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In this paper, we construct a high order weighted essentially non-oscillatory (WENO)
finite difference discretization for compressible Navier-Stokes (NS) equations, which is
rendered positivity-preserving of density and internal energy by a positivity-preserving flux
splitting and a scaling positivity-preserving limiter. The novelty of this paper is WENO
reconstruction performed on variables from a positivity-preserving convection diffusion
flux splitting, which is different from conventional WENO schemes solving compressible
NS equations. The core advantages of our proposed method are robustness and efficiency,
which especially are suitable for solving tough demanding problems of both compressible
Euler and NS equation including low density and low pressure flow regime. Moreover,
in terms of computational cost, it is more efficient and easier to implement and extend
to multi-dimensional problems than the positivity-preserving high order discontinuous
Galerkin schemes and finite volume WENO scheme for solving compressible NS equations
on rectangle domain. Benchmark tests demonstrate that the proposed positivity-preserving
WENO schemes are high order accuracy, efficient and robust without excessive artificial
viscosity for demanding problems involving with low density, low pressure, and fine
structure.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The compressible NS equations are the most popular continuum model equations in gas dynamics. The system without
external forces in conservative form can be written as

U +V-F=V.F,

(1.1)

where U= (p, pu, E)T are the conservative variables, p is the density, u = (u, v, w) denote the velocity, the total energy
E = pe+ %,0||u||2 with e denoting the internal energy. The fluxes are the advection flux F* = (pu, pu® u+ pI, (E + p)U)T
and the diffusion flux F = (0, 7,u- 7 — q)7, in which p is the pressure and I is the unit tensor, T is the stress tensor and
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q is the heat flux. The relations between conserved variables U and pressure p are given by equations of state (EOS). For a
calorically ideal gas one has p = (y — 1)pe where y = 1.4 can be taken for air.

The positivity of density p and pressure p (or internal energy e) is often desired for numerical schemes solving com-
pressible Euler and NS equations. Of course it is needed for numerical solutions to be physical meaningful. More importantly,
it is crucial to preserve positivity for the sake of nonlinear stability. In practice, emergence of negative density or pressure
often results in blow-ups of computation. With negative density or pressure, the linearized compressible Euler equations
are no longer hyperbolic, thus the initial value problem of linearized system is already ill-posed. A conservative positivity-
preserving Eulerian scheme on fixed meshes is L! stable for p and E, thus quite robust [28].

For the sake of robustness of schemes, we are interested in conservative schemes preserving the positivity. Define the
internal energy function pe(U) =E — %,o||u||2 and the set of admissible states as

0
G={U=|pu]:p>0, peU)>0¢. (1.2)
E

We only consider an EOS satisfying p > 0 < e > 0, e.g., the ideal gas EOS, so positivity of e is equivalent to positivity of
p. For other equations of state such as Jones-Wilkins-Lee EOS [6], (1.2) on longer ensures positive pressure. Nonetheless, it
suffices to preserve positivity of p and e for the sake of robustness. Moreover, G in (1.2) is always a convex set for any EOS
since pe(U) is a concave function for p > 0 and satisfies the Jensen’s inequality YU;,U; € G, VA1, A2 > 0,11 + 212 =1,

pe(rUq 4+ A2Up) > A1 pe(Ur) + 1z 0e(Uy). (1.3)
1.1. WENO schemes for gas dynamics

Weighted essentially non-oscillatory (WENO) method [18] is a very successful high order accurate reconstruction method.
The finite difference WENO scheme by Jiang and Shu in [15], which will be referred as WENO-JS scheme, and its variants are
among the most popular high order schemes for hyperbolic problems such as gas dynamics applications [25]. In practice,
the WENO-JS scheme provides stable numerical solutions for most problems of compressible Euler equations. On the other
hand, for demanding problems involving extremely low density and pressure such as simulating astrophysical jets, the
WENO method and the WENO-JS scheme may not be robust enough [25].

For stabilizing high order accurate schemes for demanding problems, a systematic method of designing bound-preserving
or positivity-preserving limiters based on intrinsic properties in high order finite volume and discontinuous Galerkin (DG)
methods were developed by Zhang and Shu in [30-33,35]. The Zhang-Shu method can be easily applied to finite volume
WENO schemes. For the finite difference WENO scheme, the Zhang-Shu method can be extended through a special imple-
mentation for compressible Euler equations [34].

For rendering the finite difference WENO scheme positivity-preserving for compressible Euler equations, there are many
other methods, e.g., [11,14,22,27]. All these methods are heavily dependent on first-order positivity-preserving schemes for
compressible Euler equations, including the exact Godunov scheme, flux vector splitting scheme [9], Lax-Friedrichs schemes
[21,31], HLLE schemes [2,4] and gas-kinetic schemes [26]. It is not straightforward at all to generalize these methods to com-
pressible NS equations, since there are no standard low order positivity-preserving schemes for the NS diffusion operator,
which is the key difficulty for designing positivity-preserving schemes for compressible NS equations.

For approximating diffusion operators, the robustness of WENO methods can be much improved by avoiding negative
linear weights in reconstruction [19,20,24]. However, these WENO methods are still not robust for demanding gas dynamics
tests, e.g., the positivity of density and pressure is not preserved. Without any positivity treatment, WENO schemes might
not be stable for the low density and low pressure problems such as high Mach number astrophysical jets. Thus, it is
necessary to enforce positivity in WENO schemes for the sake of robustness.

1.2. Objective and related work

The objective in this paper is to design a conservative positivity-preserving high order accurate scheme for solving (1.1)
in the finite difference framework. The Zhang-Shu method [31] can be generalized to positivity-preserving discontinuous
Galerkin schemes solving the compressible NS equations [28], in which the key ingredient is a positivity-preserving non-
linear diffusion flux. Such a flux can also be used for constructing high order positivity-preserving finite volume methods
[5]. The positivity-preserving techniques in Zhang-Shu method for DG and finite volume schemes [5,28,31] do not affect
provable high order accuracy for smooth solutions satisfying pe > C > 0 where C is a constant. The extension of the same
techniques to the finite difference WENO scheme for Euler equations in [34] can maintain provable high order accuracy
in the WENO scheme for smooth solutions with one additional assumption pe > C > 0. In this paper, we construct a high
order accurate positivity-preserving finite difference WENO scheme for compressible NS equations by applying the same
positivity-preserving nonlinear diffusion flux in the WENO implementation.

We emphasize that it is quite straightforward to construct a positivity-preserving finite difference scheme for NS equa-
tions in one dimension, see the appendix in [28]. The main difficulty of designing positivity-preserving finite difference
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schemes lies in the multiple dimensional stress tensor. In this paper, the positivity of one-dimensional scheme can be easily
extended to two dimensions due its construction.

There are also other positivity-preserving methods for compressible NS equations [8,10], but extensions of these methods
to high order finite difference schemes seem difficult. A non-conventional WENO finite volume method can preserve bounds
for scalar convection diffusion [29] but it is still nontrivial to generalize it to compressible NS equations.

1.3. Contributions and organization of the paper

In this paper, we construct positivity-preserving high order finite difference WENO schemes for solving compressible NS
equations. The key step is to reconstruct variables from a positivity-preserving convection diffusion flux splitting, which is
different from conventional WENO schemes for diffusion terms. Compared to the positivity-preserving high order accurate
DG schemes in [28] and finite volume WENO schemes in [5] for solving compressible NS equations, the positivity-preserving
finite difference WENO schemes are more efficient and easier to implement, thanks to smaller memory cost compared to
DG schemes, and lower computational cost than DG and finite volume schemes, especially for multi-dimensional problems.

The work of this paper is an extension of the positivity-preserving finite difference WENO scheme for compressible
Euler equations in [34] to the compressible NS equations. When the Navier-Stokes equations reduce to Euler equations, i.e.,
F! =0, the scheme in this paper will reduce to exactly the same scheme in [34]. However, the positivity-preserving diffusion
flux splitting used in this paper is a nonlinear flux and its analytical properties such as artificial viscosity are not as well
understood as the classical Lax-Friedrichs flux splitting used for compressible Euler equations in [34]. On the other hand,
unlike the linear DG methods, the WENO reconstruction is a nonlinear operator thus using a nonlinear flux splitting seems
more suitable in WENO schemes. Moreover, numerical tests on the classical WENO-JS schemes and a less diffusive scheme
WENO-ZQ [36] suggest that the nonlinear diffusion positivity-preserving flux splitting can improve robustness significantly
without inducing excessive artificial viscosity.

The organization of the paper is as follows. In Section 2, we review the basic idea of the finite difference WENO scheme
and review the positivity-preserving high order finite volume scheme for compressible NS equations. In Section 3, we
construct the positivity-preserving high order finite difference WENO schemes for compressible NS equations. A similar al-
ternative positivity-preserving high order finite difference WENO scheme is discussed in Section 4. In Section 5, we consider
a few benchmark tests for validating the performance. Concluding remarks are given in Section 6.

2. Preliminaries

In this section, we first review the high order finite difference WENO scheme for scalar conservation laws [15], which
can be regarded as a formal finite volume scheme for an auxiliary function. Then we review the high order positivity-
preserving finite volume scheme for compressible NS equations [28]. These methods will be used for constructing a
positivity-preserving finite difference scheme in Section 3.
2.1. Review of the finite difference WENO scheme for scalar conservation laws

Consider the one-dimension scalar hyperbolic conservation law

ug + f )y =0. 1)

Given a uniform grid x; with spacing Ax, we define cells I; = [x,._% R xi+%] where xii% =xj* %Ax. Let u;i(t) be the numerical
approximation to the exact solution u(x,t) at x;. A conservative semi-discrete scheme for (2.1) is given by
du;(t) 1 - ~
= —_—— . — T, 2‘2
=Gy =Ty, (22)

where fi +1 is the numerical flux, but not as a high order approximation of the flux f(u) at x; 1. Assume there exists an
auxiliary function h(x, t) satisfying

] X+Ax/2
f(u(x,t)):H / h(n,t)dn, Vx. (2.3)
X—Ax/2

By (2.3), f(u(x;,t)) is the cell average of h(x, t) and
1
Fuxi, 0)x = A_x[h("”r% O = h(x;_1, 0] (24)

Thus if the numerical flux f”% is a (2r + 1)th order approximation to hi+% = h(xi+%), then ﬁ(fw% — ]A‘ii%) isa (2r+ 1)th

order approximation to f(u(x;))x, which is the point of view for the high order conservative finite difference scheme in [15].
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For linear equation f(u) = u, let h;(t) = ﬁ x’:ijﬁ("//zzh(n, t)dn = u(x;), then by the interpretation above, the finite difference
scheme (2.2) is also a formal finite volume scheme for the function h(x, t):
dh;(t 1 . .
io__ 1 hy—h_ ).
dt Ax  1t3 =3
For the nonlinear scalar equation, with the consideration of stability, the upwind biasing is usually used by splitting the
flux f(u) into two parts: f(u) = f*(u) + f~(u) with % >0 and % < 0. A simple Lax-Friedrichs splitting is applied
as f¥u) = %(f(u) + «au) with o = maxy, | f'(u)|, where the maximum can be taken globally or locally in the stencil of the
WENO scheme. Assume there exist two functions hi (x) depending on the mesh size Ax, such that

X+Ax/2

1
2( f”) i(u(x))—— f h ()dn. (2.5)
(07 AX

Xx—Ax/2

For convenience, we introduce the operator Ry as

hi=Rax@"),ho=Rax(z") or z'=Ry}(hy), 2 =Ry (ho).
NOthE that the flux f =a(z" —z7) and z* satisfy % di >0 and % >0, thus it is equivalent to f* by z" =« f* and
= —af_
Given cell averages of h (x), i.e., point values z=(u(x;)) = % (ui + M) one can use the WENO reconstruction to obtain

high order approximation to hi(xil) which are denoted as z . Finally, the numerical flux is computed as f; 1
2

I\J

a(zii% N i:t% )-
2.2. A positivity-preserving high order finite volume scheme

The dimensionless compressible Navier-Stokes equations for ideal gas in one dimension are

Ui + F(U), = F (U, S), (26)
with the flux function F(U, S) = F(U) — F%(U, S) and

Jol pu 1 0
S=U.U=|[ pu | FO=| pu’+p | .FU.S=—| © |,
E (E+ p)u € ut +q

where T = nuy is shear stress tensor, q is the heat flux given by %ex and Re is the Reynolds number. The equation of state
for ideal gas is p = (y — 1) pe.

By the method in [28,32], a positivity-preserving high order finite volume scheme for (2.6) can be constructed as follows.
Let ﬁ? denote the approximation to the cell average of the exact solution U(x, t) on the cell I; = [Xi,% Xip 1 ] at time level

n. A finite volume scheme with forward Euler time discretization can be written as

—n+1  —n At _ _ n 3 _ N .
U —U _A_[F( 17 H_%,UH_;ySH_;)_F(U i %’Ui—%’si—%) (27)

with a positivity-preserving flux defined by

_ 1
- S - ¢ + \_g + -
F<U]+%,S+%,Ul+%,sl+2>_2 [F(UH%,SH%)+F<Ul+%,s+2> Bisi <Ui+% UH%)] (2.8)

where ,Bl.+% is defined as

Biy

N—=

1
max | |u|+ =—— 2q2 +2p2%e|T — p|? . 2.9
>ui1,sil[' 1+ 525 (PP + 207l — pl +p|q|>] (29)
i+5 ity

Assume a vector of polynomlals of degree k, P;(x) = (pi(x), m;j(x), E; )T, is a (k + 1)-th order accurate approximation to
1

1 1

U(x,t) in I; and satisfies that U is the cell average of P;(x) on I;, and U* = Pl(X,_l) U1+‘ =Pi(x; 1). Denote the N-
-3 2
point Legendre Gauss-Lobatto points on I; as {X* : & =1,2,...,N} ={x,_1 =X, %2, RN RN = +%} with normalized

[SES
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N
quadrature weights @, on the interval [—%, %] such that >~ @, = 1. The N-point Gauss-Lobatto quadrature is exact for
a=1

integrating polynomials of degree 2N — 3. Thus if 2N —3 >k,

2

N-1

— 1 ~ ~ o~

U? = A—X/Pi(x)dx= E o P (?‘J)‘) +w1U,t% +oNU ;. (2.10)
I; a=2

By the mean value theorem, there exist some points xi],xiz, x,.3 in cell I; such that
== o~ o~ —

~ U, — U | —oNU;

QaPi () _ Ty M 2.11)

1—-®1 —dn 1—® —on

T N-1
P = (pi(xz),mi(xiz), Ei(x?)) =>
=2

In [28], it has been proven that ut P{ € G for all i is a sufficient condition for ﬁ?“ € G under some suitable CFL

E

condition. A high order accurate limiter for enforcing U?;l ,P{ € G can be used to render the base finite volume scheme
2

positivity-preserving, e.g., [5]. Positivity for high order time discretizations can be achieved by using a strong stability-

preserving (SSP) Runge-Kutta method, which is a convex combination of forward Euler steps thus positivity in forward Euler
carries over.

3. A positivity-preserving high order finite difference WENO scheme

In this section, we propose a positivity-preserving high order finite difference WENO scheme for solving dimensionless
compressible Navier-Stokes equations by interpreting the high order finite difference scheme as a formal high order finite
volume scheme, for which a sufficient condition of positive-preserving is obtained and a scaling positivity-preserving limiter
can be applied. We first consider forward Euler time discretization and high order time discretizations will be discussed in
Section 3.5. When the Navier-Stokes equations reduce to Euler equations, the scheme in this section will reduce to exactly
the positivity-preserving finite difference WENO scheme for compressible Euler equations in [34].

3.1. The one-dimensional WENO scheme

For 1D compressible Navier-Stokes equations, consider the following conservative finite difference scheme:

At ~ ~
n+1 _ ym

Ui _Ui —A—X(FHL% _Fif%)’ (31)
where fi+% is the numerical flux so that ﬁ(ﬁw% —fi_%) is a high order approximation to F(U, S)y, at x = x;, t = t".

For a (2r 4+ 1)-th order finite difference WENO scheme, given point values U} at time level n, we first compute S}
by a (2r 4+ 1)-th order finite difference WENO approximation to first order derivatives like in (2.3), (2.4) as described in
Section 2.1.

Then for computing F; 1 at a given fixed index i + % we take a positivity-preserving flux splitting to splitted variables

in a local stencil,

1 FU", S
+ n_ _ n # ] — 1 — e 1
(Zi+%)j_2<Ujj: B yj=i—r,-i+r4+1, (3.2)
2
where
1

Biy1 > max [Iul + 2)0—2e(\/,02q2 +2p2%e|t — p|2 + plql)} . (3.3)

and the maximum is taken locally over the WENO reconstruction stencil {i —r,---,i 41 + 1}. For example, in a fifth order

WENO reconstruction, the stencil for computing §i+% is{i—2,i—1,i,i+1,i+2,i+3}.

We emphasize that 8 1 has no specific physical meaning, which is the main difference from a Lax-Friedrichs flux
[FF
1 and R, +1 denote the left and right eigenvector matrices of A, 1 i.e., A=LAR, where A is the diagonal matrix with

splitting for compressible Euler equations in [34]. Let Ai+% denote the Roe matrix of the two states U} and U and

L.
1+
eigenvalues of A on the diagonal. For each fixed x; 1 at time level n, the numerical flux fi+1 can be computed as follows
2 2
via a characteristic WENO reconstruction.
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+ + :
1. Define Hi+% = RAX(ZH_%), ie.,

1 x+Ax/2
z5, .S = [ WL o, (34)

i+3
X—Ax/2

where Zi1 U(x),S(x)) = % (U + w> Then we have the cell averages
2 ity

+ \1_ (7Lt yn N
(Hi+%)f_(zi+%)f’ j=i—r,--i+r+1
2. Transform the cell averages (Hil )’J? from physical space to the local characteristic space by
2
£ \n_ N
(Ti-&-%)j_L"JF%(HH-%)A’ J=1—-T, Ji4+r41.

3. Perform the WENO reconstruction for each component of (Tltrl )7 to obtain approximations of the point value of
2

: +
the function Li+%H1+% at xi+%
denote approximations from the right and from the left respectively. Perform the WENO reconstruction for each component

of (T_ ;)" to obtain approximations of the point value of the function L., 1H, , at x denoted by (T 1),i 1.
it57J +3 ity it i+

, denoted by (T+ 1),i ., where the superscripts & outside of the parentheses of (T 1),i 1
i+5 45 i+571+5

i+3°
4., Transform back into physical space by

H" )", =R 1(T" )~ H ), =R (T F,.
( i+%)i+% l+%( i+%)i+%’ ( i+%)i+% l+%( i+%)i+%

5. Obtain the numerical flux by
T _ + v _(H-
Fi+% _ﬂi+%[(Hi+%)i+% (Hi+%)i+%]' (3-5)

Remark 3.1. For the ease of understanding subscripts and superscripts, we give a further explanation. The superscripts =+ in
+ o . - £ n rE an gt + \+ .
Zi+% denote the positive and negative in the flux splitting (3.2). For (Hi+%)f' (TH—%)]' (Hi+%)i+%’ ([i+%)i+%, the superscripts

=+ inside of the parentheses also denote the positive and negative flux splitting. For (H,-i+ ; )ii+‘ , (Ti, )z’i+‘ , their superscripts
2 3 2 13

+ outside of the parentheses denote approximations from the right and left of point x; 1 respectively. All subscripts i + %

inside the parentheses emphasize that the reconstruction is performed for splitted variables Z; 1 which depends on 8 N

while subscripts i + % outside of the parentheses represent point values at x; 1.
2

3.2. Sufficient conditions for positivity

Next, we will derive a sufficient condition for the scheme (3.1) to keep U?“ eGif Ul €G.
For a fixed i, we have U} = (Hi++1 N+ (H;rl W= (H,,+ OF + (H,T )} from (3.2). Plugging it into (3.5) and (3.1), we can
2 2 -2 -2
get

At ~ -
+1
u! =U?—A—X(Fi+%—Fi_%)=H1+H2 (3.6)
with
1 — 1 — At At
— —HT V"+-H V' ——8 (H" ).+ —8 (H T
Hi= 7 7+ S Of = f O+ i B D (3.7)
1 — 1 — At At
_ 2\t ol oy 2a + = 2t -\t
HZ_Z(HF%)I +2(Hi7%), + Axﬂlfl(Hlf%)if% AX,BI,?(HH%)F%- (3.8)

It suffices to discuss conditions to keep Hy, Hy € G. If given U',? € G at time level n, then (Hﬁrl )? = (Zii+1 )'J? = %(U? +
2 2

/3,_1 F(U",SM)) € G, which was proved in Lemma 6 of [28]. We first discuss H; in equation (3.7).
i+d
2

1251

By interpolation [30], there exists a vector of polynomials of degree k = 2r, denoted Pi+ (x), satisfying

1. the cell average of P (x) on the interval I; is (Hitrl)’,?;
1
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2. Pl ) =ML )
3. P,AJr (x) is a (2r + 1)-th order accurate approximation to the function H:rl (x) on the interval [; if H:r+1 (x) is smooth.
2 2

Recall that we have reviewed quadrature in Section 2.2. Let N = [£}37, i.e, N is the smallest integer s.t. N > 233, then
the exactness of the Gauss-Lobatto quadrature rule implies

ut + + + %
HY )= —fP (0dx = X;wal’ ®) = —onP" +onH] )
o
where
N—1 1
+ok ~ + SO HT Vv
P* = o X;waP . [(Hi+%)’ CUN(HH%)H%]-
a=
We have
1-— a)N At At
(H 1)” > (—— /3, 1)(H 1) /3,+2(H 1)
it At n +* + - R L
So under the CFL condition By 1 < 2“)1\" if U}, P; (Hl,+%)i+%, (Hi+%)i+% € G, then we have Hy € G because it is a

convex combination of four vectors in G.
Similarly, discussion for H, in equation (3.8). By interpolation [30], there exists a vector of polynomials of degree k = 2r,

denoted P; (x), satisfying

1. the cell average of P; (x) on the interval I; is (Hi_ 1)',?;
-2

2. Py (x;_ 1)_(H 1)
3. P () isa (2r+ l) th order accurate approximation to the function H_ | (x) on the interval I; if H 1 (x) is smooth.

The quadrature rule implies

H )= AlfP (x)dx—ZwaP ®)=m®_ )L+ —o)P

I; a=1
where
1< 1
s PO —n
P =G > @uP; =1 [(H_, R RPN |
a=2
We have
1 — -1 _ 1 At _ _
_lgr — % _ _ + At +
H; = Z(HF%)’ + 5 P, + (= ) Axﬂl_l)(H ;), ;"‘ AX'BI_%(H’ %)F%'
So under the CFL condition £Lp; y < 1oy, if UL, P, (H_ )", (H" )", €G, then Hp € G because it is a convex
7=y’ imglieg

combination of four vectors in G.
Notice that @1 =@y = m By above discussion, we have the following main result.

Theorem 1. The (2r + 1)-th order accurate finite difference WENO scheme (3.1) and (3.5) is positivity-preserving, i.e, U} € G =
+1 .

U™ eG,if

Cf M- ) H )T, €6, Vi (3.9)

P i 1
ity i—5 =5 i—5"i—5

P, <H+1> (H_l)

i+l
under the CFL condition

Atmaxﬁ < ! (3.10)
Ax i S ON(N =) :

where N = [2527 and

H' ), —onH] H™ ', —®1(H
Pﬂ_,*:( l+%)l+%,l N( 1) ’P'—»*_( 1—%)1—%,1 A1( 1—% =y 311)
i 1—on ! 1—w
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Remark 3.2. The polynomials Pl.i (x) are needed only for deriving sufficient conditions for positivity, but they are not needed
and never used in the implementation.

Remark 3.3. The sufficient condition in Theorem 1 is an intrinsic property of any finite difference scheme interpreted as a
finite volume scheme for an auxiliary variable. On the other hand, we emphasize that Theorem 1 is a weak positivity result,
i.e., the scheme (3.1) and (3.5) is not positivity-preserving unless (3.9) is enforced by additional limiters. Moreover, the CFL
(3.10) is only sufficient but not always necessary for positivity. For a smooth solution the CFL (3.10) reduces to At = O(AXx),
which does not satisfy the linear stability CFL At = O(ReAx?) in an explicit scheme for a convection diffusion problem
[28]. In practice, At = O(ReAx?) should be always obeyed in the WENO scheme, and (3.10) should be enforced only when
positivity is lost. See Section 3.5 for details.

3.3. A high order accurate positivity-preserving limiter

To enforce the condition (3.9) in Theorem 1, we can simply use the limiter in [34], which is essentially the same
as applying the high order accurate positivity-preserving limiter in [28] to two formal finite volume schemes (3.7) and

(3.8). For simplicity, let (H:r%)? = (p;, M, E)T, (Hlf;l);% = (p;%,m— E;%,)T and P* = (pf, m}, E¥,)". The following

] i+l
limiter procedures can enforce the condition (3.9) in Theorem 1.
For a fixed index i + % we apply the following limiter:
Step 1. Setup a small positivity number & as a desired lower bound for density and internal energy, e.g., € =

min {10—13, P ((H.+ O
Step 2. For each cell [; =[x;_1, i+%]' we first modify density by

=3’

A pi-s
’Oi+%_9'0 (:OH% pl>+10h Qp—mm{l B — ,Omin}7 (312)
; - O - - - 5+,
where Pmin :m1n{pi+%,p;“}. Then denote (H;:-%)H-% = (b, 1’m,-+; ])T and P;"* = = wN [(H+ OF —a)N(H 1) ]
o~ ~ -~ =2
Step 3. For convenience, let q; = (H::I—l )i_+1, q = P,.Jr Define pe; = E; — 7% For k=1, 2, compute
7 1t3
pe;i—¢ :
th= pei—pe(@)’ if pe@o) <e )
1, if pe@)=>¢
Then we modify the internal energy by
o+t - — + HT 2 Ht — min(t] 2
(Hi+%)i+% = <(Hl 1)l+1 (Hi+%)i) + (Hi+%)i’ 6. = min{t,, t2}. (3.13)

Similarly, we can get the revised point value (lﬁ-ii_+1 )ltr] . Finally, we have the modified WENO flux with
2 3

= - TR
Fiy =B (B 0, — @ OF (314)

By Theorem 1, the modified scheme (3.1) and (3.14) is positivity-preserving.
This limiter is high order accurate for smooth solutions without vacuum in the following asymptotic sense. Assume the
exact smooth solution U(x, t) has a uniform lower bound in density and internal energy, i.e.,

mitn pUx,t)) =a >0, mitn pe(U(x,t))=b > 0.
X, X,

By Lemma 6 in [28], with suitable f; 1, we have Zi ] € G. If Ax is small enough, Hi defined in (3.4) satisfies Hi 1 eG.
Notice that the limiter (3.12) and (3. 13) are exactly the same type of limiter for ﬁmte volume scheme (3.7) as in [28] Based
the same arguments in [28], if regarding it as a limiter applied to polynomials approximating the auxiliary function H,_ i+10

it is straightforward to show that the scaling positivity-preserving limiter will not destroy the high order accuracy of the
finite difference WENO schemes for smooth solutions without vacuum regions when Ax is small, see also [34].
We summarize the implementation of positivity-preserving finite difference WENO in Algorithm 1.

8
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Algorithm 1 Implementation of positivity-preserving finite difference WENO.

Input: Point values U? €G,i=-r,---,Nx+r+1, where Ny is number of grid-point.
Output: Numerical flux Fi+%' i=0,---,Ny.
Step I Compute the derivative values S} by the 2r +1 order WENO reconstruction.
Step Il Compute the flux splitting (Zl_frl )’} by (3.2).
H
Step Il Compute (H' ,)” , and (H_ ;) , by the 2r 4+ 1 order WENO reconstruction.
i+4i+1 i+3 i)

Step IV Compute (171:2r and (ﬁ;1 );’1 by the positivity-preserving limiter.
3 i+

1 ),-:r 1
2 2
Step IV Compute the numerical flux Fi+% by (3.14).
return

Q9D A w2

3.4. Two-dimensional case

Consider the dimensionless form of compressible dimensionless Navier-Stokes equations

U +V-F=V.F, (3.15)

where U= (p, pu, E)T are the conservative variables, p is the density, u= (u, v), u and v denote the velocity in x and y
direction respectively, E is the total energy, the flux function F? and F¢ are respect to advection and diffusion fluxes

ou 0
F=|pugu+pl |, F= T , (3.16)
(E+p)u u-7T—q
where I is the unit tensor, the shear stress tensor and heat diffusion flux are
1 (1w Txy 1y T
= _— , =— 2 (ey, e 3.17
Re ( Tyx Tyy 1 Re PI‘( x: €y) ( )

with T = Jux — 3vy, Ty = Tyx = Uy + Vx, Tyy = 3V, — 3uy. The total energy is E = % + Ipu? + $pv? and EOS is
p = (y — 1)pe, where p is the pressure and e is the internal energy. Denote S = VU. We can regard F* — F! as a single flux
and formally treat V - (F* — F%) as a convection by combining the advection flux F* and diffusion flux F?, then (3.15) can be
written as

U: +F(U,S), +G(U,S), =0 (3.18)
with
pu
pU?+p — T
F(U,S) = 1 Re ,
PUV — poTyx
(E+p)u — g (Tl + Tyav + 52)
pv
1

G(U,S) = PV~ Re

PV + P — geTyy
(E+Pp)v — & (Tyyu + Tyyv + 522)
Consider a uniform grid with nodes (x;, y;). A conservative WENO finite difference with forward Euler discretization can be
written as
At ~

At ~ _ —~
n+1 __
Uij —U?j — B(FH%J — Fif%,j) — A_y(Gi’jJr% — Gi,jf%)' (3.19)
We use the same positivity-preserving flux splitting,
1 F(U,S 1 G(U, S
2, us=t(veE8Y) = wes=l {8 (3.20)
i+5,] 2 B 1. Lj+5 2 y ]
i+3.] i,j+3
BY 1 ;> max Iu-n1|+L(\/p2 lq-m > +2p%e T -0 — pny|* + pq-m)) (321)
i+3.J 2p% ’ '
y 1 2 2 2 2
By > max|u-mzl+ 5750 (V0% 14 M7+ 2p%e [T -mp — pm2 |7+ p1q -2 | (3.22)
T2

9
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Algorithm 2 Implementation of the time discretization.

Input: point values U" € G.
Output: point values U € G.

1: Step I Compute the wave speed «; = |uj| + yp‘ . Let o* = max; |;|. Set up time step At =min{a2X, bReAx?} with the two parameters a = 0.6 and

ot

b =0.001;

2: Step Il Compute UV =U" + AtL(U").

3: if UV € G then

4: Proceed to next Step III;

5: else

6: Setup time step At = % and restart the computation.

7: Step Il Compute U? = 2U" + 1 (UM + ArcUM)).

8: if U? ¢ G then

9 proceed to next step Step IV;
10: else
11: Setup time step At = % return to Step II and restart the computation.
12: Step IV Compute U™ = JU" + 2(U@ + AtL(U®)).

13: if UV € G then

14: The computation to step n+ 1 is done;

15: else

16: Setup time step At = %, return to Step II and restart the computation.

17: return

where the maximum is taken locally over the corresponding WENO stencils and n; = (1, 0)T, n = (0, l)T Accordmg to the

Lemma 6 in [28], it is easy to check that Zi (U S), Zi (U S) € G if U e G. The numerical flux F 1 and G, ) in

(3.19) can be obtained by the dimension- by dlmensmn reconstructlon in exactly the same way of one- dlmensmnal WENO
approximation. For the property of positivity-preserving in (3.19), we rewrite the scheme as U'l7j+1 =1F+ %G with

0 o At - VNN ~

F=uy -2 By —Fy ). 6=Up-20 (64, -6 y)- (3.23)

If F,G e G, then UZ.'H € G. Notice that (3.23) are two formal one-dimensional schemes, thus Theorem 1 applies to both F
and G. So it is straightforward to extend the one-dimension positivity-preserving results and the limiter to two-dimensions.

3.5. High order time discretizations and implementation details

For high order time discretizations, we can use any high order strong stability-preserving (SSP) Runge-Kutta method,
which is a convex combination of forward Euler steps, thus all discussion about positivity for forward Euler still holds due
to convex combinations since the set G is convex. In numerical tests, we use the third order SSP Runge-Kutta method. For
solving %U = L(U), it can be written as

U =u" + Atcun,

3

1
U®=_w+zwm+Amwm» (3.24)

W“:—W+§w@+Amw@»

The time step should not be set as the CFL (3.10) because it gives At = O(Ax) for smooth solutions which is inconsistent
with linear stability constraints At = O(ReAx?). For a solution with shocks but far away from vacuum, the CFL (3.10) is
much stringent than a necessary time step for positivity in WENO schemes. So for the sake of efficiency, (3.10) should
not always be enforced either. To this end, (3.10) should be enforced only when positivity is lost, and we can use the
same simple time marching strategy in [28]. The positivity-preserving limiter should be used for each stage in (3.24). The
positivity-preserving high order finite difference WENO schemes with the third order SSP Runge-Kutta (3.24) for equation
(3.1) are implemented as in the Algorithm 2.

Remark 3.4. Obviously one can use the Algorithm 2. for any finite difference scheme, but the restarting might result in an
infinite loop. Even though the CFL (3.10) is never used directly in the Algorithm 2, Theorem 1 ensures that it will not be an
infinite loop in the positivity-preserving scheme since the restarting will end when (3.10) is satisfied for each forward Euler
step.

Remark 3.5. Theorem 1 will hold for any method computing point values of derivatives S = VU. But Theorem 1 is only about
positivity and a positivity-preserving scheme can still be oscillatory [28]. In our numerical tests, we find that a high order

linear approximation for approximating derivatives uy and ey can result in oscillations. Instead, given point values of U, we

10
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use high order WENO finite difference approximation to find point values of S = VU. After derivatives of conserved variables
p,m, E are obtained, derivatives of u and e can be computed by product and quotient rules, e.g., u =2 => Uy = %.

4. An alternative positivity-preserving finite difference WENO scheme

In Section 3, we have constructed a WENO scheme solving compressible NS equations by combining the advection flux
F? and the diffusion flux F¢ in the WENO reconstruction. However, in practice one might prefer not to regard F* — F¢ as a
single flux. For instance, if a positivity-preserving WENO scheme for compressible Euler equations such as [34] is already
available, then one might prefer a positivity-preserving WENO scheme for directly approximating the diffusion flux F. In
this section, we describe such a positivity-preserving WENO scheme based on existing Euler solvers in [34]. The objective
of this section is to design a positivity-preserving diffusion flux for F¢, rather than regard F* — F¢ as a single flux in the
WENO reconstruction.

For simplicity, we only discuss sufficient conditions for positivity in forward Euler time discretization in one dimension.
The extension to two dimensions is straightforward since the finite difference scheme is defined in the dimension-by-
dimension fashion, as shown in Section 3. Discussion for the positivity-preserving limiter, high order time discretizations
and implementation are the same as in Section 3. The same notation in Section 3 will be used.

4.1. One-dimensional scheme
Consider the following finite difference scheme

At ~ At —~
U?H:U?—E(Fﬁ% i 1)+ ~-F 1) (1)

1— l 1—
For the advection flux F¢, we use the same Lax-Friedrichs flux splitting in [34],

F(U)

1
ﬂﬂm:iwi ) (4.2)
with @ = max ||(Ju|4-¢)||, u and c are the velocity and speed of sound of the state U}, the maximum is taken either globally
or locally over the U} in the WENO reconstruction stencil. For simplicity, we take the maximum globally over the U}. For
the diffusion flux F¢, we use the following local flux splitting. For a (2r 4+ 1)-th order WENO scheme, at a fixed index i + %
define

d n gn
1 F (U}, S%)
d+\n _ * rg I e S I
E) =3 U F —G )i =imr i (43)
ity
where

By > max[—g/p q% +2pe|T|? +p|q|>] (44)
and the maximum is taken locally over the WENO reconstruction stencil {i —r,---,i+r 4+ 1}. Notice that ,Bd here has no

specific physical meaning either. The advection flux ’F\?+, can be computed exactly the same as in [34]. We emphasnze that

2

signs in (4.3) must be flipped for the correct upwinding bias, i.e., Z+ = J(U — F!/p%) and 2%~ = J (U + F!/p%).
At each fixed x; 1 the diffusion flux fd ! is computed as follows.

1. Let Hfl’+ RAX(Z 1 ) we can obtain the cell averages at time level n

(H )” (Z J, j=i—r, -, i4+r+1.

2. Transform the cell averages (H 1)” from the physical space to the local characteristic space of the Roe matrix by

d =+ . . .
aiy§:g+mﬂ NooJ=i—reidr4l

3. Perform the (2r 4+ 1)-th order WENO reconstruction for each component of (T,+ )’? to construct nodal values of
L; 1H i at x; +1 denoted by (TJr 1) . Perform the (2r+1)-th order WENO reconstruction for each component of (T_ 1)’1

to construct nodal values of L; 1H 1 at X; denoted by (Tl;] )i+‘
77143

H—l'

11
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4. Transform from the local characteristic space back into the physical space by

d,+ - d—\+ _ - Nt
(H ) 1(T 1) 1! (Hi-q—%)i-i—%_RiJr%(TH-%)i—&-%
5. Obtain the numerical diffusion flux by
d _ pd d,— ol —
] _ﬂi+%[(Hl 1)z+‘ (Hi+% i+%]' (45)

4.2. Sufficient conditions for positivity of the diffusion flux

The scheme (4.1) can be written as U1 = 1y 4 1yit14 with

At =~ At ~ -~
n+l.a _ yn _ _FJa n+ld _ ym . _F
U; =U; 2Ax(Fai+% Fi_%),Ui =U; +2Ax( i+ Fl._%).

Except the extra scalar factor 2 in front of £ Ax, U?H’a is the finite difference WENO scheme with forward Euler time

stepping for compressible Euler equations, thus its positivity can be discussed exactly the same as in [34]. So it suffices to
only discuss sufficient conditions for U”“’d €eG.

For a fixed i, we have U} = (H )” + (H )” = (H )Ir.’ + (H?’71 ){. Thus we have
-2

urtd — g +2—(Fl+1 —ﬁf_%) =H; +H

with
——(Hd i+ (Hd -2 —ﬂ H +2A—ﬂ M
= 1 i+1 1 +1 Axlitl H_l
T - At g dt - At q +
Hy= o (HI T+ 5 (H il +2A—ﬂ,_%(ﬂi_% o 2B @ P

Notice that the structure of H; and H; are similar to those in Section 3.3 and thus the sufficient conditions for positivity
can be derived following the same lines in Section 3.3. We state the main result as the following theorem.

Theorem 2. The (2r + 1)-th order accurate finite difference WENO diffusion flux in the scheme (4.1) and (4.5) is positivity-preserving,
ie,Ul'eG= U'7+1'd eG,if

d d, He— —.d d,— d,+\— .
P ML MO PO DT ) €6 vi
under the CFL condition
At d 1
—maxf’ | < -——,
Ax i 1t2 T 4AN(N-—-1)
where N = [2r 4+ 3] and
d,+ \n n +
H" ") H H —w H
T U R L
1—61\[ T ]—a)1

5. Numerical results

We consider some representative numerical examples in one and two dimensions for the positivity-preserving (PP)
property of the finite difference (FD) WENO schemes, to demonstrate the performance. We test the positivity-preserving
approaches in Section 3 and Section 4 on three different high order WENO schemes. We observe no significant difference
for the numerical results between two methods in Section 3 and Section 4, thus for simplicity we only show the results
computed by the method of the Section 3.

The classical fifth-order and seven-order FD WENO schemes of Jiang and Shu [15] are referred to as the WENO-JS5 and
WENO-JS7 schemes. In the literature, there are many improvements and variants of WENO-JS schemes, and we also test one
of the variants, the simple fifth-order FD WENO scheme of Zhu and Qiu [36], referred as the WENO-ZQ5 scheme. The linear
weights of the WENO-ZQ5 schemes are set as y; = 0.98, y; =0.01, ;1 =0.01 in all examples unless otherwise specified.

In these tests, one particular aspect is to validate the robustness. Without the positivity-preserving flux and limiter in
this paper, WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes will blow up for all one- and two-dimensional examples in this
section. With the additional positivity-preserving limiter, one finds by the numerical test that there don’t increase a lot of

12
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Table 5.1

An accuracy test of the PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes for
one-dimensional compressible Navier-Stokes equations with Re=1000 and final
time T =0.1. PP limiter: the average of the Ratio of cells using PP limiter to total
cells at each time step.

Mesh WENO-JS5( = 10~15) WENO-JS7(e = 10~1%)

L'error order PP limiter  L'error order PP limiter
10 4.65E-02 — 20.0% 1.94E-01 — 53.3%
20 1.08E-02 211 18.9% 1.10E-01 0.82 25.3%
40 1.22E-03 315 19.3% 1.29E-03 6.41 19.9%
80 6.19E-05 430 7.24% 1.02E-05 6.99 9.28%
160 1.22E-06 5.66 2.76% 6.11E-08 7.38 3.46%
320 5.96E-08 4.36 0.91% 6.78E-10 6.50 1.00%

- —10-15
Vesh WENO-ZQ5(¢ = 10-15)
L'error order PP limiter
10 5.90E-02 — 13.3%
20 1.15E-02 2.36 33.3%
40 1.45E-03 2.99 9.52%
80 3.75E-05 5.28 4.42%
160 1.85E-06 434 1.82%
320 4.93E-08 5.23 0.87%
_ A2 - A2

Mesh | WENO-JS5(e = Ax?) WENO-JS7(¢ = AX?)

L'error order PP limiter  L'error order PP limiter
10 4.36E-02 — 33.3% 1.52E-01 — 46.7%
20 1.05E-02 2.05 26.1% 4.39E-02 179 15.6%
40 9.29E-04 3.50 9.62% 6.89E-04 5.99 22.8%
80 3.40E-05 477 4.81% 5.96E-06 6.85 6.19%
160 1.03E-06 5.05 3.83% 1.64E-08 8.51 2.53%
320 2.99E-08 5.10 0.20% 9.96E-11 7.36 0.88%

g AR
Mesh WENO-ZQ5(¢ = Ax?)
Llerror order PP limiter

10 3.42E-02 - 46.7%
20 1.46E-02 1.23 22.8%
40 4.75E-04 494 8.60%
80 1.49E-05 4.99 4.57%
160 3.28E-07 5.51 3.15%
320 8.23E-09 5.31 1.25%

computational cost since there is very few cells using the positivity-preserving limiter in each time step. Another aspect
we should focus on is the artificial viscosity. The WENO schemes are high order in the sense that the errors are high order
for solving smooth solutions. Near shocks, the error of any scheme on a uniform mesh cannot be high order. However, the
high order WENO schemes are still much more advantageous for shock problems in the sense that their numerical artificial
viscosity is much lower than first and second order accurate schemes. Inevitably, the positivity-preserving flux splitting and
the positivity-preserving limiter in Section 3 induce artificial viscosity, which must be validated through these tests.

For computing nonlinear weight in WENO-JS schemes, the constant ¢ to avoid the denominator being zero can influence
the accuracy and can be set as £ = Ax? to achieve the optimal convergence order [1]. For many shock problems on fine
meshes, simply setting ¢ = 10~1° can also reduce artificial viscosity. For all examples except the accuracy test in this paper,
the choice between &£ = 10~'> and & = Ax?> makes marginal difference for WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes.
Thus for simplicity, we only show results using &€ = 1015,

The reference solution for the accuracy test was generated by a Fourier collocation spectral method using 1280 points
and a 1280 x 1280 mesh respectively. The reference solutions for Examples 5.2, 5.3 and 5.4. were generated by a second
order PP FD scheme discussed in the Appendix A of the literature [34] by using a fifth order PP WENO flux for convection
term and the second order central difference approximation for diffusion term on a mesh of 6400 grid points.

Example 5.1. (An accuracy test) We test the accuracy of positivity-preserving FD WENO-JS5, WENO-JS7 and WENO-ZQ5
schemes for one and two dimensional compressible Navier-Stokes equations with Re = 1000. The initial condition is p =1,
u=0, E= (10" +5sin®(x))/(y — 1) on the interval [0, 27] for 1D case; p=1,u=v =0, E = 10~ 19 +sin¥ (x+ y))/(y — 1)
on the rectangle domain [0, 2] x [0, 27r] for 2D case. The boundary condition is periodic and final computing time T = 0.1.
The minimal value of exact solution energy E is 2.56 x 10710 for 1D case and 3.45 x 1071 for 2D case. For comparison, the
L' errors and numerical order of accuracy by WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes are shown in Table 5.1 and
5.2 to verify the accuracy of the convection diffusion WENO flux and the PP limiter will not destroy the high order accuracy
of the schemes. We test the accuracy test with ¢ =10~1> and Ax2. We can observe that WENO-JS5 and WENO-ZQ5 achieve
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Table 5.2

An accuracy test of the PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes for two-
dimensional compressible Navier-Stokes equations with Re=1000 and final time T =
0.1. PP limiter: the average of the Ratio of cells using PP limiter to total cells at each

time step.
- — 1015 - —_10-15

Mesh WENO-JS5(¢ = 10-15) WENO-JS7(¢ = 10-15)

L'error order PP limiter  L'error order PP limiter
10x 10 2.17E-01 — 20.2% 1.08E-01 — 26.7%
20 x 20 1.28E-02 4.08 11.7% 2.10E-02 2.37 24.2%
40 x 40 1.91E-03 2.75 14.8% 3.70E-03 2.51 10.5%
80 x 80 1.35E-04 3.83 4.97% 2.05E-05 7.50 5.00%
160 x 160 3.15E-06 5.42 2.32% 1.16E-07 7.47 2.34%
320 x 320 1.07E-07 4.88 0.75% 1.27E-09 6.51 0.37%

~ —10-15
Vesh WENO-ZQ5(¢ = 10-15)
L'error order PP limiter
10 x 10 2.73E-01 - 3.33%
20 x 20 2.03E-02 3.75 9.00%
40 x 40 3.02E-03 2.75 9.57%
80 x 80 5.18E-05 5.87 2.48%
160 x 160 5.87E-06 3.14 0.86%
320 x 320 2.14E-07 478 0.60%
_ A2 - Y

Mesh WENO-JS5(s = AX2) WENO-JS7(¢ = AX?)

L'error order PP limiter  L'error order PP limiter
10x 10 2.17E-01 — 30.7% 1.07E-01 - 33.3%
20 x 20 4.22E-02 2.37 16.7% 2.35E-02 218 20.8%
40 x 40 2.43E-03 412 9.10% 3.67E-03 2.68 7.69%
80 x 80 6.75E-05 517 491% 9.73E-06 8.56 2.88%
160 x 160 2.15E-06 497 1.22% 4.10E-08 7.89 2.50%
320 x 320 6.20E-08 5.12 0.01% 2.32E-10 7.47 0.31%

g AR
Mesh WENO-ZQ5(¢ = AX?)
L'error order PP limiter

10x 10 1.42E-01 - 56.7%
20 x 20 2.46E-02 2.53 18.7%
40 x 40 1.78E-03 3.79 10.3%
80 x 80 3.47E-05 5.68 2.48%
160 x 160 7.62E-07 5.51 0.46%
320 x 320 1.92E-08 5.31 1.04%

the fifth-order accuracy with & = 10~1> and Ax2. WENO-JS7 has smaller L; errors than WENO-JS5 and WENO-ZQ5, suffering
certain order loss with ¢ = 10~!> but achieving optimal seven-order accuracy with & = Ax2. For the accuracy test, the time
step At is set as At = min{O.GAx%,0.00IResz} for WENO-JS5 and WENO-ZQ5, and At = min{O.GAx%,0.001ReAx2} for
WENO-JS7.

Example 5.2. (Double rarefaction problem) This problem [17] has the low pressure and low density regions. The initial
condition is (p,u, p,y) =(7,—-1,0.2,1.4) for xe[-1,0) and (p,u, p,y) =(7,1,0.2,1.4) for x € [0, 1]. The final computing
time is T = 0.6. The left and right boundary conditions are inflow and outflow respectively. The numerical results of PP FD
WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes for Re = 1000 are shown in Fig. 5.1, which are comparable to the results of
PP DG method in [28]. From the density zoomed (right) in the Fig. 5.1, we can see that the PP FD WENO-ZQ5 scheme has
better performance than PP FD WENO-]JS5 and PP FD WENO-]S7 schemes.

Example 5.3. (1D Sedov blast wave problem) The Sedov blast wave problem contains both very low density and strong
shocks and is difficult to be simulated precisely. The exact solution is specified in [16,23]. The computational domain is
[—2,2] and initial conditions are that the density is 1, the velocity is 0, the total energy is 10~'2 everywhere except in
the center cell, which is a constant Eq/Ax with Eg = 3200000, with y = 1.4. The final computing time is T = 0.001. The
inlet and outlet conditions are imposed on the left and right boundaries, respectively. The computational results of PP FD
WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes for Re = 1000 are shown in Fig. 5.2. We can see that PP FD WENO-]S5,
WENO-]JS7 and WENO-ZQ5 schemes work well for this extreme 1D test case.

Example 5.4. (Leblanc problem) The initial condition of Leblanc problem [17] is (p, u, p, ¥) = (2,0, 10%,1.4) for x € [—10, 0)
and (p,u,p,y)=(0.001,0,1,1.4) for x € [0,10]. The left and right boundary conditions are also inflow and outflow re-
spectively, and the computing time is T = 0.001. See the Fig. 5.3 for results of PP FD WENO-]JS5, WENO-]S7 and WENO-ZQ5
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Fig. 5.1. Double Rarefraction problem with Re = 1000 using 400 grid points. Top row: density (left) and its magnified view (right). Bottom row: the
space-time location where the PP limiter is triggered (left) and its magnified view (right).

schemes for Re = 1000 shown in Fig. 5.3. The PP FD WENO-ZQ5 scheme produces more oscillation possibly due to its wider
stencil in reconstruction.

Example 5.5. (2D Sedov blast wave problem) The computational domain is a square of [0,1.1] x [0, 1.1]. For the initial
condition, similar to the 1D case, the density is 1, the velocity is 0, the total energy is 10~12 everywhere except in the
lower left corner is the constant %“36 and y = 1.4 in the ideal gas EOS. The numerical boundary conditions on the left
and bottom edges are reflective. The numerical boundary conditions on the right and top are outflow. The final time is
T = 1. For comparison, we present the numerical results of density for Re = 1000 and oo in Fig. 5.4 by the PP FD WENO-
JS5, WENO-JS7 and WENO-ZQ5 schemes. The average of the Ratio of cells using PP limiter to total cells at each time step
is 0.303%, 0.248%, 0.299% in Re=co and 0.309%, 0.119%, 0.139% in Re=1000 for the PP FD WENO-]JS5, WENO-JS7 and WENO-
ZQ5 schemes respectively. The numerical results demonstrate the good performance of the PP FD WENO-JS5, WENO-]JS7 and

WENO-ZQ5 schemes.

Example 5.6. (Shock diffraction problem) Shock passing a backward facing corner (diffraction) has been used as a positivity
test problem for the DG method in [3]. It is easy to get negative density and/or pressure below and to the right of the
corner. The computational domain is the union of [0, 1] x [6,11] and [1, 13] x [0, 11]. The initial condition is a pure right-
moving shock of Mach number 5.09, initially located at x=0.5 and 6 < y < 11, moving into undisturbed air ahead of the
shock with a density of 1.4 and a pressure of 1. The boundary conditions are inflow at x=10,6 < y < 11, outflow at x =
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Fig. 5.2. Sedov1D problem with Re = 1000 using 400 grid points. Top row: density (left) and its magnified view (right). Bottom row: the space-time location
where the PP limiter is triggered (left) and its magnified view (right).

13,0<y<11,1<x<13,y=0and 0 <x <13,y =11, and reflective at the walls 0 <x<1,y=6 and at x=1,0<y <6.
The average of the Ratio of cells using PP limiter to total cells at each time step is 0.0024%, 0.0026%, 0.0125% in Re=00
and 0.0005%, 0.0010%, 0.0079% in Re=1000 for the PP FD WENO-]JS5, WENO-JS7 and WENO-ZQ5 schemes respectively. The
numerical results of density for Re= 1000 and oo at final time T = 2.3 by the PP FD WENO-JS5, WENO-]S7 and WENO-ZQ5
schemes are presented in Fig. 5.5.

Example 5.7. (Mach 2000 astrophysical jet problem) For simulating the gas dynamical jets and shocks imaged by the Hubble
Space Telescope, one can implement theoretical models in a gas dynamics simulator [7,12,13]. We consider the Mach 2000
astrophysical jets without the radiative cooling to demonstrate the robustness of our method. The computational domain
is [0, 1] x [—0.25,0.25] and initially full of the ambient gas with (p,u, v, p,y) =(0.5,0,0, O.4127,5/3)T. The boundary
conditions for the right, top, and bottom are outflow. For the left boundary (o, u, v, p,y) = (0.5, 800, 0,0.4127,5/3)T for
y € [-0.05,0.05] and (p,u,v,p,y) = (0.5,0,0,0.4127,5/3)T otherwise. The terminal time is T = 0.001. The simulation
results of density for Re= 1000 and oco by the PP FD WENO-]S5, WENO-JS7 and WENO-ZQ5 schemes are shown in Fig. 5.6.
The average of the Ratio of cells using PP limiter to total cells at each time step is 0.178%, 0.230%, 0.416% in Re=co and
0.103%,0.070%, 0.225% in Re=1000 for the PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes respectively. One can see
these schemes work well for this test with advantages that negative density and pressure never appear. We emphasize that
WENO schemes without any positivity treatment will simply blow up for this test.
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Fig. 5.3. Leblanc problem with Re = 1000 using 3200 grid points. Top row: density (left) and its magnified view (right). Bottom row: the space-time location
where the PP limiter is triggered (left) and its magnified view (right).

Example 5.8. (Mach 10 shock reflection and diffraction problem) The computational domain is the union of [0, 1] x [0, 1]
and [—1,1] x [1, 3]. The initial condition is a pure right-moving Mach 10 shock located at x = %, y = 0, making a 60°
angle with the x-axis. The boundary conditions are set up as follows: reflective boundary condition is used at the wall
t<x<ly=0and x=1,-1<y <0; for the boundary from x=0 to x= ¢ and y =0, the exact post-shock condition
is posed; the top boundary is the exact motion of mach 10 shock and y = 1.4 for compressible Euler equations; inflow
boundary condition is used for the left edges; outflow boundary condition is applied at right and bottom edges. This test
case is a combination of reflection and diffraction of shock involving not only shock but also low density, low pressure and
complicated fine structure due to the Kelvin-Helmholtz instability generated in the reflection. The reflection part is exactly
the same as the benchmark test referred as double mach reflection. We present the simulation result of density at final
time T = 0.2 for Re =1000 and oo by the PP FD WENO-]JS5, WENO-JS7 and WENO-ZQ5 schemes in Fig. 5.7 to verify the
robustness and efficiency of the proposed PP FD schemes. The average of the Ratio of cells using PP limiter to total cells
at each time step is 0.0017%, 0.0016%, 0.0034% in Re=oo and 0.0002%, 0.0001%, 0.0009% in Re=1000 for the PP FD WENO-
JS5, WENO-]JS7 and WENO-ZQ5 schemes respectively. Compared with the result of Re = oo, we can see that the result
of Re = 1000 smears the fine feature generated by the Kelvin-Helmholtz instability due to numerical viscosity and extra
physical viscosity of compressible NS equations. On the other hand, the numerical results demonstrate that positivity flux
and limiter does not induce excessive numerical viscosity in WENO schemes, which still can capture fine feature generated
by the Kelvin-Helmholtz instability. In particular, the PP FD WENO-ZQ5 performs better than PP FD WENO-]JS5, WENO-]S7,
with lower artificial viscosity.
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Fig. 5.4. 2D Sedov blast wave problem. 20 equally spaced density contour lines from 0.1 to 5. Mesh size: Ax=Ay = 355.
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Fig. 5.5. Shock diffraction problem. 20 equally spaced density contour lines from 0.066227 to 7.0668. Mesh size: Ax= Ay = g.
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Fig. 5.6. Simulation of Mach 2000 jet without radiative cooling problem. Scales are logarithmic. 40 equally spaced density contours from -2 to 3. Mesh size:
Ax=Ay=g5.

6. Concluding remarks

We propose an approach of constructing positivity-preserving finite difference WENO schemes for compressible Navier-
Stokes equations by using a positivity-preserving convection diffusion flux splitting and a positivity-preserving limiter in the
WENO reconstruction. The new flux splitting is quite different from a conventional WENO method for a convection diffusion
problem, numerical results on demanding problems for PP FD WENO-JS5, WENO-JS7 and WENO-ZQ5 schemes demonstrate
that its performance is quite satisfying thanks to much improved robustness. Moreover, the positivity-preserving approach
does not induce excessive artificial viscosity in these high order WENO schemes.
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