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Abstract
For solving two-dimensional incompressible flow in the vorticity form by the fourth-order 
compact finite difference scheme and explicit strong stability preserving temporal discre-
tizations, we show that the simple bound-preserving limiter in Li et  al. (SIAM J Numer 
Anal 56: 3308–3345, 2018) can enforce the strict bounds of the vorticity, if the velocity 
field satisfies a discrete divergence free constraint. For reducing oscillations, a modified 
TVB limiter adapted from Cockburn and Shu (SIAM J Numer Anal 31: 607–627, 1994) is 
constructed without affecting the bound-preserving property. This bound-preserving finite 
difference method can be used for any passive convection equation with a divergence free 
velocity field.

Keywords  Finite difference · Monotonicity · Bound-preserving · Discrete maximum 
principle · Passive convection · Incompressible flow · Total variation bounded limiter

Mathematics Subject Classification  65M06 · 65M12

1  Introduction

In this paper, we are interested in constructing high order compact finite difference schemes 
solving the following two-dimensional time-dependent incompressible Euler equation in 
vorticity and stream-function formulation 

(1a)�t + (u�)x + (v�)y =0,

(1b)� =Δ�,
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with periodic boundary conditions and suitable initial conditions. In the above formulation, 
� is the vorticity, � is the stream function, ⟨u, v⟩ is the velocity, and Re is the Reynolds 
number.

For simplicity, we only focus on the incompressible Euler equation (1). With explicit time 
discretizations, the extension of the high order accurate bound-preserving compact finite dif-
ference scheme to the Navier-Stokes equation

would be straightforward following the approach in [5].
Equation (1c) implies the incompressibility condition

Due to (3), (1a) is equivalent to

for which the initial value problem satisfies a bound-preserving property

If solving (4) directly, it is usually easier to construct a bound-preserving scheme. For the 
sake of conservation, it is desired to solve the conservative form (1a). The divergence free 
constraint (3) is one of the main difficulties in solving incompressible flows. In order to 
enforce the bound-preserving property for (1a) without losing accuracy, the incompress-
ibility condition must be properly used since the bound-preserving property may not hold 
for (1a) without (3), see [8–10].

Even though the bound-preserving property and the global conservation imply the certain 
nonlinear stability, in practice a bound-preserving high order accurate compact finite differ-
ence scheme can still produce excessive oscillations for a pure convection problem. Thus an 
additional limiter for reducing oscillations is often needed, e.g., the total variation bounded 
(TVB) limiter discussed in [2]. One of the main focuses of this paper is to design suitable 
TVB type limiters, without losing bound-preserving property. Notice that the TVB limiter for 
a compact finite difference scheme is designed in a quite different way from those for the dis-
continuous Galerkin method, thus it is nontrivial to have a bound-preserving TVB limiter for 
the compact finite difference schemes.

The paper is organized as follows. Section 2 is a review of the compact finite difference 
method and a simple bound-preserving limiter for scalar convection-diffusion equations. In 
Sect. 3, we show that the compact finite difference scheme can be rendered bound-preserving 
if the velocity field satisfies a discrete divergence free condition. We discuss the bound-pre-
serving property of a TVB limiter in Sect. 4. Numerical tests are shown in Sect. 5. Concluding 
remarks are given in Sect. 6.

(1c)⟨u, v⟩ =⟨−�y,�x⟩

(2)�t + (u�)x + (v�)y =
1

Re
Δ�

(3)ux + vy = 0.

(4)�t + u�x + v�y = 0

min
x,y

�(x, y, 0) = m ⩽ �(x, y, t) ⩽ M = max
x,y

�(x, y, 0).
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2 � Review of Compact Finite Difference Method

In this section we review the compact finite difference method and a bound-preserving limiter 
in [5].

2.1 � A Fourth‑Order Accurate Compact Finite Difference Scheme

Consider a smooth function f(x) on the interval [0, 1]. Let xi =
i

N
 (i = 1,⋯ ,N) be the uniform 

grid points on the interval [0, 1]. A fourth-order accurate compact finite difference approxima-
tion to derivatives on the interval [0, 1] is given as

where fi , f ′i  , and f ′′
i

 are point values of a function f(x), its derivative f �(x) , and its second-
order derivative f ��(x) at uniform grid points xi (i = 1,⋯ ,N) , respectively.

Let f be a column vector with numbers f1, f2,⋯ , fN as entries. Let W1 , W2 , Dx , and Dxx 
denote four linear operators as follows:

If f(x) is periodic with period 1, the fourth-order compact finite difference approximation 
(5) to the first-order derivative and second-order derivative can be denoted as

which can be explicitly written as

where W−1
1

 and W−1
2

 are the inverse operators. For convenience, by abusing notations we let 
W−1

1
fi denote the ith entry of the vector W−1

1
f.

(5)

⎧⎪⎨⎪⎩

1

6
(f �
i+1

+ 4f �
i
+ f �

i−1
) =

fi+1 − fi−1

2Δx
+O(Δx4),

1

12
(f ��
i+1

+ 4f ��
i
+ f ��

i−1
) =

fi+1 − 2fi−1 + fi−1

Δx2
+O(Δx4),

(6)W1f =
1

6

⎛
⎜⎜⎜⎜⎝

4 1 1

1 4 1

⋱ ⋱ ⋱

1 4 1

1 1 4

⎞
⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

f1
f2
⋮

fN−1
fN

⎞
⎟⎟⎟⎟⎠
,Dxf =

1

2

⎛
⎜⎜⎜⎜⎝

0 1 − 1

−1 0 1

⋱ ⋱ ⋱

− 1 0 1

1 − 1 0

⎞
⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

f1
f2
⋮

fN−1
fN

⎞
⎟⎟⎟⎟⎠
,

(7)W2f =
1

12

⎛
⎜⎜⎜⎜⎝

10 1 1

1 10 1

⋱ ⋱ ⋱

1 10 1

1 1 10

⎞
⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

f1
f2
⋮

fN−1
fN

⎞
⎟⎟⎟⎟⎠
,Dxxf =

⎛
⎜⎜⎜⎜⎝

−2 1 1

1 − 2 1

⋱ ⋱ ⋱

1 − 2 1

1 1 − 2

⎞
⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

f1
f2
⋮

fN−1
fN

⎞
⎟⎟⎟⎟⎠
.

W1f
� =

1

Δx
Dxf, W2f

�� =
1

Δx2
Dxxf,

f
� =

1

Δx
W−1

1
Dxf, f

�� =
1

Δx2
W−1

2
Dxxf,
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2.2 � High Order Time Discretizations

For time discretizations, we use the strong stability preserving (SSP) Runge-Kutta and 
multistep methods, which are convex combinations of formal forward Euler steps. Thus 
we only need to discuss the bound-preserving for one forward Euler step since the convex 
combination can preserve the bounds.

For the numerical tests in this paper, we use a third-order explicit SSP Runge-Kutta method 
SSPRK(3, 3), see [3], which is widely known as the Shu-Osher method, with the SSP coeffi-
cient C = 1 and the effective SSP coefficient Ceff =

1

3
 . For solving ut = F(u) , it is given by

2.3 � A Three‑Point Stencil Bound‑Preserving Limiter

In this subsection, we review the three-point stencil bound-preserving limiter in [5]. Given 
a sequence of periodic point values ui (i = 1,⋯ ,N) , u0 ∶= uN , uN+1 ∶= u1 , and a constant 
a ⩾ 2 , assume all local weighted averages are in the range [m, M]:

We separate the point values {ui, i = 1,⋯ ,N} into two classes of subsets consisting of con-
secutive point values. In the following discussion, a set refers to a set of consecutive point 
values ul, ul+1, ul+2,⋯ , um−1, um . For any set S = {ul, ul+1,⋯ , um−1, um} , we call the first 
point value ul and the last point value um as boundary points, and call the other point values 
ul+1,⋯ , um−1 as interior points. A set of class I is defined as a set satisfying the following: 

	 (i)	 it contains at least four point values;
	 (ii)	 both boundary points are in [m, M] and all interior points are out of range;
	 (iii)	 it contains both undershoot and overshoot points.

Notice that in a set of class I, at least one undershoot point is next to an overshoot point. For 
given point values ui, i = 1,⋯ ,N , suppose all the sets of class I are S1 = {um1

, um1+1
,⋯ , un1} , 

S2 = {um2
,⋯ , un2} , ⋯ , SK = {umK

,⋯ , unK} , where m1 < m2 < ⋯ < umK
.

A set of class II consists of point values between Si and Si+1 and two boundary points uni 
and umi+1

 . Namely, they are T0 = {u1, u2,⋯ , um1
} , T1 = {un1 ,⋯ , um2

} , T2 = {un2 ,⋯ , um3
} , 

⋯ , TK = {unK ,⋯ , uN} . For periodic data ui , we can combine TK and T0 to define 
TK = {unK ,⋯ , uN , u1,⋯ , um1

}.
In the sets of class I, the undershoot and the overshoot are neighbors. In the sets of 

class II, the undershoot and the overshoot are separated, i.e., an overshoot is not next 
to any undershoot. As a matter of fact, in the numerical tests, the sets of class I are 

u(1) = un,

u(2) = u(1) + dtF(u(1)),

u(3) =
3

4
u(1) +

1

4
(u(2) + F(u(2))),

un+1 =
1

3
u(1) +

2

3
(u(3) + F(u(3))).

m ⩽
1

a + 2
(ui−1 + aui + ui+1) ⩽ M, i = 1,⋯ ,N, a ⩾ 2.
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hardly encountered. Here we include them in the discussion for the sake of complete-
ness. When there are no sets of class I, all point values form a single set of class II.

Algorithm 1 can enforce ūi ∈ [m,M] without losing conservation [5]:

Theorem  1  Assume periodic data ui (i = 1,⋯ ,N) satisfies ūi =
1

a+2
(ui−1 + aui + ui+1)

∈ [m,M] for some fixed a ⩾ 2 and all i = 1,⋯ ,N with u0 ∶= uN and uN+1 ∶= u1 , then the 
output of Algorithm 1 satisfies 

∑N

i=1
vi =

∑N

i=1
ui and vi ∈ [m,M], for any i.

For the two-dimensional case, the same limiter can be used in a dimension by dimension 
fashion to enforce uij ∈ [m,M].
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3 � A Bound‑Preserving Scheme for the Two‑Dimensional 
Incompressible Flow

In this section we first show the fourth-order compact finite difference with forward Euler time 
discretization satisfies the weak monotonicity [5], thus it is bound-preserving with a naturally 
constructed discrete divergence-free velocity field.

For simplicity, we only consider a periodic boundary condition on a square [0, 1] × [0, 1] . 
Let (xi, yj) = (

i

Nx

,
j

Ny

) (i = 1,⋯ ,Nx, j = 1,⋯ ,Ny) be the uniform grid points on the domain 
[0, 1] × [0, 1] . All notation in this paper is consistent with those in [5].

3.1 � Weak Monotonicity and Bound‑Preserving

Let �1 =
Δt

Δx
 and �2 =

Δt

Δy
 , the fourth-order compact finite difference scheme with the forward 

Euler method for (1a) can be given as

With the same notation as in [5], the weighted average in two dimensions can be denoted 
as

Then the scheme (8) is equivalent to

where ◦ denotes the matrix Hadamard product, and

It is straightforward to verify the weak monotonicity, i.e., 𝜔̄n+1
ij

 is a monotonically increas-
ing function with respect to all point values �n

ij
 involved in (10) under the CFL condition

However, the monotonicity is sufficient for bound-preserving 𝜔̄n+1
ij

∈ [m,M] , only if the 
following consistency condition holds:

(8)�n+1
ij

=�n
ij
− �1[W

−1
1x
Dx(u

n
◦�

n)]ij − �2[W
−1
1y
Dy(u

n
◦�

n)]ij.

(9)𝜔̄ = W1xW1y𝜔.

(10)

𝜔̄n+1
ij

= 𝜔̄n
ij
− 𝜆1[W1yDx(u

n
◦�

n)]ij − 𝜆2[W1xDy(v
n
◦�

n)]ij

=
1

36

⎛⎜⎜⎝

1 4 1

4 16 4

1 4 1

⎞⎟⎟⎠
∶ 𝛺n −

𝜆1

12

⎛⎜⎜⎝

−1 0 1

−4 0 4

−1 0 1

⎞⎟⎟⎠
∶ (Un

◦𝛺n) −
𝜆2

12

⎛⎜⎜⎝

1 4 1

0 0 0

−1 − 4 − 1

⎞⎟⎟⎠
∶ (Vn

◦𝛺n),

U =

⎛
⎜⎜⎝

ui−1,j+1 ui,j+1 ui+1,j+1
ui−1,j ui,j ui+1,j
ui−1,j−1 ui,j−1 ui+1,j−1

⎞
⎟⎟⎠
,V =

⎛
⎜⎜⎝

vi−1,j+1 vi,j+1 vi+1,j+1
vi−1,j vi,j vi+1,j
vi−1,j−1 vi,j−1 vi+1,j−1

⎞
⎟⎟⎠
,

� =

⎛⎜⎜⎝

�i−1,j+1 �i,j+1 �i+1,j+1

�i−1,j �i,j �i+1,j

�i−1,j−1 �i,j−1 �i+1,j−1

⎞⎟⎟⎠
.

Δt

Δx
max
ij

|un
ij
| + Δt

Δy
max
ij

|vn
ij
| ⩽ 1

3
.
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Plugging �n
ij
≡ m in (10), we get

Thus the consistency (11) holds only if the velocity ⟨un, vn⟩ satisfies

Therefore we have the following bound-preserving result.

Theorem 2  If the velocity ⟨un, vn⟩ satisfies the discrete divergence free constraint (12) and 
�n
ij
∈ [m,M] , then under the CFL constraint

the scheme (10) satisfies 𝜔̄n+1
ij

∈ [m,M].

3.2 � A Discrete Divergence Free Velocity Field

In the following discussion, we may discard the superscript n for convenience assum-
ing everything discussed is at time step n.

Note that (12) is a discrete divergence free constraint and we can construct a fourth-
order accurate velocity field satisfying (12). Given �ij , we first compute �ij by a fourth-
order compact finite difference scheme for the Poisson equation (1b). The detail of the 
Poisson solvers including the fast Poisson solver is given in the appendices.

With the fourth-order compact finite difference we have

where

Since the two finite difference operators Dx and Dy commute, it is straightforward to verify 
that the velocity field computed by (13) satisfies (12).

(11)𝜔n
ij
≡ m ⇒ 𝜔̄n+1

ij
= m, 𝜔n

ij
≡ M ⇒ 𝜔̄n+1

ij
= M.

𝜔̄n+1
ij

=m
(
1 − 𝜆1

(
W1yDxu

n
)
ij
− 𝜆2

(
W1xDyv

n
)
ij

)
.

(12)
1

Δx
DxW1yu

n +
1

Δx
DyW1xv

n = 0.

Δt

Δx
max
ij

|un
ij
| + Δt

Δy
max
ij

|vn
ij
| ⩽ 1

3
,

(13)−
1

Δy
Dy� = W1yu,

1

Δx
Dx� = W1xv,

� =

⎛
⎜⎜⎜⎜⎜⎝

�11 �12 ⋯ �1,Ny

�21 �22 ⋯ �2,Ny

⋮ ⋮ ⋮

�Nx−1,1
�Nx−1,2

⋯ �Nx−1,Ny

�Nx ,1
�Nx ,2

⋯ �Nx ,Ny

⎞
⎟⎟⎟⎟⎟⎠
Nx×Ny

.
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3.3 � A Fourth‑Order Accurate Bound‑Preserving Scheme

For the Euler equations (1), the following implementation of the fourth-order compact 
finite difference with forward Euler time discretization scheme can preserve the bounds: 

	 (i)	 given �n
ij
∈ [m,M] , solve the Poisson equation (1b) by the fourth-order accurate 

compact finite difference scheme to obtain point values of the stream function �ij;
	 (ii)	 construct u and v by (13);
	 (iii)	 obtain 𝜔̄n+1

ij
∈ [m,M] by scheme (10);

	 (iv)	 apply the limiting procedure in Sect. 2.3 to obtain �n+1
ij

∈ [m,M].

For high order SSP time discretizations, we should use the same implementation above for 
each time stage or time step.

For the Navier-Stokes equations (2), with �1 =
Δt

Δx2
 and �2 =

Δt

Δy2
 , the scheme can be written as

In a manner similar to (9), we define

with W1 ∶= W1xW1y and W2 ∶= W2xW2y . Due to definition (9) and the fact operators W1 and 
W2 commute, i.e., W1W2 = W2W1 , we have

Then scheme (14) is equivalent to

Following the discussion in Sect. 3.1 and the discussion for the two-dimensional convec-
tion-diffusion in [5], we have the following result.

Theorem 3  If the velocity ⟨un, vn⟩ satisfies the constraint (12) and �n
ij
∈ [m,M] , then under 

the CFL constraint

the scheme (16) satisfies ̃̄𝜔n+1
ij

∈ [m,M].

Given ̃̄𝜔ij , we can recover point values �ij by obtaining first 𝜔̃ij = W−1
1

̃̄𝜔ij then 
𝜔ij = W−1

2
𝜔̃ij . Given point values �ij satisfying ̃̄𝜔ij ∈ [m,M] for any i and j, we can use 

the limiter in Algorithm 1 in a dimension by dimension fashion several times to enforce 
�ij ∈ [m,M] : 

(14)
�n+1
ij

=�n
ij
− �1[W

−1
1x
Dx(u

n
◦�

n)]ij − �2[W
−1
1y
Dy(v

n
◦�

n)]ij

+
�1

Re
W−1

2x
Dxx�

n
ij
+

�2

Re
W−1

2y
Dyy�

n
ij
.

(15)𝜔̃ ∶= W2xW2y𝜔

̃̄𝜔 = W2W1𝜔 = W1W2𝜔 = ̄̃𝜔.

(16)
̃̄𝜔n+1
ij

= ̃̄𝜔n
ij
−

𝜆1

12
[W2W1yDx(u

n
◦�

n)]ij −
𝜆2

12
[W2W1xDy(u

n
◦�

n)]ij

+
𝜇1

Re
W1W2yDxx𝜔

n
ij
+

𝜇2

Re
W1W2xDyy𝜔

n
ij
.

Δt

Δx
max
ij

|un
ij
| + Δt

Δy
max
ij

|vn
ij
| ⩽ 1

6
,

Δt

ReΔx2
+

Δt

ReΔy2
⩽

5

24
,
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	 (i)	 given ̃̄𝜔ij ∈ [m,M] , compute 𝜔̃ij = W−1
1

̃̄𝜔ij and apply the limiting Algorithm 1 with 
a = 4 in both x-direction and y-direction to ensure 𝜔̃ij ∈ [m,M];

	 (ii)	 given 𝜔̄ij ∈ [m,M] , compute 𝜔ij = W−1
2
𝜔̃ij and apply the limiting algorithm Algo-

rithm 1 with a = 10 in both x-direction and y-direction to ensure �ij ∈ [m,M].

4 � A TVB Limiter for the Two‑Dimensional Incompressible Flow

To have nonlinear stability and eliminate oscillations for shocks, a TVBM (total variation 
bounded in the means) limiter was introduced for the compact finite difference scheme solving 
scalar convection equations in [2]. In this section, we will modify this limiter for the incom-
pressible flow so that it does not affect the bound-preserving property. Thus we can use both 
the TVB limiter and the bound-preserving limiter in Algorithm 1 to preserve bounds while 
reducing oscillations. For simplicity, we only consider the numerical scheme for the incom-
pressible Euler equation (1). In this section, we may discard the superscript n if a variable is 
defined at time step n.

4.1 � The TVB Limiter

The scheme (10) can be written in a conservative form:

involving a numerical flux ̂(u𝜔)
n

i+
1

2
,j
 and ̂(v𝜔)

n

i,j+
1

2

 as local functions of un
kl

 , vn
kl

 , and �n
kl

 . The 
numerical flux is defined as

Similarly we denote

The limiting is defined in a dimension by dimension manner. For the flux splitting, it is 
done as in one dimension. Consider a splitting of u satisfying

The simplest such splitting is the Lax-Friedrichs splitting

Then we have

(17)𝜔̄n+1
ij

= 𝜔̄n
ij
− 𝜆1[

̂(u𝜔)
n

i+
1

2
,j
− ̂(u𝜔)

n

i−
1

2
,j
] − 𝜆2[

̂(v𝜔)
n

i,j+
1

2

− ̂(v𝜔)
n

i,j−
1

2

],

(18)

⎧⎪⎨⎪⎩

̂(u𝜔)
i+

1

2
,j =

1

2

�
[W1y(u◦�)]ij + [W1y(u◦�)]i+1,j

�
,

̂(v𝜔)
i,j+

1

2

=
1

2

�
[W1x(v◦�)]ij + [W1x(v◦�)]i,j+1

�
.

(19)

⎧⎪⎨⎪⎩

û
i+

1

2
,j =

1

2

��
W1yu

�
ij
+
�
W1yu

�
i+1,j

�
,

v̂
i,j+

1

2

=
1

2

��
W1xv

�
ij
+
�
W1xv

�
i,j+1

�
.

(20)u+ ⩾ 0, u− ⩽ 0.

u± =
1

2
(u ± �), � = max

(x,y)∈�
|u(x, y)|.
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and we write the flux ̂(u𝜔)
i+

1

2
,j and û

i+
1

2
,j as

where ̂(u𝜔)
±

i+
1

2
,j
 and û±

i+
1

2
,j
 are obtained by adding superscripts ± to uij in (18) and (19), 

respectively, i.e.,

where u± = (u±
ij
) . With a dummy index j referring y value, we first take the differences 

between the high-order numerical flux and the first-order upwind flux

Limit them by

where Δx
+
vij ≡ vi+1,j − vij is the forward difference operator in the x-direction, and m is the 

standard minmod function

As mentioned in [2], the limiting defined in (22) maintains the formal accuracy of the com-
pact schemes in smooth regions of the solution with the assumption

Under the assumption (24), by simple Taylor expansion,

Hence in smooth regions away from critical points of � , for sufficiently small Δx , the min-
mod function (23) will pick the first argument, yielding

u = u+ + u−, u� = u+� + u−�,

̂(u𝜔)
i+

1

2
,j =

̂(u𝜔)
+

i+
1

2
,j
+ ̂(u𝜔)

−

i+
1

2
,j
, û

i+
1

2
,j = û+

i+
1

2
,j
+ û−

i+
1

2
,j
,

̂(u𝜔)
±

i+
1

2
,j
=
1

2

(
[W1y(u

±
◦�)]ij + [W1y(u

±
◦�)]i+1,j

)
,

û±
i+

1

2
,j
=
1

2

((
W1yu

±
)
ij
+
(
W1yu

±
)
i+1,j

)
,

(21)d ̂(u𝜔)
+

i+
1

2
,j
= ̂(u𝜔)

+

i+
1

2
,j
− u+

i+
1

2
,j
𝜔̄ij, d ̂(u𝜔)

−

i+
1

2
,j
= u−

i+
1

2
,j
𝜔̄i+1,j −

̂(u𝜔)
−

i+
1

2
,j
.

(22)

⎧⎪⎪⎨⎪⎪⎩

d ̂(u𝜔)
+(m)

i+
1

2
,j
=m

�
d ̂(u𝜔)

+

i+
1

2
,j
, u+

i+
1

2
,j
Δx

+
𝜔̄ij, u

+

i−
1

2
,j
Δx

+
𝜔̄i−1,j

�
,

d ̂(u𝜔)
−(m)

i+
1

2
,j
=m

�
d ̂(u𝜔)

−

i+
1

2
,j
, u−

i+
1

2
,j
Δx

+
𝜔̄ij, u

−

i+
3

2
,j
Δx

+
𝜔̄i+1,j

�
,

(23)m(a1,⋯ , ak) =

{
s min
1⩽i⩽k

|ai|, if sign(a1) = ⋯ = sign(ak) = s,

0, otherwise.

(24)𝜔̄ij = (W1xW1y𝜔)ij = 𝜔ij +O
(
Δx2

)
for 𝜔 ∈ C2.

(25)

⎧⎪⎨⎪⎩

d ̂(u𝜔)
±

i+
1

2
,j
=

1

2
u±
i+

1

2
,j
𝜔x,ijΔx +O

�
Δx2

�
,

u±
k+

1

2
,j
Δx

+
𝜔̄kj = u±

i+
1

2
,j
𝜔x,ijΔx +O

�
Δx2

�
, k = i − 1, i, i + 1.

d ̂(u𝜔)
±(m)

i+
1

2
,j
= d ̂(u𝜔)

±

i+
1

2
,j
.
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Since the accuracy may degenerate to first-order at critical points, as a remedy, the modi-
fied minmod function [1, 7] is introduced as follows:

where P is a positive constant independent of Δx and m is the standard minmod function 
(23). See more detailed discussion in [2].

Then we obtain the limited numerical fluxes as

and

The flux in the y-direction can be defined analogously.
The following result was proven in [2].

Lemma 1  For any n and Δt such that 0 ⩽ nΔt ⩽ T  , scheme (17) with flux (28) satisfies a 
maximum principle in the means:

under the CFL condition

where the maximum is taken in mini,j u
n
ij
⩽ u ⩽ maxi,j u

n
ij
 , mini,j v

n
ij
⩽ v ⩽ maxi,j v

n
ij
.

4.2 � The Bound‑Preserving Property of the Nonlinear Scheme with Modified Flux

The compact finite difference scheme with the TVB limiter in the last section is

where the numerical flux ̂(u𝜔)
(m)

i+
1

2
,j
 , ̂(u𝜔)

(m)

i,j+
1

2

 is the modified flux approximating (18).

Theorem 4  If �n
ij
∈ [m,M] , under the CFL condition

the nonlinear scheme (29) satisfies

(26)m̃(a1,⋯ , ak) =

{
a1, if |a1| ⩽ PΔx2,

m(a1,⋯ , ak), otherwise,

(27)̂(u𝜔)
+(m)

i+
1

2
,j
= u+

i+
1

2
,j
𝜔̄ij + d ̂(u𝜔)

+(m)

i+
1

2
,j
, ̂(u𝜔)

−(m)

i+
1

2
,j
= u−

i+
1

2
,j
𝜔̄i+1,j − d ̂(u𝜔)

−(m)

i+
1

2
,j
,

(28)̂(u𝜔)
(m)

i+
1

2
,j
= ̂(u𝜔)

+(m)

i+
1

2
,j
+ ̂(u𝜔)

−(m)

i+
1

2
,j
.

max
i,j

|||𝜔̄
n+1
ij

||| ⩽ max
i,j

|||𝜔̄
n
ij

|||

[
max

(
u+

)
+max (−u−)

]Δt
Δx

+
[
max

(
v+
)
+max (−v−)

]Δt
Δy

⩽
1

2
,

(29)𝜔̄n+1
ij

= 𝜔̄n
ij
− 𝜆1

(
̂(u𝜔)

(m)

i+
1

2
,j
− ̂(u𝜔)

(m)

i−
1

2
,j

)
− 𝜆2

(
̂(v𝜔)

(m)

i,j+
1

2

− ̂(v𝜔)
(m)

i,j−
1

2

)
,

(30)�1 max
i,j

|||u
(±)

ij

||| ⩽
1

24
, �2 max

i,j

|||v
(±)

ij

||| ⩽
1

24
,

𝜔̄n+1
ij

∈ [m,M].
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Proof  We have

Under the CFL condition (30), we will prove that the eight terms satisfy the following 
bounds:

For (32), by taking the sum of the lower bounds and upper bounds and multiplying them by 
1

8
 , we obtain

with

Therefore, we conclude 𝜔̄n+1
ij

∈ [m,M].
We only discuss the first two terms in (32) since the proof for the rest is similar. By the 

definition of the modified minmod function (26) and (27), we have

(31)

𝜔̄n+1
ij
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ij
− 𝜆1

(
̂(u𝜔)

(m)

i+
1

2
,j
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1
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2
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1

8

((
𝜔̄n
ij
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+
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+
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2
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+
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+
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We notice that under the CFL condition (30),

are all monotonically increasing functions with respect to variables �n
kj

 , k = i − 1, i, i + 1 . 
Due to the flux splitting (20),

is also a monotonically increasing function with respect to variables �n
kj

 , 
k = i − 1, i, i + 1, i + 2 . Therefore, with the assumption �n

ij
∈ [m,M] , we obtain

with (35), which implies the first two terms of (32).

Remark 1  We remark here the above proof is independent of the second and third argu-
ments of the minmod function (26). Therefore, the proof holds for other limiters with dif-
ferent second and third arguments in the same minmod function (26).

Remark 2  The TVB limiter in this paper is designed to modify the convection flux only 
thus it also applies to the Navier-Stokes equation. Moreover, under the suitable CFL condi-
tion, the full scheme with TVB limiter can still preserve ̃̄𝜔n+1

ij
∈ [m,M] with �n

ij
∈ [m,M].

4.3 � An Alternative TVB Limiter

Another TVB limiter can be defined by replacing (22) with

All the other procedures in the limiter are exactly the same as in Sect. 4.1. The limiter does 
not affect the bound-preserving property due to the arguments in Remark 1.

(35)
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5 � Numerical Tests

In this subsection, we test the fourth-order compact finite difference scheme with both 
the bound-preserving and the TVB limiter for the two-dimensional incompressible flow.

In the numerical test, we refer to the bound-preserving limiter as BP, the TVB limiter 
in Sect. 4.1 as TVB1, and the TVB limiter in Sect. 4.3 as TVB2. The parameter in the 
minmod function used in TVB limiters is denoted as P. In all the following numerical 
tests, we use SSPRK(3, 3) as mentioned in Sect. 2.2.

5.1 � Accuracy Test

For the Euler equation (1) with the periodic boundary condition and initial data 
�(x, y, 0) = −2 sin(2x) sin(y) on the domain [0, 2π] × [0, 2π] , the exact solution is 
�(x, y, t) = −2 sin(2x) sin(y) . We test the accuracy of the proposed scheme on this solu-
tion. The errors for P = 300 are given in Table 1, and we observe the designed order of 
accuracy for this special steady state solution.

5.2 � Double Shear Layer Problem

We test the scheme for the double shear layer problem on the domain [0, 2π] × [0, 2π] 
with a periodic boundary condition. The initial condition is

with � = 0.05 and � = π∕15 . The vorticity � at time T = 6 and T = 8 are shown in Figs. 1, 
2, and 3. With both the bound-preserving limiter and TVB limiter, the numerical solutions 
are ensured to be in the range [−� − 1

�
, � +

1

�
] . The TVB limiter can also reduce 

oscillations.

5.3 � Vortex Patch Problem

We test the limiters for the vortex patch problem in the domain [0, 2π] × [0, 2π] with a 
periodic boundary condition. The initial condition is

𝜔(x, y, 0) =

{
𝛿 cos(x) −

1

𝜌
sec h2

((
y −

π

2

)
∕𝜌

)
, y ⩽ π,

𝛿 cos(x) +
1

𝜌
sec h2

((
3π

2
− y

)
∕𝜌

)
, y > π

Table 1   Incompressible Euler 
equations. Fourth-order compact 
FD for vorticity, t = 0.5 . With BP 
and TVB1 limiters, P = 300

N × N L
2 error Order L

∞ error Order

32 × 32 3.16E−3 – 1.00E−3 –
64 × 64 1.86E−4 4.09 5.90E−5 4.09
128 × 128 1.14E−5 4.02 3.63E−6 4.02
256 × 256 7.13E−7 4.01 2.67E−7 4.00
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(a) (b)

(c) (d)

(e) (f)

Fig. 1   Double shear layer problem. Fourth-order compact finite difference with the SSP Runge-Kutta 
method on a 160 × 160 mesh solving the incompressible Euler equation (1) at T = 6 . The time step is 
Δt =

1

24maxx |u0|Δx
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(a) (b)

(c) (d)

(e) (f)

Fig. 2   Double shear layer problem. Fourth-order compact finite difference with the SSP Runge-Kutta 
method on a 160 × 160 mesh solving the incompressible Euler equation (1) at T = 8 . The time step is 
Δt =

1

24maxx |u0|Δx
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(a) (b)

(c) (d)

(e) (f)

Fig. 3   Double shear layer problem. Fourth-order compact finite difference with the SSP Runge-Kutta 
method on a 160 × 160 mesh solving the incompressible Euler equation (1) at T = 6 and T = 8 . The time 
step is Δt = 1

24maxx |u0|Δx
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Numerical solutions for incompressible Euler equation are shown in Figs.  4, 5, 6, and 7. 
We can observe that the solutions generated by the compact finite difference scheme with 
only the bound-preserving limiter are still highly oscillatory for the Euler equation without 
the TVB limiter.

Notice that the oscillations in Fig. 4 suggest that the artificial viscosity induced by 
the bound-preserving limiter is quite low.

�(x, y, 0) =

⎧
⎪⎨⎪⎩

−1, (x, y) ∈ [
π

2
,
3π

2
] × [

π

4
,
3π

4
];

1, (x, y) ∈ [
π

2
,
3π

2
] × [

5π

4
,
7π

4
];

0, otherwise.

(a) (b)

(c) (d)

Fig. 4   A fourth-order accurate compact finite difference scheme for the incompressible Euler equation at 
T = 5 on a 160 × 160 mesh. The time step is Δt = 1

24max |u0|Δx . The second row is the cut along the diago-
nal of the two-dimensional array
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6 � Concluding Remarks

We have proven that a simple limiter can preserve bounds for the fourth-order com-
pact finite difference method solving the two-dimensional incompressible Euler equa-
tion, with a discrete divergence-free velocity field. We also prove that the TVB limiter 
modified from [2] does not affect the bound-preserving property of 𝜔̄ . With both the 
TVB limiter and the bound-preserving limiter, the numerical solutions of the high-
order compact finite difference scheme can be rendered non-oscillatory and strictly 
bound-preserving.

For the sixth-order and eighth-order compact finite difference methods for the con-
vection problem with weak monotonicity in [5], the divergence-free velocity can be 
constructed accordingly, which gives a higher-order bound-preserving scheme for the 
incompressible flow by applying Algorithm 1 several times. The TVB limiting proce-
dure in Sect. 4.1 can also be defined with a similar result as Theorem 4.

(a) (b)

(c) (d)

Fig. 5   A fourth-order accurate compact finite difference scheme for the incompressible Euler equation at 
T = 5 on a 160 × 160 mesh. The time step is Δt = 1

24max |u0|Δx . The second row is the cut along the diago-
nal of the two-dimensional array
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Appendix A: Comparison With the Nine‑Point Discrete Laplacian

Consider solving the two-dimensional Poisson equations uxx + uyy = f  with either homoge-
neous Dirichlet boundary conditions or periodic boundary conditions on a rectangular 
domain. Let u be an Nx × Ny matrix with entries ui,j denoting the numerical solutions at a 
uniform grid (xi, yj) = (

i

Nx

,
j

Ny

) . Let f be an Nx × Ny matrix with entries fi,j = f (xi, yj) . The 
fourth-order compact finite difference method in Sect. 2 for uxx + uyy = f  can be written as

For convenience, we introduce two matrices

Notice that the scheme (A1) is equivalent to

(A1)
1

Δx2
W−1

2x
Dxxu +

1

Δy2
W−1

2y
Dyyu = f (u).

U =

⎛⎜⎜⎝

ui−1,j+1 ui,j+1 ui+1,j+1
ui−1,j ui,j ui+1,j
ui−1,j−1 ui,j−1 ui+1,j−1

⎞⎟⎟⎠
, F =

⎛⎜⎜⎝

fi−1,j+1 fi,j+1 fi+1,j+1
fi−1,j fi,j fi+1,j
fi−1,j−1 fi,j−1 fi+1,j−1
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.
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Fig. 6   A fourth-order accurate compact finite difference scheme for the incompressible Euler equation at 
T = 5 on a 160 × 160 mesh. The time step is Δt = 1

24max |u0|Δx . The second row is the cut along the diago-
nal of the two-dimensional array
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which can be written as

where  :  denotes the sum of all entrywise products in two matrices of the same size.
In particular, if Δx = Δy = h , the scheme above reduces to

1

Δx2
W2yDxxu +

1

Δy2
W2xDyyu = W2xW2yf (u),

(A2)

1

12Δx2

⎛⎜⎜⎝

1 − 2 1

10 − 20 10

1 − 2 1

⎞⎟⎟⎠
∶ U +

1

12Δy2

⎛⎜⎜⎝

1 10 1

−2 − 20 − 2

1 10 1

⎞⎟⎟⎠
∶ U =

1

144

⎛⎜⎜⎝

1 10 1

10 100 10

1 10 1

⎞⎟⎟⎠
∶ F,

1

6h2

⎛⎜⎜⎝

1 4 1

4 − 20 4

1 4 1

⎞⎟⎟⎠
∶ U =

1

144

⎛⎜⎜⎝

1 10 1

10 100 10

1 10 1

⎞⎟⎟⎠
∶ F.

(a) (b)

(c) (d)

Fig. 7   A fourth-order accurate compact finite difference scheme for the incompressible Euler equation at 
T = 10 on a 160 × 160 mesh. The time step is Δt = 1

12max |u0|Δx . The second row is the cut along the diago-
nal of the two-dimensional array
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Recall that the classical nine-point discrete Laplacian [4] for the Poisson equation can be 
written as

which reduces to the following under the assumption Δx = Δy = h:

Both schemes (A2) and (A3) are fourth-order accurate and they have the same stencil 
in the left-hand side. As to which scheme produces smaller errors, it seems to be prob-
lem dependent, see Fig. A1. Figure A1 shows the errors of two schemes (A2) and (A3) 
using uniform grids with Δx = 2

3
Δy for solving the Poisson equation uxx + uyy = f  on a 

rectangle [0, 1] × [0, 2] with Dirichlet boundary conditions. For solution 1, we have 
u(x, y) = sin(πx) sin(πy) + 2x , for solution 2, we have u(x, y) = sin(πx) sin(πy) + 4x4y4.

Appendix B: M‑matrices and a Discrete Maximum Principle

Consider solving the heat equation ut = uxx + uyy with a periodic boundary condition. It 
is well known that a discrete maximum principle is satisfied under certain time step con-
straints if the spatial discretization is the nine-point discrete Laplacian or the compact 
scheme (A1) with backward Euler and Crank-Nicolson time discretizations. For sim-
plicity, we only consider the compact scheme (A1) and the discussion for the nine-point 
discrete Laplacian is similar. Assume Δx = Δy = h . For backward Euler, the scheme can 
be written as

(A3)
1

12Δx2

⎛
⎜⎜⎝

1 − 2 1

10 − 20 10

1 − 2 1

⎞
⎟⎟⎠
∶ U +

1

12Δy2

⎛
⎜⎜⎝

1 10 1

−2 − 20 − 2

1 10 1

⎞
⎟⎟⎠
∶ U =

1

12

⎛
⎜⎜⎝

0 1 0

1 8 1

0 1 0

⎞
⎟⎟⎠
∶ F,

1

6h2

⎛⎜⎜⎝

1 4 1

4 − 20 4

1 4 1

⎞⎟⎟⎠
∶ U =

1

12

⎛⎜⎜⎝

0 1 0

1 8 1

0 1 0

⎞⎟⎟⎠
∶ F.

(a) (b)

Fig. A1   Error comparison
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thus

Let A and B denote the matrices corresponding to the operators in the left-hand side and 
right-hand side above, respectively. Then, the scheme can be written as

and A is an M-matrix (diagonally dominant, positive diagonal entries, and non-positive off 
diagonal entries) under the following constraint which allows very large time steps:

The inverses of M-matrices have non-negative entries, e.g., see [6]. Thus A−1 has non-neg-
ative entries. Moreover, it is straightforward to check that Ae = e where e =

(
1 1 ⋯ 1

)T
. 

Thus A−1e = e , which implies the sum of each row of A−1 is 1 thus each row of A−1 mul-
tiplying any vector V is a convex combination of entries of V. It is also obvious that each 
entry of B is non-negative and the sum of each row of B is 1. Therefore, un+1 = A−1Bun 
satisfies a discrete maximum principle:

For the second-order accurate Crank-Nicolson time discretization, the scheme can be writ-
ten as

thus

Let the matrix-vector form of the scheme above be Aun+1 = Bun . Then, for A to be an 
M-matrix, we only need Δt

h2
⩾

5

24
 . However, for B to have non-negative entries, we need 

Δt

h2
⩽

5

12
 . Thus the Crank-Nicolson method can ensure a discrete maximum principle if the 

time step satisfies

1

144

⎛
⎜⎜⎝

1 10 1

10 100 10

1 10 1

⎞
⎟⎟⎠
∶ (Un+1 − Un) =

Δt

6h2

⎛
⎜⎜⎝
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1 4 1

⎞
⎟⎟⎠
∶ Un+1,

1

144

⎛
⎜⎜⎝

1 10 1

10 100 10

1 10 1

⎞
⎟⎟⎠
∶ Un+1 −

Δt

6h2

⎛
⎜⎜⎝

1 4 1

4 − 20 4

1 4 1

⎞
⎟⎟⎠
∶ Un+1 =

1

144

⎛
⎜⎜⎝

1 10 1

10 100 10

1 10 1

⎞
⎟⎟⎠
∶ Un.

Aun+1 = Bun,

Δt
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⩾

5

48
.

min
i,j

un
i,j
⩽ un+1

i,j
⩽ max

i,j
un
i,j
.

1
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Δt

6h2

⎛
⎜⎜⎝
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⎞
⎟⎟⎠
∶
Un+1 + Un

2
,

⎡
⎢⎢⎣

1

144

⎛
⎜⎜⎝
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⎞
⎟⎟⎠
−

Δt

12h2

⎛
⎜⎜⎝

1 4 1

4 − 20 4

1 4 1

⎞
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Appendix C: Fast Poisson Solvers

Dirichlet Boundary Conditions

Consider solving the Poisson equation uxx + uyy = f (x, y) on a rectangular domain 
[0,Lx] × [0, Ly] with homogeneous Dirichlet boundary conditions. Assume we use the grid 
xi = iΔx, i = 0,⋯ ,Nx + 1 with uniform spacing Δx = Lx

Nx+1
 for the x-variable and yj = jΔy, 

j = 0,⋯ ,Ny + 1 with uniform spacing Δy = Ly

Ny+1
 for the y-variable. Let u be an Nx × Ny 

matrix such that its (i, j) entry ui,j is the numerical solution at interior grid points (xi, yj) . Let F 
be a (Nx + 2) × (Ny + 2) matrix with entries f (xi, yj) for i = 0,⋯ ,Nx + 1 and j = 0,⋯ ,Ny + 1

.
To obtain the matrix representation of the operator in (A2) and (A3), we consider two 

operators.

•	 Kronecker product of two matrices: if A is m × n and B is p × q , then A⊗ B is mp × nq 
give by 

•	 For an m × n matrix X, vec (X) denotes a column vector of size mn made of the columns of 
X stacked atop one another from left to right.

The following properties will be used: 

	 (i)	 (A⊗ B)(C⊗ D) = AC⊗ BD;
	 (ii)	 (A⊗ B)−1 = A−1 ⊗ B−1;
	 (iii)	 (BT ⊗ A) vec (X) = vec (AXB).

We define two tridiagonal square matrices of size Nx × Nx:

Let W2x denote an Nx × (Nx + 2) tridiagonal matrix of the following form:

5

24
h2 ⩽ Δt ⩽

5

12
h2.

A⊗ B =

⎛⎜⎜⎝

a11B ⋯ a1nB

⋮ ⋮

am1B ⋯ amnB

⎞⎟⎟⎠
.

Dxx =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1

1 − 2 1

1 − 2 1

⋱ ⋱ ⋱

1 − 2 1

1 − 2

⎞
⎟⎟⎟⎟⎟⎟⎠

,W2x =
1

12

⎛
⎜⎜⎜⎜⎜⎜⎝

10 1

1 10 1

1 10 1

⋱ ⋱ ⋱

1 10 1

1 10

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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The matrices Dyy , W2y , and W2y are similarly defined.
Then the scheme (A2) can be written in a matrix-vector form:

or equivalently,

Let hx = [h1, h2,⋯ , hNx
]T with hi =

i

Nx+1
 , and sin(mπhx) denote a column vector of size Nx 

with its ith entry being sin(mπhi) . Then, sin(mπhx) are the eigenvectors of Dxx and W2x with 
the associated eigenvalues being 2 cos( mπ

Nx+1
) − 2 and 5

6
+

1

6
cos(

mπ

Nx+1
) , respectively, for 

m = 1,⋯ ,Nx . Let

be the Nx × Nx eigenvector matrix. Then, Sx is a symmetric matrix. Let Λ1x denote a diago-
nal matrix with diagonal entries 2 cos( mπ

Nx+1
) − 2 and Λ2x denote a diagonal matrix with 

diagonal entries 5
6
+

1

6
cos(

mπ

Nx+1
) . Then, we have Dxx = SxΛ1xS

−1
x

 and W2x = SxΛ2xS
−1
x

 , thus

The scheme can be written as

Let Λ be an Nx × Ny matrix with Λi,j being equal to

Then, vec (Λ) are precisely the diagonal entries of the diagonal matrix 
1

Δx2
Λ2y ⊗ Λ1x +

1

Δy2
Λ1y ⊗ Λ2x , and then the scheme above is equivalent to

where the symmetry of S matrices is used. The solution is given by

where ./ denotes the entrywise division for two matrices of the same size.
Since the multiplication of the matrices S and S−1 can be implemented by the Dis-

crete Sine Transform, (C3) gives a fast Poisson solver.

(C1)W2x =
1

12

⎛
⎜⎜⎜⎝

1 10 1

1 10 1

⋱ ⋱ ⋱

1 10 1

⎞
⎟⎟⎟⎠
.

1

Δx2
DxxuW

T
2y
+

1

Δy2
W2xuD

T
yy
= W2xFW

T

2y
,

(C2)
(
W2y ⊗

1

Δx2
Dxx +

1

Δy2
Dyy ⊗W2x

)
vec (u) = (W2x ⊗W2y) vec (F).

Sx = [sin(πhx), sin(2πhx),⋯ , sin(Nxπhx)]

W2y ⊗ Dxx = (SyΛ2yS
−1
y
)⊗ (SxΛ1xS

−1
x
) = (Sy ⊗ Sx)(Λ2y ⊗ Λ1x)(S

−1
y

⊗ S−1
x
).

(Sy ⊗ Sx)

(
1

Δx2
Λ2y ⊗ Λ1x +

1

Δy2
Λ1y ⊗ Λ2x

)
(S−1

y
⊗ S−1

x
) vec (u) = (W2y ⊗W2x) vec (F).

1

3Δx2

(
cos

(
iπ

Nx + 1

)
− 1

)(
cos

(
mπ

Ny + 1

)
+ 5

)
+

1

3Δy2

(
cos

(
mπ

Nx + 1

)
+ 5

)(
cos

(
jπ

Ny + 1

)
− 1

)
.

Sx(Λ◦(S
−1
x
uS−1

y
))Sy = W2xFW

T

2y
,

(C3)u = Sx{[S
−1
x
(W2xFW

T

2y
)S−1

y
].∕Λ}Sy,
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For nonhomogeneous Dirichlet boundary conditions, the fourth-order accurate compact 
finite difference scheme can also be written in the form of (C2):

where F̃ consists of both F and the Dirichlet boundary conditions. Thus the scheme can 
still be efficiently implemented by the Discrete Sine Transform.

Periodic Boundary Conditions

For periodic boundary conditions on a rectangular domain, we should consider the uniform 
grid xi = iΔx, i = 1,⋯ ,Nx with Δx = Lx

Nx

 and yj = jΔy, j = 1,⋯ ,Ny with uniform spacing 
Δy =

Ly

Ny

 , then the fourth-order accurate compact finite difference scheme can still be writ-
ten in the form of (C2) with the Dxx , Dyy , W2x , and W2y matrices being redefined as circu-
lant matrices:

The discrete Fourier matrix is the eigenvector matrix for any circulant matrices, and the 
corresponding eigenvalues are for Dxx and W2x are 2 cos(m2π

Nx

) − 2 and 1
6
cos(

m2π

Nx

) +
5

6
 for 

m = 0, 1, 2,⋯ ,Nx − 1 . The matrix W2y ⊗
1

Δx2
Dxx +

1

Δy2
Dyy ⊗W2x is singular because its 

first eigenvalue Λ1,1 is zero. Nonetheless, the scheme can still be implemented by solving 
(C3) with fast Fourier transform. For the zero eigenvalue, we can simply reset the division 
by eigenvalue zero to zero. Since the eigenvector for eigenvalue zero is e =

(
1 1 ⋯ 1

)T , 
and the columns of the discrete Fourier matrix are orthogonal to one another, resetting the 
division by eigenvalue zero to zero simply means that we obtain a numerical solution satis-
fying 

∑
i

∑
j ui,j = 0 . And this is also the least square solution to the singular linear system.

Neumann Boundary Conditions

For Dirichlet and periodic boundary conditions, we can invert the matrix coefficient 
matrix in (C2) using eigenvectors of much smaller matrices W2x and Dxx due to the fact 
that W2x −

1

12
Dxx is the identity matrix Id. Here we discuss how to achieve a fourth-

order accurate boundary approximation for Neumann boundary conditions by keeping 
W2x −

1

12
Dxx = Id . We first consider a one-dimensional problem with homogeneous Neu-

mann boundary conditions:

Assume we use the uniform grid xi = iΔx, i = 0,⋯ ,Nx + 1 with Δx = Lx

Nx+1
 . The two 

boundary point values u0 and uNx+1
 can be expressed in terms of interior point values 

(C4)
(
W2y ⊗

1

Δx2
Dxx +

1

Δy2
Dyy ⊗W2x

)
vec (u) = vec (F̃),

Dxx =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 1 1

1 − 2 1

1 − 2 1

⋱ ⋱ ⋱

1 − 2 1

1 1 − 2

⎞
⎟⎟⎟⎟⎟⎟⎠

,W2x =
1

12

⎛
⎜⎜⎜⎜⎜⎜⎝

10 1 1

1 10 1

1 10 1

⋱ ⋱ ⋱

1 10 1

1 1 10

⎞
⎟⎟⎟⎟⎟⎟⎠

.

u��(x) = f (x), x ∈ [0, Lx],

u�(0) = u�(Lx) = 0.
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through boundary conditions. For approximating the boundary conditions, we can apply 
the fourth-order one-sided difference at x = 0:

which implies the finite difference approximation:

Define two column vectors:

then a fourth-order accurate compact finite difference scheme can be written as

where W2x is the same as in (C1), and Dxx is a matrix of size Nx × (Nx + 2) and Ix is a 
matrix of size (Nx + 2) × Nx:

Now consider solving the Poisson equation uxx + uyy = f (x, y) on a rectangular domain 
[0,Lx] × [0, Ly] with homogeneous Neumann boundary conditions. Assume we use the grid 
xi = iΔx, i = 0,⋯ ,Nx + 1 with Δx = Lx

Nx+1
 and yj = jΔy, j = 0,⋯ ,Ny + 1 with uniform 

spacing Δy = Ly

Ny+1
 . Let u be an Nx × Ny matrix such that ui,j is the numerical solution at 

(xi, yj) and F be a (Nx + 2) × (Ny + 2) matrix with entries f (xi, yj) ( i = 0,⋯ ,Nx + 1 , 
j = 0,⋯ ,Ny + 1 ). Then a fourth-order accurate compact finite difference scheme can be 
written as

Let Dxx = DxxIx and W2x = W2xIx . Then, the scheme can be written as (C2).

Notice that W2x −
1

12
Dxx = (W2x −

1

12
Dxx)Ix is still the identity matrix, thus W2x and 

Dxx still have the same eigenvectors. Let S be the eigenvector matrix and Λ1 and Λ2 be 
diagonal matrices with eigenvalues. Then, the scheme can still be implemented as (C3). 
The eigenvectors S and the eigenvalues can be obtained by computing eigenvalue prob-
lems for two small matrices Dxx of size Nx × Nx and Dyy of size Ny × Ny . If such a Pois-
son problem needs to be solved in each time step in a time-dependent problem such as 
the incompressible flow equations, then this is an efficient Poisson solver because S and 

u�(0) ≈
−25u(0) + 48u(Δx) − 36u(2Δx) + 16u(3Δx) − 3u(4Δx)

12Δx

u0 =
48u1 − 36u2 + 16u3 − 3u4

25
.

u = [u1, u2,⋯ , uNx
]T, f = [f (x0), f (x1),⋯ , f (xNx

), f (xNx+1
)]T,

1

Δx2
DxxIxu = W2xf,

Dxx =

⎛⎜⎜⎜⎝

1 − 2 1

1 − 2 1

⋱ ⋱ ⋱

1 − 2 1

⎞⎟⎟⎟⎠
, Ix =

⎛⎜⎜⎜⎜⎜⎜⎝

48

25
−

36

25

16

25
−

3

25

1

1

⋱

1

−
3

25

16

25
−

36

25

48

25

⎞⎟⎟⎟⎟⎟⎟⎠

.

1

Δx2
DxxIxuI

T
y
W

T

2y
+

1

Δy2
W2xIxuI

T
y
D

T

yy
= W2xFW

T

2y
.
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Λ can be computed before time evolution without considering eigenvalue problems for 
any matrix of size NxNy × NxNy.

For nonhomogeneous Neumann boundary conditions, the point values of u along the 
boundary should be expressed in terms of interior ones as follows. 

	 (i)	 First, obtain the point values except the two cell ends (i.e., corner points of the rec-
tangular domain) for each of the four boundary line segments. For instance, if the 
left boundary condition is �u

�x
(0, y) = g(y) , then we obtain 

	 (ii)	 Second, obtain the approximation at four corners using the point values along the 
boundary. For instance, if the bottom boundary condition is �u

�y
(x, 0) = h(x) , then 

The scheme can still be written as (C4) with F̃ consisting of F and the nonhomogeneous 
boundary conditions. Notice that the matrix in (C4) is singular, thus we need to reset the 
division by eigenvalue zero to zero, which however no longer means that the obtained 
solution satisfies 

∑
i

∑
j ui,j = 0 since the eigenvectors are not necessarily orthogonal to 

one another. See Fig. C1 for the accuracy test of the fourth-order compact finite differ-
ence scheme using uniform grids with Δx = 3

2
Δy for solving the Poisson equation 

uxx + uyy = f  on a rectangle [0, 1] × [0, 2] with nonhomogeneous Neumann boundary 
conditions. The exact solution is u(x, y) = cos(πx) cos(3πy) + sin(πy) + x4 . Since the solu-
tions to Neumann boundary conditions are unique up to any constant, when computing 
errors, we need to add a constant 1

Nx

1

Ny

∑
i,j[u(xi, yj) − ui,j] to each entry of u.

u0,j =
48u1,j − 36u2,j + 16u3,j − 3u4,j + 12Δxg(yj)

25
, j = 1,⋯ ,Ny.

u0,0 =
48u1,0 − 36u2,0 + 16u3,0 − 3u4,0 + 12Δyh(0)

25
.

(a) (b)

Fig. C1   Accuracy test for Neumann boundary condition
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