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Abstract

For solving two-dimensional incompressible flow in the vorticity form by the fourth-order
compact finite difference scheme and explicit strong stability preserving temporal discre-
tizations, we show that the simple bound-preserving limiter in Li et al. (SIAM J Numer
Anal 56: 3308-3345, 2018) can enforce the strict bounds of the vorticity, if the velocity
field satisfies a discrete divergence free constraint. For reducing oscillations, a modified
TVB limiter adapted from Cockburn and Shu (SIAM J Numer Anal 31: 607-627, 1994) is
constructed without affecting the bound-preserving property. This bound-preserving finite
difference method can be used for any passive convection equation with a divergence free
velocity field.
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principle - Passive convection - Incompressible flow - Total variation bounded limiter
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1 Introduction

In this paper, we are interested in constructing high order compact finite difference schemes
solving the following two-dimensional time-dependent incompressible Euler equation in
vorticity and stream-function formulation

o, + (uw), + (vo), =0, (1a)

v =Aow, (1b)
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(u,v) =(=w, y,) (1¢)

with periodic boundary conditions and suitable initial conditions. In the above formulation,
w is the vorticity, y is the stream function, (u, v) is the velocity, and Re is the Reynolds
number.

For simplicity, we only focus on the incompressible Euler equation (1). With explicit time
discretizations, the extension of the high order accurate bound-preserving compact finite dif-
ference scheme to the Navier-Stokes equation

o, + (uw), + (va))y = RLeAw )

would be straightforward following the approach in [5].
Equation (1c) implies the incompressibility condition

u,+v, =0. 3)
Due to (3), (1a) is equivalent to
o, + uw, +vo, =0 4)
for which the initial value problem satisfies a bound-preserving property

minw(x,y,0) =m < w(x,y,t) < M = max w(x, y, 0).
xy xy

If solving (4) directly, it is usually easier to construct a bound-preserving scheme. For the
sake of conservation, it is desired to solve the conservative form (1a). The divergence free
constraint (3) is one of the main difficulties in solving incompressible flows. In order to
enforce the bound-preserving property for (1a) without losing accuracy, the incompress-
ibility condition must be properly used since the bound-preserving property may not hold
for (1a) without (3), see [8—10].

Even though the bound-preserving property and the global conservation imply the certain
nonlinear stability, in practice a bound-preserving high order accurate compact finite differ-
ence scheme can still produce excessive oscillations for a pure convection problem. Thus an
additional limiter for reducing oscillations is often needed, e.g., the total variation bounded
(TVB) limiter discussed in [2]. One of the main focuses of this paper is to design suitable
TVB type limiters, without losing bound-preserving property. Notice that the TVB limiter for
a compact finite difference scheme is designed in a quite different way from those for the dis-
continuous Galerkin method, thus it is nontrivial to have a bound-preserving TVB limiter for
the compact finite difference schemes.

The paper is organized as follows. Section 2 is a review of the compact finite difference
method and a simple bound-preserving limiter for scalar convection-diffusion equations. In
Sect. 3, we show that the compact finite difference scheme can be rendered bound-preserving
if the velocity field satisfies a discrete divergence free condition. We discuss the bound-pre-
serving property of a TVB limiter in Sect. 4. Numerical tests are shown in Sect. 5. Concluding
remarks are given in Sect. 6.
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2 Review of Compact Finite Difference Method

In this section we review the compact finite difference method and a bound-preserving limiter
in [5].

2.1 A Fourth-Order Accurate Compact Finite Difference Scheme

Consider a smooth function f{x) on the interval [0, 1]. Let x; = ]%(i =1, ---,N) be the uniform
grid points on the interval [0, 1]. A fourth-order accurate compact finite difference approxima-
tion to derivatives on the interval [0, 1] is given as

fz+1 fl

—(fm +Af +f )= + O(AXY,
1 f

&)
i f,-_ +fic
LU+ ) = Axl‘l -+ O(AxY),

where f;, fi’ ,and ﬂ " are point values of a function f(x), its derivative f’(x), and its second-
order derivative f”’(x) at uniform grid points x; (i = 1, ---, N), respectively.

Let f be a column vector with numbers f;,f5, -+, fy as entries. Let W, W,, D,, and D,
denote four linear operators as follows:

4 1 N\ /( f 0 1 -1\ ( /i
1k 4 1 f 1 0 1 5
W1f=8 R i |.Df =5 N PN ()]
14 1|fve -1 0 1 ||fi-
1 1 4)\ fy 1 -1 0 )\ fy
10 1 L\( fi -2 1 L\( A
R b 1 -2 1 5
W,t T N O § : 7
1 10 1 []fvo I =2 1 ||fva
1 1 10)\ fy 1 1 =2)\fy

If f(x) is periodic with period 1, the fourth-order compact finite difference approximation
(5) to the first-order derivative and second-order derivative can be denoted as

1 ’ 1
Wit = A_xDXf’ Wt = A —D.f,
which can be explicitly written as
1 |
f, = A—xWI DXf’ f” = EWZ Dxxf,

where W "and w3 !are the inverse operators. For convenience, by abusing notations we let
Wi !f; denote the ith entry of the vector W, 'f.
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2.2 High Order Time Discretizations

For time discretizations, we use the strong stability preserving (SSP) Runge-Kutta and
multistep methods, which are convex combinations of formal forward Euler steps. Thus
we only need to discuss the bound-preserving for one forward Euler step since the convex
combination can preserve the bounds.

For the numerical tests in this paper, we use a third-order explicit SSP Runge-Kutta method
SSPRK(3, 3), see [3], which is widely known as the Shu-Osher method, with the SSP coeffi-
cient C = 1and the effective SSP coefficient Cos; = % For solving u, = F(u), it is given by

ud =",
u® = uV + dtF V),

U = %um + i(u@) + Fu®y),

S = %u(l) N %(u(” + Fu®)).

2.3 AThree-Point Stencil Bound-Preserving Limiter

In this subsection, we review the three-point stencil bound-preserving limiter in [5]. Given
a sequence of periodic point values u; (i = 1, -, N), uy := uy, ty,, = u;, and a constant
a > 2, assume all local weighted averages are in the range [m, M]:

m< ﬁ(ui_l +au; +u ) <SM, i=1,-,N, az2
We separate the point values {u;,i = 1, ---, N} into two classes of subsets consisting of con-
secutive point values. In the following discussion, a set refers to a set of consecutive point
values uy, u;, 1, Upn, *** , U,_1, U, For any set S = {u,u, -, u, y,u,}, we call the first
point value i, and the last point value u,, as boundary points, and call the other point values
U p, o, U,_y s interior points. A set of class I is defined as a set satisfying the following:

(i) it contains at least four point values;
(i) both boundary points are in [m, M] and all interior points are out of range;
(iii) it contains both undershoot and overshoot points.

Notice that in a set of class I, at least one undershoot point is next to an overshoot point. For

given point values u;, i = 1, -+, N, suppose all the sets of class Lare S| = {u,, ,u,, 11, u, },
Sy = {tyy, sty )0 S = {uty, o oo uy, }, Wheremy <my < -+ <, .

A set of class II consists of point values between S; and ;| and two boundary points u,,
and u,, . Namely, they are Ty = {uj, up, -+, }, Ty = {u, ooy 1 Ty = {u, o1, 3,
-, Tx ={u,,, - ,uy}. For periodic data u;, we can combine Ty and T, to define
Ty = {2+ sttty -+ o1, ).

In the sets of class I, the undershoot and the overshoot are neighbors. In the sets of
class II, the undershoot and the overshoot are separated, i.e., an overshoot is not next
to any undershoot. As a matter of fact, in the numerical tests, the sets of class I are
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hardly encountered. Here we include them in the discussion for the sake of complete-
ness. When there are no sets of class I, all point values form a single set of class II.

Algorithm 1 A bound-preserving limiter for periodic data u; satisfying @; € [m, M]

Require: the input u; satisfies @; = ﬁ(ul,l +au; +uip1) € [m, M|, a=> 2. Let ug,
un+1 denote uy, uy, respectively.
Ensure: the output satisfies v; € [m, M],i=1,--- , N and Zfil v; = Zf\il U;.
1: Step 0: First set v; =u;, i =1,---,N. Let vg, vn4+1 denote vy, vy, respectively.

2: Step I: Find all the sets of class I Sy,---, Sk (all local saw-tooth profiles) and
all the sets of class II T4, - , Tk.

3: Step II: For each T (j =1,--- , K),
4: for all index ¢ in T; do
5. if u; < m then ( )
6 Uit Ut G gy (7 )+
I R R e e vl LU O
8: v < m
9: end if
10:  if u; > M then
M—u;_
11: Vi—1 < Vi—1 + m(u, — /I)+
M—u; y
12: Vi1 ¢ Vit1 + W(Uz - M),
13: v; — M
14:  end if

15: end for

16: Step III: for each saw-tooth profile Sj = {um,, - ,un;} (j =1,---,K), let No
and N; be the numbers of undershoot and overshoot points in Sj, respectively.

17: Set Uj =310 v,

i=m
18: for i =m; +1,---,n; —1 do
19:  if u; > M then
20: v; < M.
21:  end if
22: if u; < m then
23: v; M.
24:  end if
25: end for

26: Set V; = N1M + Nom + Um; + Un, -
27: Set Aj = Uy, + Vn; + NiM — (N1 +2)m, Bj = (No +2)M — vy, — vp; — Nom.
28: if V; —U; > 0 then

29:  fori=m;,---,n; do

30: Vi < Vi — U‘ij(Vj — Uj)
31:  end for

32: else

33:  fori=m;,---

34: v; v + %(

35:  end for !

36: end if

Algorithm 1 can enforce i; € [m, M] without losing conservation [5]:

Theorem 1 Assume periodic data w;(i=1,---,N) satisfies u; = ﬁ(ui_1 +au; +u;)
€ [m, M] for some fixeda > 2 and all i = 1, --- ,N with uy := uy and uy,, := u,, then the
output of Algorithm 1 satisfies Zf;l v; = Zf\; u; and v; € [m, M1, for any i.

For the two-dimensional case, the same limiter can be used in a dimension by dimension
fashion to enforce u; € [m, M].
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3 A Bound-Preserving Scheme for the Two-Dimensional
Incompressible Flow

In this section we first show the fourth-order compact finite difference with forward Euler time
discretization satisfies the weak monotonicity [5], thus it is bound-preserving with a naturally
constructed discrete divergence-free velocity field.

For simplicity, we only consider a periodic boundary condition on a square [0, 1] X [0, 1].
Let (xl-,yj) = (]%, i) @i=1,-,N,j=1,- ,Ny) be the uniform grid points on the domain

[0,1] x [0, 1]. All notation in this paper is consistent with those in [5].

3.1 Weak Monotonicity and Bound-Preserving

Let A, = %{ and A, = 2—;, the fourth-order compact finite difference scheme with the forward
Euler method for (1a) can be given as

a)g.“ =l — 44 (W'D, (u"o0™)]; — /lz[Wl_ley(u"oa)")]ij. (8)

With the same notation as in [5], the weighted average in two dimensions can be denoted
as

= WlXlea). 9)
Then the scheme (8) is equivalent to

@t = @l — 2, [Wy,D,(u"0w")]; — 4, [W, D, (V" 0w™)];

| 1 41 1 -101 A 1 4 1
=—14164 :Q"—ﬁ —404 :(U"oQ”)—é 0 0 0 [|:(V'QM,
141 -101 -1 -4 -1
(10)
where o denotes the matrix Hadamard product, and
Uii1j+1 Uijr1 Ui+ Vic1j+1 Vi1 Viglj+1
U= wiyy wy wyy |WV=1 Vi Vij Viey |
Ui—1j-1 Uij—1 Uiyrj-1 Vic1j-1 Vij-1 Vit1,-1

Wi_1j+1 Dijr1 Diggj41
Q= w_; w; oy
Wi_1j-1 Wjj-1 Bityj-1
It is straightforward to verify the weak monotonicity, i.e., cb;.’.“ is a monotonically increas-
ing function with respect to all point values w:; involved in (10) under the CFL condition
At At
— max |¢}| + — max V]| <
Ax ij y Ay ij y

W | =

However, the monotonicity is sufficient for bound-preserving a')f,}“ € [m,M], only if the
following consistency condition holds:
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no— -n+l __ n — —n+l __
wp; =m= o =m, wl.j=M=>wi]. =M. (11)

Plugging wl’J‘ = min (10), we get
@ =m<1 — 2y (WD) /12(W1nyv")l,j).

ij i

Thus the consistency (11) holds only if the velocity (u”, v"*) satisfies
1 1
BDXWW“" + EDyWIXV" =0. (12)

Therefore we have the following bound-preserving result.

Theorem 2 [f the velocity (0", v") satisfies the discrete divergence free constraint (12) and
a)l’.;. € [m, M), then under the CFL constraint

s

W —

At At
— max || + — max V| <
Ax g 0T Ay

ij

the scheme (10) satisfies cbz.“ € [m, M].

3.2 ADiscrete Divergence Free Velocity Field

In the following discussion, we may discard the superscript n for convenience assum-
ing everything discussed is at time step 7.

Note that (12) is a discrete divergence free constraint and we can construct a fourth-
order accurate velocity field satisfying (12). Given w;;, we first compute y; by a fourth-
order compact finite difference scheme for the Poisson equation (1b). The detail of the
Poisson solvers including the fast Poisson solver is given in the appendices.

With the fourth-order compact finite difference we have

1 1
—A—yDy‘l' =W, A—xDX‘I’ =WV, (13)
where
Yu Viz 0 Vi,
Y1 Yoo 0 Yoy,
P = : : H
UNn-11 UN-12 " VN1,
YN N2 7 VNN, )y

Since the two finite difference operators D, and D, commute, it is straightforward to verify
that the velocity field computed by (13) satisfies (12).
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3.3 AFourth-Order Accurate Bound-Preserving Scheme

For the Euler equations (1), the following implementation of the fourth-order compact
finite difference with forward Euler time discretization scheme can preserve the bounds:

(i) given a):; € [m, M], solve the Poisson equation (1b) by the fourth-order accurate
compact finite difference scheme to obtain point values of the stream function y;;
(i) construct u and v by (13);
(iii) obtain a)’j‘“ € [m, M] by scheme (10);
(iv) apply the limiting procedure in Sect. 2.3 to obtain co € [m,M].

For high order SSP time discretizations, we should use the same implementation above for
each time stage or time step.
For the Navier-Stokes equations (2), with 1, = i'z and p, = %, the scheme can be written as

wZ,H =l — 2[W. W'D, (u"ow™)]; — 4,[W;, 1Dy(v”oa)”)]ij
(14)

W Do U+—W 'D, a.

In a manner similar to (9), we define
=W, Wy (15)

with W, := W, W, , and W, :=W, W, . Due to definition (9) and the fact operators W, and
W, commute, i.e., W, W, = W, W,, we have

@ =W,W,0 = W, W0 = &.

Then scheme (14) is equivalent to

. . A A
ot = @'5 - —l[Wleny(u”oco")]ij - é[WZWIXDy(u"ow")]ij

(16)
Hay
+ Wl W,, Dxxa’,, + = e =W, WZnyyco;'
Following the discussion in Sect. 3.1 and the discussion for the two-dimensional convec-
tion-diffusion in [5], we have the following result.

Theorem 3 [f the velocity (0", v") satisfies the constraint (12) and a); € [m, M], then under
the CFL constraint '
1 At Ar 5

At n At n
— max |u;| + — max [V < =, + s
Ax 4 Ay i V! 6’ ReAx>  ReAy? ~ 24

the scheme (16) satisfies cf);’.“ € [m, M].

Given @;, we can recover point values w; by obtaining first @; = W‘lcf) then
w; = W21 . Given point values w;; satisfying w € [m, M] for any i and J,» we can use
the limiter i m Algorithm 1 in a dlmenswn by dlmensmn fashion several times to enforce
w;; € [m, M]:
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(i) given w € [m, M], compute &; = W w and apply the limiting Algorithm 1 with
a=4in both x-direction and y- dlrectlon to ensure @; € [m, M];

(i) given @; € [m, M], compute w; = W} ld)lj and apply the limiting algorithm Algo-
rithm 1 with a = 10 in both x-direction and y-direction to ensure w;; € [m, M].

4 ATVB Limiter for the Two-Dimensional Incompressible Flow

To have nonlinear stability and eliminate oscillations for shocks, a TVBM (total variation
bounded in the means) limiter was introduced for the compact finite difference scheme solving
scalar convection equations in [2]. In this section, we will modify this limiter for the incom-
pressible flow so that it does not affect the bound-preserving property. Thus we can use both
the TVB limiter and the bound-preserving limiter in Algorithm 1 to preserve bounds while
reducing oscillations. For simplicity, we only consider the numerical scheme for the incom-
pressible Euler equation (1). In this section, we may discard the superscript » if a variable is
defined at time step n.

4.1 TheTVB Limiter

The scheme (10) can be written in a conservative form:

ot =@l - 4 [(ue),, 1 (uw),_, = hlow); 4l (vEO)Z,_%], (17)
involving a numerical flux (MACO):.:_ 1 and (vAa))l. as local functions of uj;, v}, and w},. The
2

numerical flux is defined as

(Uw);, 1 y %([le(uoa))] + [Wy,(wom)],, ;).
(18)
(), el %([Wlx(voa))] + (W), (Vo®)], 4, )-
Similarly we denote
. 1
Uiplj= E((leu),-j + (leu>l+1d)’ 19)

A 1
e =5 ((Wiv) + (W), )-

The limiting is defined in a dimension by dimension manner. For the flux splitting, it is
done as in one dimension. Consider a splitting of u satisfying

ut 20, u <0 (20)
The simplest such splitting is the Lax-Friedrichs splitting

+

1
ut==-(uxa), a= max |u(x,y)|.
k@), a= max u(x.y)

Then we have
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u=ut+u, ww=utw+u o,
and we write the flux (ua)) and i, 1 as

+(uw) v, b .=0T 0 +d

Uuw Uw
(), 1= ) i34 3 i

l+] 1+,}

where (uAa));i%J and ﬁ;—;lJ are obtained by adding superscripts + to u; in (18) and (19),
2

respectively, i.e.,
([le(uioa))]ij + [W1)v(ui°w)]i+1J),
=2 (W), + (w,u*) ),

where u* = (u;—f). With a dummy index j referring y value, we first take the differences
between the high-order numerical flux and the first-order upwind flux

d(uw).

A+ + _
= (uw).,1.—u @, duw
ey = ) =y dGu),

i+ ij i+l ,1 lfbi*—l:i - (uw)i+%,i' (21)
2

Limit them by

+( ) x x
d(uw il i = <d(uw)l+ e i+l,,A @ U- A @;_ 1},‘>,
o ’ (22)
d(uw)H%J =m<d(uw)i+;} U A + @i U 4Aid)i+l,i>’

where Alv; = v, ; — v; is the forward difference operator in the x-direction, and m is the
standard minmod function

s min |a;|, if sign(a;) = -+ = sign(qy) = s,
m(ay, -, a;) = Isisk : (23)
0, otherwise.

As mentioned in [2], the limiting defined in (22) maintains the formal accuracy of the com-
pact schemes in smooth regions of the solution with the assumption

@; = (W, W,,0); = o, + O(Ax*) forw € C2. (24)

Under the assumption (24), by simple Taylor expansion,

A F
dwa), 1 ;= su* | © iAx+ O(AX) 05
u—+%JAfrc?)kj = u;—:r%xjwmij+(’)(Ax2), k=i—1,i+1.

Hence in smooth regions away from critical points of w, for sufficiently small Ax, the min-
mod function (23) will pick the first argument, yielding

d(ua))i( ' = duw)*

l+J
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Since the accuracy may degenerate to first-order at critical points, as a remedy, the modi-
fied minmod function [1, 7] is introduced as follows:

_ _ ) an if |ay| < PAX,
miay, -+, a;) = { m(a,, -+ ,a;), otherwise, (26)

where P is a positive constant independent of Ax and m is the standard minmod function
(23). See more detailed discussion in [2].
Then we obtain the limited numerical fluxes as

+m) 4 A —(m)
(ua))Hr 1= ui+;}/ +d(uw)[+ I (uw)[%J = ui+2 By d(”w):+ I (27
and
+(m)
(btw)l+ 1 (uw),+ ,+(u ),+ J (28)

The flux in the y-direction can be defined analogously.
The following result was proven in [2].

Lemma 1 For any n and At such that 0 < nAt < T, scheme (17) with flux (28) satisfies a
maximum principle in the means:

n+l < max "

i

max
i

under the CFL condition

>

t 1
Sz,

+ _ A + -
[max (u*) + max (—u )]Ax+[max(v ) + max (—v7)] S

>

1 1 1 mn . u'<u< Ut n. . vt <
where the maximum is taken in ming; iy, < u < Max, ; ug, ming; vi < v < max;; vu.

4.2 The Bound-Preserving Property of the Nonlinear Scheme with Modified Flux

The compact finite difference scheme with the TVB limiter in the last section is

o+l _ ~  (m) ~  (m) ~  (m) ~  (m)
o =al - 4, <(ua))i+%:l. - (ua))i_%J> S (CONNECONATE R
where the numerical flux (uco) 1 7 (ua)) 1 is the modified flux approximating (18).

Theorem 4 Ifa)g € [m, M], under the CFL condition

1
A mi?x |u§].i)| < oYL Ay mi?x |v§ji)| < (30)

the nonlinear scheme (29) satisfies

@;;“ € [m, M].

@ Springer



Communications on Applied Mathematics and Computation

Proof We have
_ _ A (m) ~ (m) ~  (m) (m)
wgf"l = a)z. -4 <(uw):lj - (uw)iinlj> ) <(Vw); - a)) " >

= %((_" - 811(WD)+(1).> <‘" SAl(ua)) ) (‘" + SM(uw) > + <'" + 8/1](uw) >
+ ( -~ 84 (vco)“m)) < — 8,(00), ("’)> +< +8/12(va))+( ”) +< -+ 81,(00), " - ))

(€19}
Under the CFL condition (30), we will prove that the eight terms satisfy the following
bounds:
+(m)

_—8,1(@)) 1, € m—s/llalmM 84,0, M|,
| i +=’ ]

. ~ = ]
a)ij—S/ll(uco)H%JE m— 8/11u %mM 8/11u IJM’

+(m)

@]+ 8, (uw),_ | 1, € m+ 84,0t m,M+8rat | M|,
i =2/ 3]

@+ 84 o) € |m+ 80, mM+840", M|,
=3 =5y =2y
3 - ’ v (32)

+(m)

@} = 8, (), L€ m—8a,0* mM 8,9 +M
ij+

1
2

- [ o ]
. — 8/12(\)0)) e _m - 8/12viJ+%m,M - Ssziﬁ%M

! +8,12(va))+(’”) € |m+84,0" mM+81,5" M
_ -3 -3

2

2

B} A= [ . N
a);+8/12(va))ij_% € |m+ 84,07 %m,M+812vi' M.

For (32), by taking the sum of the lower bounds and upper bounds and multiplying them by
é, we obtain

‘"“ € [m- mOU,M—MOij] (33)

with
0; =/11(ﬁi+%,i “z——z) )”2(”1#* - 121.:/._%)
A A
=2 (W, — Wpw,_ ) + > (Wi, ¥)ijer = W, ¥)iiop) (34)

At
=7(Dleyu +D,W,v)=0

Therefore, we conclude c?);’.“ € [m, M)].
We only discuss the first two terms in (32) since the proof for the rest is similar. By the
definition of the modified minmod function (26) and (27), we have
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+om . . .
(uw) € [mln {(uw),+ 7 ui+;,,'wi/}’ max {(uw)H j ui+%‘jw,<j }],

(35)
A —(m) . A= - A= - -
(uw)i%:/. € |min (uw)i+%J, “i+%‘,~wi+1,i , max (ua))H%J, ui+%,,‘w"+1=i .
We notice that under the CFL condition (30),
—n ~ Nt =n + =n —n SN
@y = 8’11(”0’):4%,;" @y = 8/11ui+%Jwii’ @y = 8/11(ua))i+%d. (36)

are all monotonically increasing functions with respect to variables w s k=i-1,i,i+ 1
Due to the flux splitting (20),

=n _ - ~n
@ = 8hu ) Bii, (37)
is also a monotonically increasing function with respect to variables a)zj,
k=i-1,1i, i+ 1,i+ 2. Therefore, with the assumption a);‘ € [m, M], we obtain
@ — 84, (uw), 1, @ —8Aut, @' € |m—8A0*, mM—8iit, M
R e e T et TN
=n _ SN —n _ - —n _ A _ A
@y 8’11(”@)&%,/" @y 8’11”,-+%Jwi+1,/‘ € |m 8/11ui+%Jm,M 8/11ui+;JM]
(38)

with (35), which implies the first two terms of (32).

Remark 1 We remark here the above proof is independent of the second and third argu-
ments of the minmod function (26). Therefore, the proof holds for other limiters with dif-
ferent second and third arguments in the same minmod function (26).

Remark 2 The TVB limiter in this paper is designed to modify the convection flux only
thus it also applies to the Navier-Stokes equation. Moreover, under the suitable CFL condi-
tion, the full scheme with TVB limiter can still preserve 5)3“ € [m, M] with wZ € [m,M].

4.3 An Alternative TVB Limiter

Another TVB limiter can be defined by replacing (22) with

dw)1 —m<d(ua))l+ AT @) AT, 1J)>
” (39)

d(ue) 1 = <d(uw)l+ F AT, B, AT a),m)>

All the other procedures in the limiter are exactly the same as in Sect. 4.1. The limiter does
not affect the bound-preserving property due to the arguments in Remark 1.
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5 Numerical Tests

In this subsection, we test the fourth-order compact finite difference scheme with both
the bound-preserving and the TVB limiter for the two-dimensional incompressible flow.

In the numerical test, we refer to the bound-preserving limiter as BP, the TVB limiter
in Sect. 4.1 as TVBI, and the TVB limiter in Sect. 4.3 as TVB2. The parameter in the
minmod function used in TVB limiters is denoted as P. In all the following numerical
tests, we use SSPRK(3, 3) as mentioned in Sect. 2.2.

5.1 Accuracy Test

For the Euler equation (1) with the periodic boundary condition and initial data
w(x,y,0) = —2sin(2x) sin(y) on the domain [0,2x] X [0,2x], the exact solution is
w(x,y, ) = —2sin(2x) sin(y). We test the accuracy of the proposed scheme on this solu-
tion. The errors for P = 300 are given in Table 1, and we observe the designed order of
accuracy for this special steady state solution.

5.2 Double Shear Layer Problem

We test the scheme for the double shear layer problem on the domain [0, 2x] X [0, 2x]
with a periodic boundary condition. The initial condition is

0 6cos(x)—£sech2((y—g)/p),ysn,
@x.y.0)= 8 cos(x) + /lJ sechz((32—” -y)/p).y>n

with 6 = 0.05 and p = n/15. The vorticity w at time T = 6 and T = 8 are shown in Figs. 1,
2, and 3. With both the bound-preserving limiter and TVB limiter, the numerical solutions
are ensured to be in the range [—6 — i, o+ %]. The TVB limiter can also reduce

oscillations.

5.3 Vortex Patch Problem

We test the limiters for the vortex patch problem in the domain [0, 2x] X [0, 2x] with a
periodic boundary condition. The initial condition is

Table 1 Incompressible Euler

. NxN L? error Order L™ error Order
equations. Fourth-order compact
FD for vorticity, t = 0.5. With BP _ _
and TVBI limiters, P = 300 32x32 3.16E73 - 1LO0E=3 -
64 x 64 1.86E—4 4.09 5.90E-5 4.09
128 x 128 1.14E-5 4.02 3.63E-6 4.02
256 x 256 713E-7 4.01 2.67E—7 4.00
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() T =6, with TVB1, P=300 (f) T =6, with BP and TVB1, P=300

Fig. 1 Double shear layer problem. Fourth-order compact finite difference with the SSP Runge-Kutta
method on a 160 x 160 mesh solving the incompressible Euler equation (1) at 7 = 6. The time step is
At

T 24max, |u,|
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4 4
2 2
> 0 0
2 )
4 4
2
>
>

2 4 6
(e) T =38, with TVB1, P=300 (f) T =8, with BP and TVBI, P=300
Fig.2 Double shear layer problem. Fourth-order compact finite difference with the SSP Runge-Kutta

method on a 160 X 160 mesh solving the incompressible Euler equation (1) at 7 = 8. The time step is
At =

24 max, |uy|
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(e) T =6, with BP and TVB2, P=300 (f) T =8, with BP and TVB2, P=300

Fig.3 Double shear layer problem. Fourth-order compact finite difference with the SSP Runge-Kutta
method on a 160 X 160 mesh solving the incompressible Euler equation (1) at 7 = 6 and 7 = 8. The time

step 1s At = mAx
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-1, () € 15 FIx (5, F);

ox%y,0=31, @y els FIxE T
0, otherwise.

Numerical solutions for incompressible Euler equation are shown in Figs. 4, 5, 6, and 7.
We can observe that the solutions generated by the compact finite difference scheme with
only the bound-preserving limiter are still highly oscillatory for the Euler equation without
the TVB limiter.

Notice that the oscillations in Fig. 4 suggest that the artificial viscosity induced by
the bound-preserving limiter is quite low.

0.5

osf . 05

& 0,0 [PNes)
Soxqumms® o
o @©

Vorticity
°

Diagonal Diagonal
(¢) T =5, with no limiter (d) T =5, with BP
Fig.4 A fourth-order accurate compact finite difference scheme for the incompressible Euler equation at

T =5 o0n a160 x 160 mesh. The time step is At = mAx. The second row is the cut along the diago-
0
nal of the two-dimensional array

@ Springer



Communications on Applied Mathematics and Computation

6 == 1.0 6 ==
5 05 5 0.5
4 4
> = > =
3 -= 0 3 — 0
2 2
0.5 -0.5
1 1
— -1.0 ==
2 4 6 2 4 6
X X
(a) T = 5, with TVBI1, P=10 (b) T =5, with BP and TVB1, P=10

osf 5 osf

z z
3 ;y«nmimmm&qu £ *WWWW“’“
40 1.0 ‘ﬁvm(
o 1 2 3 ADIagonal 5 6 7 8 o 1 2 3 ADlagonal 5 6 7 8
(¢) T =5, with TVBL, P = 10 (d) T =5, with BP and TVBL, P = 10
Fig.5 A fourth-order accurate compact finite difference scheme for the incompressible Euler equation at
T =5o0n a160 X 160 mesh. The time step is At = mAx. The second row is the cut along the diago-
X Uy

nal of the two-dimensional array

6 Concluding Remarks

We have proven that a simple limiter can preserve bounds for the fourth-order com-
pact finite difference method solving the two-dimensional incompressible Euler equa-
tion, with a discrete divergence-free velocity field. We also prove that the TVB limiter
modified from [2] does not affect the bound-preserving property of @. With both the
TVB limiter and the bound-preserving limiter, the numerical solutions of the high-
order compact finite difference scheme can be rendered non-oscillatory and strictly
bound-preserving.

For the sixth-order and eighth-order compact finite difference methods for the con-
vection problem with weak monotonicity in [5], the divergence-free velocity can be
constructed accordingly, which gives a higher-order bound-preserving scheme for the
incompressible flow by applying Algorithm 1 several times. The TVB limiting proce-
dure in Sect. 4.1 can also be defined with a similar result as Theorem 4.
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1.0
05 0.5
0o > 0
05 05
1.0

(b) T =10, with BP

10F g,

Vorticity

0 1 2 3 5 6 7 8 0 1 2 3 5 6 7 8

4 4
Diagonal Diagonal

(¢) T =10, with no limiter (d) T =10, with BP

Fig.6 A fourth-order accurate compact finite difference scheme for the incompressible Euler equation at
T =5o0n a160 X 160 mesh. The time step is At = Ax. The second row is the cut along the diago-

nal of the two-dimensional array

24 max |uy|

Appendix A: Comparison With the Nine-Point Discrete Laplacian

Consider solving the two-dimensional Poisson equations u,, + u,, = f* with either homoge-
neous Dirichlet boundary conditions or periodic boundary conditions on a rectangular
domain. Let u be an N, X N matrix with entries u,; denoting the numerical solutions at a

uniform grid (x;,y,) = NL 16;). Let f be an N, X N, matrix with entries f;; = f(x;,y,). The
x y
fourth-order compact finite difference method in Sect. 2 for u,, + u,, = f can be written as
| — - _
EWZx Dxxu + A_yzWZy Dyyll —f(ll). (AD)

For convenience, we introduce two matrices

Uii1j+1 Uijr1 Uir1j+1 fi—lJ‘+1 fiJ+1 fi+1,j+1
U=\ uinyy uwy wyyy |, F= f;’—l,/' f;',/ f;’+l,j
Ui_1j—1 Ujj—1 Uigrj—1 fi—l,j—l f;;j—1 fi+1,j—1

Notice that the scheme (A1) is equivalent to
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Y ” 10 ¢F® =
4 4t 3

Vorticity

Vorticity

6 7 8

6 7 8 4 5
Diagonal

(d) T =10, with BP and TVB1, P = 10

4 5
Diagonal

(¢) T =10, with TVB1, P = 10

Fig.7 A fourth-order accurate compact finite difference scheme for the incompressible Euler equation at
T =10 on a 160 x 160 mesh. The time step is At = mAx. The second row is the cut along the diago-
X [Ug

nal of the two-dimensional array

1 1
E Wznyxll + A—y2W2nyyu = WZXWny(u),

which can be written as

L(r -2 110 1 L1 1000
110 =20 10| : U+ ——|-2 —20 —2[: v=—]10 100 10] : F.
RA ) Z2 g RAY* 11 10 1 1 10 1

(A2)

denotes the sum of all entrywise products in two matrices of the same size.

where :
In particular, if Ax = Ay = h, the scheme above reduces to
| 1 4 1 | 1 10 1
@4—204:U=m 10 100 10| : F.
1 4 1 1 10 1
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Recall that the classical nine-point discrete Laplacian [4] for the Poisson equation can be
written as

L1 -2 Co(L o0 (oo

L 1o -210]|:0+ 2 -20 —2|:Uu="2|181|:F (a3
2 2

e | 281 1 10 1 21010

which reduces to the following under the assumption Ax = Ay = h:

(o4 (oo
ozl —204) U= |18 1|0F
6h* 11 4 1 010

Both schemes (A2) and (A3) are fourth-order accurate and they have the same stencil
in the left-hand side. As to which scheme produces smaller errors, it seems to be prob-
lem dependent, see Fig. Al. Figure Al shows the errors of two schemes (A2) and (A3)
using uniform grids with Ax = %Ay for solving the Poisson equation u,, +u,, =f on a
rectangle [0, 1] X [0,2] with Dirichlet boundary conditions. For solution 1, we have
u(x,y) = sin(mx) sin(ry) + 2x, for solution 2, we have u(x, y) = sin(mx) sin(my) + 4x*y*.

Appendix B: M-matrices and a Discrete Maximum Principle

Consider solving the heat equation u, = u,, + u,, with a periodic boundary condition. It
is well known that a discrete maximum principle is satisfied under certain time step con-
straints if the spatial discretization is the nine-point discrete Laplacian or the compact
scheme (A1) with backward Euler and Crank-Nicolson time discretizations. For sim-
plicity, we only consider the compact scheme (A1) and the discussion for the nine-point
discrete Laplacian is similar. Assume Ax = Ay = h. For backward Euler, the scheme can
be written as

-4 -4
1 - -
0 +9-point scheme 10 ! +9-point scheme
© Compact FD o Compact FD
= © Fourth-order slope £ © Fourth-order slope
s 10° s 107
< N S X
s s
o (o]
E 10® E 10 ¢
£ £
— t 5 — o \
o e
= 7 = 7
w 10 ,© w 10 °
+
10 ° 1 2 10 ® 1 2
10° 10 10 10° 10 10

Number of grid points in x-direction

(a) Solution 1

Fig. A1 Error comparison
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L1100 ot 4
— |10 100 10 :(U"+1—U")=—2 4 —20 4| U,
110 1 oh* 11 4 1
thus
L1 100 ot 4 L1 00
T 10 100 10 :U"“——2 4 —204 :U”“:m 10 100 10| : U™
1 10 1 o114 1 1 10 1

Let A and B denote the matrices corresponding to the operators in the left-hand side and
right-hand side above, respectively. Then, the scheme can be written as

41 _
Au™ = Bu",

and A is an M-matrix (diagonally dominant, positive diagonal entries, and non-positive off
diagonal entries) under the following constraint which allows very large time steps:

Ao S

h? = 48
The inverses of M-matrices have non-negative entries, e.g., see [6]. Thus A~! has non-neg-

. . .. . T
ative entries. Moreover, it is straightforward to check that Ae = e where e = (1 1 - 1) .

Thus A~le = e, which implies the sum of each row of A~1is 1 thus each row of A~! mul-
tiplying any vector V is a convex combination of entries of V. It is also obvious that each
entry of B is non-negative and the sum of each row of B is 1. Therefore, u**! = A~!Bu”
satisfies a discrete maximum principle:

min«’, < "t < max u”..
ij tJ L ij LJ
For the second-order accurate Crank-Nicolson time discretization, the scheme can be writ-
ten as

110 1 1 4 1 n+1 n
ﬁ 10 100 10 :(U”“—Un)zﬂ2 4 —204 %
110 1 6h* 1y 4 1
thus
1 10 1 1 4 1)]
ﬁ 10 100 10— 2L 14 20 4[| : U™
110 1) 210 4
110 1 1 4 1
1 At
=| 13|10 100 10]+ =514 20 4]} : 0.
110 1) 210 4

Let the matrix-vector form of the scheme above be Au"*! = Bu”". Then, for A to be an
M-matrix, we only need % > %. However, for B to have non-negative entries, we need
% < % Thus the Crank-Nicolson method can ensure a discrete maximum principle if the
time step satisfies
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Appendix C: Fast Poisson Solvers
Dirichlet Boundary Conditions

Consider solving the Poisson equation u,, +u, =f(x,y) on a rectangular domain

[0,L,] %[O, L_V] with homogeneous Dirichlet boundary conditions. Assume we use the grid
LX

x; =iAx,i=0,--,N, + 1 with uniform spacing Ax = Nl

for the x-variable and y; = jAy,
J=0,-- N, + 1 with uniform spacing Ay = NL_+1 for the y-variable. Let u be an N, X N,

matrix such that its (i, j) entry u; ; is the numerical solution at interior grid points (x;, ;). Let F
bea(N, +2) X (Ny + 2) matrix with entries f(xi,yj) fori=0,--,N,+1land j=0, - M +1

To obtain the matrix representation of the operator in (A2) and (A3), we consider two
operators.

e Kronecker product of two matrices: if A is m X n and B is p X ¢, then A ® B is mp X nq
give by

ayB - a,B

A®B= :

a B - a, B

ml mn

e For an m X n matrix X, vec (X) denotes a column vector of size mn made of the columns of
X stacked atop one another from left to right.

The following properties will be used:
(i) A®B)C®D)=ACQBD;
(i) A®B)'=A4"®B"
(iii) (BT ® A) vec (X) = vec (AXB).

We define two tridiagonal square matrices of size N, X N.:

-2 1 10 1
1 -2 1 110 1
1 =21 1 1 10 1
D Wo=—
Xx . . . 2x 12 S
I -2 1 1 10 1
I =2 1 10

Let sz denote an N, X (N, + 2) tridiagonal matrix of the following form:
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110 1
— 1 1 10 1
W, =—
712 (€
1 101
The matrices D, Wy, and V_sz are similarly defined.
Then the scheme (A2) can be written in a matrix-vector form:
L pouw! + L w,up® =W, FW,
E ol 2y + A_yz 2, U yy = 7 2x 2y°
or equivalently,
1 1
(Wzv ® ED A —D,® W2x> vec (u) = (sz ® Wz}) vec (F). (C2)
Leth, = [h}, hy, -+, hy 1T with h; = ——, and sin(m=h,) denote a column vector of size N,

with its ith entry being sin(mnh;). Then sm(mnh ) are the elgenvectors of D, and sz with

for

the associated eigenvalues being 2COS( s ) =2 and 2 +
m=1,--,N,. Let

= [sin(nh,), sin(2xh,), -+, sin(N,nh,)]

be the N X N eigenvector matrix Then, S is a symmetric matrix. Let A, denote a diago-
2 and A,, denote a diagonal matrix with

diagonal entrles 41 5 cos ( ). Then, we have D, =SA, S andW,, = S A, S, thus

W,, ® D, = (Sy/\zy ST ® (S,A S, = (S, ® SNy, ® A ® ST
The scheme can be written as
1 _ _ J— J—
S, ®S )< S ® Ay, + AP —AL® A2x> (' @S vee () = (W, ® W,,) vee (F).
Let A be an N, X N, matrix with A; ; being equal to

1 in mn 1 mn Jn
— S -1 s| —— | +5 )+ — S +5 S —-1].
3Ax7 <C0§<Nx+1) )(C0q<Ny+l> ) 3Ay? (Cog<N.v+1) )(Cm(Ny‘*’l) )

Then, vec(A) are precisely the diagonal entries of the diagonal matrix
LAZ, QA+ LA1 , ® A,,, and then the scheme above is equivalent to
Ax2™ 4 x Ay LY

S(Ao(S; uS;)S, = Wy EW, .
where the symmetry of S matrices is used. The solution is given by
SALS, 1(szFW ST /AL, (C3)
where ./ denotes the entrywise division for two matrices of the same size.

Since the multiplication of the matrices S and S~! can be implemented by the Dis-
crete Sine Transform, (C3) gives a fast Poisson solver.
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For nonhomogeneous Dirichlet boundary conditions, the fourth-order accurate compact
finite difference scheme can also be written in the form of (C2):

1 1
<W2y ® A_xzD” + Ay zD» ® W2x> vec (u) = vec (F), (C4)

where F consists of both F and the Dirichlet boundary conditions. Thus the scheme can
still be efficiently implemented by the Discrete Sine Transform.

Periodic Boundary Conditions

For periodic boundary conditions on a rectangular domain, we should consider the uniform
grid x; = iAx,i =1, ,N, with Ax = = and y; =JjAy, j=1,-+,N, with uniform spacing

Ay = =, then the fourth-order accurate compact finite difference scheme can still be writ-

ten in the form of (C2) with the D,
lant matrices:

Dy, W,,, and W,, matrices being redefined as circu-

-2 1 1 10 1 1
1 -2 1 1 10 1
1 -2 1 1 1 10 1
Dxx = . ’ W2x = ﬁ
1 -2 1 1 10 1
1 1 =2 1 1 10

The discrete Fourier matrix is the eigenvector matrix for any circulant matrices and the
corresponding eigenvalues are for D,, and Wzt are 2c0s(ﬂ) —2and - cos(mz") +3 3 for

m=0,1,2,--,N, — 1. The matrix W, & - D +5: ® W,, is smgular because its

first eigenvalue A ; is zero. Nonetheless, the scheme can stlll be implemented by solving
(C3) with fast Fourier transform. For the zero eigenvalue, we can simply reset the division
by eigenvalue zero to zero. Since the eigenvector for eigenvalue zero is e = (1 I - 1) ,
and the columns of the discrete Fourier matrix are orthogonal to one another, resetting the
division by eigenvalue zero to zero simply means that we obtain a numerical solution satis-
fying 37, > Wi = 0. And this is also the least square solution to the singular linear system.

Neumann Boundary Conditions

For Dirichlet and periodic boundary conditions, we can invert the matrix coefficient
matrix in (C2) using eigenvectors of much smaller matrices W,, and D,, due to the fact
that W,, — %Dm is the identity matrix /d. Here we discuss how to achieve a fourth-
order accurate boundary approximation for Neumann boundary conditions by keeping
W, — éDXX = Id. We first consider a one-dimensional problem with homogeneous Neu-

mann boundary conditions:

u"(x) = f(x),x € [0, L],
W(0)=u'L)=0

. The two

Assume we use the uniform grid x; =iAx, i =0,---,N,+ 1 with Ax = NLjrl

boundary point values u, and uy ,; can be expressed in terms of interior point values
.
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through boundary conditions. For approximating the boundary conditions, we can apply
the fourth-order one-sided difference at x = O:

—25u(0) + 48u(Ax) — 36u(2Ax) + 16u(3Ax) — 3u(4Ax)

, ~
WO~ 12Ax

which implies the finite difference approximation:

48u; — 36u, + 16u; — 3u,
25 '

Uy =
Define two column vectors:

u= [u17 Uy, ==+, MNX]T’ f= [f(-xO)’f(xl)’ ’f(xNX)7f(xNx+l)]T’

then a fourth-order accurate compact finite difference scheme can be written as

1
FD)LX]XU = szf,

where Wlx is the same as in (C1), and BH is a matrix of size N, X (N, +2)and [, is a
matrix of size (N, +2) X N

8 _36 16 _ 3
25 25 25 25
1 -2 1 1
boo| ' 20 |- 1
1 =21 1
_3 18 _36 s
25 25 25 25

Now consider solving the Poisson equation u,, + u,, = f(x,y) on a rectangular domain
[O, Lx] X [0, Ly] with homogeneous Neumann boundary conditions. Assume we use the grid
= iAx, i—O N+ 1 with Ax= === and y; = jAy, j=0,-,N, + 1 with uniform

spacing Ay = ——. Let u be an N, X N, matrix such that u;; is the numerical solution at
(x,,yj) and F be a (N, +2)x (N, +2) matrix with entries f(x,,yj) (i= SN, +1,
Jj=0,--,N,+1). Then a fourth- order accurate compact finite difference scheme can be
written as

1DIITW + 1WIITBT—WFV_VT
A2 A:xxu Ay Zxxuy yy_ 2x 2y*

LetD,, = Bxxlx and W,, = W, I.. Then, the scheme can be written as (C2).
Notice that W,, — EDXX =(W,, — —D W1, is still the identity matrix, thus W,, and

D, still have the same eigenvectors. Let S be the eigenvector matrix and A, and A, be
diagonal matrices with eigenvalues. Then, the scheme can still be implemented as (C3).
The eigenvectors S and the eigenvalues can be obtained by computing eigenvalue prob-
lems for two small matrices D,, of size N, X N, and D, of size N, X N,. If such a Pois-
son problem needs to be solved in each time step in a time-dependent problem such as
the incompressible flow equations, then this is an efficient Poisson solver because S and
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A can be computed before time evolution without considering eigenvalue problems for
any matrix of size N,N, X N,N,.

For nonhomogeneous Neumann boundary conditions, the point values of u along the
boundary should be expressed in terms of interior ones as follows.

®

(i)

First, obtain the point values except the two cell ends (i.e., corner points of the rec-
tangular domain) for each of the four boundary line segments. For instance, if the
left boundary condition is S—Z(O, y) = g(»), then we obtain

48uy ; — 36u, ; + 16us; — 3uy ; + 12Ax8(y;)
i = 25 ’
Second, obtain the approximation at four corners using the point values along the

boundary. For instance, if the bottom boundary condition is ';—';(x, 0) = h(x), then

481, o — 36uy o + 16150 — 3uy o + 12A9h(0)
o0 = 25 '

The scheme can still be written as (C4) with F consisting of F and the nonhomogeneous
boundary conditions. Notice that the matrix in (C4) is singular, thus we need to reset the
division by eigenvalue zero to zero, which however no longer means that the obtained
solution satisfies Y., Zj u;; = 0 since the eigenvectors are not necessarily orthogonal to
one another. See Fig. C1 for the accuracy test of the fourth-order compact finite differ-
ence scheme using uniform grids with Ax = 2Ay for solving the Poisson equation
Uy, + Uy, = f on a rectangle [0, 1] X [0,2] with nonhomogeneous Neumann boundary
conditions. The exact solution is u(x, y) = cos(mx) cos(3my) + sin(ry) + x*. Since the solu-
tions to Neumann boundary conditions are unique up to any constant, when computing
errors, we need to add a constant 1% 1% Zi’i[u(xi,yj) — u;;] to each entry of u.

-4
10 T
© Compact FD 25
o —Fourth-order slope 1.8 )
0
1075 ¢ : 1.6
£ 14 15
o
< 108} 3 1.2 10
)
€ > 1.0 0.5
£ 107 3 08 0
2 0.6 o5
5 .
107 ] 0.4 10
0.2 A\
107 ‘ — | I
10° 10" 102 0.20.4 0.6 0.8
Number of grid points in x-direction X

(a) Convergence rate. (b) Contour of the solution.

Fig. C1 Accuracy test for Neumann boundary condition
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