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INEQUIVALENT REPRESENTATIONS OF THE DUAL SPACE

TEPPER L. GILL, DOUGLAS MUPASIRI, AND ERDAL GÜL

Abstract. We show that there exist inequivalent representations of the dual
space of C[0, 1] and of Lp[Rn] for p ∈ [1, ∞). We also show how these inequiv-

alent representations reveal new and important results for both the operator
and the geometric structure of these spaces. For example, if A is a proper

closed subspace of C[0, 1], there always exists a closed subspace A⊥ (with the
same definition as for L2[0, 1]) such that A ∩ A⊥ = {0} and A ⊕ A⊥ = C[0, 1].
Thus, the geometry of C[0, 1] can be viewed from a completely new perspec-
tive. At the operator level, we prove that every bounded linear operator A

on C[0, 1] has a uniquely defined adjoint A∗ defined on C[0, 1], and both can
be extended to bounded linear operators on L2[0, 1]. This leads to a polar
decomposition and a spectral theorem for operators on the space. The same

results also apply to Lp[Rn]. Another unexpected result is a proof of the Baire
one approximation property (every closed densely defined linear operator on

C[0, 1] is the limit of a sequence of bounded linear operators). A fundamental
implication of this paper is that the use of inequivalent representations of the
dual space is a powerful new tool for functional analysis.

Introduction

The dual concept for a function space began with concrete examples in the
early 1900s. Riesz and others introduced the idea of linear functionals without a
structure for them. Riesz proved his representation theorem for L2[0, 1] in 1910 and
by 1918 had already proven special cases of the Hahn–Banach theorem for Lp[0, 1],
`p and BV [0, 1] (see [15, 16, 17, 18]). Following Riesz, Helly defined a (general)
normed sequence space and its dual (see [8, 9, 10, 11]). Hahn was the first to
define a general (real) normed space in 1922, and in 1923 Banach and Wiener gave
their (independent) definitions (see [7, 1, 20]). It is unfortunate that all these ideas
were developed before any consideration of the finite-dimensional case. Unlike the
times of Riesz, we now know that every finite-dimensional (real) Banach space V
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of dimension n is isomorphic to the Hilbert space Rn and all norms are equivalent.
Thus, it is doubtful that operator theory or the geometry of Banach spaces would
have developed as they did if the finite-dimensional case had been studied first.

Perspective. If the dimension of a Banach space B is infinite, all spaces are
no longer isomorphic, so the natural question is: “what properties are preserved
between the finite and infinite dimensional cases?” At that time, this question
was not considered, and methods of study for Hilbert and non-Hilbert Banach
spaces began to diverge from the beginning. For example, on a Hilbert space H,
the definition of orthogonality is unique, but on a Banach space B there are at
least four different definitions (see [3]). Following Dunford and Schwartz [3], two
closed subspaces U and V are said to be complementary if U ∩ V = {0} and
U ⊕ V = B. In H the concepts of orthogonality and complementarity of closed
subspaces are very close, but in B they are not. For example, in H, if U is a
closed subspace, U⊥ = {x ∈ H : (x, y) = 0 ∀y ∈ U} and U ⊕ U⊥ = H. For B,
U⊥ = {x∗ ∈ B∗ : x∗(y) = 0 ∀y ∈ U} and U⊥ is not a subspace of B. Thus, we al-
ready see that the complemented subspace problem is fundamentally different for
H and B. We see the same kind of difference in the definition of the adjoint for a
linear operator.

In this paper, we want to reinvestigate this question relative to the spaces B =
C[0, 1] and B = Lp[Rn], for 1 ≤ p < ∞.

0.1. Preliminaries. The following is due to Lax (see [13, Theorem I]).

Theorem 0.1 (Lax’s Theorem). Let B be a separable Banach space that is con-
tinuously and densely embedded in a Hilbert space H, and let T be a bounded lin-
ear operator on B that is symmetric with respect to the inner product of H (i.e.,
(Tu, v)H = (u, Tv)H for all u, v ∈ B). Then T is bounded with respect to the H
norm, and

‖T ∗T‖H = ‖T‖2
H 6 k ‖T‖2

B

for some positive constant k.

1. The case B = C[0, 1]

In this section, we investigate the relationship between C[0, 1] and L2[0, 1], where
C[0, 1] is the Banach space of continuous functions on [0, 1] and L2[0, 1] is the

Hilbert space of functions f such that
∫ 1

0
|f(x)|2 dx < ∞, with the Lebesgue mea-

sure on [0, 1] and inner product (f, g)2 =
∫ 1

0
f(x)ḡ(x) dx. In this case, C[0, 1] ⊂

L2[0, 1] as a continuous dense embedding (i.e., ‖f‖2 6 ‖f‖
C
, f ∈ C[0, 1]). It is well

known that every bounded linear functional on C[0, 1] has a representation of the
form

〈f, α〉
C∗ =

∫ 1

0

f(x) dα(x), where α(x) ∈ C∗[0, 1] = NBV [0, 1],

the functions of normalized bounded variation on [0, 1] (i.e., α(0) = 0). However,
every bounded linear functional on L2[0, 1], when restricted to C[0, 1], is a bounded
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linear functional on C[0, 1]. Thus, for each u ∈ C[0, 1], there is a function u∗ =
αu ∈ NBV [0, 1] and a constant cu > 0, depending on u, such that

〈f, u∗〉C∗ =

∫ 1

0

f(x) dαu(x) = cu

∫ 1

0

f(x)ū(x) dx = cu(f, u)2.

If we define

C∗
2[0, 1] = {u∗ ∈ C∗[0, 1] : u∗ = cu( · , u)2, u ∈ C[0, 1]},

then C∗
2 is a new representational subspace of NBV [0, 1]. Furthermore,

‖u‖2
2 = c−1

u

∫ 1

0

u(x) dαu(x) =

∫ 1

0

|u(x)|2 dx and

‖u‖2
C =

∫ 1

0

u(x) dαu(x) = cu(u, u)2 = 〈u , u∗〉
C∗ = ‖u∗‖2

C∗ ,

so that ( · , cuu)2 = u∗ is a duality mapping for u. From the two equations above,

we see that cu = ‖u‖2
C

/

‖u‖2
2. This leads to the following result:

Theorem 1.1. The space C∗
2 [0, 1] ⊂ L∗

2 [0, 1] is a conjugate isometric isomorphic
copy of C[0, 1].

Definition 1.2. We call C∗
2[0, 1] the Zachary representation of C[0, 1] in NBV [0, 1],

and let u∗
z = ( · , cuu)2 for each u ∈ C[0, 1].

1.1. The adjoint. The adjoint for an operator on a Banach space is not the same
as on a Hilbert space. Our inner product representation offers a new perspective
on the whole question of an adjoint. Let J2 : L2[0, 1] → L∗

2[0, 1] be the standard
conjugate isomorphism, and let JC be the restriction of J2 to C[0, 1] so that JC :
C[0, 1] → L∗

2[0, 1].
Define C∗

h = {uh = ( · , u)2 : u ∈ C[0, 1]} so that JC(u) = uh. Let C[C[0, 1]] be
the set of closed densely defined linear operators on C[0, 1].

Theorem 1.3. If A ∈ C[C[0, 1]], then there is a unique operator A∗ ∈ C[C[0, 1]]
that satisfies the following:

(1) (aA)∗ = āA∗,
(2) A∗∗ = A,
(3) (A∗ + B∗) = A∗ + B∗,
(4) (AB)∗ = B∗A∗ on D(A∗) ∩ D(B∗), and

(5) if A is bounded (A ∈ L[C[0, 1]]), then ‖A∗A‖B ≤ M ‖A‖2
B (for some con-

stant M) and A has a bounded extension to L2[0, 1].

Proof. If A ∈ C[C[0, 1]], then the dual operator A′ : NBV [0, 1] → NBV [0, 1]. As
a mapping on NBV [0, 1], A′ is closed and weak∗ densely defined. However, since
C[0, 1] is dense in L2[0, 1], C∗

h is strongly dense in L∗
2[0, 1]. It follows that A′JC,

mapping C∗
h ⊂ L∗

2[0, 1] → L∗
2[0, 1], is a closed (strongly) densely defined linear

operator. Thus, J−1
C

A′JC : C[0, 1] → C[0, 1] is a closed and densely defined linear

operator. We define A∗ = [J−1
C

A′JC] ∈ C[C[0, 1]]. If A is bounded, A∗ is defined on
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all of C[0, 1]. According to the closed graph theorem, A∗ is bounded. The proofs
of (1)–(3) are straightforward. To prove (4), let u ∈ D(A∗) ∩ D(B∗); then,

(BA)
∗
u = [J−1

C
(BA)

′
JC]u = [J−1

C
A′B′JC]u

=
[

J−1
C

A′JC

] [

J−1
C

B′JC

]

u = A∗B∗u.
(1.1)

If we replace B by A∗ in equation (1.1), noting that A∗∗ = A, we also find that
(A∗A)∗ = A∗A.

The proof of the first part of (5) follows from

‖A∗A‖
C
6 ‖A∗‖

C
‖A‖

C
6 ‖JC‖

C∗

∥

∥J−1
C

∥

∥

C
‖A′‖

C∗ ‖A‖
C

= M ‖A‖2
C

for some constant M . A proof of the second part is a special case of Theorem 0.1.
From (4), S = A∗A is self-adjoint; thus, from Theorem 0.1, S has a bounded
extension to L2[0, 1] and

‖A‖2
2 = ‖A∗A‖2 6 k‖A∗A‖

C
6 kM ‖A‖2

C
.

Therefore, A has a bounded extension Ā to L2[0, 1] so that L[C[0, 1]] is continuously
embedded into L[L2[0, 1]], the bounded linear operators on L2[0, 1]. �

The last result also shows that L[C[0, 1]] is a ∗algebra.

Theorem 1.4 (Polar Representation). If A ∈ C[C[0, 1]], then there exists a partial
isometry U and a self-adjoint operator T, T = T ∗, with D(T ) = D(A) and A =
UT .

Proof. Let Ā be the (closed densely defined) extension of A to L2[0, 1]. On L2[0, 1],
T̄ 2 = Ā∗Ā is self-adjoint, and there exists a unique partial isometry Ū , with Ā =
Ū T̄ . Thus, the restriction to C[0, 1] provides us A = UT , and U is a partial
isometry on C[0, 1]. (It is easy to check that A∗A = T 2.) �

Theorem 1.5 (Spectral Representation). Let A ∈ C[C[0, 1]] be a self-adjoint linear
operator. There exists an operator-valued spectral measure Ex defined for each
x ∈ R, and for each u ∈ D(A),

Au =

∫ ∞

−∞
x dEx(u).

The next result easily follows from examination of the previous proofs.

Theorem 1.6. Let B be any Banach space that is a continuous dense embedding
in L2[0, 1]; then, all the results of this section hold for B.

Since Lp[0, 1] ⊂ L2[0, 1], p > 2, as a continuous dense embedding, we conclude
that Theorems 1.1, 1.3, and 1.4 hold for all Lp[0, 1], p > 2.

If u ∈ Lp[0, 1], 2 < p < ∞, then the standard duality mapping is

u∗ = ‖u‖2−p
p |u(x)|p−2

u(x) ∈ Lq[0, 1], 1
p + 1

q = 1. (1.2)

Furthermore,

〈u, u∗〉 = ‖u‖2−p
p

∫ 1

0

|u(x)|p dλn(x) = ‖u‖2
p = ‖u∗‖2

q .
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Applying our earlier observation to Lp[0, 1], p > 2, we find that, for each u ∈
Lp[0, 1], there is an αu ∈ NBV [0, 1], a constant cpu > 0, and a unique u∗ ∈ Lq[0, 1],
1
p + 1

q = 1, such that (see (1.2))

〈f, u∗〉p = ‖u‖2−p
p

∫ 1

0

f(x)|u(x)|p−2
u(x) dx = c−1

pu

∫ 1

0

f(x) dαu(x)

for all f ∈ C[0, 1]. It follows that there are an infinite number of possible inequiv-
alent representations for the linear functionals on C[0, 1].

1.2. Complemented subspaces.

Definition 1.7. We say that two subspaces of C[0, 1], U and V , are orthogonal
(U⊥V in B) if u∗

z(v) = 0 for all u ∈ U and v ∈ V .

Lemma 1.8. U⊥V in C[0, 1] if and only if V ⊥U in C[0, 1].

We now have the following:

Theorem 1.9. Let A be a proper closed subspace of C[0, 1] and let H1 be the
closure of L2[0, 1] ∩ A in the L2[0, 1] topology, so that L2[0, 1] = H⊥

1 ⊕ H1. If
A⊥ = H⊥

1 ∩ C[0, 1], then C[0, 1] = A ⊕ A⊥.

Proof. It is clear that H⊥
1 ∩ H1 = {0} implies that A ∩ A⊥ = {0}. Furthermore,

as L2[0, 1] = H⊥
1 ⊕ H1, we see that C[0, 1] = A ⊕ A⊥, provided that A⊥ is closed

in C[0, 1]. To prove this, suppose that x is a limit point of A⊥ in the sup norm,
which is not in A⊥. Since the embedding is continuous, x is a limit point in the L2

norm. It follows that x ∈ H⊥
1 so it must be in A⊥, which is a contradiction, so A⊥

is closed and C[0, 1] = A ⊕ A⊥. Thus, A is complemented in C[0, 1]. �

Remark 1.10. It is well known that there exist closed subspaces of separable
Banach spaces, which are not complemented. However, the meaning of “comple-
mented” is different for the two cases. The change for Banach spaces was based
on the implicit assumption that it was impossible to have (essentially) the same
definition as for a Hilbert space.

2. The space Lp[Rn]

In this section, we want to consider the space Lp[Rn] for 1 ≤ p < ∞, with n ∈ N.
It is well known that these spaces have a common dense core, but it is not well
known that they are densely (and continuously) contained in a separable Hilbert
space. We begin this section with the construction of the Kuelbs–Steadman space,
KS2[Rn]. This space contains the class of non-absolutely integrable functions, all
the Lp[Rn] and the class of test functions D(Rn) as continuous dense embeddings.
The space was first used to provide a rigorous foundation for the Feynman path in-
tegral formulation of quantum mechanics (see [5]). We provide proofs of important
results to make the section self-contained.

Let Qn be the set {x = (x1, x2, . . . , xn) ∈ Rn} such that xl is rational for each l.
Since this is a countable dense set in Rn, we can arrange it as Qn =

{

x1, x2, x3, . . .
}

.

For each i and j, let Bi(x
j) be the closed cube centered at xj , with sides parallel
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to the coordinate axes and edge ei = 1
2i−1

√
n

, i ∈ N. Now choose the natural order

that maps N × N bijectively to N:

{(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 2), (2, 3), . . . }.

Let {Bk, k ∈ N} be the resulting set of (all) closed cubes {Bi(x
j) : (i, j) ∈ N×N}

centered at a point in Qn, and let Ek(x) be the characteristic function of Bk so
that Ek(x) is in Lp[Rn] for 1 ≤ p ≤ ∞. Define Fk( · ) on Lp[Rn] for 1 ≤ p ≤ ∞, by

Fk(f) =

∫

Rn

Ek(x)f(x) dλn(x).

It is clear that Fk( · ) is a bounded linear functional on Lp[Rn] for each k, ‖Fk‖ ≤ 1,
and, if Fk(f) = 0 for all k, then f = 0, so that {Fk} is fundamental on Lp[Rn] for
1 ≤ p ≤ ∞. Set tk = 2−k so that

∑∞
k=1 tk = 1 and define an inner product ( · , · )

on L1[Rn] by

(f, g) =

∞
∑

k=1

tkFk(f)F̄k(g).

We call the completion of L1[Rn], with the above inner product, the Kuelbs–
Steadman space, KS2[Rn]. To see that this space contains non-absolutely integrable
functions, suppose that f is non-absolutely integrable, say a Henstock–Kurzweil in-
tegral ([4]); then,

‖f‖2
KS2 =

∞
∑

k=1

tk

∣

∣

∣

∣

∫

Rn

Ek(x)f(x) dλn(x)

∣

∣

∣

∣

2

6 sup
k

∣

∣

∣

∣

∫

Rn

Ek(x)f(x) dλn(x)

∣

∣

∣

∣

2

< ∞.

Theorem 2.1. The space KS2[Rn] contains Lp[Rn] (for each p, 1 6 p 6 ∞) as a
continuous dense compact embedding.

Proof. By construction, KS2[Rn] contains L1[Rn] densely, so we need only show
that KS2[Rn] ⊃ Lq[Rn] for q 6= 1. If f ∈ Lq[Rn] and q < ∞, we have

‖f‖KS2 =

( ∞
∑

k=1

tk

∣

∣

∣

∣

∫

Rn

Ek(x)f(x) dλn(x)

∣

∣

∣

∣

2q

q

)1/2

6

( ∞
∑

k=1

tk

(
∫

Rn

Ek(x) |f(x)|q dλn(x)

)
2

q

)1/2

6 sup
k

(
∫

Rn

Ek(x) |f(x)|q dλn(x)

)
1

q

6 ‖f‖q .
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Hence, f ∈ KS2[Rn]. For q = ∞, first note that vol(Bk)2 ≤
(

1
2

√
n

)2n

, so we have

‖f‖KS2 =

( ∞
∑

k=1

tk

∣

∣

∣

∣

∫

Rn

Ek(x)f(x) dλn(x)

∣

∣

∣

∣

2
)1/2

6

(( ∞
∑

k=1

tk(vol(Bk))2

)

(ess sup |f |)2

)1/2

6

(

1

2
√

n

)n

‖f‖∞ .

Thus f ∈ KS2[Rn], and L∞[Rn] ⊂ KS2[Rn].
To see that the embedding is compact, suppose that fn → f weakly. Since

Ek ∈ Lp[Rn] for p ∈ [1, ∞], we see that Fk(fn) → Fk(f) for all k ∈ N. It follows
that ‖fn − f‖KSp

→ 0 for all p, so that the embedding is compact. �

We can also define and construct the class of KSp[Rn] spaces for p 6= 2, 1 ≤ p ≤
∞. First, for p 6= 2, set

‖f‖KSp =











(

∑∞
k=1 tk

∣

∣

∫

Rn Ek(x)f(x) dλn(x)
∣

∣

p
)1/p

if 1 6 p < ∞,

supk>1

∣

∣

∣

∫

Rn
I

Ek(x)f(x) dλn(x)
∣

∣

∣
if p = ∞.

It is easy to see that ‖ · ‖KSp defines a norm on Lp. If KSp is the completion of
Lp with respect to this norm, we have:

Theorem 2.2. For each q, 1 6 q 6 ∞, KSp[Rn] ⊃ Lq[Rn] as a dense continuous
embedding.

Since we don’t need or use this result, the proof is omitted (see [4]).

Lemma 2.3. The space KS∞ ⊂ KS2, as a continuous embedding.

Proof. First we note that f ∈ KS∞ implies that
∣

∣

∫

Rn Ek(x)f(x) dλn(x)
∣

∣ is uni-

formly bounded for all k. It follows that
∣

∣

∫

Rn Ek(x)f(x) dλn(x)
∣

∣

2
is uniformly

bounded. It is now clear from the definition of KS∞ that

‖f‖KS2 =

( ∞
∑

k=1

tk

∣

∣

∣

∣

∫

Rn

Ek(x)f(x) dλn(x)

∣

∣

∣

∣

2
)1/2

6 ‖f‖KS∞ < ∞,

and therefore f ∈ KS2. �

In light of the importance of the theory of distributions and the general belief
that test functions cannot be included in a Banach space structure, the following
result is instructive.

Theorem 2.4. The space of test functions D(Rn) ⊂ KS2[Rn] as a continuous
dense embedding.

Proof. The proof is easy. Since KS∞(Rn) is continuously embedded in KS2(Rn),
it suffices to prove the result for KS∞(Rn). Suppose that φj → φ in D[Rn], so
there exists a compact set K ⊂ Rn containing the support of φj − φ, and Dαφj
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converges to Dαφ uniformly on K for every multi-index α. Let L = {l ∈ N :
the support of El, supp(El) ⊂ K}; then

lim
j→∞

‖Dαφ − Dαφj‖KS = lim
j→∞

sup
l∈L

∣

∣

∣

∣

∫

Rn

[Dαφ(x) − Dαφj(x)] El(x) dλn(x)

∣

∣

∣

∣

≤ sup
l∈L

vol(Bl) lim
j→∞

sup
x∈K

|Dαφ(x) − Dαφj(x)|

6 lim
j→∞

sup
x∈K

|Dαφ(x) − Dαφj (x)| = 0. �

Remark 2.5. Since D(Rn) is a dense topological vector subspace of KS2[Rn], by
the Hahn–Banach theorem, each continuous linear functional T on D(Rn) has a
continuous extension to KS2[Rn]. However, from the Riesz representation theorem,
every continuous linear functional on KS2[Rn] is of the form T (f) = (f, g)KS2 for
some unique g ∈ KS2[Rn], so that D′(Rn) ⊂ KS2[Rn]. This is the property
that suggested the use of KS2[Rn] for the Feynman path integral representation
of quantum mechanics [5].

We close this section with the following:

Theorem 2.6. If B = Lp[Rn] and H = KS2[Rn], then all of the theorems proven
for the couple (C[0, 1], L2[0, 1]) also hold for the couple (B, H).

3. The Baire one approximation problem

Let B be a given separable Banach space and let Îu be the bounded linear
functional on B∗ given by Îu(v∗) = v∗(u), so that Îu ∈ B∗∗. This defines a mapping

Î of B into B∗∗, which we call the canonical evaluation map.

Definition 3.1. A Banach space B is said to be:

(1) reflexive if Î : B → B∗∗ is surjective;
(2) quasi-reflexive if dim[B∗∗/B] < ∞;
(3) nonquasi-reflexive if dim[B∗∗/B] = ∞.

In this section, B is C[0, 1] or Lp[Rn], with 1 ≤ p < ∞ and n ∈ N.

Definition 3.2. If A ∈ C[B] and there exists a sequence {An} of bounded linear
operators such that Anu → Au for u ∈ D(A), we say that A is of Baire class one.

The theorem by Vinokurov et al. [19] shows that, for every nonquasi-reflexive
Banach space B (for example, C[0, 1] or L1[Rn], n ∈ N), there is at least one closed
densely defined linear operator A, which is not of Baire class one. This means,
in particular, that there does not exist a sequence of bounded linear operators
An ∈ L[B] such that, for g ∈ D(A), Ang → Ag as n → ∞. We have the fol-
lowing contradiction, showing that their conclusion implicitly assumes a unique
representation for the dual functionals on B.

Our proof exploits the existence of A∗ and the polar decomposition of A ∈ C[B],
A = U |A∗A|1/2. Let T = |A∗A|1/2 and T̄ = |AA∗|1/2. The Hille–Yosida Theorem
ensures that both T and T̄ = |AA∗|1/2 generate strongly continuous contraction
semigroups (see Pazy [14]). Furthermore, a result of Kato shows that AT = T̄A;
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the resolvent of T , R(λ, T ) exists for every λ > 0; and AR(λ, T ) = R(λ, T̄ )A
(see [12]). The following results can be found in Pazy:

Theorem 3.3. If S(t) is the contraction semigroup generated by T and v ∈ D(A) =
D(T ), then

(1) for each λ > 0, R (λ, T ) =
∫∞

0
e−λtS(t) dt;

(2) for each λ > 0, (λI − T )R(λ, T )v = R(λ, T )(λI − T )v = v;

(3)
∥

∥

∥
A
(

I − 1
λ T
)−1

v
∥

∥

∥
=
∥

∥

∥

(

I − 1
λ T̄
)−1

Av
∥

∥

∥
≤ 1

λ ‖Av‖.

Remark 3.4. We note that
(

I − 1
λ T
)−1

= λR (λ, T ). Let Rn = nR (n, T ).

Lemma 3.5. If B = C[0, 1] or L1[Rn] and A ∈ C[B], then there exists a sequence
of operators An ∈ L[B] such that An → A on D(A).

Proof. In either case, if A ∈ C[B], let T = |A∗A|1/2 and Rn = (I + n−1T ). Then
(Rnv, v)H > 0 for all 0 6= v ∈ D(A). Thus, the range of Rn is B and An = AR−1

n ∈
L[B]. It is clear that An → A on D(A), so that A is of Baire class one. �

Conclusion

In this paper, we have shown that the existence of inequivalent representations
of the dual space for a particular class of separable Banach spaces can lead to
totally unexpected insight into the geometry of the space and the structure of the
operators on the space. Our results show that these new representations offer a
powerful tool for functional analysis.
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