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Abstract
Tire defect detection has significant industrial value and has

been a research topic in both academia and industry. Despite its
importance, prior works does not consider the practical manufac-
turing circumstances, where there is only limited annotation for
the defect. Such limitation hinders the prior works from deploying
to the real-world system. To address the problem of Tire Defect
Detection with Limited Annotation (TTDLA), we proposed a novel
framework, denoted as tire defect detection with Self-Supervision
and Synthetic data (or S3). S3 first uses self-supervised learn-
ing to train the encoder without using any labeled data in the
pretraining stage. The encoder is then adopted as the encoder
of the Faster-RCNN detector in the fine-tuning stage. In addi-
tion, we proposed an algorithm to generate synthesized image by
pasting defects randomly onto the regular image. Experiments
demonstrate that both self-supervised learning and synthesized
data boost the performance of the detector under TTDLA sce-
nario.
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Introduction
Industrial defect detection is an important problem for the

advancement of automation in industry, which has been applied

to multiple industrial products, typically involving steel or metal

surfaces [24, 17, 9, 13, 20, 28, 27, 2]. Defect detection approaches

are typically customized for different factory environments and

downstream applications. In this work, we consider the problem

of tire defect detection (TDD). This is an important problem due

to the ubiquity of tire manufacturing, an ever-increasing demand

for tires, and the essential role that tires play in aspects such as

the security of both traditional and electric vehicles.

Despite the importance of TDD, only a few research

works [26, 31, 7] have addressed this problem. These prior works

mainly consider images that contain single defects, which is not

always a realistic assumption for real world applications. In this

paper, we instead consider the problem of TDD in the context of

images containing one or more defects. Technically, while prior

formulations of TDD resemble the “classification” task, the prob-

lems considered in this work are more like the “detection” task.

The goal is to detect all defects in the input image, instead of de-

ciding whether the image contains a defect.This difference makes

the TDD problems now considered more challenging. Further-

more, while prior works demonstrate the possibility of applying

deep neural networks to the TDD problem, most assume the ex-

istence of a large training set [26, 31]. However, tire defects are

uncommon in practical tire manufacturing and the identification

and annotation of these defects is time consuming. This makes it

difficult to curate a large dataset for each defect type in practice.
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Figure 1. Overview of the proposed TDDLA approach, using Self-

Supervision and Synthetic data (S3). The top part of the figure reports to

the pretraining stage, while the bottom part shows the finetuning stage. In

the latter, the network encoder is initialized with the weights obtained at the

end of pretraining.

In this work, we specifically study the TDD problem with Limited

Annotation (TDDLA), where there is a large imbalance between

normal and abnormal tire patterns.

We propose a novel detection framework for TDDLA, based

on Self-Supervision and Synthetic data (S3). As shown in Fig. 1,

S3 adopts the Faster-RCNN [23] architecture, but is trained in two

stages: a pretraining and a fine-tuning stage. TPre-training aims

to learn a general feature encoder using unlabeled data. This is

performed by optimizing a self-supervised learning loss on an un-

labeled dataset. The weights of the feature encoder learned in the

first stage are then used to initialize the training of the Faster-

RCNN detection model in the second stage, which has access

to limited annotation of defect locations. Beyond proposing this

multi-stage training scheme, we investigate the effectiveness of

using synthetic data for training. Experiments demonstrate that

both the introduction of the pretraining stage and the use of syn-

thetic data boost TDDLA performance.

Overall, this work makes three contributions. First, we intro-

duce the problem of Tire Defect Detection with Limited Annota-

tion (TDDLA) and show that this problem can be applied to mul-

tiple industrial applications. Second, we propose a novel training

framework, denoted as S3, to address the problem of TDDLA,

where only limited tire defect annotation is available for train-

ing. S3 leverages self-supervised pertaining and data synthesis to

overcome the limited data issue. Finally, extensive experiments

and ablation studies are presented to validate the effectiveness of
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S3 on the proposed TDD dataset.

Related Work
In this section, we discuss prior works on TTD and Self-

supervised Learning.

Tire Defect Detection
TDD is a problem that has long been considered and has

significant interest for industry. Prior works [26, 31] mainly con-

sider the scenario where there is a single defect per image. This

reduces the problem to one of image classification. Furthermore,

in the datasets used in these works, the single defect occupies a

large portion of the image. [26] adopts a fully convolutional net-

work (CNN) for detecting the region that contains the defect and

produces a segmentation map for it. [31] uses a CNN to extract

deep features, which are then used to discriminate normal im-

age patches from abnormal patches that contains defects. These

works do not consider the low training data regime, where defect

annotations are insufficient to train a model roubust enough for

ptractical deployment. Similar to our work, [7] addresses the lim-

ited samples issue. This is done by using an ensembles of CNNs

and taking their joint classification outputs to classify the defect

image. Unlike [7], the detection task is considered in this work

and self-supervised learning is leveraged to address the limited

data issue.

Self-supervised Learning
Self-supervised learning [11] aims to learn a generic feature

representation that can be applied to various downstream tasks.

The learning of generic features is conducted during a pretraining

stage, where no label from the downstream tasks is used. Self-

supervised training, without data labels, is implemented by de-

signing a pretext task to optimize the model [1, 22, 15, 29, 30, 14].

Various pretext tasks have been proposed over the past few

years, ranging from solving image puzzles [12, 19], to predict-

ing masked patches [22, 8, 18] or learning invariant features for

different color channels of the same image [25]. One of the most

popular pretext tasks is to learn an invariant representation for

different augmentations (i.e. views) of an input image. Typi-

cally, these views are created by applying standard data trans-

formations (random cropping, rotation, or color jittering) to the

image. This idea has motivated multiple recent methods. For ex-

ample, SimCLR [4, 5] first applies data augmentations to each

input image and obtains two set of augmented views per image.

Training is then based on a loss function that encourages the fea-

ture vectors extracted from the two views by a deep network to

be similar. To further increase the diversity of the augmented fea-

tures, Moco [10, 6] uses a dictionary that stores the features of

augmented views from previous epochs. Both variants of the idea

highlight the importance of learning invariant representation from

diverse augmentations. In this work, we proposed an alternative

augmentation method by using synthesized data that is tailored

for TDD for self-supervised learning.

Tire Defect Detection with Limited Annotation
In this section, the task of Tire Defect Detection with Lim-

ited Annotation (TDDLA) is introduced. As shown in Fig. 2,

we consider the problem where each tire image contains multiple

“threads”, which appear as white dots on the tire surface. While

most of the threads are normal, those marked with blue rectan-

gles are abnormal, indicating a defect in the manufacturing of

the tire. These annotations are produced manually by a tire ex-

pert. As shown in the images of Fig. 2, the number of normal

and abnormal threads is highly imbalanced,. Moreover, since the

threads are densely distributed over the tire surface, it is challeng-

ing to annotate every thread. Hence, annotations are not produced

for normal threads, only the bounding boxes of abnormal threads

are available. The task of TDDLA is to localize these abnormal

threads. This is similar to object detection, but more difficult than

the standard object detection problem, since the abnormal threads

to be detected are surrounded by many normal threads, for which

annotations are not available. An analogous problem would be

to train an object detector to detect female pedestrians, on street

scenes heavily populated by male pedestrians, and no labels for

the latter.

Method
In this section, the proposed defect S3 detection framework

is introduced. Since TTDLA is a challenging task, we consider

two possible solutions. The first is to augment the existing dataset

with synthetic data. The second is to train a generalizable detec-

tor encoder by self-supervised learning from unlabeled data only.

The entire framework is illustrated in Fig. 1 and more details will

be elaborated below.

Architecture
A standard Faster-RCNN [23] with ResNet50 backbone is

adopted as the detection model for thread detection. The Faster-

RCNN contains three submodules: an encoder, a region proposal

network, and a classifier (see bottom plot of Fig. 1). The encoder

extracts features from the input image and its output contains the

local feature vectors for each of the threads. The region proposal

network identifies potential thread candidates among the encoder

features. Finally, the classifier classifies each of the proposed can-

didates, predicting whether it is a defect.

Algorithm 1 Procedure to generate synthetic crops.

1. Save all images in a dictionary D.

2. For a given a synthetic/regular image ratio r, compute the

number of synthesized images k.

3. Randomly select k images with no defects from dictionary

D.

4. Paste 1 to 4 randomly selected defects in random locations

of those k images. Save the locations as ground truth for defects

in those k images.

Training with synthetic data
While prior works [26, 31] assume that sufficient defect data

is available for training, this is usually unrealistic in the manufac-

turing setting. For example, only 43% of images in our dataset

even contain thread defects. On average, each image contains

more than 500 threads and there are less than 5 defects per image.

This is a critical issue, since the deep learning model requires

a large amount of training data. Insufficient data will cause the

model to overfit to the training images and perform poorly on im-

ages unseen during training. Yet, curating a large dataset with
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Figure 2. Examples of the tire defects. For each image, the white dots are the threads on the tire surface. Some of the white dots (marked in blue rectangles)

are abnormal and considered as defect, while the rest are normal threads.
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Figure 3. (a) SimCLR [4] architecture (b) SimCLR [4] architecture with synthetic data. Solid lines indicate regular images, while the dashed line indicate

synthetic ones.

defect annotations is challenging, because (1) defects are rare in

industrial manufacturing and (2) defect annotation requires do-

main expertise, which is not available in the public crowdsourc-

ing platforms commonly leveraged to label large-scale datasets.

The requirement of time and manual effort from experts makes

the annotation of large datasets impractically costly.

Since it is challenging to curate a large dataset, we pursue the

alternative strategy of augmenting the current dataset. For this, we

propose to synthesize the input image. A similar approach [16]

has shown promising results on the publicly available industrial

defect dataset MVTec-AD [3]. Our method shares the spirit of

[16] but, unlike this work, we rely on few annotated defects to

start with. To ensure the quality of the synthesized images, we

proposed to leverage these few annotated defects using the syn-

thesized dataset generation procedure described in Algorithm 1.

After application of Algorithm 1, the synthesized images

can contain multiple defects at random locations. As shown in

Fig. (a), the synthesized output resembles a regular image, where

the pasted defects cannot be distinguished with ease. Fig. (b) fur-

ther shows bounding boxes of pasted defects. Note that since the

defects are pasted on the synthesized image, the defect location is

labeled automatically, no human effort is required.

Self-Supervised Pretraining
Self supervised learning (SSL) [11] is commonly used in cir-

cumstances where data labeling is challenging. The goal is to

train a model using a large unlabeled training dataset with a proxy

task. This pretrained model is then fine-tuned on the downstream

task of interest, for which only little annotated data is available.

(a) (b)

Figure 4. Example of (a) a synthesized crop and (b) a synthesized crop with

bounding box annotations. Note that the annotations are obtained without

human labeling effort.

Motivated by the success of SSL, we propose to first pretrain the

encoder (ResNet50 backbone) of the Faster-RCNN using state-

of-the-art SSL methods. This encoder is then fine tuned on the

downstream TDD task.

Following recent advances in SSL, we select SimCLR [4]

as SSL approach. Take 3 input images x1, x2 and x3 for exam-

ple. As depicted in Fig. 3(a), SimCLR takes these images and

applies two different data augmentations to each, resulting in two

sets of augmented images {xi1,xi2,xi3} and {x j1,x j2,x j3}. These

two augmented image sets are then forwarded into the encoder

(i.e. ResNet50) for extracting the corresponding feature vectors

{ fi1, fi2, fi3} and { f j1, f j2, f j3}, respectively. Finally, these vec-

tors are passed through a projection head, composed by a series
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SSL Syn. data for SSL Syn. data for finetuning Avg. Precision Avg. Recall Avg. F1 Best F1
0.7972 0.7927 0.7949 0.8212

� 0.7957 0.8070 0.8013 0.8188
� � 0.7875 0.8276 0.8071 0.8216
� � � 0.8432 0.8347 0.8389 0.8552

Table 1. Quantitative results of different TDDLA approaches. Checkmarks indicate the components used by each approach,
beyond the plain Faster-RCNN baseline (top row). Results in bold highlight the best performance.

of fully connected layers.

The projected embeddings {zi1,zi2,zi3} and {z j1,z j2,z j3}
are used to compute the contrastive loss

Lcontrastive =
zT

i1z j1/τ
∑3

k=1 zT
ikz jk/τ

, (1)

where τ is a smoothing factor. This loss encourages pairs of fea-

ture vectors extracted from the same image to be close in the em-

bedding space, while those extracted from different images should

be far away. This endows the embedding with a metric struc-

ture (similar images are mapped to neighboring feature vectors,

different images to vectors that are far apart). The downstream

task can then be learned in this space using little training data,

since the metric structure of the space is already learned. In many

cases, the downstream task can even be implemented by a simple

nearest neighbor feature classifier. While the application of self-

supervised learning to the limited data regime has shown to be

successful mostly for classification tasks, we demonstrate that the

technique can be equally applied to detection tasks such as TDD.

Beyond this, we further investigate the benefits of adding

synthesized data to the self-supervised learning pipeline. As illus-

trated in Fig 3(b), regular images can be combined with synthetic

images, marked with a dashed line in the figure. Experiments

demonstrate that adding synthesized data to the SSL pipeline

boosts TDD performance.

Experiment
In this section, the details of the dataset are discussed and

experimental results of the TDD task are presented.

Dataset and Metric
The dataset contains 567 images, only 324 of which contains

defects. To train the detection model, we discard images without

defects and use an 80 to 20 split for train and test set. This means

that 243 images are used as training set. All the remaining im-

ages are used as test set. Evaluation is based on the precision, re-

call and F1 score metrics popular in the detection literature, using

IOU@0.5. Since the test set is relatively small, results have high

variance. We report the average result over at least five training

trials.

Implementation Details
All experiments are conducted using Pytorch [21] on a

Nvidia Titan Xp GPU with Intel Xeon CPU E5-2630. For the

self-supervised pretraining stage, the encoder is trained for 200

epochs, batch size is set 128 and τ is set to 0.5. We use random

resized crop, random horizontal flip, color jitter and random gray

scale for the data augmentations. For the fine-tuning stage, we

set the batch size to 4 and train the Faster-RCNN for 100 epochs.

In both pretraining and finetunning stages, an SGD optimizer is

used with learning rate 0.002, momentum 0.9 and weight decay

0.0005.

Quantitative Results
Table 1 summarizes the benefits of the proposed TTDLA ap-

proach. The table presents the average precision, recall, and F1-

score of several approaches plus the best F1-score over the five

training runs. The top row of the table summarizes the result of

simply training the Faster-RCNN on the TDD dataset. This is

our baseline and achieves the average F1 score of 0.7949. By

performing SLL pretraining, the average F1 score increases to

0.8013. By adding the synthetic data to the pretraining stage, we

observe another 0.58% gain in terms of F1 score. Finally, when

synthetic data is used during both pretraining and fine tuning, the

gain over the baseline is around 3.8%. Note that the best F1 score

achieved by S3 with both SSL and synthetic data is 0.8552. These

results validate the hypothesis that both SSL pretraining and the

addition of synthetic examples can help mitigate the challenges of

limited training data and are useful for the TDDLA task.

Ablation of Synthetic/Regular Ratio
To further investigate the effects of synthetic data, we first

train a detector detector without synthetic defects. As shown in

Table 2, this has an average F1 score of 0.7949. We then ab-

late the synthetic/regular ratio r and find that r = 2 leads to the

best F1 score. Compared to the results from the first row of Ta-

ble 2, adding synthetic data improves the F1 score by 3.5 points

on average. This indicates the use of synthetic data can poten-

tially alleviate the issue of insufficient training data and improve

the detection results. Note that synthetic data is only used during

the training phase, not the testing phase.

Qualitative Results
Fig. 5 shows some quantitative results of the proposed frame-

work on three inputs image. It can be observed that the dataset

now used is unlike previous ones, where images only contain a

single defects. The first row shows an example where all detected

defects appears in the ground truth. The second row shows an ex-

ample with a false positive detection. The last row shows another

example, where the ground truth and the prediction mismatches,

differ by both a false positive and a false negative (missed) detec-

tion.

Conclusion and Future Work
In this work, we consider the problem of tire defect detec-

tion with limited annotation (TDDLA) scenario. To address this

issue, we proposed a novel training framework suitable for the

TDDLA problem. The proposed framework contains 2 stages,

which are (1) the pretraining stage and (2) the finetuning stage.

The former assists the feature encoder to learn a more generic fea-

ture, while the later uses the limited annotation to predict defect
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Syn./Regular Ratio r Precision Recall F1 F1 (Best)
No syn. image 0.7972 0.7927 0.7949 0.8212

2 0.8204 0.8379 0.8291 0.8533
1.5 0.8147 0.7968 0.8057 0.8271
1 0.8283 0.8197 0.8240 0.8444

0.5 0.8369 0.8037 0.8200 0.8392
1/3 0.8291 0.7740 0.8006 0.8235
1/5 0.8138 0.8322 0.8229 0.8345

Table 2. Ablation study of the synthetic/regular image ratio r. Results in bold highlight the best performance. It can be observed
that r=2 leads to better F1 result.

(a) Ground truth (b) Prediction result

Figure 5. (a) Ground truth location of the defects. (b) Prediction result of

the proposed model.

location based on the initial weight from the former pretraining

stage. To further augment the limited training data, an algorithm

is proposed to produce synthesized defect on the image. Exten-

sive experiments demonstrate the performance of the proposed

framework and the ablation study validates the effectiveness of

each proposed techniques. We hope this work could contribute

a new research direction to the literature of tire defect detection

with limited annotation and inspire future works that investigate

more defect types.
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[22] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell,

and Alexei A. Efros. Context encoders: Feature learning by in-

painting. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2536–2544, 2016.

[23] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster

r-cnn: Towards real-time object detection with region proposal net-

works. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 39(6):1137–1149, 2017.

[24] Yi Sun, Peng Bai, Hong yu Sun, and Ping Zhou. Real-time auto-

matic detection of weld defects in steel pipe. NDT & E Interna-
tional, 38(7):522–528, 2005.

[25] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive mul-

tiview coding. In Computer Vision – ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part

XI, page 776–794, Berlin, Heidelberg, 2020. Springer-Verlag.

[26] Ren Wang, Qiang Guo, Shanmei Lu, and Caiming Zhang. Tire

defect detection using fully convolutional network. IEEE Access,

7:43502–43510, 2019.

[27] Moe Win, A. R. Bushroa, M. A. Hassan, N. M. Hilman, and Ari

Ide-Ektessabi. A contrast adjustment thresholding method for sur-

face defect detection based on mesoscopy. IEEE Transactions on
Industrial Informatics, 11(3):642–649, 2015.

[28] Lijuan Xu and Qiang Huang. Modeling the interactions among

neighboring nanostructures for local feature characterization and de-

fect detection. IEEE Transactions on Automation Science and Engi-
neering, 9(4):745–754, 2012.

[29] Mang Ye, Xu Zhang, PongChi Yuen, and Shih-Fu Chang. Unsuper-

vised embedding learning via invariant and spreading instance fea-

ture. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6203–6212, 2019.

[30] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image

colorization. In ECCV, 2016.

[31] Yan Zhang, Xuehong Cui, Yun Liu, and Bin Yu. Tire defects

classification using convolution architecture for fast feature embed-

ding. International Journal of Computational Intelligence Systems,

11:1056, 05 2018.

321-6
IS&T International Symposium on Electronic Imaging 2023

Intelligent Robotics and Industrial Applications using Computer Vision 2023


