, irrespective of the exact memory requirement.

This means that adopting LFE can free more memory space

than the actual requirement. To tackle the issue, we implement

the BFE policy where applications in the minimalist set are

sorted based on the difference between their model sizes and

the actual memory requirement. Then, the NN model with

a minimum difference is chosen for eviction. The memory

requirement for a maximalist application is first calculated

based on its highest precision (largest) NN model to gain

the highest inference accuracy. However, in the event that

evicting the NN models of all the minimalist applications do

not free enough memory space to allocate the desired NN

model, BFE iteratively selects the next high-precision model

from the model zoo of the requested application.

4) Policy 3: Warm-Start-aware Best-Fit Model Eviction
(WS-BFE): Let Ai ∈ A∗ an application that is currently in the

maximalist set, and Aj ∈ A′ an application that is currently in

the minimalist set. It is technically possible that the predicted

request time window of Ai overlaps with the one for Aj . In

this case, LFE and BFE policies potentially choose to evict the

NN model of Aj in favor of the Ai model. This is because both

of these policies are backward-looking and ignore the fact that

Aj can be requested soon after evicting its NN model. Such

an eviction decision increases the likelihood of a cold-start

inference and to avoid that, we develop WS-BFE that assigns

the lowest eviction priority to those applications in A′ that

have overlapping time window with Ai.

In our early experiments, we realized that another reason

for cold-start inferences is due to uncertain nature of request

arrivals. That is, a minimalist application is unexpectedly

requested. To minimize the likelihood of cold-start inference

in these circumstances, we implement WS-BFE to replace the

evicted NN model with the lowest-precision (i.e., smallest)

NN model of that application. As such, in the event of an

unpredicted request the minimalist applications, there is a low-

precision model available to carry out a warm-start inference.

5) Policy 4: Intelligent Warm-Start-aware Best-Fit Eviction
(iWS-BFE): To make WS-BFE robust against uncertainties

in the application request time prediction, we enhance it by

applying the Bayesian theory and proposing a new policy,

called iWS-BFE. This policy is inspired from the widely-

adopted LRU-K cache management policy [24] that considers

the least recently used (i.e., requested) applications are not
likely to be requested in the near future. Similarly, iWS-BFE

only considers members of A′ as eviction candidates, denoted

by E′, that are not recently requested. Figure 3, shows a

scenario of predicted request times for A1—A5. To procure

memory for A1, we have A′ = {A2, A3, A5}. Because A3

was requested during the “history window” (H), it is likely

to be requested in the near future. Hence, iWS-BFE, chooses

E′ = {A2, A5} for eviction. The value of H is determined

based on the mean request inter-arrival time of all applications.

In addition to considering LRU, iWS-BFE also makes use

of the request prediction, provided by Edge-MultiAI. That is,

it considers the most appropriate application for eviction as

the one that has not been recently requested, and is predicted

to be requested the latest in future. However, the request

time predictions are uncertain, and the system can receive an

unexpected request from members of E′ in the current request

window. To make iWS-BFE robust against such uncertainty,

we calculate the probability of an unexpected request. For

application Aj ∈ E′, let rj denote an unexpected request.

Then, the probability of rj occurring during the current request

window (i.e., [t, t + Δ]) is defined as P (rj |Ai ∈ A∗). The

application that is likely to be requested unexpectedly is not

an optimal choice for eviction. Therefore, in Equation 3,

to calculate the fitness score of Aj for eviction (denoted

Score(Aj)), we consider 1 − P (rj |Ai ∈ A∗). To take the

predicted request time of Aj into consideration, we calculate

the distance between its predicted request time and the current

time (i.e., tj − ti). To confine the value between [0,1], we

normalize the distance based on the latest predicted distance

across all k applications.

Score(Aj) =
tj − ti

max
k∈E′

(tk − ti) ·
[
1− P (rj |Ai ∈ A∗)

]
(3)

The pseudo-code of the iWS-BFE policy is provided in

Algorithm 1. It begins with an initial set of eviction candidates,

called τ ⊆ A′, that is formed based on the applications that

were not requested during the history window (H). From τ ,

in Step 3, a list of eviction candidates (denoted E) whose

elements do not overlap with the request window of active

application (Ai) is derived. Next, in Step 4, we use Equation 3

to calculate the fitness score for each Ek ∈ E and then, build

a max-heap tree of E based on the fitness scores (Step 5).

In Steps 6—10, the policy iteratively retrieves the application

with the highest fitness score (i.e., the max-heap root, denoted

w) and foresees the amount of memory that can be scavenged

upon replacing its loaded model with the lowest-precision one.

Once the policy finds enough memory to be scavenged such

that the NN model of Ai (denoted mi) can be loaded, in Step

13, it enacts all the NN model replacement decisions and then

loads mi in Step 14. In the event that the scavenged memory

is insufficient, the policy switches to the next NN model for

Ai that has a lower size and accuracy (Step 17). In the worst

case that even the smallest NN model of Ai cannot fit in the

memory, the inference request fails (Step 17) [25].

IV. PERFORMANCE EVALUATION

A. Experimental Setup and Evaluation Metrics

To evaluate the efficacy of Edge-MultiAI and its NN model

eviction policies, we benchmarked five different DL appli-

cations, namely face recognition, speech recognition, image

classification, next sentence prediction, and text classification,

and recorded their real characteristics, including the model

size, and the inference accuracy (shown in Table II). We have

developed the E2C simulator that enables modeling the IoT-

based systems with different characteristics and configurations,

and is available publicly for the community access through our
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Algorithm 1: Pseudo-code for iWS-BFE NN model
eviction policy

1 Function iWS-BFE(A′, A∗, Ai, H)
2 τ ← Select ∀A′

j ∈ A′ not requested during H
3 E ← Determine ∀A′

j ∈ τ non-overlapping with

request window of Ai

4 ∀Ek ∈ E calculate fitness score using Equation 3
5 Build max-heap tree of E based on fitness score
6 while size(mi) > available memory do
7 w ← Extract root of the max-heap tree
8 If w = ∅ then break the loop
9 Measure memory scavenged by replacing

model of w with its lowest-precision one
10 Add scavenged amount to available memory
11 end
12 if size(mi) ≤ available memory then
13 Enact NN model replacement(s) decisions
14 Scavenge the leftover memory to load mi

15 end
16 else
17 If there is no model left to check then the

inference request fails
18 Repeat Step 6—10 with the next (smaller)

model
19 end
20 end

Application NN Model Bit
Width

Size
(MB)

Accuracy
(%)

Face recognition VGG-Face
FP32 535.1 90.2
FP16 378.8 82.5
INT8 144.2 71.8

Image classification VIT-base-patch16
FP32 346.4 94.5
FP16 242.2 81.3
INT8 106.7 72.2

Speech recognition S2T-librisspeech
FP32 285.2 89.7
FP16 228.0 77.2
INT8 78.4 68.0

Sentence prediction
Paraphrase-Mini

LM-L12-v2

FP32 471.3 88.2
FP16 377.6 81.7
INT8 98.9 76.2

Text classification Roberta-base
FP32 499.0 91.1
FP16 392.2 82.4
INT8 132.3 76.6

TABLE II: Application-specific models with different preci-
sion variants that are experimented.

Github page1. The simulator has implemented all of the NN

model eviction policies, and the user can quickly deploy and

examine any one of them.

The simulator also enables us to generate workload traces

that include the request arrival times for each application

during the simulation time. We configure the actual workload

to include an equal number of requests for the five applica-

tions, and the inter-arrival times between requests for each

application are distributed exponentially within the workload.

To study the uncertainty exists in the inference request predic-

tions, in the evaluations, we generate two sets of workloads,

one includes the predicted arrival times for the multi-tenant

1Github page of the E2C simulator: https://github.com/hpcclab/E2C-Sim.git

applications, and the other one includes the actual arrival times

of the applications. The distribution of request arrivals in the

actual workload deviates from the distribution of requests in

the predicted workload. The degree of deviation between the

two is measured based on the Kullback-Leibler (KL) [26]

divergence. We explore the impact of this deviation in the

experiments of next subsections.

Our evaluation metrics are: (A) The degree of multi-tenancy
under different request arrival intensity; (B) The inference
latency; (C) the inference accuracy; and (D) The robustness
metric to measure the tolerance of different eviction policies

against the uncertainty exists in the request predictions.

B. Impact of Edge-MultiAI on the Degree of Multi-tenancy

This experiment is to examine the efficacy of Edge-

MultiAI in satisfying the incoming requests to the edge server.

To that end, as shown in Figure 4, we increased the workload

intensity, via the mean number of concurrent requests issued,

and in each case measured the multi-tenancy satisfaction
rate, which is the percentage of warm-start inferences out of

the total incoming requests during the simulation time. We

examined two cases: (A) without any solution to stimulate

multi-tenancy (called, no policy); and (B) with Edge-MultiAI

and its iWS-BFE policy in place. The experiment was repeated

10 times and the average rate and 95% confidence intervals

for each data point is reported.

The experiment shows that the degree of multi-tenancy

achieved by adopting Edge-MultiAI and its iWS-BFE is re-

markably higher than the situation where Edge-MultiAI is

not in place. The smaller graphs show that this superiority

occurs consistently during the simulation time. We also notice

that the impact of employing Edge-MultiAI is more effective

for higher degrees of multi-tenancy. In particular, we can

see that with the mean degree of multi-tenancy is 5, using

Edge-MultiAI and its iWS-BFE policy achieves ≈130% higher

satisfaction rate than no policy when mean requested degree

of multi-tenancy is larger than 2. This experiment justifies the

efficacy of Edge-MultiAI and the NN model management in

stimulating multi-tenancy of DL applications.

C. Impact of the Eviction Policies on the Cold-Start Inference

The purpose of this experiment is to analyze the impact of

different NN model eviction policies on the number of cold-

start inferences. For that purpose, we measure percentage of

cold-start inferences caused by employing different eviction

policies, particularly, upon varying the deviation of request

prediction from the actual requests.

The results, illustrated in Figure 5, show that LFE and

BFE perform poorly and cause a remarkable number of cold-

start inferences, whereas, WS-BFE and iWS-BFE mitigate

the cold-srart inferences by at least 65%. This is because, in

LFE and BFE, upon evicting an NN model, its corresponding

application suffers from a cold-start inference in the event of

an unpredicted request. In contrast, in WS-BFE and iWS-BFE,

the evicted model is replaced with a low-precision one, hence,

unpredicted calls to the corresponding application do not lead
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Fig. 4: The impact of Edge-MultiAI and its iWS-BFE eviction policy on satisfying the requested multi-tenancy. The large graph
represents the summative analysis via increasing the mean of multi-tenancy requested in the horizontal axis, and showing the
percentage of requests that were satisfied in the vertical axis. For each case, the smaller graph more granularly represents the
number of concurrent requests issued and fulfilled during the simulation time.

Fig. 5: Measuring the percentage of cold-start inferences of
multi-tenant applications resulted from the proposed eviction
policies. The horizontal axis shows the deviation between
predicted and actual inference request times.

to cold-start inferences. It is noteworthy that, regardless of

the employed policy, the percentage of cold-start inferences

rises upon increasing the deviation between predicted and

actual request times. Nonetheless, we see that even under

90% deviation, iWS-BFE still substantially outperforms other

policies. On average, it yields 102% less cold-start in compare

to LFE and BFE, and 40% less than WS-BFE.

D. Impact of the Eviction Policies on the Inference Accuracy

In this experiment, we analyze the average inference accu-

racy caused by employing different model eviction policies.

Because the accuracy largely varies across different applica-

tions, we perform min-max normalization on the accuracy

values. Also, for the cold-start inferences, in the accuracy

measurements, we consider the accuracy provided by the NN

model after it is loaded into the memory.

Figure 6 shows the normalized mean inference accuracy

Fig. 6: Measuring the normalized inference accuracy of appli-
cations resulted from employing the different eviction policies.

obtained from employing different NN model eviction policies

upon changing the deviation between predicted and actual

request times. According to the figure, LFE and BFE policies

outperform WS-BFE. This is because, these two policies do

not retain the low-precision models in the memory. Therefore,

their inference requests either lead to a cold-start (that was ex-

plored in the previous experiment), or they load high-precision

models that provide a high inference accuracy. Nonetheless,

we observe that iWS-BFE outperforms LFE and BFE in most

of the cases, except the one with 90% deviation. The reason for

the higher inference accuracy of iWS-BFE is that, it nominates

cold-start candidates intelligently, based on their probability

of future invocations. This results indicate the importance of

the scoring (described in Equation 3) on efficiently nominating

cold-start candidates. It is noteworthy that the higher inference

accuracy of LFE and BFE at 90% deviation comes with

the cost of substantially higher cold-start inferences that are

detrimental to the “usability” of the IoT-based systems.

18

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on May 02,2023 at 16:44:30 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 7: Bi-objective analysis of the different model selection policies.

E. Bi-Objective Analysis of NN Model Eviction Policies

Recall that the NN model management for multi-tenant

applications in a resource-limited edge system is a bi-objective

optimization problem that aims at minimizing the number of

cold-start inferences and maximizing the inference accuracy.

However, these two are generally conflicting objectives and

there is not a single optimal solution that can satisfy both

objectives. Instead, there could be a range of solutions that

dominate other solutions. To analyze which one of the studied

policies dominate others, in Figure 7, we plot the percentage of

cold-start inferences versus the model error (defined as 100-

accuracy) for different policies and Δ values. Let D and σ
be the mean and standard deviation of residuals of predicted

versus actual request times. Then, Δ = D ± α·σ ranges by

changing the value of 0 ≤ α ≤ 2. The deviation of actual

versus predicted workload in this experiment is 30%.

For each policy, the colored area shows the cold-start

inferences and model error rate that are dominated by that

policy. An ideal policy should approach the graph origin (i.e.,

resulting in zero cold-start and zero model error). In Figure 7,

we observe that Edge-MultiAI dominates other policies and

form the Pareto-front, particularly with α = 1.02. We can

conclude that the iWS-BFE policy can significantly improve

the usability of the systems via causing fewer cold-start

inferences and offering a higher inference accuracy.

F. Analyzing Robustness against Uncertainties

The goal of this experiment is to study how the eviction

policies of Edge-MultiAI make the IoT-based system robust

against the uncertainty exists between the predicted and ac-

tual application request predictor. We define the robustness
metric, shown in Equation 4, to encompass the ratio of warm-

start inferences (denoted �i) to the total number of requests

(denoted γi), and the mean prediction accuracy (ψi) of each

application i throughout the simulation period.

R =
1

n
·

n∑
i=1

[
�i

γi
·ψi

]
(4)

Figure 8 represents the robustness score achieved by adopt-

ing the proposed policies and no policy (a.k.a. baseline) against

Fig. 8: Robustness of the system against uncertainty in the
prediction of inference requests.

uncertainties in the inference request prediction. We observe

that deploying Edge-MultiAI with any policy provides more

robustness than the circumstance where Edge-MultiAI is not

in place (no policy). We also notice that the robustness value

consistently drops because the rate of inference failure and

cold-starts rise for higher deviations. We observe that WS-

BFE and iWS-BFE are more robust against deviation than the

LFE and BFE. This is because, LFE and BFE do not replace

their NN models with a lower-precision one upon eviction,

which leads to cold-start inferences for the applications.

G. Evaluating the Fairness of NN Model Eviction Policies

In this experiment, our goal is to examine whether the

achievements of Edge-MultiAI and its policies, explored in

the previous experiments, is fairly distributed across all ap-

plications, or some applications benefit more than the others.

To that end, we analyze the distribution of cold-start inference

and accuracy across different DL applications. The name and

the NN model characteristics of the examined DL applica-

tions are listed in Table II. Figures 9 and 10, respectively,

express the percentage of cold-start inferences and inference

accuracy for each application upon using various NN model

eviction policies. It is noteworthy that in Figure 9, “no policy”

indicates the situation where Edge-MultiAI is not in place,

and in Figure 10, “maximum” serve as the benchmark, by

showing the use of highest-precision NN model for each

application. While Figure 9 shows that WS-BFE and iWS-

BFE remarkably outperform the other policies across all the

applications, Figure 10 illustrates that, particularly for iWS-

BFE, the outperformance does not come with the cost of lower

inference accuracy for the applications. More importantly, in

both figures, we observe that, for each policy, the percentage of

cold-start inferences and accuracy do not fluctuate significantly

from one application to the other. This shows that policies

are not biased to any particular DL application. Specifically,

the rate of cold-start inferences and the accuracy are fairly

distributed across different applications.

V. CONCLUSION AND FUTURE WORK

Continuous execution of latency-sensitive DL applications

is a pressing need of the memory-limited edge systems. The
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Fig. 9: The percentage of cold-start inferences using different
NN model eviction policies versus no policy.

Fig. 10: The inference accuracy obtained from the different
policies. The “maximum” is the benchmark, showing the
accuracy of the highest-precision model for each application.

research aims to stimulate the degree of multi-tenancy of such

applications without compromising their latency and accuracy

objectives. We developed a framework, called Edge-MultiAI,

to facilitate multi-tenancy of DL applications via enabling

swapping only their NN models. The framework was also

equipped with model management policies, particularly iWS-

BFE, to choose suitable models for eviction and loading to

edge memory, such that the percentage of warm-start infer-

ences is maximized without any major loss in the inference

accuracy of the applications. Evaluation results indicate that

Edge-MultiAI can improve the degree of multi-tenancy by 2×,

and iWS-BFE can increase warm-start inferences by 60%.

They also show how different policies are robust against

uncertainty in the inference request predictions. Last but not

the least, the experiments show that the policies are not biased

to a certain application in their decisions. There are several

avenues to improve Edge-MultiAI. One interesting avenue

is to partition the models across edge-cloud continuum to

reduce their memory footprint on the edge, hence, further

improving the degree of multi-tenancy. Another avenue is to

use reinforcement learning to enhance the performance of the

policies.
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