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Astrea: Auto-Serverless Analytics Towards
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Jananie Jarachanthan, Li Chen ©, Member, IEEE, Fei Xu, Member, IEEE, and Bo Li *, Fellow, |IEEE

Abstract—With the ability to simplify the code deployment with one-click upload and lightweight execution, serverless computing has
emerged as a promising paradigm with increasing popularity. However, there remain open challenges when adapting data-intensive
analytics applications to the serverless context, in which users of serverless analytics encounter the difficulty in coordinating computation
across different stages and provisioning resources in a large configuration space. This paper presents our design and implementation of
Astrea, which configures and orchestrates serverless analytics jobs in an autonomous manner, while taking into account flexibly-specified
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user requirements. Astrea relies on the modeling of performance and cost which characterizes the intricate interplay among multi-
dimensional factors (e.g., function memory size, degree of parallelism at each stage). We formulate an optimization problem based on
user-specific requirements towards performance enhancement or cost reduction, and develop a set of algorithms based on graph

theory to obtain the optimal job execution. We deploy Astrea in the AWS Lambda platform and conduct real-world experiments over
representative benchmarks, including Big Data analytics and machine learning workloads, at different scales. Extensive results
demonstrate that Astrea can achieve the optimal execution decision for serverless data analytics, in comparison with various provisioning
and deployment baselines. For example, when compared with three provisioning baselines, Astrea manages to reduce the job completion
time by 21% to 69% under a given budget constraint, while saving cost by 20% to 84% without violating performance requirements.

Index Terms—Cloud computing, serverless computing, resource provisioning, modeling, optimization

1 INTRODUCTION

ERVERLESS computing has gained its popularity due to its
Scompelling properties of lightweight runtime, ease of
management, high elasticity and fine-grained billing. With
serverless architectures, which facilitate Function-as-a-Ser-
vice (FaaS) in cloud computing, developers are able to con-
centrate only on the logic, free from the burden of
configuring environments, managing virtual machine (VM)
clusters and paying for VM instances even though they are
idle. Such a favorable computation mode has been deployed
by cloud providers such as Amazon Lambda [1], Google
Cloud Functions [2], and Microsoft Azure Functions [3],
widely utilized in applications such as real-time video
encoding [4], Internet-of-Things applications [5], interactive
data analytics [6], and etc.
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However, when adapting data-intensive analytics appli-
cations (e.g., MapReduce, Spark jobs) to serverless plat-
forms, there have emerged a number of challenges, and one
particular challenge is how to efficiently process the mas-
sive amount of intermediate data, also referred to as ephem-
eral data in contrast to the persistent input and output data.
Such intermediate data requires to be shared between state-
less functions in different stages. For instance, unlike the
traditional VM-to-VM or server-to-server transmission of
intermediate data in the MapReduce shuffle phase, func-
tion-to-function networking in serverless platforms does
not support bulk data transfer, aligned with the original
design philosophy of serverless computing. Consequently,
a mapper function needs to output the intermediate data
into the external storage, such as the object store S3 [7] or
the distributed cache Redis [8], to be later fetched as the
input for reducer functions. The cost and latency imposed
by the ephemeral data sharing above raise serious applica-
tion performance and cost efficiency issues in utilizing the
serverless analytics.

Existing efforts have proposed a number of ephemeral
data storage solutions for serverless analytics ([6], [9], [10],
[11], etc.). For example, Pocket [9] is designed and imple-
mented as a distributed storage system shared by serverless
jobs, which places data across multiple tiers of storage to
offer high-throughput and low-latency services. Locus [6], a
data analytics framework customized for the serverless envi-
ronment, orchestrates the shuffling of intermediate data in a
serverless MapReduce job, leveraging a hybrid of fast and
slow storage.

Despite these research efforts, there is no general guidance
on the coordination and resource provisioning for serverless
analytics among the large configuration space, including the
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memory size of each function, the degrees of parallelism in
each computation stage, and etc. Cloud users may easily
deploy their serverless analytics suboptimally, at the risk of
violating their Quality of Service (QoS) objectives (e.g.,
responding within a latency threshold) [12] or incurring extra
billing costs which could have been avoided by a better con-
figuration. Essentially, users still encounter the critical chal-
lenge of serverless provisioning for Big Data analytics (as
evidenced in Section 2.3): given a large configuration space and
different types of user requirements (latency-oriented or budget-
driven), how could users take advantage of the salient features of
serverless computing without concerning about the underlying
complexities (ephemeral data management and resource configura-
tion), while achieving the maximum gain with respect to the perfor-
mance or cost? More specifically, how to achieve the best
possible job performance with a limited budget, and how to
minimize the cost without violating the QoS objective? To
address this challenge, we argue that a general framework, in
the middle of developers for data analytics and cloud pro-
viders for FaaS, needs to be built, to judiciously handle the
job deployment and hide the underlying complexity. A com-
prehensive solution is expected to optimally configure and
orchestrate the serverless analytics jobs in an autonomous
manner, according to the flexibly-specified requirements
from users.

To this end, we design a general framework, called
Astrea, which automatically configures and orchestrates
lambda functions for data analytics and machine learning
jobs to navigate the tradeoff between performance and cost.

First, Astrea derives mathematical models for both the
monetary cost and the job completion time for a job
upon submission, based on the user-specific objec-
tives. The configurations characterized in the models
include the number of stages in the job workflow, the
degree of parallelism in each stage (i.e., the number of
lambda functions in each stage), and the type of
lambda function (i.e., the memory size of the requested

lambda), which are coupled with the orchestration of
all the functions invoked for a job.

Second, building upon the model, Astrea obtains the

optimal job execution plan based on the graph the-

ory. Specifically, we construct two Directed Acyclic

Graphs (DAGs) models for the completion time and

the monetary cost, respectively, to formulate two

optimization problems: (1) given a budget constraint,

a configuration and job execution optimization is for-
mulated with the objective of minimizing the job

completion time, (2) under a Quality of Service (QoS)

requirement, a configuration and job execution opti-

mization is formulated with the objective of mini-
mizing monetary cost.

Third, upon the submission of an analytics job, Astrea
calculates the optimal configuration for resource allo-

cation and task assignment by solving our formulated

optimization problem towards a specific objective.

Given the limitations on the maximum concurrency

per job and the maximum temporary storage per

function on today’s serverless platforms [13], it is

likely that a large data analytics job does not have any

feasible solution for direct deployment (as evidenced

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

in Section 4.3). Therefore, we have designed an
extended version of Astrea to accommodate large jobs
through judicious multi-round executions.

Finally, we have implemented and deployed Astrea on
AWS Lambda and evaluated its performance with real-
world experiments on various workloads of Big Data ana-
Iytics and machine learning at different scales, including
Wordcount (1 GB, 10 GB, and 20 GB), Sort (100 GB), various
queries over the Uservisits dataset (25.4 GB and 126.8 GB)
and Rankings dataset (6.38 GB) [14], K-nearest neighbors
classification (10 GB), and K-means clustering (10 GB). We
compared Astrea with the following provisioning and
deployment solutions on AWS: i) three provisioning base-
lines on AWS Lambda, ii) Apache Spark [15] on Amazon
EC2 [16] and SageMaker [17], respectively, and iii) Amazon
Elastic MapReduce (EMR) [18].

Extensive experimental results have demonstrated that
Astrea can optimize the job performance (i.e., minimize the
completion time) constrained by a budget, and minimize the
monetary cost without violating a performance requirement.
Compared with three baselines, Astrea achieves the perfor-
mance improvement of about 42% to 69% for Wordcount
benchmarks with three different input sizes, up to 21% for
Sort, and 57% improvement for Query over Uservisits dataset,
and at least 29% for other queries workloads. With respect to
the monetary cost, a reduction up to 80% is achieved for
Wordcount, up to 21% reduction for Sort, at least 42% reduc-
tion for Query over Uservisits dataset, and up to 84% reduc-
tion for other queries. Compared to Spark on EC2 for
Wordcount and queries workloads, Astrea saves cost by at
least 92% while achieving a similar or up to 2X better job per-
formance. Compared to Spark on SageMaker for machine
learning jobs, Astrea can achieve up to 97% cost reduction
while completing jobs at least 36% faster. For the comparison
with EMR, a commercial VM-based MapReduce platform,
Astrea exhibits up to 77% faster completion and 65% cost sav-
ing for Wordcount and Sort workloads. Our extended version
of Astrea has also been demonstrated to effectively deploy
large jobs through multiple rounds, yielding both cost reduc-
tion and performance improvement compared to Apache
Spark on EC2. As evidenced, Astrea successfully navigates the
tradeoff between job completion time and monetary cost
according to flexible requirements, outperforming the exist-
ing solutions which are either suboptimal or incomplete.

The rest of the paper is organized as follows. Section 2
presents the background of serverless analytics, examines
the intricate interplay among cost and performance factors,
and compares our proposed solution with the related
works. Section 3 models the performance and monetary
cost for a MapReduce job in the serverless platform. Sec-
tion 4 designs algorithms for Astrea to optimize job comple-
tion time or monetary cost. Section 5 implements Astrea and
demonstrates its advantages over three baselines with real-
world experiments. Finally, Section 6 presents concluding
remarks and future directions.

2 BACKGROUND, RELATED WORKS AND
MOTIVATION

In this section, we present the background and related work
of serverless computing, with a particular focus on data
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analytics. Having observed the current limitations in server-
less analytics, we seek to understand the application perfor-
mance (i.e., job completion time) of Big Data analytics
running in the serverless platform, as well as the incurred
monetary cost.

2.1 Serverless Computing for the Next Generation
of Cloud

Serverless computing has recently emerged as a popular
computing pattern in cloud computing, facilitating higher-
level and finer-grained Function-as-a-Service (FaaS) to
cloud users. With serverless platform, users simply upload
their code and dependencies with a click on a button, and
pay for the total runtime of their computation. Compared
with traditional cloud computing by renting VMs, users in
serverless computing no longer deal with the deployment
and maintenance complexities, and no longer pay for VM
runtime when there is no computation workload.

Due to the favorable properties of serverless computing,
the past several years have witnessed a wide array of real-
world applications transformed and deployed in the server-
less environment, including data analytics [19], software
compilation [20], machine learning [21], and etc. For exam-
ple, a data analytics application has been implemented on
serverless infrastructure, which can process real-time data
from various sources with serverless functions and generate
analytical results in real time to the user [22]. FaaS targets
fine-grained use scenarios, whereas massive data featured
scenarios can be the opposite. Still, in such scenarios where
analytics applications require concurrent handling of mas-
sive data, it has been shown that serverless deployment is
promising [6], [9].

2.2 Serverless Analytics in AWS Lambda

Facilitated by cloud service providers, serverless functions,
such as AWS Lambda [1], Google Cloud Functions [2] and
Microsoft Azure Functions [3], are essential in serverless com-
puting. With AWS Lambda as an example, a user uploads the
code, which will be scaled and executed by the serverless
infrastructure transparent to the user. The default limit for
concurrent executions is a maximum of 1,000 lambdas,
512 MB of temporary storage and 900 seconds of timeout [13],
which makes it challenging to accommodate large-scale data
analytics in the serverless environment [6]. The state-of-the-
art serverless implementation for the MapReduce framework
leverages S3 as the remote storage for intermediate data and
AWS Lambda as the computation environment for mapping
and reducing [23]. This framework uses three types of lambda
functions, namely the mapper, the coordinator and the
reducer. Concurrent mappers and asynchronous reducers
will communicate through a coordinator, which calculates
the numbers of objects to be handled by the mappers and the
reducers, and the number of steps required in the reducing
phase, based on the memory limit of each function.

However, there is no general guidance on the coordination
and resource allocation for serverless analytics. Among the
large space of design, including the type of function memory,
the degrees of parallelism in each computation phase, etc.,
cloud users may easily specify suboptimal deployment for
their serverless analytics, at the risk of violating their QoS
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TABLE 1
Partial Orchestration of a MapReduce Job for 10 Input Objects
Used in Motivation Experiments in AWS Lambda

number of objects per mapper 1 2 3 4 5
number of mappers 10 5 4 3 2
number of objects per reducer 1 2 3 4 5
step | (number of reducers) 1 3 2 1 1
step 2 (number of reducers) - 2 1 - -
step 3 (number of reducers) - 1 - - -

step 4 (number of reducers) -

objectives (e.g., responding within a latency threshold), or
incurring extra billing cost which could have been avoided
by a better configuration. Essentially, the problem is that the
user still has to deal with the complexities of resource config-
uration, which compromises the salient features of serverless
computing.

Therefore, we are motivated to provide a framework that
takes over the challenging tasks and hides complexities
from users, so that well-planned orchestration and optimal
resource configuration could be generated according to the
user-specific concern about application performance and
monetary cost. In what follows, we will use an experimental
example to illustrate and analyze the important factors
impacting performance and cost, which will be further char-
acterized in our modeling.

2.3 Factors Impacting Performance and Cost

With MapReduce on AWS Lambda as a simple example, we
next present the completion time and monetary cost of the
job given different configurations, to understand the key
factors in the workflow that impact cost and performance.
This job is implemented with three types of lambda func-
tions as mapper, coordinator and reducer, following the
framework aforementioned [23], with a total of 10 objects
with 2 MB total size in S3 as input data. Based on the total
amount of data to be processed by each lambda function,
i.e., the number of objects in this setting, the job can be exe-
cuted with different degrees of parallelism.

Table 1 presents five orchestration examples, when we
vary the number of objects handled by each function. For
instance, as shown in the second column entry in Table 1,
given that each mapper processes 2 objects, a total of 5 map-
per functions will be invoked to process the 10 input objects,
which generate 5 objects as intermediate data. Then, given
that each reducer handles 2 objects, 3 reducers will be
launched in step 1, and their output of 3 objects will be fur-
ther processed by 2 reducer lambdas in step 2. Finally, a
reducer lambda reads the 2 objects from the previous step
and generates the final result in step 3.

The resource allocation for a lambda function mainly
refers to the memory allocation, which can be specified
from 128 MB to 3008 MB in 64 MB increments in AWS
Lambda.! The monetary cost incurred by a lambda function
depends on the duration of the lambda, which is impacted
by the memory allocation, and the PUT and GET requests
made from the lambda [24].

1. Platform resource limitations can be updated over time. Currently,
the memory size limit on AWS Lambda is increased to 10,240 MB.
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Fig. 1. Job completion time with the number of objects processed per
lambda in three types of memory allocation.

Figs. 1 and 2 illustrate the experimental results of the job
performance and cost, when we alternate the lambda
orchestration (with different number of objects processed
per lambda) and the memory allocation, respectively. The
job performance relies on the completion time, which is
impacted by the number of steps for reducing, and when
the slowest reducer finishes in each step. The runtime of
each lambda relies on both its computation time and the
network transfer time when reading from and writing to S3.
With respect to the cost, the job consists of the lambda invo-
cation cost, lambda runtime cost, S3 storage cost and S3
request cost, which depend on the number and size of
objects, and the number and memory type of lambdas.

As observed in the figures, when we vary the configura-
tion setting, there is a complicated interplay among multiple
factors that collectively determine the final job completion
time and cost. More specifically, when the number of objects
per lambda increases from 1 to 4, the job completion time
exhibits a decreasing trend as shown in Fig. 1. This is
because with each lambda processing more data, the num-
ber of sequential reducer steps will decrease. Although each
lambda takes a bit longer to process more data, the time
reduction on the reducing phase dominates, leading to
faster job completion. Similarly, with each function process-
ing more data (the number of objects increasing from 1 to
4), the total number of lambdas becomes smaller and the
number of S3 read/write decreases, resulting in the cost
reduction as shown in Fig. 2. When increasing the number

128
== 1536
[T 3008

Costx 10 * (%)

Number of Objects

Fig. 2. Monetary cost with the number of objects processed per lambda
in three types of memory allocation.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Coordinator Mupper Mupper Reducer Coordinator
Dcomp“tarjon |:| readfwrite |:|computatiou |:| step I write
time time time time time

Nunber of Objects: 3, Memory allocation: 1Z8¥LB. Job Completion time: 0.81s

Mappers
[t T[]
@[ 2 ]
3

P IV S MO WP ¢ I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time
Nunmber of Objects: 2, Memory allocation: 3008313, Job Completion time: 0.51s

Coordinator

Mappers

| :  :Coordinatoi

O v i 3

0 0.1 0.2 0.3 0.4

lm 1 1 1
0.5

1
0.6 0.7 0.8 0.9 Time

Fig. 3. Job timeline with two sample configurations.

of objects beyond 5, the number of lambdas and the coordi-
nation no longer change, but the data distribution among
lambdas becomes more skewed. For example, the numbers
of objects processed by mappers become (5,5), (6,4), (7,3),
(8,2) and (9,1), when the number of objects per lambda is set
from 5 to 9. The skewness will cause unbalanced computa-
tion time and data transfer time, prolonging the completion
time and increasing the cost, as observed.

We further present a microscopic analysis by decompos-
ing the job completion time in Fig. 3, with two sample con-
figurations. The mapping phase completes when the
slowest mapper finishes, and the coordinator is then
launched to coordinate the reducing phase. When each
lambda function handles 3 objects with 128 MB memory,
there will be 4 mappers according to Table 1, followed by
two steps of reducing, each with 2 and 1 reducer lambda(s),
respectively. The second configuration sets the number of
objects as 2 and memory as 3008 MB for each lambda,
resulting in 5 mappers followed by 3, 2 and 1 reducer(s) in
three consecutive steps. Although the number of reducer
steps increases from Figs. 3(a) to 3(b), each function with
the largest memory block is much faster, which eventually
leads to a shorter job completion time.

Even with such a toy example with an incomplete explora-
tion in the configuration space, we have witnessed the intri-
cate interplay among multi-dimensional factors. Clearly, it is
challenging for cloud users to identify the best configuration
according to their flavor on performance boost or cost saving.
In this paper, we argue that cloud users should be hidden
from such complexities to completely enjoy the ease of man-
agement burden. Therefore, we are motivated to design and
implement a framework, called Astrea, to automate the
deployment of serverless analytics in an optimal manner
according to user-specific requirements. In particular, we
hope to explore the whole design space of the coupled orches-
tration and configuration of lambdas, to seek optimal solu-
tions regarding improving latency performance and reducing
monetary cost. With the knowledge of key factors, we will
leverage mathematical modeling to characterize the inter-
dependencies in the next section, and formulate the optimiza-
tion problems with flexible objectives and constraints. More-
over, due to the serverless platform limitations, such as the
maximum allowable function concurrency and the cap on the
temporary storage size of a function [13], it is challenging to
deploy a large-scale data analytics job on the serverless plat-
form, to be further elaborated in Section 4.3. To fill this gap,
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we are further motivated to extend our methodology and
framework design to accommodate large-scale workloads.

2.4 Related Works

In this subsection, we summarize the existing efforts and
discuss our proposed framework in comparison.

Data Analytics on Serverless Platforms. Although a number
of applications have easily and successfully transitioned
into the serverless environment (e.g., [4]), there still remain
open challenges for data analytics jobs to be implemented
with serverless architecture, due to their heavy demand for
the storage of intermediate data [6], [21].

PyWren [10] presents a prototype to execute MapRe-
duce jobs with lambda functions, using S3 as intermediate
data storage. Similarly, Flint [25] enhances the PySpark
MapReduce framework in the serverless environment, and
leverages the Amazon Simple Queue Service (SQS) [26] for
the shuffling of intermediate data. Extending the idea of
Elastic MapReduce (EMR) [18], Amazon AWS presented a
serverless architecture [23] for MapReduce jobs with S3 as
intermediate storage. MARLA [11] follows the same archi-
tecture and handles the invoking of multiple mapper
lambdas in a different way. Kappa [27] is a programming
framework that simplifies serverless development for
general computing. With the help of checkpointing and
FIFO queues, Kappa’s concurrency API provides mecha-
nisms for launching and synchronizing parallel tasks.
Wukong [19] and NIMBLE [28] investigate task-level
scheduling for cost-efficiency and performance improve-
ment in serverless analytics. Wukong [19] adopts decen-
tralized scheduling and task clustering in its serverless
framework that can reduce data movement over the net-
work and improve cost effectiveness. NIMBLE [28] further
pipelines the task execution by considering task-level
dependencies.

On the other hand, there are research efforts on enhanc-
ing the intermediate data storage. Pocket [9] uses EC2 VMs
as ephemeral storage, enables auto-scaling and provides
pay-per-use service to cloud functions. Jiffy [29] further ena-
bles fine-grained far-memory sharing and multiplexing
across concurrent jobs. Locus [6] leverages a small number
of expensive fast ElastiCache (Redis) [8] instances combined
with the much cheaper S3 service. Gadepalli, et al. [30]
applied serverless computing at the edge at near-native
speed, while having a small memory footprint and opti-
mized invocation time. Lambada [31] supports function-to-
function communication through different types of shared
serverless storage like Amazon S3, Amazon DynamoDB,
and Amazon SQS depending on the data size. InfiniC-
ache [32] presents the first in-memory object cache for serv-
erless functions to improve I/O performance. Amoeba [33]
switches between the laaS (Infrastructure-as-a-Service)-
based and serverless-based deployment by monitoring
loads and predicting the CPU and memory usage of these
platforms. These storage-related existing efforts lack fine-
grained serverless function provisioning and configuration
towards flexible requirements of end-to-end performance
and monetary cost. Our work, in contrast, does not rely on
more expensive storage. Instead, we explore the optimiza-
tion space merely using the naive and cheapest S3, through
a dedicated function orchestration and provisioning.
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TABLE 2
Comparison of Astrea With Existing Frameworks of Serverless
Data Analytics and Machine Learning

Efforts App. type Inter. Res. Cost | Perf. | Fine.
data prov. min. opt. mod.
stor. strat.

PyWren | MapReduce | 53 heu. X X X

[10] style bascd

Flint Query SQS heu. X X X

[25] style bascd

Locus MapReduce | 53 & | hew X X v

[6] style Redis based

Lambada | Query S3, Dy- | heuw X X v

131] style namoDB,| based
& 505

Kappa MapReduce | S3 & | hew. X X X

[27] style Redis bascd

Cirrus Machine Redis heu. X v v

[21] Learning based

STREN Machinc 53 opt.- X v v

[34] Learning based

ADNN Machine VMs opt.- v v v

[35] Learning, based

BATCH Machine VMs opt.- v v v

[36] Learning, based

Gillis Machine REST opt.- v X v

[12] Learning, APL based

AMIS- Machine 53 opt.- v X '

Inf [37] Learning based

Astrea MapReduce | 53 opt.- v v '

style based

The 2nd to the 7th columns respectively represent “Application type,”
“Intermediate data storage,” “Resource provisioning strategy,” “Cost mini-
mization,” “Performance optimization,” and “Fine-grained modeling”. For
the 4th column items, “heu.” is short for “heuristic” and “opt.” stands for
“optimization”.

Machine Learning on Serverless Platforms. There are a num-
ber of efforts that study the employment of serverless plat-
forms for machine learning workloads. Cirrus [21], SIREN
[34] and DNN [35] proposed strategies to provision and
coordinate serverless functions for the iterative model train-
ing process of machine learning. The comparative study of
distributed machine learning training over FaaS and laaS
systematically depicts the tradeoff in the design space [38].
For a particular Graph Neural Network (GNN) training,
Dorylus [39] divides the training pipeline into a set of fine-
grained tasks, of which the processing of tensors is deployed
on lambdas while the graph structure related operations are
executed on CPU servers. On the other hand, focusing on
machine learning inference, BATCH [36] is prototyped on
AWS Lambda for model serving, where requests are buff-
ered to be later processed in a batch. BARISTA [40] is a scal-
able serving system for deep learning prediction services.
Gillis [12] and AMPS-Inf [37] focus on automatic model par-
titioning and resource provisioning for large model inference
in the serverless environment, with the awareness of both
Service Level Objective (SLO) and cost.

In summary, Table 2 presents a high-level comparison of
Astrea with the existing representative efforts, from the per-
spectives of the focused application type, intermediate data
storage, resource provisioning strategy, cost and perfor-
mance optimizations, and fine-grained modeling. Different
from all the existing works, we propose a framework to auto-
matically configure and orchestrate the MapReduce job in
serverless environment towards flexibly specified objectives.
Fine-grained modeling is employed in Astrea to formulate
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Fig. 4. Workflow of a serverless MapReduce job in AWS Lambda. The
job uses AWS S3 as the intermediate storage.

optimization problems towards cost minimization and per-
formance optimization goals. Our work is for the provision-
ing of a single job from the user perspective given a
serverless platform, orthogonal to the job schedulers, such as
Skippy [41], that operate within the serverless platform from
the provider perspective.

3 MODELING SERVERLESS DATA ANALYTICS

In this section, we present our modeling of job completion
time and monetary cost for serverless data analytics, with a
MapReduce job implemented in Amazon Lambda as an
example. More specifically, we consider a job processing N
number of input objects with D size, which are stored in
AWS S3. The job consists of three types of lambda functions,
to map, coordinate® and reduce, respectively, as shown in
Fig. 4. Our modeling is easily adapted to a general server-
less data analytics setting, to be discussed later.

3.1 Performance of Completion Time
3.1.1 Lifetime of Mappers

As illustrated by Fig. 3 in Section 2, a number of identical
mapper lambdas will be launched in parallel, each perform-
ing computation for km N objects. As there are N objects in
total, the number of mapper lambdas can be represented as
N=km, which has a maximum value of v. For a mapper
lambda, the lifetime is determined by both the S3 requests
and the computation. Specifically, the time it takes to get
and put objects in S3 depends on the data transfer time
between lambda and S3, which is determined by the net-
work bandwidth B and the sizes of objects to read and
write. Intuitively, if we have a larger number of mapper
lambdas, the data size in transmission of each mapper will
be smaller. Given a total of j mappers, we use dj, and e}, to
denote the input size and output size, respectively, for the
mapper m, and the output size is proportional to the input
size. Thus, the time associated with S3 requests of this map-
per is represented as dd!_p el p=B.

The computation time of a mapper lambda relies on the
computation workload and the processing power of the par-
ticular lambda. In AWS Lambda, we can allocate memory

2. An alternative to the coordinate lambda is to use AWS step func-
tions [42], which allows the coordination of multiple services into serv-
erless workflows. As step function involves state transaction cost, we
choose to use a coordinate lambda which is more flexible and cost-effi-
cient for Astrea.
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for a lambda from 128 MB to a maximum limit in 64 MB
increments'. The CPU capacity of a lambda function is pro-
portional to the allocated function memory [35]. We use
binary variable x;; 8i % 1;2;...;Lp to specify whether the ith
type of memory is allocated (for mapper lambdas) out of
the L categories. Intuitively, we have

xi 2 fO;1g; 8i2 f1;2;...;Llg; Pi;lxi%l; (1)
which indicates that only one category of memory allocation
can be assigned by nature. We further use n; to specify
whether we launch j lambdas as mappers. In a similar vein,
we have

P

nj 2 f0;1g; 8j2 f1;2;...;mg; j%M1 nj % 1: 2)

The computation workload for mapper m given j map-
pers is determined by the input size di . Therefore, we can
express its computation time as

Py .

i dl iy xiug; 8i;j: 3)

where u; is the processing time of unit-size object given ith
resource allocation.

The completion time of the mapping phase, denoted as
le;i, is determined by the slowest mapper, which can be rep-
resented as the maximum computation time among all the
concurrent ones as follows:

THIK] i i p= IHA
tm a édmb emb Bp e

Jii
Tl Ya j%'\f njamaxmzfl;z- 'jgt

..... e 8ij: “)
According to Equation (4), the mapping phase completion
time is dependent on the number of lambdas running in
parallel (j) and the type of lambda in terms of the memory

allocation (i).

3.1.2

After the mapping phase, a coordinator lambda will be
launched to determine the number of reducing steps,
denoted as P, and the number of reducers to be called in
each step, denoted as g for each step p;6p % 1;2;...;PPb. In
each step, the coordinator stores a reducer state object of
size | in S3, which contains the count of reducers and the
information about intermediate objects to be used by the
reducers. Intuitively, the state object has the same size for
all the steps.

Similar to the memory allocation for mapper lambdas
among L types within the range of 128 MB to 3008MB', we
use the binary variable y,;8a % 1;2;...; Lb to specify whether
the ath memory allocation is chosen:

Lifetime of Coordinator

ya2 f0;1g; 8a2f1;2;...;lg; Pa;lya% 1 5)

For the coordinator lambda, the lifetime is determined by
its computation time before the beginning of the reducer
phase, the data transfer time before each reducer step to
write state information, and the sum of lifetime of the first
P 1 reducer steps, as shown in the timeline in Fig. 3. The
total data transfer time incurred by S3 put requests across P

steps can be represented as P |=B, given the network
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TABLE 3
The Calculation Derived by the Coordinator for the Number of
Objects Processed by Each Step, the Number of Reducers in
Each Step, and the Sizes of the Input and Output Objects
at Each Step

Step No. of No. of Input Output
Objects Reducers Get (MB) Put (MB)

1 ] 81 Ya jsz Jo % S g1

2 g1 g2 % gi=kr g1 02

P gr1 ge Qsp1p qr

bandwidth B. The computation time of the coordinator will
be determined by the computation power and workload,
which are impacted by the lambda memory type and the
total number of objects as input for the reducing phase. As
the lifetime of the P-1 reducers will be included in the
reducing phase in the next subsection, we denote T as the
lifetime of the coordinator phase which excludes the over-
lapping time with reducers

. . LoXt
89 % &b P 1=B; T® % yat®°; 8a;jg:
akl

(6)

3.1.3

The reducing phase will be executed in P steps and each
lambda will handle the same amount of objects. The calcula-
tions of each step are shown in Table 3, including the total
number of objects to be handled, the total number of reducer
lambdas to be launched, the total size of input objects to
retrieve, and the total size of output objects to store.

In the first step of the reducing phase, a total number of |
objects, resulting from j mappers, need to be read as input.
Given the number of objects, denoted as kg j, to be han-
dled by each reducer, we need to launch g; % j=kg lambdas in
this step, which read the total amount of data (qo % S)
generated from the mapping phase and write g1 amount of
data for further processing of the next step. In a general step
p, the number of reducers is denoted as g,. The total number
of objects is equal to the total number of reducers from the
previous step, gp1, and the size of the total input objects
(Get) is equal to the size of the total output objects (Put)
from the previous step, qp1. We represent the total number of
reducers as g, which can be derivedas P ¢ g,.

Given the same set of memory allocatiort§lin L types, we
use binary variable zs;0s % 1;2;...;Lbp to specify whether
the sth memory allocation is selected for reducer lambdas
or not, which naturally has the following constraints:

XL
8s2 f1;2;...;Llg; Zs
skl

Lifetime of Reducers

zs 2 f0; 1g; Y% 1: )

Similarly, we use wg to specify whether or not we launch
g lambdas as reducers.
wg 2 f0; 1g;

8g2 f1;2;... wg % 1:

ghl

®)

yME;

The lifetime of the reducing phase depends on the total
data transfer time and the lambda computation time. Given
a total of g reducers in P steps, let O‘E denote the total input
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object size, which can be expressed as Pi,/fol p, acci:ording to
Table 3. Similarly, the total output object size iF:/Al gp is
denoted by R§. The total computation time in the reducing
phase can be represented as
XL

ZsUs,
sl
where us is the processing time of unit-size object given sth
resource allocation. The data transfer time of the reducing
phase, denoted as dfs, can be expressed as

0¥ % QF 8s2 f1;2;...;lg;

dj® % 8Q¢ b RE P=B;

which depends on the total size of input data, output data,
and the bandwidth B. Finally, we obtain the lifetime of the
reducing phase, T#®, as the summation of the total computa-
tion time and data transfer time

8s; g:

Tf’s % wgédjf b og’;D; 9)

ghl

3.2 Monetary Cost

The monetary cost for the serverless analytics job is incurred
by the Get and Put requests from S3, the storage of the input
and intermediate objects, the invocation of lambdas and their
execution times.

3.2.1 Requests Cost of Lambdas

Given j mappers in the mapping phase, the cost for S3
requests, Ui, is determined by km Get requests and one Put
request from each mapper. The cost for coordinator,
denoted as U;g, is incurred by writing reducer state object
in S3, determined by the total number of the reducer steps.
Ug,;g denotes the requests cost for the reducing phase,
incurred by each reducer getting kg number of objects and
putting one object in S3. With the standard pricing [43] of
$0:005 per 1,000 Put requests (F) and $0:004 per 10,000 Get
requests (G) in S3, we have the following expressions of S3
requests cost for each phase:

Ul % jokm G b 1 FP;
UJE % gdks G b 1 PP

UJ® % Pj;g P;
(10)

3.2.2

Apart from the cost incurred by Put and Get requests, the stor-
age of objects in S3 depends on the size of data and the duration

for storage. In our considered serverless MapReduce job, the
input objects will be stored in S3 until the completion of the job.

In addition to the storage cost for input objects, the coordinator
and reducers will generate storage cost for intermediate objects.

We denote the storage costs for the three phases as V", Vzg‘a

and V2°, respectively, given j mappers, g reducers and the
lambda resource types (i for mappers, a for the coordinator
and s forreducers). The size of objects handled by the coordina-
tor is denoted as S, and the unit price for storage (per unit size
and unit time) is represented as H. Thus, we have

Storage Cost of Objects

VI % DT H;  VE? % TE26Db S b QEPH;

VE % TE°0D b S b REPH: (11
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3.2.3

The runtime cost of lambdas for the MapReduce job consists
of the invocation cost and the computation cost. The invok-

ing price for a lambda is $0.20 per 1 million requests [24]
and represented as E. Let us denote the invoking costs for

Runtime Cost of Lambdas

the three phases as Ijl, Ijz‘g and I;;g respectively, each of
which depends on the number of lambdas of the particular
phase, expressed as
Uuj e fui1E UBugE: (12)
The computation cost of each lambda is determined by
the price of the allocated memory and the duration it runs.
We use vi, v, and vs to represent the price of the particular
type of lambda. Intuitively, the runtime costs of lambdas for
the three phases, denoted as W/, WF? and W¥E*, respec-
tively, can be expressed as follows:

wii i T
1A VT b

(13)
WE? % L, VayaOTE b TE pp 118 (14)
WES % T, vz TE= b I8 (15)

With the comprehensive modeling for completion time
and monetary cost of a serverless analytics job, we are now
ready to formulate optimization problems according to par-
ticular objectives in the next section.

4  OPTIMIZATIONS FOR PERFORMANCE
ENHANCEMENT AND COST REDUCTION

In this section, we formulate optimization problems accord-
ing to user requirements, and design solutions based on
graph theory to navigate the cost-performance tradeoff.

4.1 Performance Optimization Given a Budget
Constrained with a particular budget, we aim to optimize
application performance, which means minimizing the job
completion time, formulated as follows:

Jmin - f % T/ p TE b TE (16)
s.t. Eq: 81p; &2pb; 85p; 87b; 58P (17)
DpbShQ® O; jR (18)

U;{b Ui;gb U;;gb Vlj;i b Vzg;ab VPg;sb
Wih Wi b WE (19)

In this optimization problem, the objective of job comple-
tion time is the summation of the mapping phase duration
Ti;i, the total coordinator time between reducing steps, Ti;a,
and the total lifetime of reducing steps, T¥°, of which the
expressions have been derived in the previous section.
Constraint (17) regulates the nature of the binary variables.
Constraint (18) indicates the limits in AWS Lambda for
maximum storage size (O, which is currently 5 TB) and for
the maximum number of requested lambdas (R). The bud-
get limit (J), represented by Constraint (19), can be flexibly
specified by the user.

This problem has binary variables and is intuitively NP-
hard [44]. To solve this problem, we propose a strategy
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Fig. 5. DAG for performance optimization (Eq. (16)) or cost minimization
(Eq. (20)), depending on the associated edge weights from Column 01 to
Column 06.

based on graph theory [45], an effective tool in resource allo-
cation and scheduling. Our problem formulation naturally
maps to the shortest path problem. We construct a directed
acyclic graph (DAG) as shown in Fig. 5. The vertices of the
graph represent the resource allocation for lambda func-
tions along the workflow, and the edge weights are the
resulted completion times for particular phases.

With this graph, a flow starting from the source node S
will go through five nodes to reach the destination D. Each
of the five nodes along the flow path represents an alloca-
tion of a particular resource. In particular, the five columns
of vertices along the DAG in order represent the memory
allocation for mapper lambdas, the number of mappers, the
number of objects per reducers, the memory allocation for
coordinator lambda and the memory allocation for reducer
lambdas.

The edge weights are set as the completion times that are
associated with the resource allocations specified by the
connected vertices. For the first set of edges between the
first two columns of vertices, the edge weight represents the
resulted mapper completion time (Eq. (4)). For example, the
weight of the edge between vertices x; and j3 means the
completion time of each mapper, if there are j3 lambdas
allocated as mappers, each with x; type of memory alloca-
tion. Similarly, weights of the second set of edges are speci-
fied as the aggregation of the data transfer time of the
coordinator and the reducing phases (dJ®p d’®). For the
third set of edges, weights are assigned as the coordinator
phase computation time (c5%). Finally, weights of edges
between the fourth and fifth column of vertices represent
the computation time of the reducing phase (Eq. (9)).

With such an edge weight assignment, optimizing job
completion time is equivalent to finding the shortest path.
We develop Algorithm 1 to find the optimal resource alloca-
tion towards minimized job completion time, based on the
shortest path algorithm [46].

4.2 Cost Minimization With Quality-of-Service

We next consider the following cost minimization problem,
given a threshold for the purpose of meeting Quality-of-Ser-
vice (QoS) requirement.

min - h% Ul UZp Ufb vITh VES b VED
Wb Wb Wi (20)
s.t. Eq: d1b; d2P; 35p; 67b; 88P; and §18p 21)
T T T E: (22)
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The objective is the total monetary cost that needs to be paid
for the running of the serverless job, including the requests
costs, storage costs and runtime costs incurred by mappers,
coordinator and reducers. Similar to the previous optimiza-
tion problem, we have the constraints for binary variables
and for resource upper limits. Constraint (22) regulates that
the job performance should satisfy the QoS objective, which
means that the job completion time does not exceed a user-
specified threshold (E).

To construct the DAG for cost minimization, the vertices
are the same with the completion time optimization, as we
have the same set of resource allocation variables. The edges
of the DAG are associated with the weights that denote the
monetary costs of the three phases resulting from the corre-
sponding resource allocation. Specifically, the weights of
the first set of edges in Fig. 5 represent the costs of the map-
per phase (U] p V/"' b W/"). The second set of edges gives
the aggregation of requests costs and invoking costs during
the coordinator and reducer phase (UJ®p UJE b 158 b 1]8).
The next set of edges is associated with coordinator storage
cost (V%) and lambda cost (C5). The last set of edges rep-
resents the aggregation of the storage and lambda costs
(VE* b WE*) of the reducing phase. Similarly, Algorithm 1
can be used to identify the shortest path as the optimal solu-
tion, with minimal changes.

4.3 Multi-Round Extension

When we extend our consideration to a large-scale data ana-
lytics job with heavy workloads, Algorithm 1 may no longer
be able to generate a feasible deployment plan. The reason is
that a larger job requires more concurrent lambda func-
tions to meet the performance requirement, while serverless
platforms have resource limitations [13] on the maximum
concurrency (i.e., the maximum number of lambdas
requested by a job) which will be violated. For example,
consider a MapReduce job with 2,500 input objects. Each of
the objects is of large size, so that 2,500 mapper lambdas are
required to handle each object in parallel, exceeding the
maximum concurrency of 1,000 allowed by the AWS
Lambda platform. In this case, it is impossible for Algorithm
1 to generate a feasible serverless deployment solution. To
accommodate a large job, an intuitive way is to deploy it
across multiple rounds, each with a smaller number of con-
current functions within the concurrency limit. In addition,
another type of circumstance is that the size of temporary
storage for the objects handled by a lambda goes beyond
the platform limit (512 MB on AWS Lambda), which needs
to be identified and resolved carefully. Therefore, motivated
by the aforementioned challenges of directly applying
Astrea for a large-scale job, we next present our extended
design of Astrea for multi-round deployment of large jobs to
satisfy the maximum concurrency limit and maximum tem-
poral storage limit of serverless platforms.

The essential idea of our extended design is to carefully
apply Algorithm 1 with relaxed constraints across rounds,
when the maximal required concurrency is greater than the
platform limit. As presented in Algorithm 2, when no feasi-
ble configuration exists, the constraint in Algorithm 1 is
relaxed by adding the value of maximum concurrency limit
Ro (line 4), until a feasible solution is identified. From the
feasible solution P, we can obtain the set of mappers M
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(line 6), where each element contains the information of
the input objects assigned to the particular mapper. If the
total number of mappers, jMj, violates the platform limit
for maximum concurrency Ro, we split the workload across
multiple rounds so that the lambda functions required in
each round do not overwhelm the serverless platform and
are judiciously configured (lines 7-20).

In particular, the number of rounds is calculated by divid-
ing the total number of mappers with Rg (line 8). For each
round, the set of input objects, D, to be processed is obtained
from M., the set of mappers assigned in this round (lines
10-15). We can consider each round as running a subjob
which processes a partition of the input dataset (i.e., D;). For
the subjob, we can again use Algorithm 1 to obtain the opti-
mal configuration based on an updated problem formulation
(lines 16-17). Given the solution P,, we can obtain the set
of mappers, M, which includes the input object information
per mapper (line 18). Accordingly, we can then check the
temporary storage size limit for each mapper and switch
object assignments between mappers if necessary to avoid
exceeding the limit (line 19). Such configurations will be
added to Paths round by round, which will be eventually
returned for Astrea to enforce the execution accordingly.

It is worth noting that Algorithm 1 is a special case of
Algorithm 2 without temporary storage size checking. In
other words, our extended design of Astrea enables fault-tol-
erance for temporary storage violation, and allows multi-
round deployment to accommodate large-scale jobs. Intui-
tively, executing a job in multiple sequential rounds would
prolong the job completion. If a job is more stringent on
completion time, complementary directions of leveraging
faster storage service or designing better intermediate data
management strategy to further improve job performance
(at the expense of extra billing cost) could be explored, to be
further elaborated in the following sections.

Algorithm 1. Astrea: Finding the Optimal Resource Allo-
cation (by minimizing the completion time)

Input: Wau; vb: time, Cdu; vb: costs (edge constraint from
Equation (19)), Fdu; vb: storage, Source S, Destination D
Output: Best performance path with acceptable cost.
Initialize: DAG G with edges E and vertices du; vP
P Apply Dijkstra algorithm for the Graph G
u S
while P isapath and u% D do
cost 0, stor 0
while u % D do
cost  costp Cdu;vb;stor
if cost budget then
9: Remove that edge from the edges E

1:
2:
3:
4:
5
6
7 stor p Fou;vb
8

10: P Apply Dijkstra algorithm for the Graph G
11 u S

12: break

13: else

14: u v

15: return P

5 PERFORMANCE EVALUATION

In this section, we present the design and implementation of
Astrea, and evaluate its performance with extensive real-
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world experiments over a wide array of Big Data analytics
benchmarks and machine learning workloads. Our purpose
is to show the effectiveness of Astrea and its multi-round
extension when increasing the problem scale beyond the
platform limit for one-round deployment.

Algorithm 2. Astrea-extended: Finding the Optimal
Resource Allocation for a Very Large Job through Multi-
ple Rounds

Input: Ro: Maximum allowed current lambdas, D: The set of
input objects, Algorithm 1
Output: Paths
1: Initialize: round 1R Ro
2: P execute Algorithm 1 with limit R
3: while P is not a feasible path do

4 R RbpRo
5: P execute Algorithm 1 with limit R
6: Obtain the set of mappers, M, from P
7: ifjMj > R, then
8 round deﬂe
9:  ForEachr 2 01/zl; round do
10: ifr < round then
11: M.  Get Ro mappers from M
12: M M M,
13: else
14: M, M
15: Obtain input object set D, from M,
16: Update problem formulation for Algorithm 1
17: P, execute Algorithm 1 with limit Ro
18: Obtain the set of mappers, M, from P,
19: Check temporary storage sizer(and update M),
20: Append %P,; M, to Paths
21: else
22: Check temporary storage size (and update M)
23: Append %P; M to Paths

24: return Paths

5.1 Prototype Implementation and Experimental
Setup

Astrea is designed and implemented in AWS Lambda.
When a user submits a data analytics job, Astrea will model
the performance and cost for the job using Performance
Predictor and Cost Predictor modules. With the
modeling and the user-specified requirement, Astrea provi-
sions resources based on the algorithm described in Sec-
tion 4, to navigate the cost-performance tradeoff. Finally,
Astrea deploys the user code according to the best orchestra-
tion and configuration plan, and the job will be executed
accordingly in the serverless environment.

In the two modules of performance modeling, we use the
following settings. The reducer state object written by the
coordinator to S3 before each reducer step normally has one
line to specify the number of reducers and the number of
objects. Thus, it is assumed as 1 MB in size. The computa-
tion time of each lambda is proportional to its memory size,
which ranges from 128 MB to 3008 MB, with 64 MB incre-
ments [13] in AWS Lambda. Each lambda has a limit of 900
seconds for execution.

Provisioning Baselines. There are three baselines for serv-
erless provisioning implemented to compare with Astrea,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

207 . 20
18 T —— Job completion time |4
e —— Mapper time
16 e 16
~. —+— Tatal cost

14 14
2 e 2
@ 2
Bop e
g e 8 ©

6 \\'\‘\\ """ T T

4 — 4

2 2

0 0

512 1024 1088 1152 1536

Memory allocation (MB)

2944 3008

Fig. 6. The change of completion time, mapper phase time and monetary
cost with memory allocation.

based on the experimental observation of serverless Word-
count as shown in Fig. 6. Without modeling the intricate
inter-dependencies among various factors, this observation
simply provides some vague sense about the general behav-
ior of performance and cost with respect to memory alloca-
tion, serving as a rough guideline for the baselines. Since
the memory blocks greater than 1536 MB are not showing
much improvement in completion time, as observed in
Fig. 6, 1536 MB is allocated for all lambdas in Baseline 1
(called max_performance), and the number of objects per
mapper is set as | to realize the maximum degree of paral-
lelism for mappers. We allocate the number of objects per
reducer as 2 which is empirically good. Baseline 2 (called
min_cost) is implemented with a setting from the cost point
of view. With a preference for cost saving, the lambdas are
naively allocated with the smallest memory block 128 MB,
and the objects allocations are maintained the same as base-
line max_performance. The third baseline has a hybrid con-
sideration of both performance and cost. It follows the same
setting as min_cost for parallel mappers, each with 128 MB
to process one object. For the reducing phase, Baseline 3
(called hybrid) allocates 1536 MB to three reducer lambdas
in two steps, and the two reducers in the first step each pro-
cess half of the total objects.

Workloads. We have conducted our experiments under
five different workloads listed as follows:

Big Data Benchmark [14]:

—  Query (selection) over Rankings dataset, with
the size of 6.38 GB, which lists websites and
their page ranks. The dataset has 90 Million
rows, each including pageURL, pageRank, and
avgDuration.

—  Query (aggregation) over two Uservisits data-
sets, with the size of 254 GB and 126.8 GB,
respectively, stored in S3 as 202 objects. The data-
sets have 155 million and 775 million individual
rows, respectively, each consisting of sourcelP,
visitDate, adRevenue, userAgent, countryCode,
languageCode, searchWord, and duration.

Wordcount, with the input size of 1 GB, 10 GB, and

20 GB, respectively.

Sort, with the input size of 100 GB.

Laptop pricing dataset, with the size of 10 GB, used for

K-Nearest Neighbours algorithm. Each row consists

of Manufacturer, IntelCore, IntelCoreGen processing
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Fig. 7. Job completion time achieved by Astrea and three baselines, for
Wordcount (3 scales), Sort and Query workloads, given a budget
constraint.

speed, Ram, HDD, SSD, Graphics, ScreenSize, and
Price.

Seeds dataset, with the size of 10 GB, used for K-
Means Clustering. Each row consists of area, perime-
ter, compactness, length of kernel, width of kernel,
and asymmetry coefficient length of kernel groove.

In our evaluations, we illustrate the performance and
monetary cost with error bars of standard deviation by
repeating the experiments for three times. In the following
subsections, we present the results and analysis of four
groups of experiments, briefly described as follows:

We compare Astrea with the three provisioning base-
lines aforementioned over various workloads with
increasing scales.

We compare Astrea with Apache Spark [15]
deployed on industrial platforms of EC2 [16] and
SageMaker [17], over various Big Data analytics and
machine learning workloads.

We compare Astrea with Amazon EMR [18], the
built-in industrial VM-based MapReduce platform,
for two different workloads.

We evaluate our extended multi-round Astrea, in
comparison with Apache Spark over various work-
loads of which the scales increase beyond platform
limits for one-round deployment.

5.2 Astrea versus Provisioning Baselines

To begin with, we evaluate the behavior of Astrea in identi-
fying the optimal resource configuration and orchestration
for performance optimization, given a cost budget.

5.2.1

Fig. 7 presents the completion time achieved by Astrea, in
comparison with the three baselines, for different workloads.
The budget constraints and the resulted costs (by Astrea) are
shown with 2-tuples above the bar groups for each bench-
mark. As clearly shown in Fig. 7, Astrea outperforms all the
three baselines in terms of reducing the completion time for
all the workloads, without exceeding budgets. Baseline max_-
performance, with the highest memory allocation for lambdas,
outperforms the other two baselines with shorter completion
times for all the workloads, but is still far from competitive

Wordcount, Sort and Query Workloads
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TABLE 4
The Resource Allocations Achieved by Astrea, for the Three
Benchmarks When Optimizing Job Performance

Wordcount Wordcount Wordcount — Sort (100 Query (25.4

(1 GB) (10 GB) (20 GB) GB) GB)
Map., Co., 256, 128, 256, 256, 128,
Red. 256, 1024, 1024, 256, 256,
memory 1024 1024 1024 1024 1024
Obj. (map.) 2 8 4 4 1
Obj. (red.) 2 11 2 8 11
Mappers 10 3 10 50 202
Reducers 11 1 11 7 22
Red. steps 4 1 4 1 4

with Astrea. More specifically, for the Wordcount benchmark
with increasing scales of 1 GB, 10 GB, and 20 GB, Astrea
achieves performance improvement over max_performance of
46.20%, 42.51%, and 54.78%, respectively. Similarly, for
Query and Sort, Astrea outperforms max_performance by at
least 49.31% and 10.08%, respectively. Considering all the
three baselines, Astrea achieves 42 69% improvement for
Wordcount in all scales, up to 21% for Sort, and 57% for
Query benchmark, respectively.

To further illustrate how Astrea works and analyze its
advantages, Table 4 presents the budget-constrained perfor-
mance-optimal resource provisioning in Astrea, for the three
workloads with different scales. Specifically, the resource
allocation includes specifying the memory type for mapper
and reducer lambdas, the number of objects processed per
mapper and the number of objects processed per reducer,
which can further determine the number of (mapper or
reducer) lambdas and the number of reducer steps.

For the Query benchmark, the number of objects per
mapper is allocated as 1 by Astrea, resulting in 202 mappers
with a maximum degree of parallelism. If the number of
objects per mapper is more than one, there will be fewer
mappers, each processing more input data, and the data
transfer time will be longer, impacting the job completion
time. 128 MB memory is allocated for each mapper, which
is sufficient to process one object and cost-effective. For the
reducing phase, if the number of objects per reducer is too
small, then a large number of reducers will be required in
the first step, followed by a relatively large number of sub-
sequent steps, which prolongs the job completion. On the
other hand, if the number of objects per reducers is more
than 15, there will be one reducer in the second step that
needs to handle all the objects from the first step, which
incurs large data transfer time and increases the completion
time. Astrea judiciously sets the number of 11, resulting in
22 reducers within 4 steps, and allocates 1024 MB memory,
to speed up the job.

For the Sort benchmark, the total size of the input is
100 GB, and each of the 200 objects is as large as 500 MB. If
the number of objects increases to 5 or more, then the size of
the objects processed by each lambda will be larger, which
thus increase the data transfer time. Astrea sets 4 objects per
mapper, each with 256 MB memory, to achieve a good bal-
ance between computation time decrease (per mapper) and
transfer time increase. Similarly, for the reducer phase,
Astrea sets 8 objects per reducer, each with 1024 MB, to fin-
ish within 1 step, as the outcome from optimizing comple-
tion time given the budget.
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Fig. 8. Monetary cost achieved by Astrea and three baselines, for Word-
count (3 scales), Sort and Query workloads, given a completion time
threshold.

Similarly, when aiming at minimizing the monetary cost
incurred by the job given a particular threshold of job com-
pletion time, Astrea manages to find the optimal resource
configurations to orchestrate lambda functions, as demon-
strated in Fig. 8. For each workload, the job completion time
threshold (for QoS purpose) is indicated by the first element
in the 2-tuple above each workload bar group, where the
second element represents the actual job completion time
with Astrea. It is easily verified that without exceeding the
threshold, Astrea results in the smallest cost for each bench-
mark. min_cost is intuitively designed for cost saving, and
thus results in a smaller cost than the other two baselines
for all the workloads. Still, Astrea achieves nearly 71%, 33%,
and 17% cost reduction over min_cost, for the three Word-
count benchmarks. For Sort and Query benchmarks, about
11% and 23% cost savings are exhibited, compared to min_-
cost. In summary, compared with the three baselines, Astrea
achieves the cost reduction of at least 20%, up to 87% for
those three different benchmarks.

5.2.2

We continue to perform evaluations with selection and
aggregation queries over datasets at different scales in the
Big Data Benchmark. Selection queries in the PageRank
algorithm are over the Rankings dataset, with 90 million
rows and the size of 6.38 GB. More specifically, Scanla and
Scan2a are selections queries that correspond to two differ-
ent conditions of pageRank>1000 and pageRank>100,
respectively. Fig. 9 presents a comprehensive performance
comparison of Astrea with the three provisioning baselines
when aiming at minimizing job completion time of four
query jobs under their respective budget limits. Similar to
Fig. 7, for each of the four query workloads, the 2-tuple
above its bar group in Fig. 9 represents its budget limit and
the resulted monetary cost with Astrea. As illustrated in the
figure, for Scanla and Scan2a queries, Astrea gained 29%
and 31% performance improvement compared to max_per-
formance which, with the maximum parallel lambdas, yields
better performance than the other two baselines.
Aggregation queries, referred to as Aggregation2a and
Aggregation2b in Fig. 9, are evaluated using two sets of input
objects with 25.4 GB and 126.8 GB, respectively. These input

Selection and Aggregation Queries
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Fig. 9. Job completion time achieved by Astrea and three baselines, for
BigData Benchmark queries, given a budget.

data are both from the Uservisits dataset with 155 million
rows and 775 million rows, respectively. Similarly, max_per-
formance resulted in the best completion time performance
among the three baselines, while Astrea achieved 57% and
45% performance improvement over it for Aggregation2a
and Aggregation2b, respectively, as shown in Fig. 9.

With respect to cost minimization without violating QoS
requirement, Fig. 10 compares the monetary cost incurred by
Astrea and the three provisioning baselines given a perfor-
mance threshold, for each of the same four query jobs. Simi-
lar to Fig. 8, the QoS threshold with respect to job completion
time is indicated by the first element in the 2-tuple above the
bar group, while the job completion time achieved by Astrea
is represented by the second element. As observed in Fig. 10,
Astrea led to 82% and 84% cost reductions for Scanla and
Scan2a queries, respectively, when compared to min_cost
which incurred the minimum cost among the three baselines.
For the two aggregation queries, Astrea also outperformed
min_cost, reducing the cost by 23% and 55%, respectively. To
summarize, Astrea has been demonstrated to consistently
outperform the provisioning baselines under various work-
loads at different scales.

5.3 Astrea versus Apache Spark

In this group of experiments, we focus on demonstrating the
capabilities of Astrea to accommodate the Spark workloads.
We evaluate how Astrea performs over Big Data analytics
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Fig. 10. Monetary cost achieved by Astrea and three baselines, for Big-
Data Benchmark queries, given a completion time threshold.
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Fig. 11. Job completion time achieved by Astrea and Apache Spark, for
Wordcount workloads with three different scales and Query benchmark.

and machine learning workloads, in comparison with Apache
Spark deployed on commercial platforms, i.e., EC2 [16] and
SageMaker [17]. In this set of evaluation, without loss of gen-
erality, Astrea is configured in the cost-minimization setting,
with the QoS threshold reasonably specified as the job com-
pletion time resulting from a baseline provisioning.

5.3.1 Wordcount and SQL Workloads

We first compare Astrea with Spark over traditional Big
Data analytics workloads: Wordcount and SQL queries.
Since a lambda function has limit on the temporary storage
size and direct bulk transfer across functions is not feasible,
Astrea deploys the workloads in the MapReduce form, with-
out benefiting from in-memory computation as Spark.
Despite such a disadvantage, we will show how the delicate
resource provisioning enables Astrea to achieve comparable
or even superior performance to Spark. To run the Spark
Wordcount and Spark SQL, we provision a cluster of two
c4.4xlarge (32 GB memory) VM instances on EC2 to
deploy Apache Spark (version 3.0.1). We evaluate Astrea
against the Spark baseline on three Wordcount jobs of dif-
ferent sizes and the query job over the 25.4 GB Uservisits
dataset. The performance (job completion time) and the cost
achieved by Astrea and Spark over the four jobs are pre-
sented in Figs. 11 and 12.

As observed in Fig. 11, for Wordcount jobs of three differ-
ent scales and SQL query job, Astrea consistently outper-
formed Spark with respect to job completion time. Note that
the metric of job completion time in the Spark cluster does
not account for the cluster setup time (including loading
application libraries) which is about 43 seconds. Consider-
ing the Wordcount jobs, Astrea achieved 41-50% perfor-
mance improvement over Spark for the three scales, while
the Query job in Astrea exhibited a slight improvement.

With respect to the monetary cost, in the Spark setting, it
depends on the number of on-demand EC2 instances, the unit
instance price [16] (50.796 per hour in our setup), the storage
price (negligible compared to the computation price), and the
completion time of the Spark job. As illustrated in Fig. 12,
Astrea, configured to minimize cost as aforementioned,
resulted in at least 93% cost reduction compared to Spark.
With increasing input scale of Wordcount, the cost saving of
Astrea over Spark slightly decreases from 99% to 95%.
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Fig. 12. Total cost achieved by Astrea and Apache Spark, for Wordcount
workloads with three different scales and Query benchmark.

From Figs. 11 and 12, we can easily observe that Astrea
manages to finish Big Data analytics jobs at a faster speed,
and also with a much lower cost. Compared to the Spark
setting with very limited concurrency and high instance
cost, Astrea leverages light-weighted lambda functions and
judiciously configures and coordinates them, so that a
higher degree of concurrency can be achieved for job execu-
tion with the maximal cost-efficiency. For example, for the
Query workload, about 200 mapper functions (each with 2
vCPU) concurrently work on the large input dataset in
Astrea, to achieve comparable performance at a lower cost.

It is worth noting that our purpose in this set of experi-
ments is to demonstrate the promise that the same analytics
workload deployed on Lambda with Astrea can achieve com-
parable or superior performance to a reasonably configured
Spark EC2 deployment. Although fine-grained Spark config-
uration is not our focus, we explore a few more settings for
the 20 GB Spark Wordcount as follows, in addition to our
previous two-c4.4xlarge configuration called SparkVM_1.
We first set up a cluster of five c4.large instances (called
SparkVMcon_1), each with 2vCPUs and less memory than
SparkVM 1. This cluster, with a larger number of smaller
instances, showed 26% performance improvement and
reduced the cost by 48% over SparkVM_1. Astrea showed
nearly 21% performance and 90% cost reduction over
SparkVMcon_1. We then investigate different finer-grained
configurations in the original two-c4.4xlarge cluster. In
the first setting (called Sparkcon_1), each node has two execu-
tors with 4 cores (per executor), resulting in 15% perfor-
mance improvement and 18% cost saving over SparkVM_ 1,
which uses one executor by default. However, Sparkcon 1
cannot beat Astrea in that the latter showed nearly 31% per-
formance and 93% cost reduction. Another setting called
Sparkcon_2 configures each node to hold 8 executors with sin-
gle core. Still, Astrea exhibited nearly 34% performance gain
and 95% cost reduction over Sparkcon_2.

5.3.2

We further evaluate the performance and cost of Astrea in
comparison with Spark for two machine learning workloads
elaborated as follows.

The first one is the K-nearest neighbors algorithm for
classification problems which has been widely adopted in

Machine Learning Workloads
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Fig. 13. Job completion time and Monetary cost achieved by Astrea and
Apache Spark, for two different machine learning jobs.

industry. This supervised classification algorithm classifies
unlabeled data from labeled inputs by comparing the k
numbers of known classified neighbors. The similarities can
be calculated based on euclidean distance, Manhattan dis-
tance, or Hamming distance. We implement the k-nearest
neighbors in Astrea following the MapReduce paradigm.
More specifically, mappers compute the euclidean distance,
and reducers sort the distances and predict using k-closest
neighbors. The K-nearest neighbors algorithm is trained on
a 10 GB dataset to predict the price of a laptop given its
configuration.

The second one is the K-means clustering, an unsuper-
vised machine learning algorithm that discovers patterns by
grouping similar data points into K clusters. Astrea imple-
ments it in the MapReduce form. Mappers accept data and
a list of centers (global constant), compute the nearest center
for each data, and finally store centers and their data points.
Reducers take the former outputs from mappers and com-
pute the new centers based on distance calculation. Each
iteration is transformed into a series of reducer steps. We
apply K-means clustering on a 10 GB seeds dataset.

The Spark counterparts of these two jobs are imple-
mented in Apache Spark 3.0.1 and deployed on Amazon
SageMaker, a commercial machine learning platform. Sage-
Maker provides easy coordination for Spark machine learn-
ing workloads, enabling a faster response time and a
smaller cost compared to the manual cluster deployment on
EC2 instances. In particular, we use an instance-based note-
book (ml.t2.medium with 2vCPUs hosting a Spark execu-
tor) in SageMaker for Spark K-nearest neighbors and Spark
K-means clustering. The cost depends on the instance price,
data processing cost and storage cost.

As shown in Figs. 13a and 13b, for the K-nearest neigh-
bors algorithm (referred to as KNN in the figure), Astrea
achieved 41% performance improvement and 97% cost
reduction compared to Spark, when aiming at cost minimi-
zation given a completion time threshold (186.5 s, while the
actual resulted completion time was 153.7 s). In a similar
vein, for the K-means clustering (referred to as Kmeans in
the figure) workload, Astrea led to 36% performance
improvement and 97% cost saving compared to Spark,
when minimizing cost without violating a performance
threshold (148.31 s, while the actual completion time was
120.74 s). Note that these thresholds are specified based on
the corresponding job completion time results under a pro-
visioning baseline as aforementioned, which should be
fairly reasonable. To summarize, through this set of experi-
ments, we have demonstrated the advantages of Astrea in
faster execution of machine learning jobs at lower cost, com-
pared to Spark on SageMaker.
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5.4 Astrea versus Amazon EMR

We further compare Astrea with another VM-based solution.
We use the Amazon Elastic MapReduce (EMR), a cloud Big
Data platform that easily runs and scales frameworks like
Hadoop, Hive, etc. EMR (version 5.35.0) settings in our eval-
uations use Hadoop 2.10, three m3.xlarge on-demand VM
instances (each with 4vCPU, hosting 2 executors), and the
number of concurrent mapping tasks is 100. The workloads
we used include Wordcount with 20 GB size and Sort with
100 GB. EMR-setting incurs on-demand instance cost, and
the resulted latency depends on the setup time of the instan-
ces and the execution time of the job till the instance termina-
tion. As shown on the left side of Fig. 14, Astrea outperforms
the VM-based solution by 77.09% and 5.72% for Wordcount
and Sort benchmarks, respectively.

The cost comparison plot on the right side of Fig. 14
shows that Astrea minimizes the cost, with 79.33% and
11.52% cost savings over the EMR solution, for the same
two benchmarks, respectively.

5.5 Multi-Round Astrea

While the previous experiments demonstrate the advan-
tages of Astrea over various workloads with increasing
scales, this subsection further evaluates how our solution
accommodates to even larger scales of workloads beyond
the platform limits for one-round deployment. More specifi-
cally, we evaluate our multi-round extension of Astrea, i.e.,
Algorithm 2 in Section 4.3, under two scenarios: maximum
concurrency limit and maximum temporal storage limit.

In the first evaluation for a 50 GB Wordcount, Algorithm 1
gave feasible solution when the limit of maximum concur-
rent lambdas is doubled. The first round of Algorithm 2
resulted in the configuration decisions of 1450 mappers and
four objects per mapper. Astrea suggested two rounds to fin-
ish the job, since the current platform concurrency limit is
1000. 69% of objects followed the first round configurations
and the remaining followed the second one. For cost minimi-
zation with performance limit, the performance threshold
was divided for two rounds based on the sizes of objects of
particular rounds. Solutions were obtained by solving opti-
mization problems for the subjobs, and finally Astrea exe-
cuted the job on AWS Lambda platform over two rounds
accordingly. As shown in Figs. 15a and 15b (first bar group),
when minimizing the cost subject to the performance thresh-
old 1824 s (the completion time resulting from a baseline pro-
visioning which splits the objects by half), Astrea exhibited
89% cost reduction and 3% performance improvement com-
pared to Apache Spark, which followed the EC2 deployment
in Section 5.3.1.
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Fig. 15. Job completion time and cost achieved with Spark and Astrea,
for Wordcount jobs with 50 GB and 25 G B input data, respectively.

To evaluate the second case when the temporary storage
required by one or more lambdas exceeded the platform
limit, we used a 25 GB Wordcount job. Astrea generated the
setting of 34 mappers, each with three objects. Depending
on the sizes of the objects, there were three lambdas that
required extra storage beyond the platform limitation. To
address this issue, Algorithm 2 swapped objects across
mapper lambdas based on their sizes to reach a better
match. The second bar groups in Figs. 15a and 15b present
the results of job completion time and monetary cost
achieved by Astrea in comparison with Spark, when mini-
mizing the cost under the performance threshold of 1087 s
(from a baseline provisioning). As clearly observed, Astrea
outperformed with 28% performance improvement and
92% cost reduction.

5.6 Discussion
Intuitively, if DAG fully characterizes the choices, dependen-
cies and impacts of the configuration sequences along the job
workflow, deriving the shortest path results in the optimal
execution and configuration with the objectives of the mini-
mum job completion time or the cost. As Astrea sees more
types of workloads, the modeling and DAG construction
could be dynamically adjusted and refined to achieve better
accuracy. The overhead of Astrea is incurred by our algo-
rithm to solve the constrained optimization problem formu-
lated given user requirements, which is within a few seconds
on a laptop (IntelCore™i7-8750H CPU@2.20 GHz 12,2
8GiB memory). It is expected that the running time is neg-
ligible (in milliseconds) on a more powerful commodity
server. Though implemented in AWS Lambda, Astrea can be
adapted to Google Functions and Azure Functions by using
their respective platform quotas and pricing mechanisms.
Astrea relies on a general modeling which accounts for the
completion time (as well as the monetary cost) of each func-
tion resulting from both computation and I/O (communica-
tion), no matter which resource is more intensively
demanded. This brings one of Astrea’s advantages: the ease
of usage without the need of categorizing applications
according to their resource intensiveness. On the other hand,
Astrea currently relies on S3 for the exchange of intermediate
data, which is cheaper but slower compared to other com-
mercial caching services (such as AWS ElastiCache) or the
academic prototyped far-memory systems (such as Pocket [9]
and Jiffy [29]). When an application is explicitly considered as
shuffle heavy, we could extend our modeling and implemen-
tation beyond S3, analyzing the characteristics and costs of
alternative storage/caching services, to judiciously coordi-
nate a mixture of services with different performance-cost
tradeoffs. Building high-throughput low-latency far-memory
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systems for serverless analytics is an orthogonal direction.
Direct function-to-function communication is also an open
topic to be explored. By adopting finer-grained task-level
scheduling approaches such as NIMBLE [28] and
Wukong [47], we may expect further performance enhance-
ment of Astrea. Finally, Astrea is suitable for other data ana-
lytics workloads which are directly in or convertible to the
MapReduce form. This is evidenced by our experiments
with Wordcount, SQL and machine learning workloads in
Spark, where Astrea achieves 92% cost reduction without
performance degradation over VM-based vanilla Spark.

6 CONCLUSION AND FUTURE WORK

This paper presents an optimization framework, Astrea, to
navigate the cost-performance tradeoff for serverless analyt-
ics jobs. Astrea relies on the modeling of completion time
performance and monetary cost of a job to formulate opti-
mization problems towards user-specified objectives. Astrea
identifies the optimal solutions of resource configuration
and Lambda function orchestration based on graph theory,
to either minimize the job completion time with a budget
limit, or minimize monetary cost with a performance
threshold. We have implemented and deployed Astrea in
AWS Lambda. Our experimental results with three repre-
sentative benchmarks have demonstrated the effectiveness
of Astrea in optimal resource provisioning: Astrea achieves
21% to 60% performance improvement without exceeding
the budget constraint, and 20% to 80% cost reduction with-
out violating the QoS objective. The optimality of Astrea has
also been demonstrated in the comparison with Apache
Spark: Astrea exhibits almost 92% cost reduction without
degrading performance for serverless data analytics bench-
marks. For machine learning analytics, Astrea achieves a
cost reduction up to 98% with at least 37% performance
improvement. Our extended multi-round design and imple-
mentation of Astrea also performs better than Apache Spark
with 92% cost reduction.

In the future, we plan to explore the directions of incorpo-
rating better intermediate data transfer strategy and exploit-
ing optimal task level orchestration for large-scale data
analytics jobs, as discussed in Section 5.6. For example, a bet-
ter scheduler can be designed to invoke functions of different
stages in a pipelined manner to speed up the workflow. In a
more general background, serverless computing has been
envisioned to be promising as the next phase of cloud com-
puting to revolutionize cloud programming [48]. There are
future directions on stateful serverless [49] like improving
and inventing logging mechanisms [50] for the shared log
records and fault-tolerance tools [51] to identify bugs in serv-
erless applications easily. On the other hand, with the trans-
formative effects of Internet-of-Things (IoT), Blockchain and
Artificial Intelligence on the cloud [52], it remains open to
fulfill the potential of serverless computing to support a
broader range of cloud applications. More specifically, in the
paradigm of IoT, research challenges include where to place
serverless functions (across edge, fog, and cloud layers),
how to offload and dispatch functions, how to mitigate cold
start to reduce latency for mission-critical applications, and
etc. Last but not least, aligned with the concept of “sky
computing” [53] and to avoid vendor lock-in, developing
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solutions for cross-provider aggregation of serverless offer-
ings, such as [54], could be an interesting direction to pursue.
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