

Title: Demonstration of thick phase-pure β -Ga₂O₃ on a c-plane sapphire substrate using MOCVD

Abstract: We demonstrated a metal-organic chemical vapor deposition (MOCVD) of smooth, thick, and monoclinic phase-pure gallium oxide (Ga₂O₃) on c-plane sapphire using silicon-oxygen bonding (SiO_x) as a phase stabilizer. The corundum (α), monoclinic (β), and orthorhombic (ε) phases of Ga₂O₃ with a bandgap in the 4.4 – 5.1 eV range, are promising materials for power semiconductor devices and deep ultraviolet (UV) solar-blind photodetectors. The MOCVD systems are extensively used for homoepitaxial growth of β -Ga₂O₃ on (001), (100), (010), and (201) β -Ga₂O₃ substrates. These substrates are rare/expensive and have very low thermal conductivity; thus, are not suitable for high-power semiconductor devices. The c-plane sapphire is typically used as a substrate for high-power devices. The β -Ga₂O₃ grows in the (201) direction on sapphire. In this direction, the presence of high-density oxygen dangling bonds, frequent stacking faults, twinning, and other phases and planes impede the heteroepitaxy of thick β -Ga₂O₃. Previously phase stabilizations with SiO_x have been reported for tetragonal and monoclinic hafnia. We were able to grow ~580nm thick β -Ga₂O₃ on sapphire by MOCVD at 750 °C through phase stabilization using silane. The samples grown with silane have a reduction in the surface roughness and resistivity from 10.7 nm to 4.4 nm and from 371.75 $\Omega\cdot\text{cm}$ to 135.64 $\Omega\cdot\text{cm}$, respectively. These samples show a pure-monoclinic phase determined by x-ray diffraction (XRD); have tensile strain determined by Raman strain mapping. These results show that a thick, phase-pure β -Ga₂O₃ can be grown on c-plane sapphire which can be suitable for creating power devices with better thermal management.

Authors list:

1. First name: Mohi Uddin, Last name: Jewel, Email: mjewel@email.sc.edu
2. First name: Samiul, Last name: Hasan, Email: shasan@email.sc.edu
3. First name: Scott, Middle name: R. , Last name: Crittenden , Email: crittens@mailbox.sc.edu
4. Please add name, email and affiliation from VCU
5. Please add name, email and affiliation from VCU
6. First name: Iftikhar, Last name: Ahmad, Email: ahmad@cec.sc.edu

Author 1, 2, 6 affiliation:

Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, USA

Author 3 affiliation:

Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208, USA