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Background: Attrition due to loss to follow-up or termination of antiretroviral therapy
(ART) among HIV-infected patients in care may increase the risk of emergence and
transmission of drug resistance (TDR), diminish benefit of treatment, and increase
morbidity and mortality. Understanding the impact of attrition on the epidemic is
essential to provide interventions for improving retention in care.

Methods: We developed a comprehensive HIV transmission dynamics model by
considering CD4™ cell count dependent diagnosis, treatment, and attrition involving
TDR and acquired drug resistance. The model was calibrated by 11 groups HIV/AIDS
surveillance data during 2008-2018 from Guangxi, China, and validated by the
prevalence of TDR among diagnosed treatment-naive individuals. We aimed to
investigate how attrition would affect the transmission of HIV and drug-resistance
when expanding ART.

Results: In the base case with CD4" cell count dependent per capita attrition rates
0.025~0.15 and treatment rates 0.23~0.42, we projected cumulative total new
infections, new drug-resistant infections, and HIV-related deaths over 2022-2030
would be 145391, 7637, and 51965, respectively. Increasing treatment rates by
0.1~0.2 can decrease the above total new infections (deaths) by 1.63~2.93%
(3.52~6.16%). However, even 0.0114~0.0220 (0.0352~0.0695) increase in attrition
rates would offset this benefit of decreasing infections (deaths). Increasing treatment
rates (attrition rates) by 0.05~0.1 would increase the above drug-resistant infections by
0.16~0.30% (22.18~41.15%).

Conclusion: A minor increase in attrition can offset the benefit of treatment expansion
and increase the transmission of HIV drug resistance. Reducing attrition rates for
patients already in treatment may be as important as expanding treatment for untreated
patients.
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Introduction

According to the Joint United Nations Programme on
HIV/AIDS (UNAIDS) [1], 38.4 million people were
living with HIV globally, and an estimated 1.5 million
new infections and 650000 AIDS-related deaths
occurred worldwide in 2021. Among these people living
with HIV, 85% were diagnosed, 88% of diagnosed people
were accessing antiretroviral therapy (ART), and 92% of
people on ART were virally suppressed [1]. However,
these three proportions are only 71% [2], 80% [3], and
65% [4] in China, respectively, far less than the UNAIDS
95-95-95 targets [1]. One of the key challenges that
hamper the progress toward achieving the above second
and third targets is the high rate of attrition due to loss to
follow-up (LTFU) or ART termination, with 9.42—
17.52 attritions per 100 person-years within the first year
of ART initiation and 24% of the cumulative probability
of attrition after 5years of ART [5—8]. A high attrition
rate increases morbidity and mortality, diminishes the
benefit of treatment, and increases the risk of emergence
and transmission of the drug-resistant virus [5,9—13],
which further limits the choice of drugs on the
resumption of ART. Understanding the impact of
attrition on the transmission of HIV and drug-resistant
viruses at the population level is essential to provide
interventions for improving retention in care.

Mathematical modeling has played an important role in
evaluating how attrition affects HIV transmission
dynamics. Blower et al. [14] proposed a two-strain model
with the transmission of drug resistance (TDR) and
acquired drug resistance (ADR) to study the effect of
ART on the incidence rate and death rate in San Francisco
with the assumption that drug-resistant patients would be
twice as likely to give up ART as drug-sensitive patients.
Smith et al. [15] extended the model by Blower et al. [14]
by including seven drug-resistant strains to identify the
key factors that led to a high level of TDR and assumed
that the attrition rates were different for varied wviral
strains. Lu ef al. [16] extended the model by Blower et al.
[14] by including the primary and AIDS stage to access
the effectiveness of ART on HIV infection in China and
assumed the attrition did not occur for patients at the
AIDS stage. However, these studies neither considered
the possible increase in drug resistance due to attrition
[5,9—13] nor validated the model by dynamic TDR data
[17]. Moreover, the difference in attrition rates for treated
individuals at different CD4" cell count levels is not
involved and how the increase in attrition will balance
the benefit of expanding treatment quantitatively remains
unknown.

In this study, we proposed a dynamic compartmental
model including TDR and ADR to explore the impact of
attrition on new infections and TDR using the Guangxi
Zhuang Autonomous Region (hereafter referred to as
Guangxi), China as a case study. Guangxi has the second

highest number of newly reported HIV/AIDS cases in
China (14.3% of the total national during 2006—2015)
[18], and more than 90% of cases are infected through
heterosexual transmission since 2010 [19]. The mortality
rate in Guangxi 1s 1.45 times the average national level
due to late diagnosis [20]. We calibrated this dynamic
model by multisource data during 2008—2018 exacted
from Guangxi Center for Disease Control and Prevention
(Guangxi CDC): the numbers of annual newly diagnosed
people living with HIV and newly treated individuals at
four levels of CD4™" cell counts (CD4" >500 cells/pl,
CD4" 350-499 cells/pl, CD4" 200-349 cells/pl, and
CD4" <200 cells/pl), the number of deaths and drug-
resistant individuals among the treated individuals, and
the number of drug-resistant individuals among people
with attrition. The model was validated by the dynamic
prevalence of TDR among diagnosed treatment-naive
individuals [21—28]. We evaluated how attrition would
affect the HIV epidemic under different ART expansion
scenarios. This will guide how to balance ART expansion
and decreasing attrition in the presence of TDR
and ADR.

Materials and methods

Data sources

We obtained the annual HIV/AIDS surveillance data (11
groups) between 2008 and 2018 from the Guangxi CDC
(Appendix Table S1, http://links.Iww.com/QAD/
C829). We extracted the reported HIV cases and
treatment data (eight groups): the numbers of annual
newly diagnosed people living with HIV and newly
treated individuals at four levels of CD4" cell counts
(CD4" >500 cells/pl, CD4" 350~499 cells/pl, CD4 ™"
200~349 cells/pl, and CD4" <200 cells/pl). We
assumed that the observed CD4 ™" cell counts at diagnosis
and treatment are representative of all new diagnoses and
all newly treated individuals, respectively [29,30]. This
means the distribution of people with missing CD4™" data
is assumed to be the same as people with CD4 ™" data, and
adding people with missing CD4" data to those with
CD4™ data gives the total number of newly diagnosed and
treated individuals at different levels of CD4 " cell count.
The treated individuals in each year and deaths among
them (ninth group data) are extracted. Multiplying the
number of treated individuals by the proportion (10%
from Guangxi CDC) of people with viral load more than
1000 copies/ml among treated individuals and the
proportion (40% from Guangxi CDC) of drug-resistant
individuals among those with viral load more than
1000 copies/ml gives the number of drug-resistant
individuals among treated each year (tenth group data).
Similarly, multiplying the number of people with attrition
by the proportion (86% from Guangxi CDC) of people
with viral load more than 1000 copies/ml and the
proportion (18.9% from Guangxi CDC) of drug-resistant
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individuals gives the number of drug-resistant individuals
among people with attrition each year (11th group data).
Here, attrition was due to loss to follow-up (LTFU,
defined as missing more than 90 days after the last date
seen in the clinic, or the date of withdrawal) or stopping
ART [8]. The dynamic prevalence data of TDR among
treatment-naive  individuals during 2008-2015 in
Guangxi were obtained from the published literature
[21-28]. The demographic data about population size
and age distribution were obtained from Guangxi
Population and Employment Statistical Yearbook [31].

Model formulation

We developed a dynamic HIV transmission model
involving the ADR and TDR among the general
population aged above 15years in Guangxi, based on
the natural history of progression, diagnosis, and
treatment by extending our previous studies [33—37].
The population was divided into 25 compartments
(Fig. 1): susceptible population (S), undiagnosed infec-
tions (IY), diagnosed but untreated infections (II?), and
treated 1nfections (Iqj;-), where g€{s, r} denoted drug-
sensitive and drug-resistant strains, j=1,2,3,4 denoted
the four stages of CD4" at least 500 cells/ul, CD4"
350~499 cells/ul, CD4" 200~349 cells/pl, and CD4"
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Fig. 1. A compartmental model of HIV transmission in the presence of TDR and ADR.
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treatment per year. There is a nonlinear relationship
between them (see the Section of Model Formulation in
Appendix for details, http://links.lww.com/QAD/
C829). 0; s the per capita rate of acquired drug resistance
after first-line treatment. The per capita disease progres-
sion rates for drug-sensitive (drug-resistant) individuals
from the stage of CD4 " at least 500 cells/pl to CD4"
350~499 cells/pul  are  py  (0,4), from CD4"
350~499 cells/ul to CD4™ 200~349 cells/wl py (0,5),
and from CD4" 200~349 cells/pul to CD4" less than
200 cells/wl are pg (p,3). The per capita HIV-related
death rates for drug-sensitive (drug-resistant) individuals
in these four stages are [ ;(i,;), j=1,2,3,4, respectively.
After treatment, these progression rates decreased with a
modification factor p, (p,) and HIV-related death rates
decreased with a modification factor u, (u,) for drug-
sensitive (drug-resistant) individuals, respectively, com-
pared with untreated individuals. This means that the
treatment reduced the above progression rates by 1 — p,
(1 — p,) and HIV-related death rates by 1 — p, (1 — )
for drug-sensitive (drug-resistant) individuals, respec-
tively. The per capita reversion rates of the above stages
from lower CD4" level to higher CD4" level after
effective treatment are wy, ws, ws, respectively, and we
assumed that these reversion rates were the same among
drug-sensitive and drug-resistant individuals [32,33]. The
per capita attrition rates in the four stages are
n.]r(j =1,2,3,4) and f, is the fraction of drug-resistant
individuals among those with attrition. We also note that
the per capita attrition rate used here is different from the
annual attrition rate (i.e., the proportion of treated
individuals who give up treatment per year). There is a
nonlinear relationship between them (see Appendix,
http://links lww.com/QAD/C829). The per -capita
death rates (natural death and HIV-related death) were
not shown in Fig. 1 for simplification.

Model calibration

We obtained the recruitment rate and natural death rate
from Guangxi Population and Employment Statistical
Yearbook [31]. We chose disease-related progression rates
and reversion rates from the published literature
[32,33,35,38,39], which were assumed the same in
different settings. However, for some setting-specific
parameters (including per capita time-dependent diag-
nose rates and treatment rates, transmission rates, acquired
drug-resistance rates, and HIV-related death rates) and the
initial population size of each compartment, we estimated
them using the nonlinear least-squares method (NLS) as
listed in Appendix Tables S2-S3, http://links.lww.com/
QAD/C829. These parameters were estimated by
calibrating the model to the following Guangxi data
during 2008—-2018: the numbers of annual newly
diagnosed individuals and newly treated individuals at
four CD4" cell count groups (CD4" > 500 cells/ul,
CD4" 350~499 cells/ul, CD4" 200~349 cells/pl, and
CD4" <200 cells/pl), the number of deaths and drug-
resistant individuals among the treated individuals, and

the number of drug-resistant individuals among people
with attrition (Fig. 2a-k). We wused the dynamic
prevalence of TDR among diagnosed treatment-naive
individuals for model validation (Fig. 2l). The epidemic
trend of these 12 indicators was projected until 2030
(Fig. 2). We obtained the point estimate of the unknown
parameters based on the NLS method and sampled these
parameters within their ranges by the Latin hypercube
sampling method and repeated 1000 times. In each
simulation, we calculated the sum of square errors
between the model output and data and selected the top
10% with the least square errors to generate 95%
confidence intervals (95% ClIs) [33]. Other model
parameters were obtained from the published literature
or the database from Guangxi CDC. All analyses and
simulations were performed in MATLAB R2019b.

Simulated impact of increasing attrition and
expanding treatment

To explore how attrition may undermine the effect of
expanding treatment, we simulated six different scenarios
with the combination of the per capita attrition rate
17]-(]': 1,2,3,4) increases by 0, 0.05 (i.e. n;+ 0.05), 0.1 (1.
e, 1 +0.1), or the per «capita treatment rate
‘E]'(t)(j:1,2,3,4) increases by 0, 0.5 [i.e. tj(t) + 0.5]
from 2022 based on the above-estimated parameters
(Fig. 3). The scenario in which the per capita attrition rate
and the per capita treatment rate increase by 0 [17; + 0 and
7(t) + 0] is the baseline scenario 1 (status quo or base
case). The rest five scenarios are scenario 2 [1; + 0.05 and
7(t) + 0], scenario 3 [7;+0.1and 7;(t) + 0], scenario 4
[n;+0 and 7;(t) +0.5], scenario 5 [n;+0.05 and
7;(1) + 0.5], scenario 6 [n;+ 0.1 and 7,(t) + 0.5]. For
the varied per capita attrition rate and treatment rate in
these six scenarios, the overall annual treatment rate
changed from 73.73% in 2022 to 78.81, 69.73, 62.42,
90.59, 85.54, 81.03% in 2030 (Figure S1 in Appendix,
http://links lww.com/QAD/C829), while the overall
annual attrition rate changed from 3.21% in 2022 to 3.07,
8.13, 13.20, 3.03, 8.06, 13.09% in 2030, respectively
(Figure S2 in Appendix, http://links.Iww.com/QAD/
C829). In this study, we define that the increase in these
rates with decimals (e.g. 0.1) means they plus decimals
(0.1 here), while an increase with percentage (e.g. 10%)
means they multiply 1-+percent (110% here). We
predicted the trend of the total new infections (both
drug-sensitive and drug-resistant infections), new drug-
resistant infections, the prevalence of TDR among new
infections, and HIV-related deaths among diagnosed and
treated individuals during 2022-2030.

Sensitivity analysis

We considered more combination of the increase in the
per capita attrition rate (0—0.1, with step 0.01) and the per
capita treatment rate (0—0.5, with step 0.05) to perform
sensitivity analysis (Fig. 4). We plotted the ratio of
cumulative total new infections (Fig. 4a), cumulative new
drug-resistant infections (Fig. 4b), cumulative HIV-
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Fig. 2. Model fit (blue lines) to the annual reported data (black circles) of newly diagnosed individuals with CD4* >500 cells/pl,
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(e-h), the number of deaths and drug-resistant individuals among the treated individuals (i-j), and the number of drug-resistant
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used for validation (I). Grey areas show a 95% confidence interval (CI).
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related deaths (Fig. 4d) over 9 years (during 2022—-2030),
and the prevalence of TDR among new infections in
2030 (Fig. 4c) for various increase in the per capita
attrition rate and the per capita treatment rate versus the
baseline scenario. The threshold in Figs. 4a and 4d was
defined as the combination of attrition and treatment
such that the above ratio was equal to one.

Results

HIV transmission dynamics

Figure 2 shows the model fitting to the reported data of
HIV cases with diagnosis, treatment, and drug resistance,
and most of the observed data fall within the estimated
95% CI. On the basis of our parameter estimates (Appendix
Table S2-S3, http://links.Iww.com/QAD/C829), we
projected the number of diagnosed cases at four
CD4" cells count groups (CD4" >500 cells/pl, CD4"
350~499 cells/pl, CD4" 200~349 cells/pl, and CD4"
<200 cells/pl) in 2030 would decrease to 1034 (95% CI:
450~1617), 1301 (603~1998), 2145 (983~3307), and
4314 (2366~6261), respectively. With the expanded
treatment coverage, the number of newly treated cases

with CD47 cell count at least 500 cells/wl in 2030 would

increase to 1325 (598~2051), and the other three CD4"
cells count groups would reach 1409 (777~2041), 2028
(1137~2918), and 5001 (2408~7593), respectively. The
number of deaths and drug-resistant individuals among the
treated individuals in 2030 would reach 3072 (2007~4137)
and 5893 (2974~8813), respectively, and the number of
drug-resistant individuals among people with attrition
would reach 616 (160~1073). The prevalence of TDR
among diagnosed treatment-naive individuals would reach

6.72% (3.88~9.56%).

Impact of increasing attrition and expanding
treatment

The benefit of expanding treatment may be undermined
by increasing attrition (Fig. 3). In the base case with CD4"
cell count dependent per capita attrition rates 0.025~0.15
and per capita treatment rates 0.23~0.42 as shown in Table
S3,  http://links Iww.com/QAD/C829  (these rates
increase by 0, blue solid lines), the cumulative total new
infections and cumulative new drug-resistant infections
over the next 9years (during 2022-2030) would be
145391 (90957~199826) and 7637 (3970~11305),
respectively. The prevalence of TDR among new
infections in 2030 would reach 6.56% (3.76~9.36%)
and the cumulative HIV-related deaths over 9 years would

be 51965 (42929~61001). Increasing the per capita
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treatment rate by 0.5 while maintaining the baseline per
capita attrition rate (blue dashed lines) would decrease the
cumulative total new infections and HIV-related deaths by
5.60% (4.22~6.99%) and 11.16% (3.41~18.90%), respec-
tively. Meanwhile, this would increase the cumulative new
drug-resistant infections and the prevalence of TDR
among new infections in 2030 by 0.97% (—0.33~2.27%)
and 15.26% (12.32~18.20%), respectively. However,
increasing the per capita treatment rate by 0.5 while
increasing the per capita attrition rate by 0.05 (black dashed
lines) would only slightly decrease the cumulative total new
infections by 0.04% (—1.63~1.71%), and increasing the
per capita attrition rate by 0.1 (red dashed lines) can
inversely increase these infections by 4.89% (2.49~7.29%).
This implied that even a little increase in attrition would
counteract the benefit of treatment expansion. Moreover,
increasing the per capita attrition rate by 0.1 while
maintaining the baseline per capita treatment rate (red solid
lines) would increase the cumulative total new infections
and HIV-related deaths by 14.32% (11.12~17.52%) and
10.20% (6.18~14.21%), respectively.

Sensitivity analysis

There exist critical thresholds of per capita attrition rate
which offset the benefit of expanding treatment on the
cumulative total new infections and HIV-related deaths
over 9years (Fig. 4). If the per capita treatment rate
increased by 0.1 (or 0.2) while maintaining the baseline
attrition, the cumulative total new infections would
decrease by 1.63%  (1.21~2.04%) Jor 2.93%
(2.19~3.67%)], but even a 0.0114 (0.0079~0.0149) [or
0.0220 (0.0153~0.0286)] increase in the per capita
attrition rate would offset the benefit of expanding
treatment on these new infections (Fig. 4a). Moreover,
increasing the per capita attrition rate by more than
0.0513 (0.0353~0.0672) would always increase these
new infections once the per capita treatment rate
increased by less than 0.5. Similarly, for the same increase
in per capita treatment rate without increasing attrition,
the cumulative HIV-related deaths would decrease by
3.52% (1.07~5.96%) [or 6.16% (1.88~10.45%)], but
even a 0.0352  (0.0129~0.0575) [or  0.0695
(0.0225~0.1165)] increase in the per capita attrition rate
would offset the benefit of expanding treatment on the
cumulative HIV-related deaths (Fig. 4d).

Increasing the per capita attrition rate and per capita
treatment rate can both increase the number of cumulative
new drug-resistant infections (Fig. 4b) and the prevalence of
TDR among new infections in 2030 (Fig. 4¢), and the
former is more sensitive to these drug-resistance results than
the latter. For example, a 0.05 and 0.1 increase in the per
capita treatment rate would increase the number of
cumulative new drug-resistant infections by 0.16%
(0.01~0.38%) and 0.30% (0.01~0.70%), respectively, while
20.05 and 0.1 increase in the per capita attrition rate would
increase this number by 22.18% (14.55~29.80%) and
41.15% (27.07~55.23%), respectively. Similarly, a 0.05 and

0.1 increase in the per capita treatment rate would increase
the prevalence of TDR among new infections in 2030 by
2.32% (1.87~2.77%) and 4.39% (3.54~5.25%), respec-
tively, while a 0.05 and 0.1 increase in the per capita
attrition rate would increase this prevalence by 20.08%

(8.70~31.46%) and 33.48% (14.85~52.12%), respectively.

Discussion

In this study, we have developed a comprehensive HIV
transmission dynamic model to investigate the impact of
attrition on the HIV epidemic with expanding ART
coverage in the presence of TDR and ADR in China. We
found that increasing the per capita attrition rate by 0~0.1
would cause the cumulative total new infections from
decreasing by 5.60% (4.22~6.99%) to increasing by
14.32% (11.12~17.52%) when the per capita treatment
rate increases by 0~0.5. This means that there exists a
critical threshold of attrition that can offset the benefit of
treatment expansion. There also exists a critical threshold
for cumulative HIV-related deaths, which changes from
decreasing by 11.16% (3.41~18.90%) to increasing by
10.20% (6.18~14.21%). Increasing the per capita
attrition rate by 0.05~0.1 would cause more increase
(22.18~41.15% versus 0.16%~0.30%) in the number of
cumulative new drug-resistant infections than increasing
the per capita treatment rate by 0.05~0.1.

Our study shows that expanding treatment can decrease
the cumulative total new infections and HIV-related
deaths, but this benefit would be offset by even a little
increase in the attrition rate. Increasing the per capita
treatment rate by 0.1~0.2 can decrease the cumulative
total new infections by 1.63~2.93%. However, even a
0.0114~0.0220 increase in the per capita attrition rate
would offset this benefit. Similarly, a 0.0352~0.0695
increase in the per capita attrition rate would offset the
benefit of decreasing the cumulative HIV-related deaths
by 3.52~6.16%. This is because the number of treated
individuals far exceeds untreated individuals and even
little increase in the per capita attrition rate among treated
individuals may cause a huge negative effect on
controlling the epidemic. Therefore, improving the
quality of HIV treatment and care and thus reducing
the per capita attrition rate may be as important as
treatment expansion, especially in low-resource areas. It is
worth noting that the quantitative results on the effect of
increasing attrition and treatment have not been
investigated in previous modelling studies [14—17].

Our finding demonstrates that treatment expansion will
increase the transmission of drug resistance and attrition
will further increase the risk. The attrition rate is high
among patients with high CD4" cell counts [7,8] because
patients with higher CD4 ™" cell counts are more likely to be
asymptomatic and they may be less willing or motivated to
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take ART drugs. Lower adherence to ART among these
patients with higher CD4™ cell counts may increase the
risk of treatment failure and facilitate the emergence and
transmission of drug-resistant viruses. Thus, enhancing
adherence education is urgently needed, especially for
patients with high CD4" cell counts, and training
healthcare providers on ART adherence should also be
taken seriously. As the treatment coverage is expanding and
the CD4™ level before ART is increasing constantly, it is
necessary to focus on the management of people living
with HIV to decrease or even avoid attrition.

Our study may have a few limitations due to model
assumptions. First, some patients missed CD4 ™" cell count
data and we assumed that the distribution of people with
missing CD4 " data was the same as people with CD4 " data
[29,30]. Second, we considered attrition due to loss to
follow-up or stopping ART as a whole, but the reasons for
attrition of them may be different. Third, we did not
consider geographical heterogeneities in the diagnosis,
treatment, and drug-resistance levels at the city scale.
Fourth, our model considered the sexual transmission
among the general population without differentiating the
heterosexual or homosexual transmission. Fifth, our model
of drug resistance considered the nucleoside reverse
transcriptase inhibitor (NRTI), non-NRTI (NNRTI),
and protease inhibitor resistance as a whole, and did not
discriminate the difference among them. This may
overestimate the effect of drug resistance because protease
inhibitor resistance is rare, and the protease inhibitor
resistant strains are less transmissible than NRTI-resistant
and NNRTI-resistant strains [15]. Sixth, because of the
complexity of the model structure and a large number of
parameters, the uncertainty of predictions would become
large and the prediction of absolute values in the long term
should be interpreted with caution. Finally, the results of
the balance between increasing attrition and expanding
treatment in Guangxi may not be simply generalized to
China as a whole or other countries due to the great
difference in HIV incidence, attrition, and treatment
coverage. Setting-specific analysis was needed on the basis
of the local epidemic level.

In conclusion, a minor increase in attrition can offset the
benefit of expanding treatment and increase the transmis-
sion of HIV drug resistance. Reducing the attrition rate by
enhancing adherence education of patients and improving
the management quality of HIV treatment and care for
patients already in treatment, may be as important as
expanding treatment for untreated patients.
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