
CoordGAN: Self-Supervised Dense Correspondences Emerge from GANs

Jiteng Mu1*, Shalini De Mello2, Zhiding Yu2, Nuno Vasconcelos1,
Xiaolong Wang1, Jan Kautz2, Sifei Liu2

1UC San Diego, 2Nvidia

Figure 1. Images synthesized by the proposed CoordGAN for various object categories (left: faces; top-right: cars; bottom-right: cats) :

each row displays images with the same structure but different textures; in each column, structure varies while keeping texture fixed. The

correspondence maps (Corr-Map) controlling the structure of the synthesized images are shown in the first column of each row. For better

visualization, we use off-the-shelf segmentation models to highlight the foreground areas of all the correspondence maps, as shown with

Corr-Map (Crop).

Abstract
Recent advances show that Generative Adversarial Net-

works (GANs) can synthesize images with smooth varia-
tions along semantically meaningful latent directions, such
as pose, expression, layout, etc. While this indicates that
GANs implicitly learn pixel-level correspondences across
images, few studies explored how to extract them explicitly.
In this work, we introduce Coordinate GAN (CoordGAN),
a structure-texture disentangled GAN that learns a dense
correspondence map for each generated image. We repre-
sent the correspondence maps of different images as warped
coordinate frames transformed from a canonical coordi-
nate frame, i.e., the correspondence map, which describes
the structure (e.g., the shape of a face), is controlled via
a transformation. Hence, finding correspondences boils
down to locating the same coordinate in different corre-
spondence maps. In CoordGAN, we sample a transfor-
mation to represent the structure of a synthesized instance,
while an independent texture branch is responsible for ren-

*Work done while an intern at Nvidia.

dering appearance details orthogonal to the structure. Our
approach can also extract dense correspondence maps for
real images by adding an encoder on top of the genera-
tor. We quantitatively demonstrate the quality of the learned
dense correspondences through segmentation mask trans-
fer on multiple datasets. We also show that the proposed
generator achieves better structure and texture disentan-
glement compared to existing approaches. Project page:
https://jitengmu.github.io/CoordGAN/

1. Introduction

Generative Adversarial Networks (GANs) have achieved

great success in synthesizing high-quality images [3,20–22,

37], and many recent studies show that they also learn a rich

set of interpretable directions in the latent space [40, 41].

Moving latent codes along a semantically meaningful direc-

tion (e.g., pose) generates instances with smoothly varying

appearance (e.g., continually changing viewpoints), imply-

ing that GANs also implicitly learn which pixels or regions
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are in correspondence with each other, from different syn-

thesized instances.

On the other hand, dense correspondence is established

between local semantically-similar regions, but with vary-

ing appearance (e.g., patches of two different eyes). Learn-

ing dense correspondence across images of one category re-

mains challenging because labeling large-scale, pixel-level

annotations is extremely laborious. While most existing

works rely on supervised [7,11,17,39], or unsupervised [47]

image classification networks, few have investigated how to

learn dense correspondence from GANs.

In this work, we explore learning dense correspondence

from GANs. Specifically, we aim to learn an explicit cor-

respondence map, i.e., a pixel-level semantic label map.

Since correspondence represents structure (e.g., shapes of

facial components) and is independent of texture (e.g.,

global appearance like skin tone and texture), this task is

highly relevant to disentanglement of structure and texture

in GANs [1, 28, 33, 41, 45, 50]. Studies show that disentan-

glement of semantic attributes can be achieved by carefully

searching for latent directions learned by GANs [12,41,50],

but all attributes being factorized have to be identified by

humans. Some recent advances [1, 28] demonstrate ef-

fective structure-texture disentanglement by improving the

noise code input to GANs [1], or by applying spatial atten-

tion in the intermediate layers [28]. However, they either

produce a relatively low resolution (e.g., 4 × 4) structure

map [1], or do not produce it explicitly [28].

Our key idea is to introduce a novel coordinate space,

from which pixel-level correspondence can be explicitly ob-

tained for all the synthesised images of a category. Inspired

by UV maps of 3D meshes [19, 27, 31], where shapes of

one category are represented as deformations of one canon-

ical template, in this work, we represent the dense corre-

spondence map of a generated image as a warped coor-

dinate frame transformed from a canonical 2D coordinate

map. This enables the representation of a unique struc-

ture as a transformation between the warped and the canon-

ical frames. We design a Coordinate GAN (CoordGAN)

with structure and texture controlled via two independently

sampled noise vectors. While the texture branch controls

the global appearance via Adaptive Instance Normalization

(AdaIN) [21], in the structure branch, we learn an MLP as

the aforementioned transformation. This maps a sampled

noise vector to a warped coordinate frame, which is further

modulated in the generator to control the structure of the

synthesized image in a hierarchical manner.

We adopt several objectives during training to ensure that

the network learns accurate dense correspondence, i.e., (1) a

texture swapping constraint to ensure the same structure for

images with the same structure code but different texture

codes; (2) a texture swapping constraint to ensure similar

texture for images with the same texture code, but different

structure codes. We also introduce a warping loss to further

regularize the correspondence maps. In addition, we show

that CoordGAN can be flexibly equipped with an encoder

that produces dense correspondence maps for real images.

We summarize our contributions as follows:

• We introduce a novel coordinate space from which

dense correspondence across images of one category

can be explicitly extracted. A warping function is in-

troduced to learn this coordinate space.

• We propose CoordGAN, a disentangled GAN that gen-

erates dense correspondence maps and high-quality

images, via a set of effective objectives.

• CoordGAN can be flexibly equipped with an encoder

to produce the correspondence maps for real images.

In other words, we also introduce a network (i.e., the

encoder) that learns explicit structure representation.

• Experiments show that CoordGAN generates accurate

dense correspondence maps and high-quality struc-

ture/texture editable images, for various categories.

2. Related Work
Disentangled GANs. Recent studies [12, 41, 50] show

that rich semantically meaningful directions (e.g., pose,

color, lighting, etc.) automatically emerge in GANs. To

factorize these meaningful latent directions, a line of disen-

tangled GANs [4, 5, 33, 34, 42] are proposed to synthesize

images via multiple latent factors, where each factor con-

trols a certain attribute, e.g., object shape or texture. Un-

like [34, 42, 45] where human annotations (e.g., bounding

boxes, surface normals, etc) are required, most related to

ours are self-supervised disentanglement approaches [1,28,

33]. Among them, Alharbi et al. [1] show that injecting

hierarchical noise in the first layer of GANs leads to fine-

grained spatial content disentanglement. Kwon et al. [28]

further inject noise into multiple layers with diagonal spatial

attention modules. However, the learned content code only

captures coarse structure such as viewpoints, i.e., keeping

the same content code and only modifying the texture code

would change the subject’s shape. In contrast, our method

models finer structure that allows for generating images of

the same identity with various textures.

Style Transfer. Style transfer [6, 10, 18, 35, 43] synthe-

sizes a novel image by combining the content of one image

with the texture of another one. Most related to ours is to

swap texture between semantically-related regions of two

images. E.g., Park et al. [35] learns a disentangled auto-

encoder such that texture of corresponding regions can be

swapped. In contrast, our work studies disentanglement of

unconditional GANs and extracts dense correspondence be-

tween images explicitly.

Dense Correspondence. Identifying dense correspon-

dence has been a challenging problem due to large shape

and appearance variances. Most existing approaches are
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Figure 2. Correspondence in coordinate space. The correspon-

dence maps (Corr-Map) establish dense correspondence between

all synthesized images and the canonical coordinate frame.

based on discriminative networks, i.e., either supervised

image classification [7, 11, 17, 25, 32, 39], or unsupervised

image-level contrastive learning [47, 48]. Our work differs

in that we investigate how to extract dense correspondence

from GANs. Recently, several works [49, 52] show that se-

mantics can be extracted from GANs via a linear classifier

in a few-shot setting. However, these methods still require

manual annotations for training the classifier. Inspired by

these works, we move one step further to extract dense cor-

respondence without using any annotated labels.

Concurrent Work. Peebles et al. [36] achieves visual

alignment through equipping a pre-trained StyleGAN2 [23]

with additional Spatial Transformer Network (STN) [16].

However, dense correspondence is only identified for part of

the object. Differently, through disentanglement of struc-

ture and texture, the proposed CoordGAN automatically

generates correspondence maps of full images and neither

pretrained StyleGAN nor additional STN is required.

3. Dense Correspondence from CoordGAN
We design a structure-texture disentangled GAN such

that dense correspondence can be extracted explicitly from

the structural component, where the key component is to

tie image structure to a coordinate space that is shared by

all images. Specifically, the structure of each generated

image is represented as a warped coordinate frame, trans-

formed from a shared canonical 2D coordinate frame. This

reduces finding correspondence between image pixels to lo-

cating the coordinates in corresponding warped coordinate

frames, which are transformed from the same coordinates

in the canonical frame. We call our model Coordinate GAN

(CoordGAN).
Coordinate Map Representation. We define C as a

2D coordinate map of width W c and height Hc. When
C(i, j) = (i, j), this denotes the canonical coordinate map
(see Figure 2). Pixel locations and coordinates are normal-
ized to the range [−1, 1]. For example, C(1, 1) = (1, 1)
indicates the bottom right pixel of the coordinate map is

of coordinate (1, 1). It is then possible to define a warp-
ing function W : (C,w) → Cw, parameterized by a code
w ∈ R

N , that maps C into a warped coordinate map Cw.
Since the code w relates the pixel coordinates of the image
to the canonical coordinate map, it can be seen as the repre-
sentation of image structure. In particular, Cw(i, j) = (k, l)
implies that the pixel i, j of the image is in correspondence
with the canonical coordinate k, l. Given the two images
with codes w1 and w2, it is also possible to establish corre-
spondence between them by seeking pixels of similar coor-
dinates. Given pixel (i, j) of the image associated with co-
ordinate Cw1(i, j), the corresponding pixel in another im-
age of coordinate map Cw2 is,

T1,2(i, j) = argmin
p,q

||Cw1(i, j)− Cw2(p, q)||2, (1)

where T1,2 defines the forward transformation from warped

coordinates Cw1 to Cw2 . In this way, a generative model

for images that includes a warping function automatically

establishes dense correspondence between all synthesized

images, as shown in Figure 2. This can be useful for trans-

ferring properties between the images, such as semantic la-

bels, landmark locations, image pixels, etc.

3.1. Overview
An overview of the proposed CoordGAN is presented in

Figure 3. The CoordGAN is a generative model based on
the structural coordinate map representation. The inputs to
our model include two latent code vectors with dimension
N : a structure code zs ∈ RN for modeling layouts and ob-
ject structure, and a texture code zt ∈ RN for modeling tex-
ture, lighting, etc. The CoordGAN generator G(zs, zt; θG

)
is a mapping from these codes to the image space, with
parameters θ

G
. This is implemented by a combination of

structure and texture mappings. A structure mapping net-
work ws = S(zs; θS) of parameters θS maps the structure
noise variable zs into a structure code ws, which is then
used by a warping function W(C,ws) to produce a warped
coordinate map Cws for the image. A texture mapping net-
work wt = T (zt, θT ) of parameters θT maps the texture
noise variable zt into a texture code ws. The modulated
generator then produces an image with the mapping A pa-
rameterized by θA,

G(zs, zt; θG) = A(Cws , wt; θA), (2)

where θ
G

includes θS , θT , and θA. The details of the vari-

ous modules are discussed in the following sections.

3.2. Coordinate Warping Network
One major component in CoordGAN is the warping

function. We propose a Coordinate Warping Network,
which learns a transformation between the canonical and a
warped coordinate frame, conditioned on a latent structure
code ws. While there exist several differentiable transfor-
mation functions, such as Thin Plate Splines (TPS), Spa-
tial Transformation Network (STN) [16], and affinity ma-
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Figure 3. Overview of CoordGAN. CoordGAN mainly consists of a texture mapping network, a structure mapping network, a coordinate

warping network, and a modulated generator. The coordinate warping network (on the right) takes the structure latent code and a canonical

coordinate map and outputs a correspondence map, which is then fed into multiple layers of the modulated generator to synthesize images.

trix [30, 44], in CoordGAN this transformation is imple-
mented with a MLP as

Cws(i, j) = W(C(i, j), ws) = P([C(i, j), ws], θP) ∀i, j (3)

where P is a three layer MLP of parameters θP and

[C(i, j), ws] ∈ RN+2 is the concatenation of coordinate i, j
from the canonical frame with the structure latent code ws.

In the supplementary materials, we show that the MLP is

a learnable, conditional geometric transformation between

the canonical coordinate frame and a warped coordinate

frame.

The advantages of learning the transformation via a MLP

are two folds. First, since an MLP is a continues function

containing only linear projection layers and ReLUs, it pre-

serves the order of the coordinates in the canonical coor-

dinate frame, i.e., it ensures that the warping is diffeomor-

phic. Second, compared to TPS and STN, our design of W
is generic and allows for more flexible deformation.

3.3. Incorporating Warping in CoordGAN

We introduce the rest of CoordGAN components. While

our generator design is inspired by StyleGAN [21] (see Fig-

ure. 3), we discuss the major differences in the following.

Positional Encoding. Rather than inputting dense cor-

respondence map directly to the generator, we map it via a

positional encoding layer [2]. I.e., a Fourier embedding is

obtained by the application of a 1× 1 convolution followed

by a sine function. The Fourier embedding serves as the

first layer of the generator.

Mapping Networks S(·) and T (·). We use the same

architecture as StyleGAN for the mapping network. Dif-

ferent from StyleGAN, we apply two independent mapping

networks responsible for structure and texture, respectively.

Modulated Generator A(·). We replace the learnable

constant input of StyleGAN with the correspondence map.

Since the latter has high resolution (i.e., 128×128), instead

of gradually increasing spatial resolution, the spatial reso-

lution is kept the same as the input Fourier embedding at

all layers as shown in Figure 3. We inject the latent tex-

ture code wt into different layers of the modulated gener-

ator, via weight modulation [22], to render appearance de-

tails at different levels. To balance the structure and tex-

ture inputs at an architectural level, the dense correspon-

dence map is also concatenated with the features produced

by multiple intermediate layers of the modulated generator.

We found that, without this multi-layer modulation of dense

correspondence map, the coordinate warping network can

only learn coarse and inaccurate structure information (e.g.,

viewpoints of faces), as shown in Table 3.

3.4. Learning Objectives

To learn accurate correspondence maps and encourage

the disentanglement of the latent space, such that zs and

zt encode the image structure and texture separately, Co-

ordGAN is trained with the following objectives.
Texture Swapping Constraint. To ensure the Co-

ordGAN generates the same identity and image layout when
the structure is fixed and only the texture code is modified,
a texture swapping constraint is applied. Given a pair of
synthesized images with a shared structure code zs and dif-
ferent texture codes zt1 , zt2 , the texture swapping loss Lt is
defined as the LPIPS [51] loss between the two synthesized
images:

Lt = LLPIPS (G(zs, zt1 ; θG), G(zs, zt2 ; θG)). (4)

Structure Swapping Constraint. To encourage images
that share the same texture code to have similarly look-
ing textures, a structure swapping constraint is introduced.
This consists of encouraging two images with the same tex-
ture code zt but different structure codes zs1 and zs2 to
have similar textures. Following [35], this is done with
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a non-saturating GAN loss based on a patch discriminator
Dpatch:

Ls = E

[
− log

(
Dpatch

(
G(zs1 , zt; θG), G(zs2 , zt; θG)

))]
.

(5)

Warping Loss. A warping loss is defined to explic-
itly regularize the correspondence map. Given a pair
of synthesized images x

1
= G(zs1 , zt1 ; θG

) and x
2

=
G(zs2 , zt2 ; θG

), x
1

is warped to the coordinate frame of x
2

by transferring pixel colors according to Equation (1). In
practice, similar to [30, 44, 46], we relax Equation (1) with
affinity matrix to make the warping differentiable. This pro-
duces a warped image xw

2,1
. A warping loss based on the

LPIPS loss [51],

Lwarp = LLPIPS (x
w
2,1

, x2), (6)

is used to minimize the distance between xw
2,1

and x
2

.

Chamfer Loss. Suppose a canonical coordinate map C
is transformed to a warped coordinate map Cw, a Chamfer
loss is implemented to avoid the collapse of the transforma-
tion,

Lcham =
1

|C|
∑

(i,j)∈C

min
(p,q)

||C(i, j)− Cw(p, q)||2

+
1

|Cw|
∑

(p,q)∈Cw

min
(i,j)

||Cw(p, q)− C(i, j)||2.
(7)

Overall Learning Objective. To generate realistic im-
ages, a standard GAN objective function LGAN is applied
to the synthesized images. Combining all the aforemen-
tioned loss objectives, the overall training objective is de-
fined as

LG =λt ∗ Lt + λs ∗ Ls + λwarp ∗ Lwarp

+ λcham ∗ Lcham + λGAN ∗ LGAN ,
(8)

where λt, λs, λwarp, λcham, λGAN are coefficients used to

balance the different losses.

3.5. Inverting CoordGAN via an Encoder

The CoordGAN can be equipped with an encoder to en-

able the extraction of dense correspondence from real im-

ages. Specifically, an encoder E(·; θ
E
) parameterized by

θ
E

is introduced to map an image x to a pair of structure

ws,E and texture wt,E latent codes. These latent codes are

then input to the CoordGAN to synthesize a replica of the

image. As observed in [38], embedding real images directly

into W+ space rather than W space leads to better recon-

struction. So for the texture branch, we design the encoder

to output texture latent codes w+
t,E in W+ space as opposed

to wt,E in W space. During training, we fix the generator

while optimizing the encoder via latent consistency, recon-

struction and texture swapping losses, which are described

as follows.
Latent Consistency Loss. We introduce a latent con-

sistency loss by feeding synthesized images back to the en-
coder and matching the distribution of encoder outputs to

that originally produced by the mapping network. Suppose
an image is synthesized with latent codes wt, ws, and cor-
respondence map Cw. Inputting this image back into the
encoder produces a pair of latent codes w+

t,E and ws,E , and

the correspondence map Cw
E . The latent consistency loss

Lcon is defined as

Lcon = L2(ws, ws,E ) + L2(C
w, Cw

E
), (9)

where L2(·, ·) denotes the L2 loss.

Reconstruction Loss. This is a reconstruction loss for

input real images, with L1 (L1) and LPIPS [51] (LLPIPS)

components, defined as

Lrec = L1(x,G(E(x))) + LLPIPS (x,G(E(x))), (10)

Overall Learning Objective. The overall learning ob-
jective used for encoder training an encoder is

LE = λcon ∗ Lcon + λrec ∗ Lrec + λt ∗ Lt, (11)

where λcon, λrec, λt are hyperparameters that balance the

different losses.

We note that the encoder facilitates explicit structure rep-

resentation learning for real images. It is significantly more

efficient than optimization-based GAN-inversion methods,

as no iterative inference is required.

4. Experiments
In this section, we show quantitative and qualitative re-

sults of models trained on the CelebAMask-HQ [29], Stan-

ford Cars [26], and AFHQ-Cat [6] datasets. We train sepa-

rate models on each dataset, using a resolution of 512×512
for the CelebAMask-HQ model and 128×128 for the other

two. For CelebAMask-HQ, we first train CoordGAN with

an output size of 128 × 128 and then append two upsam-

pling layers to generate high-resolution images. Detailed

network design and training hyper-parameters are described

in the supplementary.

4.1. Evaluation on Dense Correspondence

We quantitatively demonstrate the quality of the ex-

tracted dense correspondence on the task of semantic label

propagation. Given one reference image with semantic la-

bels, its correspondence map is first inferred with the trained

encoder. This establishes a mapping between the semantic

labels and the correspondence map for that image. Another

correspondence map is then inferred for a query image and

the labels of the reference image are obtained with Equa-

tion (1). To align with the training stage, we relax Equa-

tion (1) with affinity matrix in practice.

Datasets and Metrics. We evaluate different meth-

ods on the CelebAMask-HQ [29] and DatasetGAN [52]

datasets. We merge CelebAMask-HQ dataset labels and se-

lect 6 classes (eyes, nose, ear, mouth, face and eyebrow)
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Figure 4. Qualitative results for semantic label propagation. In each row, given one reference image along with its semantic labels as shown

on the left, the proposed approach predicts its correspondence map and propagates its segmentation mask to other query images on the

right. For better visualization, we use the ground-truth masks to highlight the foreground areas of all the predicted correspondence maps,

denoted with Corr-Map (Crop). Note that no ground-truth masks are used for actual label propagation.

for our evaluation. The DatasetGAN dataset contains de-

tailed manually annotated labels for faces (34 classes) and

cars (20 classes). For the DatasetGAN faces, we excluded

neck and hair since they are not consistently visible for all

images in the dataset. For all datasets, we randomly se-

lect 5 images as reference and another set as query images.

Each reference image’s semantic label is propagated to all

query images and the mean intersection-over-union (IOU)

with the ground-truth segmentation maps is computed for

evaluation. We report the averaged score of these 5 runs.

Baselines. For all baseline models, we extract fea-

tures from hidden layers and use nearest neighbor search

to determine feature correspondences and propagate la-

bels. We detail the features selected for label propagation

below. We employ two sets of baselines. The first set

comprises of transfer learning based methods with either

supervised ImageNet pre-training, e.g., ResNet50 [14] or

self-supervised contrastive learning based pre-training, e.g.,

MoCo [13] pre-trained on ImageNet [8] and VFS [48] pre-

trained on Kinetics video dataset [24]. For all these meth-

ods, ResNet50 [14] is employed as the backbone and the

pre-trained models are directly tested on our task without

fine-tuning. We follow [47, 48] and use the Res-block 4

features for label propagation as it is shown that Res-block

4 gives the best pixel-level correspondences. Another set

of baselines is based on auto-encoders, such as Swapping

Auto-encoder [35] and Pix2Style2Pix [38]. Both methods

are trained on the same datasets as ours. For Swapping

Auto-encoder, the structure branch features are used for la-

bel propagation. For Pix2Style2Pix encoder, the Res-block

4 features are used for label propagation. All methods are

evaluated with input image resolution of 128, except for

Pix2Style2Pix where the input image size is set to 256 fol-

CelebA-HQ DGAN-face DGAN-car

Resnet50 [14] 39.48 11.05 11.07

Moco [13] 36.19 10.00 9.53

VFS [48] 38.10 8.55 6.88

Swap AE [35] 24.73 5.48 5.37

Pix2Style2Pix [38] 48.50 20.36 10.77

CoordGAN 52.25 23.78 13.23

Table 1. IOU comparison for label propagation. Our method

shows the best semantic label propagation results among all base-

line methods.

lowing the original paper.

Quantitative Results. As reported in Table 1, the pro-

posed CoordGAN outperforms all self-supervised baselines

across all three datasets on the task of semantic segmen-

tation label propagation. The most related approach is

Pix2Style2Pix, which also learns an encoder for a pre-

trained StyleGAN2 model. While Pix2Style2Pix encoder

features contain both structure and texture information, Co-

ordGAN correspondence maps, with only structure infor-

mation, still achieve better label propagation performance.

These results suggest that CoordGAN learns much accurate

correspondence than the other methods.

Qualitative Results. We visualize both the coordinate

maps and the propagated segmentation labels in Figure 4.

On the left, several reference images from the DatasetGAN

dataset are shown along with their semantic labels. On the

right, we show the propagation results for different query

test images. The predicted correspondence maps for both

the reference and query images are color-coded and masked

with the foreground ground-truth semantic labels for better

visualization. Note that this is only for visualization, no

ground-truth masks are used for the actual label propaga-

tion. Note that our method produces precise label propa-

gation results for both frontal and profile query faces. For
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Figure 5. Qualitative comparison for texture swapping. From top to bottom: models trained on CelebAMask-HQ, Stanford Cars, and

AFHQ-cat datasets. For CoordGAN and DiagonalGAN, images shown in each row are generated with the same structure code and diverse

texture codes. For GAN Factorization, images in each row are generated with random perturbations along the identified eigen-vector

directions. It is apparent that CoordGAN preserves structure better when only texture codes are modified.

CelebA-HQ Stanford Cars AFHQ-cat

LPIPS ↓ Arcface ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓
StyleGAN2 [23] - - 8.21 - 16.20 - 21.02

DiagonalGAN [28] 0.58 0.79 11.16 0.61 18.09 0.55 17.63

CoordGAN 0.22 0.38 16.16 0.21 24.27 0.27 23.62

Table 2. Texture swapping comparison. The lowest LPIPS and

Arcface feature distances of CoordGAN suggest better structure

preservation when the texture code is varied.

cars, this is even more challenging, considering the large

differences in viewpoints and scales. For example, in ex-

treme cases where the reference car is viewed from the front

and the query car from the back, no correspondence exist.

Surprisingly, even in cases where the reference car is ob-

served from the side and the query car from the rear, Co-

ordGAN still matches the labels reasonably well. We con-

jecture this is because it learns a reasonable prior for the

category, by observing many instances and densely associ-

ating them during training.

4.2. Identity-preserving Texture Swapping

We analyze disentanglement of structure and texture of

CoordGAN by generating images with the same structure

code but different texture codes (i.e., texture swapping) and

evaluating the structural consistency of the outputs. We fo-

cus on the generator and do not use an encoder in these

experiments.

Metrics. To quantitatively examine different methods,

we use the ArcFace [9] face identity loss and the LPIPS [51]

loss to evaluate disentanglement and structure preservation

performance, and FID [15] score for measuring the per-

ceptual image quality of the generated images. ArcFace

computes a feature-level cosine similarity loss between two

faces. It can be used to measure whether the face identity

is preserved since the smaller the loss is, the more likely

both images capture the same identity. LPIPS [51] mea-

sures whether two images have similar image layouts.

Baselines. CoordGAN is compared against two base-

lines: DiagonalGAN [28] and GAN Factorization [41].

DiagonalGAN achieves state-of-the-art performance for

StyleGAN-based structure and texture disentanglement.

Similar to CoordGAN, it uses separate structure and tex-

ture codes as inputs. To generate texture-swapped images,

we sample a structure code and different texture codes, and

then compute the structural similarity among the images

synthesized using the aforementioned metrics. GAN Fac-

torization exploits SVD to identify semantically meaning-

ful latent directions across different GAN layers. The pa-

per suggests that the final layers of the GAN are mainly

responsible for controlling texture. Therefore, we generate

texture-swapped images with GAN Factorization by adding

perturbations along the computed eigen-vectors of the last

two convolution layers of a pre-trained StyleGAN2.
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Figure 6. Qualitative results for structure swapping. Images shown

in each row are generated with the same texture code and diverse

structure codes.

Results. As shown in Table 2, CoordGAN outperforms

the baselines by a significant margin for all disentanglement

metrics (ArcFace and LPIPS) on all object categories. This

suggests that it successfully preserves the fine-grained im-

age structure independent of the input texture. Note that

ArcFace is only available for human faces. The FID score

is computed over 10,000 generated images for all methods,

for reference. Note that, as discussed in [1, 28], a slight

decrease in the FID score is observed due to the strong dis-

entanglement constraints enforced.

In Figure 5, each row shows diverse texture-swapped

images generated by fixing the structure code and varying

the texture code. The DiagonalGAN changes the subject’s

identity completely. This becomes more clear when testing

on cars, where the viewpoint is ambiguous and scale can

vary. Results suggest that its disentangled content code only

captures coarse structural information, such as the rough

image layout and viewpoint. In contrast, CoordGAN suc-

cessfully maintains both the coarse and fine-grained image

structure and only varies appearances, on all datasets. For

GAN factorization, while potentially possible to exhaus-

tively search for the latent eigen-vectors that only modify

image textures, it is not easy to finely control the appear-

ance of the synthesized images.

4.3. Structure Swapping

To further demonstrate CoordGAN successfully disen-

tangles structure and texture, in this section, we synthesize

images of the same texture code and various structure codes

(i.e., structure swapping). As show in Figure 6, from top

to bottom, we show synthesized images of models trained

separately on CelebAMask-HQ, Stanford Cars, and AFHQ-

cat datasets. It is clear that images in each row show sim-

ilar textures (e.g., hair/face colors for humans, grey cars,

orange cats) with diverse structural variations (e.g., view-

point, scale, shape, layout, etc). The again confirms that

CoordGAN learns a disentangled representation where the

structure code and the texture code capture different at-

tributes of a synthesized image. More visualizations are

included in the supplementary materials.

Disentanglement Correspondence

LPIPS↓ Arcface ↓ CelebA-HQ DGAN-face

CoordGAN 0.10 0.32 52.25 23.78

w/o struc-mod 0.32 0.73 48.59 20.01

Table 3. Ablation on structure modulation. We show that incorpo-

rating the structure modulation is essential to a good disentangle-

ment and correspondence performance (measured by IOU).

4.4. Ablation Studies

We ablate different architectures w.r.t the structure

branch, i.e., feeding the correspondence map (1) only to the

first layer of CoordGAN (w/o struc-mod), or (2) to modu-

late multiple layers, as discussed in Section 3.3. Both mod-

els are trained to synthesize images of resolution 128× 128
on the CelebAMask-HQ dataset. Table 3 shows that the

proposed structure modulation design is crucial to achieve

a good disentanglement of structure and texture. This con-

firms that a non-trivial architecture design is needed to em-

bed the structure information and highlights the importance

of the proposed balanced structure and texture modulation.

More studies on objectives are included in the supplemen-

tary materials.

5. Discussion
Conclusion. In this work, we show that it is possible to

train GANs so that dense correspondence can automatically

emerge. We propose a novel disentangled GAN model, Co-

ordGAN, that produces dense correspondence maps repre-

sented by a novel coordinate space. This is complemented

by an encoder for GAN inversion, which enables the gener-

ation of dense correspondence for real images. Experimen-

tal results show that CoordGAN generates accurate dense

correspondence maps for a variety of categories. This opens

up a new door for learning dense correspondences from

generative models in an unsupervised manner. We qualita-

tively and quantitatively demonstrate that CoordGAN suc-

cessfully disentangles the structure and texture on multiple

benchmark datasets.

Limitations and Future Work. The current proposed

model is restricted to learn correspondence within the same

category, since it requires the coordinate maps transformed

from the same canonical space. While we can potentially

infer the 3D viewpoints from the coordinate map (as visu-

alized in Figure 4), we have not explicitly modelled the 3D

structure in our representation. A future extension of this

work can be to learn a 3D UV coordinate map instead of a

3D map to represent the underlying structure.
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