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A B S T R A C T

Despite years of combined antiretroviral therapy (cART), HIV persists in infected individuals. The virus also
rebounds after the cessation of cART. The sources contributing to viral persistence and rebound are not fully
understood. When viral rebound occurs, what affects the time to rebound and how to delay the rebound remain
unclear. In this paper, we started with the data fitting of an HIV infection model to the viral load data in treated
and untreated humanized myeloid-only mice (MoM) in which macrophages serve as the target of HIV infection.
By fixing the parameter values for macrophages from the MoM fitting, we fit a mathematical model including
the infection of two target cell populations to the viral load data from humanized bone marrow/liver/thymus
(BLT) mice, in which both CD4+ T cells and macrophages are the target of HIV infection. Data fitting suggests
that the viral load decay in BLT mice under treatment has three phases. The loss of infected CD4+ T cells and
macrophages is a major contributor to the first two phases of viral decay, and the last phase may be due to the
latent infection of CD4+ T cells. Numerical simulations using parameter estimates from the data fitting show
that the pre-ART viral load and the latent reservoir size at treatment cessation can affect viral growth rate
and predict the time to viral rebound. Model simulations further reveal that early and prolonged cART can
delay the viral rebound after cessation of treatment, which may have implications in the search for functional
control of HIV infection.

1. Introduction

Acquired immune deficiency syndrome (AIDS) is one of the leading
causes of death in the world, especially in Sub-Saharan Africa. As
the pathogenic agent of AIDS, HIV mainly infects activated CD4+ T
cells (Aiamkitsumrit et al., 2015; Micci et al., 2014). In addition to
CD4+ T cells, HIV also infects other cells, such as macrophages (Steven-
son and Gendelman, 1994; Bol et al., 2009; Gorry et al., 2014; Sharova
et al., 2005). CD4+ T cells and macrophages are important components
of the immune system and play a critical role in defending against
viral infection (Levy, 2001; Okoye and Picker, 2013). The progressive
depletion of these cells has devastating effects on immune regula-
tion, eventually resulting in the death of patients due to a series of
opportunistic infections.

Different classes of antiretroviral drugs targeting specific stages of
the HIV life cycle have been developed, including fusion inhibitors,
reverse transcriptase inhibitors, integrase inhibitors, and protease in-
hibitors. The combined antiretroviral therapy (cART) containing three
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to five antiretroviral drugs has proven to be very effective in suppress-
ing viral replication. It can reduce the plasma viral load to below the
detection limit of standard assays, usually 50 RNA copies/ml. However,
the current treatment cannot eliminate the virus and HIV persists in
patients despite suppressive cART for a prolonged time (Collier et al.,
1996; Palmer et al., 2008; Furtado et al., 1999; Maldarelli, 2011). The
sources of viral persistence under cART are not fully understood. The
latent reservoir, consisting of a small population of latently infected
CD4+ T cells (Chun et al., 2003), is considered an important reason
for the persistence of viremia (Richman et al., 2009; Barton et al.,
2013; Katlama et al., 2013). These latent cells remain in the resting
state under treatment (Wong et al., 1997) but can be activated and
produce new virions, inducing viral rebound after the cessation of
cART (Marsden et al., 2020).

There are two objectives for the management of HIV infection: a
sterilizing cure that completely eradicates the virus and a functional
cure that aims to control plasma HIV RNA to an undetectable or low
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level in the absence of antiretroviral treatment. Given the difficulty
in eradicating HIV, a functional cure seems to be a more reachable
short-term goal. Many efforts have been devoted to delaying viral
rebound after therapy interruption in HIV-infected individuals (Hoc-
queloux et al., 2010; Sáez-Cirión et al., 2013; Wolfgang et al., 2013).
In the VISCONTI study (Hocqueloux et al., 2010; Sáez-Cirión et al.,
2013), patients received cART shortly after HIV exposure and some
have the viral load controlled to undetectable levels for several years
after the discontinuation of therapy. In another study (Wolfgang et al.,
2013), 165 patients received cART within 6 months of seroconversion
and achieved viral load < 400 RNA copies_ml at treatment cessation.
Only four of them maintained a viral load of < 400 RNA copies/ml
for 164–202 weeks after stopping therapy and the remaining partic-
ipants experienced a viral rebound. Determining the mechanisms for
long-term control and the sources causing viral rebound may provide
important clues in the search for a functional cure.

Because of the risks and limited success cases after the discontinu-
ation of cART, treatment interruption is generally not recommended
for HIV-infected patients. Therefore, a better understanding of the
mechanisms underlying viral rebound and in vivo evaluation of novel
approaches to achieving a functional cure, require the use of animal
models for HIV infection (Garcia, 2016; Skelton et al., 2018; Denton
et al., 2012; Honeycutt et al., 2017; Kessing et al., 2017; Marsden
et al., 2020; Lim et al., 2018). With their affordability, accessibility,
and flexibility, humanized mice are appreciated as a powerful tool for
this type of research (Garcia, 2016; Skelton et al., 2018). Like most HIV-
infected patients, therapy interruption results in a rapid viral rebound
in humanized BLT mice with fully suppressed plasma viremia (Denton
et al., 2012). Using humanized myeloid-only mice (MoM) in which
macrophages serve as the target of HIV infection, Honeycutt et al.
(2017) found that 33% of the HIV-infected, virally suppressed mice
had viral rebound at 7 weeks after cART interruption. This result
indicates that the tissue macrophages can also contribute to viral per-
sistence and subsequent rebound. In Kessing et al. (2017), Kessing et al.
demonstrated that combining the Tat inhibitor didehydro-Cortistatin
A with ART accelerates HIV suppression and significantly delays viral
rebound after treatment interruption in HIV+ humanized BLT mice.
Recently, Marsden et al. (2020) proposed another functional cure ap-
proach and showed that the administration of latency-reversing agents
(LRAs) during ART prevents viral rebound after treatment cessation in
humanized BLT mice.

In addition to experimental research, mathematical models have
also provided valuable insights into the HIV infection process after
treatment interruption (Li and Wang, 2014; Conway and Perelson,
2015; Wang et al., 2017b; Yan and Wang, 2019; Prague et al., 2019;
Bing et al., 2020). In Conway and Perelson (2015), Conway and Perel-
son showed that patients could have the viral rebound, depending
on the CTL response strength, the latent reservoir size at treatment
termination, and the initial population of infected cells. Wang et al.
analytically showed the dynamic behavior of bistability (Wang et al.,
2017b), suggesting that patients can either undergo viral rebound after
treatment termination or achieve post-treatment control. Li and Wang
(2014) investigated an HIV infection model with logistic proliferation
for both uninfected and infected cells and showed that the viral re-
bound can occur in certain parameter regimes. Another modeling study
suggested that the joint therapy of inducer and antibodies can lead to a
significant delay of viral rebound by reducing the latent reservoir (Yan
and Wang, 2019).

In the experimental work (Honeycutt et al., 2017), Honeycutt et al.
used humanized MoM to avoid the confounding complications of hav-
ing an excess of T cells present during the evaluation of HIV persistence
in macrophages. They found HIV can persist in macrophages in vivo
despite effective treatment. This is consistent with our recent modeling
paper (Guo et al., 2020). Moreover, viral rebound was observed within
2 weeks of therapy discontinuation in all BLT mice (Honeycutt et al.,
2017). Some questions arise: what are the roles of CD4+ T cells and

macrophages in the viral load decline in BLT mice (and patients)
during therapy? Do macrophages contribute to viral persistence in the
presence of CD4+ T cells? What are the main factors driving viral
rebound after treatment cessation and is it possible to delay viral
rebound? In this paper, we address these questions by combining
the experimental MoM and BLT data from Honeycutt et al. (2017)
with two humanized mouse models to distinguish the contributions of
macrophage and CD4+ T cells during treatment and viral rebound after
treatment cessation. To obtain parameter values and explain the viral
decay dynamics during cART, we fit models with different assumptions
on viral decay to the viral load data from treated and untreated MoM
and BLT mice (Honeycutt et al., 2017). Using the model with best-fitted
parameter values, we study the dynamics of viral load and latent cells
before and after therapy is stopped, and evaluate if the viral load at the
start of treatment and the latent reservoir size at treatment termination
are correlated with the time to viral rebound. These results may provide
some implications for treatment strategies that aim to delay or even
prevent viral rebound after treatment cessation.

2. Models and data fitting

In this section, we study the dynamics of HIV infection in BLT
mice. We used the nonlinear least square method for data fitting and
parameter estimation. The experimental data from Honeycutt et al.
(2017) are the viral load in ART-treated and untreated MoM and BLT
mice. We fit these data using the viral load prediction by the models at
time t with or without treatment. More specifically, we used a two-
step procedure for data fitting and parameter estimation: (1) fit the
macrophage infection model (i.e. MoM model) to the viral load data
from treated and untreated MoM (Honeycutt et al., 2017); (2) fix the
macrophage-related parameter values and fit the model with CD4+ T
cell and macrophage infection (i.e. BLT model) to the viral load data
from the treated and untreated BLT mice (Honeycutt et al., 2017). The
best-fit estimates are the parameter values that minimize the following
function
yxxw

n…
i=1

(log10 ÉVi * log10 ÇVi)2,

where n is the number of data points, ÉVi is the experimental data of viral
load at the ith data point, and ÇVi is the modeling prediction correspond-
ing to the same data point. The estimation of parameters and numerical
simulations later are conducted using Matlab R2020b. The codes are
available at https://github.com/ronglibin/JTB-MoM-BLT-model.

2.1. MoM model and data fitting

Because CD4+ T cells are not present in MoM (Honeycutt et al.,
2016, 2017), we consider the following model with only macrophage
infection

h
n
n
l
n
nj

dM(t)
dt = sM * dMM * kMMV ,

dM<(t)
dt = kMMV * �MM<,

dV (t)
dt = NM�MM< * cV ,

(1)

where M(t), M<(t) and V (t) are the concentrations of uninfected
macrophages, infected macrophages and viruses at time t, respectively.
Uninfected macrophages are generated at rate sM , die at per capita rate
dM , and are infected by the virus at rate kM . The death rate of infected
macrophages is �M . The parameter NM denotes the total number of
viruses produced by one infected macrophage in its lifespan. Constant
c is the viral clearance rate. The model parameters are assumed to be
positive. Model (1) is a basic viral dynamic model as in Perelson et al.
(1996) but the target cell is different.

In the Ref. Honeycutt et al. (2017), three antiretroviral drugs, two
reverse transcriptase inhibitors (emtricitabine and tenofovir disoproxil
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fumarate) and an integrase inhibitor (raltegravir), were administered
to eight HIV infected MoM. For all treated MoM, the plasma viral load
decreased to below the detection limit of 668 RNA copies/ml within
2 weeks of treatment initiation. In contrast with the high viral load in
untreated MoM, triple therapy is effective in inhibiting viral replication
in treated MoM. For data fitting, we assume that antiretroviral drugs
are 100% effective in blocking virus infection, i.e. kM = 0. Using the
method in Perelson et al. (1996, 1997) and Perelson and Nelson (1999),
the viral load at time t is given by

V (t) =
V0

c * �M
[ce*�M t * �Me*ct], (2)

where V0 is the steady-state viral load before therapy. As shown in the
supplementary Fig. 3b of Honeycutt et al. (2017), five mice had only
one viral load measurement and three mice had two viral load measure-
ments available. Thus, it is challenging to identify all the parameters
in formula (2). The experimental paper (Honeycutt et al., 2017) found
an average 1.3-log and 1.8-log reduction in plasma viral RNA after 1
week of treatment for BLT and MoM, respectively. This rapid drop in
plasma viremia is consistent with the result in humans (Ramratnam
et al., 1999). For this reason, we assumed the viral clearance rate to
be the same and it is fixed to be c = 23 day*1. This value was estimated
in Ramratnam et al. (1999) and used in other studies (Wang and Rong,
2014; Wang et al., 2017a, 2016; Wang and Rong, 2019; Guo and Qiu,
2019). The remaining two parameters include the baseline viral load
V0 and the death rate of infected macrophages �M . Since the data of
only three out of eight treated MoM are available in the supplementary
Fig. 3b of Honeycutt et al. (2017), we use the average viral load data
from the eight MoM (see Fig. 2a of Honeycutt et al. (2017)) in data
fitting. On the basis of the best fit, we estimate the death rate of infected
macrophages �M = 0.58 day*1.

By fixing the death rate of infected macrophages from the treated
MoM, we fit model (1) to the viral load data of all the six untreated
MoM (supplementary Fig. 3a in Honeycutt et al. (2017)) and estimate
the remaining parameters, including the generation rate of uninfected
macrophages sM , the death rate of uninfected macrophages dM , the
infection rate of macrophages by free virus kM , and the viral burst
size of an infected macrophage NM . Because only the viral load is
measured in experiment (Honeycutt et al., 2017), the product of two
parameters (sM and NM ) and the remaining two parameters can be
estimated. Thus, we make a further assumption on the generation
rate of uninfected macrophages sM . As shown in Fig. 2f of Honeycutt
et al. (2017), the mean numbers of human macrophages in the liver,
lung, spleen, and bone marrow of MoM are 3.1 ù 105, 1.5 ù 105,
7.5 ù 104 and 1.5 ù 106, respectively. Thus, the total number of human
macrophages present in examined tissues is 2.035ù 106. Since the adult
mouse (ranges from 13 to 48 weeks) has an average volume of 264 ml
and the examined tissues account for approximately 10% of the total
volume (Shi, 1974), the volume of examined tissues is estimated to
be 26.4 ml. Thus, in the absence of infection, the macrophage level
is 2.035 ù 106_26.4 = 7.71 ù 104 ml*1. Assuming the system (1) is
at steady state before infection (Wang and Rong, 2014; Wang et al.,
2017a), we obtain that the generation rate of uninfected macrophages
sM is 7.71ù dM ù 104 ml*1 day*1. With this parameter value, the best fits
are shown in Fig. 1 for six untreated MoM (black solid line). It follows
that model (1) provides good fits to the viral load data (Honeycutt et al.,
2017). Parameter estimates corresponding to the best fits are given in
Table 1.

2.2. BLT model and data fitting

To compare with the experimental results obtained in MoM, Hon-
eycutt et al. (2017) conducted similar experiments in BLT mice. For
BLT mice, both CD4+ T cells and macrophages are the target of HIV
infection (Honeycutt et al., 2017; Skelton et al., 2018; Wege et al.,
2008; Melkus et al., 2006). Thus, we first use a model that includes the

infection of both CD4+ T cells and macrophages to fit the viral load
data in treated BLT mice. However, the basic model fails to capture
the slow viral decline in the later period of suppressive therapy (Fig.
1a of Honeycutt et al. (2017)). The latently infected cells might be a
possible reason for such a slow decay (Perelson et al., 1997; Perelson
and Ribeiro, 2013). For this reason, we modify the basic model by
including latently infected CD4+ T cells and then fit it to the viral load
data from BLT mice (Honeycutt et al., 2017). To compare the best fits
with different assumptions, the sum of squared residuals (SSR) and the
Akaike information criterion (AIC) will be calculated.

2.2.1. Model without latently infected cells
We start with the following model including the infection of both

CD4+ T cells and macrophages,

h
n
n
n
n
n
l
n
n
n
n
nj

dT (t)
dt = sT * dT T * (1 * ✏)kT TV ,

dT <(t)
dt = (1 * ✏)kT TV * �T T <,

dM(t)
dt = sM * dMM * (1 * g✏)kMMV ,

dM<(t)
dt = (1 * g✏)kMMV * �MM<,

dV (t)
dt = NT �T T < +NM�MM< * cV ,

(3)

where T (t) and T <(t) are the concentrations of uninfected CD4+ T cells
and infected CD4+ T cells at time t, respectively. Uninfected CD4+ T
cells are generated at rate sT , die naturally at rate dT per cell, and
become infected by free virus at rate kT . The constant �T is the death
rate of infected CD4+ T cells, andNT is the number of virions produced
by one infected CD4+ T cell during its lifetime. Constant ✏ (0 f ✏ f 1)
is the overall effectiveness of the treatment in blocking virus infection
of CD4+ T cells (Rong and Perelson, 2009a). Compared with infected
CD4+ T cells, infected macrophages can pump antiretroviral drugs out
by using the P-glycoprotein transporter (Kim et al., 1998). Thus, we
use g✏ to represent the drug efficacy of blocking macrophage infection,
where g is the effective penetrance of drugs ranging from 0 (drugs have
no effect) to 1 (drugs are as effective as in infected CD4+ T cells).
Models with multiple target cell populations have also been used in
some other studies (Rong and Perelson, 2009b; Callaway and Perelson,
2002; Perelson et al., 1997). All other variables and parameters are the
same as those in model (1).

Similar to the method in Section 2.1, we assume that antiretro-
viral therapy is 100% effective in blocking the infection of CD4+ T
cells and macrophages and that model (3) is at a steady state before
treatment. Thus, the viral load after drug therapy can be solved as
follows (Perelson et al., 1997):

V (t) = ÑV [Ae*�T t + Be*�M t + (1 * A * B)e*ct], (4)

where A = NT kT ÑT
c*�T

and B = c*NT kT ÑT
c*�M

. ÑT and ÑV denote the concentra-
tions of uninfected CD4+ T cells and free virus at steady state before
treatment, respectively.

We fit the value of V (t) predicted by Eq. (4) to the viral load data
of BLT mice during cART treatment and estimate the parameters (Hon-
eycutt et al., 2017). The viral load data from 4 treated BLT mice were
given in supplementary Fig. 1b of Honeycutt et al. (2017). These data
only account for a fraction of the 13 treated BLT mice. Thus, we use
the average of the data from 13 treated BLT mice (i.e. the data of Fig.
1a in Honeycutt et al. (2017)) to estimate the parameters in (4). The
first data point below the detection limit is assumed to be half of the
detection limit, i.e. 334 RNA copies/ml. Except for the first data point,
other data below the detection limit are not included in our fit. We fix
the viral clearance rate c to be 23 day*1. For the death rate of infected
CD4+ T cells, we choose the range 0.2 f �T f 1.2, which covers most of
the estimates in Refs. Perelson et al. (1996, 1997) and Wu et al. (2008).
In general, the source of multiphasic viral load decline during therapy
depends on the exponential terms in Eq. (4). Thus, we will discuss the
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Fig. 1. The best fits of model (1) to the viral load data from six untreated MoM (Honeycutt et al., 2017). The blue circles represent the observed viral load data on the log10-scale,
and the black solid lines represent the model predictions. The viral clearance rate is fixed at c = 23 day*1 and the death rate of infected macrophages is �M = 0.58 day*1. The
model provides a good fit to the viral load data from six untreated MoM. The parameter values based on the fits are listed in Table 1.

Table 1
Parameter values of the best fits of model (1) to six untreated HIV-infected MoM.
Mice Death rate of Infection rate of Viral burst size of Generation rate of

uninfected macrophages dM macrophages by free virus kM infected macrophage NM uninfected macrophages sM
(day*1) (ml/day) (virus/cell) (ml*1 day*1)

MoM 01 0.649 3.604 ù 10*7 1019 5.004 ù 104
MoM 02 0.22 5.336 ù 10*7 837 1.696 ù 104
MoM 03 0.489 2.912 ù 10*7 1328 3.77 ù 104
MoM 04 0.36 5.093 ù 10*7 604 2.776 ù 104
MoM 05 0.749 5.912 ù 10*7 537 5.775 ù 104
MoM 06 0.307 5.107 ù 10*7 1246 2.367 ù 104
Mean 0.462 4.661 ù 10*7 928.5 3.565 ù 104
SD 0.188 1.047 ù 10*7 298.8 1.446 ù 104

following two cases on the basis of the range 0.2 f �T f 1.2 and the
estimate �M = 0.58.

Case A : 0.2 f �T < �M= 0.58.
If the death rate of infected macrophages is greater than the death

rate of infected CD4+ T cells, we fit Eq. (4) to the viral load data of
treated BLT mice (Honeycutt et al., 2017). The best fit is shown in

Fig. 2a. Based on the best fit, we estimate the death rate of infected
CD4+ T cells �T = 0.2 day*1 and a composite parameter NT kT ÑT =
8.753. Although our fit can reproduce a significant decrease of the viral
load within 4 weeks of treatment, it is unable to capture a subsequent
slower phase of viral decay. Thus, the model prediction under the above
conditions yields a poor fit to the viral load data.
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Fig. 2. The mean of the viral load from 13 treated BLT mice (blue circles) compared
with the model prediction (black solid line). The fitting assumes that treatment is 100%
effective. (a) The death rate of infected CD4+ T cells is assumed to be less than that
of infected macrophages, i.e. 0.2 f �T < �M = 0.58 day*1. (b) The death rate of infected
CD4+ T cells is assumed to be greater than or equal to that of infected macrophages, i.e.
�T g �M = 0.58 day*1. The model fails to reproduce the viral load change (Honeycutt
et al., 2017). The viral clearance rate is fixed at c = 23 day*1. Data below the detection
limit are plotted as half of the detection limit, i.e. 334 RNA copy/ml.

Table 2
Comparison of the best fits under different cases.
Treatment Figures SSR AIC

Yes Fig. 3a 0.2798 *21.2381
Fig. 4a 0.9392 *10.3396

No Fig. 3b 0.8796 *32.7428
Fig. 4b 1.0066 *30.8547

Case B : 0.58 = �M f �Tf 1.2.
When the death rate of infected macrophages is assumed to be less

than or equal to that of infected CD4+ T cells, we estimate �T = 0.58
day*1 and NT kT ÑT = 9.435 by fitting Eq. (4) to the viral load data of
treated BLT mice. In this case, we obtain the same death rates for the

two types of infected cells. This implies that only one viral decay phase
exists in the model prediction, as shown in Fig. 2b (black solid line).
However, the viral load in treated BLT mice experiences at least a two-
phase decline, as shown in Fig. 1a of Honeycutt et al. (2017). Thus,
the model assuming �M f �T again provides a poor fit to the viral load
data (Honeycutt et al., 2017).

In summary, the viral load predicted by Eq. (4) fails to reproduce
the experimental data (Honeycutt et al., 2017), no matter if �T < �M or
�T g �M . More specifically, Eq. (4) cannot explain the final slower viral
decline in BLT mice during suppressive therapy, as shown in Fig. 2.
In Perelson et al. (1997), Perelson and Ribeiro (2013) and Siliciano
et al. (2003), the models with the activation of latently infected cells
showed a slow viral decay in the later stage of antiretroviral therapy.
Thus, we modify the model (3) by including latently infected cells to
see if it can improve the fits.

2.2.2. Model with latently infected CD4+ T cells
The model with latently infected CD4+ T cells is given as follows

h
n
n
n
n
n
n
l
n
n
n
n
n
nj

dT (t)
dt = sT * dT T * (1 * ✏)kT TV ,

dT <(t)
dt = (1 * f )(1 * ✏)kT TV + aL * �T T <,

dL(t)
dt = f (1 * ✏)kT TV * aL * �LL,

dM(t)
dt = sM * dMM * (1 * g✏)kMMV ,

dM<(t)
dt = (1 * g✏)kMMV * �MM<,

dV (t)
dt = NT �T T < +NM�MM< * cV ,

(5)

where L(t) is the concentration of latently infected CD4+ T cells at time
t, f is the fraction of infection that results in latency. Latently infected
cells can be activated by relevant antigens to become productively
infected cells T < at rate a, and die at per capita rate �L. All the other
variables and parameters are the same as those in model (3).

For the convenience of expression, we let � = a+�L. Using the same
assumptions as used for model (3) to derive Eq. (4), we obtain the viral
load at time t after treatment initiation

V (t) = ÑV [Ke*�T t + Le*�t + Pe*�M t + (1 *K * L * P )e*ct], (6)

where

K =
NT kT ÑT
c * �T

[(1 * f ) + af
�

*
af�T

�(�T * �) ],

L =
af�T kTNT ÑT

�(c * �)(�T * �) ,

P = 1
c * �M

[c * (1 * f )NT kT ÑT *
afNT kT ÑT

�
].

(7)

To estimate the parameters in Eq. (6), we fix the viral clearance rate
c = 23 day*1 and the death rate of infected macrophages �M = 0.58
day*1. Similar to the Cases A and B in Section 2.2.1, we consider the
following two cases.

Case A : 0.2 f �T < �M= 0.58.
Similar to Case A in Section 2.2.1, we assume that the death rate of

infected CD4+ T cells is less than that of infected macrophages and fit
Eq. (6) to the viral load data in treated BLT mice (Honeycutt et al.,
2017). The best fit, shown in Fig. 3a, indicates that Eq. (6) agrees
with viral load data well. On the basis of the best fit, we estimated
�T = 0.2548 day*1, � = 0.0548 day*1, f = 0.0501, af = 0.0006 and
NT kT ÑT = 10.9926. As shown in Fig. 3a, the viral load change is more
complex compared with Fig. 2a (i.e. Case A in Section 2.2.1). The viral
load decline has three phases. Their slopes of decline are �M , �T and
�, respectively. This implies that the viral load decline in the first two
phases comes from the loss of infected macrophages and productively
infected CD4+ T cells. The activation of latently infected CD4+ T cells
contributes to the third-phase decline. Moreover, the decay rate of the
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Fig. 3. Model fitting to the viral load data of BLT mice (blue circles). The death rate of infected CD4+ T cells is assumed to be less than that of infected macrophages, i.e.
0.2 f �T < �M = 0.58 day*1. (a) Best fit of Eq. (6) (black solid line) to the average data of the 13 treated BLT mice. The viral load decline has three phases, with slopes �M , �T
and �, respectively. The duration of the first phase D1 is about 0.59 day and the duration of the second phase D2 is about 21 days. The horizontal black dashed line represents
the detection limit of the polymerase chain reaction assay, i.e. 668 RNA copies/ml. Data below the detection limit are plotted as half of the detection limit. (b) Best fit of model
(5) with ✏ = 0 (black solid line) to the average data of the 5 untreated BLT mice. (c,d) The 95% confidence intervals from fitting Eqs. (6) and (5) to the viral data of the
treated and untreated BLT mice, respectively. The shaded regions in (c) and (d) denote the 95% confidence interval. The estimated parameters are �T = 0.2548 day*1 (95% CI:
[0.1951, 0.3116]), � = 0.0548 day*1 (95% CI: [0.0409, 0.0678]), f = 0.0501 (95% CI: [0.036, 0.0603]), af = 0.0006 (95% CI: [0.0005, 0.0007]), NT kT ÑT = 10.9926 (95% CI: [8.5583,
13.3728]), sT = 4.65ù103 ml*1 day*1 (95% CI: [3.704ù103, 5.655ù103]), dT = 0.1396 day*1 (95% CI: [0.109, 0.172]) and kT = 2.1754ù10*7 day*1 (95% CI: [1.647ù10*7, 2.711ù10*7]).

viral load gradually decreases. By calculating the time at which two
curves log10(Ke*�T t) and log10(Pe*�M t) intersect, we obtain that the

first-phase viral decline lasts about half a day (i.e. D1 = ln( PK )
�M*�T

=

0.5906). Similarly, we have the duration of the second phase of viral

decline D2 = ln( KL )
�T *�

= 20.8608 days. Thus, the first stage of decline lasts

much shorter than the later stage during suppressive therapy.
To check the cross-impact of the parameter variations, we randomly

draw from the interval of increasing or decreasing the best-fitted pa-
rameter values by 20%. According to the Latin Hypercube Sampling
(LHS) method, we randomly sample one parameter set of �T , �, f , af
and NT kT ÑT within their ranges and produce 100 different artificial
datasets. By analyzing each dataset with Eq. (6), we obtain the 95%
confidence interval (CI) for the above five parameters, i.e., �T : [0.1951,
0.3116], �: [0.0409, 0.0678], f : [0.036, 0.0603], af : [0.0005, 0.0007]
and NT kT ÑT : [8.5583, 13.3728]. The 100 datasets correspond to 100
curves. Fig. 3c shows 95% CI of the model simulations.

Based on the best fits of MoM model Eq. (1) to the viral load
data from six untreated MoM, we have obtained the means of best-
fit parameter estimates listed in Table 1, including the generation rate

of uninfected macrophages sM = 565 ù 104 ml*1 day*1, the death rate
of uninfected macrophages dM = 0.462 day*1, the infection rate of
macrophages by free virus kM = 4.661ù10*7 ml_day, and the viral burst
size of infected macrophage NM = 928.5 virus_cell. From the best fits
in Fig. 3a, we have the death rate of infected CD4+ T cells �T = 0.2548
day*1, the fraction of infection that results in latency f = 0.0501, the
activation rate of latently infected cells a = 0.012, and the death rate
of latently infected cells �L = � * a = 0.0548 * 0.012 = 0.0428 day*1. To
estimate the remaining parameters sT , dT , kT and NT , we fix the above
parameters and fit Eq. (5) with ✏ = 0 to the viral load data of untreated
BLT mice. However, as described in Wu et al. (2008), the product of sT
and NT rather than individual parameters can be identified. Thus, we
assume that the viral burst size of infected CD4+ T cells NT is 2000
virus_cell (Wang et al., 2016). In this case, we obtain the best fit in
Fig. 3b, which generates good reproduction of the viral load data from
untreated BLT mice (Honeycutt et al., 2017). The 95% CI of the model
simulations is shown in Fig. 3d. The three parameters corresponding
to the best-fit curve are the generation rate of uninfected CD4+ T
cells sT = 4.65 ù 103 ml*1 day*1 (95% CI: [3.704 ù 103, 5.655 ù 103]),
the death rate of uninfected CD4+ T cells dT = 0.1396 day*1 (95%
CI: [0.109, 0.172]), and the infection rate of CD4+ T cells by virus
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Fig. 4. Model fitting to the viral load data of BLT mice (blue circles). The death rate of infected CD4+ T cells is assumed to be greater than or equal to that of infected
macrophages, i.e. �T g �M = 0.58 day*1. (a) Best fit of Eq. (6) (black solid line) to the average data of the 13 treated BLT mice. The viral load decay has two phases, with slopes
�T (which was estimated to be equal to �M ) and �, respectively. The duration of the first phase D1 is about 8.6 days. The horizontal black dashed line represents the detection
limit. (b) Best fit of model (5) with ✏ = 0 (black solid line) to the average data of the 5 untreated BLT mice. (c,d) The 95% confidence intervals from fitting Eqs. (6) and (5) to
the viral data of the treated and untreated BLT mice, respectively. The shaded regions in (c) and (d) denote the 95% confidence interval. The estimated parameters are �T = 0.58
day*1 (95% CI: [0.4336, 0.7116]), � = 0.0602 day*1 (95% CI: [0.0489, 0.0739]), f = 0.0461 (95% CI: [0.0359, 0.0559]), af = 0.001 (95% CI: [0.0008, 0.0012]), NT kT ÑT = 14 (95%
CI: [10.6939, 17.0892]), sT = 3.22 ù 103 ml*1 day*1 (95% CI: [2.456 ù 103, 3.863 ù 103]), dT = 0.016 day*1 (95% CI: [0.013, 0.02]) and kT = 8.051ù10*8 day*1 (95% CI: [6.454ù10*8,
9.77 ù 10*8]).

kT = 2.1754ù 10*7 ml_day (95% CI: [1.647ù 10*7, 2.711ù 10*7]). Taken
together, the results obtained in Fig. 3 indicate that model (5) provides
a good fit to the viral load data from treated and untreated BLT mice.

Case B : 0.58 = �M f �Tf 1.2.
Similar to Case B in Section 2.2.1, we assume that the death rate

of infected CD4+ T cells is greater than or equal to that of infected
macrophages and fit Eq. (6) to the viral load data in treated BLT mice.
The best-fit curve is given in Fig. 4a (black solid lines). In this case, we
estimated �T = 0.58 day*1 (95% CI: [0.4336, 0.7116]), � = 0.0602 day*1
(95% CI: [0.0489, 0.0739]), f = 0.0461 (95% CI: [0.0359, 0.0559]),
af = 0.001 (95% CI:[0.0008, 0.0012]) and NT kT ÑT = 14 (95% CI:
[10.6939, 17.0892]). Consistent with the results obtained in Case B of
Section 2.2.1, the estimated death rate of infected CD4+ T cells �T is
equal to the death rate of infected macrophages �M . Thus, the viral
load declines in a biphasic manner (see Fig. 4a). After an initial viral

decline of approximately 8.648 days (i.e. D1 = ln( K+P
L )

�T *�
) with the slope

�T , there is a slower second phase decline with the slope �.
All parameters in model (5), except for the four T cell-related

parameters sT , dT , kT and NT , have been determined. As stated in

the previous case, we again fix NT = 2000 virus_cell because it cannot
be determined from the parameter sT . By fitting Eq. (5) with ✏ = 0
to the viral load data in untreated BLT mice, we obtain the values of
the remaining three parameters, sT = 3.22 ù 103 ml*1 day*1 (95% CI:
[2.456 ù 103, 3.863 ù 103]), dT = 0.016 day*1 (95% CI: [0.013, 0.02])
and kT = 8.051 ù 10*8 day*1 (95% CI: [6.454 ù 10*8, 9.77 ù 10*8]). The
best-fit curve is plotted in Fig. 4b, which also agrees well with the viral
load data. In conclusion, including the latently infected cells in model
(3) can improve the fits of the model to the viral load data in BLT
mice (Honeycutt et al., 2017).

Based on the different assumptions, Cases A and B in this section
provide good fits to the viral load data in treated BLT mice (see Figs. 3a
and 4a). Moreover, as shown in Figs. 3b and 4b, two cases also capture
the viral load data in untreated BLT mice (Honeycutt et al., 2017). To
determine which one of the two cases generates a better model fit, we
calculate the values of SSR and AIC. These two values quantify the
goodness-of-fit of different model predictions. A lower SSR indicates
better fitting and a lower AIC value indicates a better model. The SSR
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and AIC are calculated as follows:

SSR =
n…
i=1

( ÉVi * Vi)2, AIC = n ln(SSR_n) + 2p, i = 1, 2,5 n, (8)

where ÉVi is the experimental measurements of viral load at the ith
data point, Vi is the corresponding values predicted by Eq. (6), n is the
number of data points and p is the number of parameters. In the fitting
to the viral load of treated BLT mice (i.e. Figs. 3a and 4a), n = 9 and
p = 5. For the fits in Figs. 3b and 4b, n = 14 and p = 3. The values
of SSR and AIC based on the best fits are given in Table 2. We find
that Fig. 3a has smaller values of SSR and AIC than Fig. 4a, suggesting
that the former gives a better fit to the viral load data from treated
BLT mice. In the fitting to the viral load data from untreated BLT mice,
Fig. 3b has slightly smaller values of SSR and AIC than Fig. 4b but the
improvement is not significant. Therefore, model (5) with the condition
�T < �M (i.e. Case A) provides a better fit than the model with the
condition �T g �M (i.e. Case B).

3. Numerical simulations

An interesting result in the experiments of Honeycutt et al. (2017)
is that the MoM with viral rebound has a higher pre-ART viral load
and a larger total pre-ART viral burden (i.e. the area under the curve
for pre-ART viremia), compared with no-rebound MoM. However, in
MoM, macrophages are the only target of HIV infection. Thus, a natural
question is to study whether viral rebound occurs in BLT mice, which
are reconstituted systemically with virtually all human hematopoietic
cell types (Garcia, 2016; Maidji et al., 2019). When viral rebound
occurs, we can test whether there is a relationship between the time
to rebound and the pre-ART viral load as well as the total pre-ART
viral burden, and also determine whether the viral rebound time can
be affected by other factors, especially latent cells and viral growth
rate. Based on these potential factors, we further study how therapeutic
strategies may influence the viral rebound time following treatment
discontinuation. The values of parameters are the same as those in Case
A of Section 2.2.2, i.e. the best-fit parameter estimates.

3.1. Potential factors for viral rebound

As in the experiments in Honeycutt et al. (2017), we let ART be
administered on day 35 and then stopped from day 105. There is no
drug treatment in the first 35 days. The viral burst size of infected
CD4+ T cells NT is fixed in model fitting to determine the value of sT .
However, the burst size NT varies from a few hundred virions to tens
of thousands for HIV and SIV in patients and rhesus macaques (Haase
et al., 1996; Chen et al., 2007). Using a quantitative technique, image
analysis, and in situ hybridization, Haase et al. (1996) assessed viral
RNA in cellular compartments in lymphoid tissues in blinded cross-
sectional and longitudinal studies of nine HIV-1-infected individuals.
They approximated NT to be one-half of the maximum of the range
of the number of copies of HIV RNA per mononuclear cell. They
also mentioned that NT might be underestimated because only about
75% of productively infected mononuclear cells were analyzed. The
significantly larger values of NT (i.e., NT > 2000 virus_cell) have been
estimated for SIV (Chen et al., 2007), although it is not clear whether
the higher burst sizes are suitable for HIV. It is also very likely that the
viral burst size varies in BLT mice. To compare the dynamics of viral
load and latent cells, we release the assumption on the viral burst size
NT and let it vary, i.e. NT = 500, 2000, 5000 virus_cell in Fig. 5. From
Fig. 5a, we see that the viral load rapidly drops to the detection limit
during ART, suggesting that ART effectively suppresses HIV infection
in all three cases. However, after treatment interruption, viral load
quickly rebounds to the pre-therapy level. This shows that with the
given parameter values, the BLT mice are predicted to experience a
viral rebound, in agreement with the experimental result obtained from
BLT mice (Honeycutt et al., 2017). It is noteworthy that the resurgence

Fig. 5. The dynamics of viral load (a) and latently infected cells (b), predicted by the
model (5) with the best-fit parameters. Simulations are performed before antiretroviral
therapy (0 to day 35), under antiretroviral therapy (day 35 to 105), and after
antiretroviral therapy (after day 105). The time of exposure to ART is indicated with
a shaded yellow box. The horizontal black dashed line in (a) represents the detection
limit.

of the virus subsequent to treatment discontinuation is an inherently
stochastic process. In this study, we employed ordinary differential
equations to model this process, which ought to be construed as an
approximation of the average outcome.

Biologically, the viral burst size represents the total number of viri-
ons produced from one infected cell. Consequently, the viral rebound
starts from a lower level for a smaller value of NT . Following the
Ref. Honeycutt et al. (2017), we set the critical level of viral rebound
to 668 RNA copies/ml. As shown in Fig. 5a, when NT = 500, 2000, 5000
virus_cell, viral load increases from 101.026 RNA copies/ml, 101.906
RNA copies/ml and 102.432 RNA copies/ml at day 105 to 102.831 RNA
copies/ml at day 115.8, 102.825 RNA copies/ml at day 108.5 and 102.833
RNA copies/ml at day 106, respectively. Thus, the viral rebound time
is 10.8 days, 3.5 days, and 1 day respectively for NT = 500, 2000, 5000.



-RXUQDO RI 7KHRUHWLFDO %LRORJ\ ��� ������ ������

�

T. Guo et al.

Fig. 6. Viral rebound times with different viral loads at the start of treatment. The
dynamics of viral load (a) and latently infected cells (b) are plotted before, during,
and after antiretroviral treatment. The pre-ART total viral burdens at different initiate
times of ART are represented by the shaded boxes of different colors. The green box,
the green and yellow boxes, as well as the boxes with three colors respectively indicate
that ART starts on day 5, 15, and 35. The parameters are the same as those in Fig. 3.

From these, we also estimate that the rates of virus growth are about
0.385 day*1, 0.605 day*1, and 0.923 day*1 corresponding to the differ-
ent burst sizes. This means that the time to viral rebound is inversely
correlated with the rates of virus growth. In other words, a smaller
value ofNT has a smaller viral growth rate after treatment interruption,
and thus it takes a longer time for the viral load to rebound to the
detection limit. We find that a higher viral load and a total viral burden
at the start of treatment are associated with a larger value of NT (see
Fig. 5a). Thus, a higher pre-ART viral load and a larger total pre-ART
viral burden lead to a faster viral rebound after ART interruption.

Fig. 5b shows the change of the latent reservoir when NT =
500, 2000 and 5000 virus_cell. Similar to the change of the viral load,
latent cells significantly decrease during ART and then increase after
therapy interruption. As shown in Fig. 3a, the viral load decline has
three phases and the third phase comes from the activation of latently
infected cells. As a result, we speculate that the viral rebound after

ART cessation may come from the latent reservoir. More specifically,
the viral rebound time may be related to the latent reservoir size at
treatment termination. To test this hypothesis, we zoom in on the
change of latent cells from day 100 to day 115. From the zoom-in figure
of Fig. 5b, we can observe that the level of latent cells at treatment
termination is higher for a larger NT . This, together with the results
in Fig. 5a, shows that BLT mouse with a lower latent cell count at
treatment interruption has a delayed viral rebound. This agrees with
the modeling result in Conway and Perelson (2015). It also supports
early treatment, which may reduce the latent reservoir size although it
is hard to prevent the establishment of the latency. The result is con-
sistent with the observation from the ‘‘Mississippi baby’’ who received
potent ART at the age of 30 h and showed a delayed viral rebound after
cessation of therapy (Marsden et al., 2020). In summary, the time to
viral rebound is postponed when the pre-ART viral load, total pre-ART
viral burden, and the size of the latent reservoir at treatment cessation
are reduced.

3.2. Therapeutic strategies

To approach a functional cure for HIV infection, one strategy is to
significantly prolong the time to viral rebound after treatment cessa-
tion. The longer patients have been off treatment without a rebound,
the more likely the virus is under control. As discussed in the above
section, the reduction in the pre-ART viral load, total pre-ART viral
burden, and the size of the latent reservoir at treatment cessation can
reduce the viral growth rate, resulting in a delay of the viral rebound.
Thus, the strategy may be reducing the value of these three parameters.
We consider the following two scenarios.

Scenario A: The initiate time of ART is different, but the duration
is the same.

To decrease the pre-ART viral load, total pre-ART viral burden,
and the size of the latent reservoir at treatment cessation, we perform
numerical simulations with early treatment. For comparison, Fig. 6a
presents the dynamics of viral load with different initiate times of ART.
Antiretroviral treatment still lasts for 70 days as described above. The
rebound time is extended to 10.98 days when the therapy starts on day
5, i.e., viral rebound takes place after day 85.98, which is shown in
Fig. 6a. Moreover, the viral load goes from 100.3711 RNA copies/ml at
day 75 to 102.8255 RNA copies/ml at day 85.98, suggesting that the viral
growth rate is around 0.515 day*1. When treatment starts on day 15, no
viral load is detected within 3.23 days after treatment discontinuation.
The values 101.9646 RNA copies/ml and 102.8249 RNA copies/ml are the
viral load at treatment interruption (i.e., day 85) and at the time viral
load reached the detection limit (i.e., day 88.23), respectively. This
shows that the viral growth rate is about 0.613 per day. If ART starts
at day 35, then mice experience a rebound after 3.5 days of treatment
cessation. In this case, we estimated the viral growth rate is 0.605 day*1
during rebound. According to these results, we see that the earlier the
treatment is given, the slower the viral rebound is observed, and thus
the longer it takes for the viral rebound to appear. However, viral load
rebounds slightly faster when treatment starts on day 15 (i.e., 0.613
day*1), compared with starting treatment on day 35 (i.e., 0.605 day*1).
From Fig. 6a, although starting treatment on day 15 has less pre-ART
total viral burden than starting treatment on day 35, the pre-ART viral
load of the former is higher. Thus, reducing the pre-ART viral load may
have a stronger effect than reducing the total pre-ART viral burden in
decreasing the viral growth rate and increasing the viral rebound time.
In other words, when the pre-ART viral load is high, early treatment is
still difficult to delay viral rebound when treatment stops.

Using the same method as in Fig. 6a, we compared the dynamics
of latent cells in Fig. 6b. Like the pre-ART viral load, the latent cell
level at treatment cessation strongly predicts the rebound time. Indeed,
initiating treatment on day 5 has the lowest latent reservoir size at
treatment cessation, followed by day 35, and then day 15 (see Fig. 6b).
In summary, these results support the early initiation of ART among
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Fig. 7. Sensitivity test of the model (5) with respect to the activation rate of latently
infected cells a. The dynamics of viral load (a) and latently infected cells (b) are plotted
before, during, and after antiretroviral treatment. The parameter a is assumed to be
a = 0.01, 0.1, 3 day*1. The other parameters are the same as those in Fig. 3.

HIV-infected patients. In addition, patients with a lower pre-ART viral
load have a smaller latent reservoir size at treatment cessation, which
increases the viral growth rate and postpones the time to viral rebound
after treatment cessation.

From Section 2.2.2, we know that the third-phase viral load (i.e., the
low viral load) after suppressive antiretroviral therapy comes from
the latent infection of CD4+ T cells. This suggests that the viral re-
bound after therapy interruption results from latent cells. In model
(5), latently infected cells are closely related to the activation rate a
in the setting of effective combination therapy. Moreover, it is likely
that latently infected cells have different responses to heterogeneous
antigens (Rong and Perelson, 2009c). Thus, to test the sensitivity of
viral load and the latent reservoir size with respect to a, we plot the
viral load and cell changes with different activation constants a in
Fig. 7a and b. Based on the previous modeling literature (Rong and
Perelson, 2009c,b; Wang and Rong, 2014), the activation rate of latent

cells is chosen to be a = 0.01, 0.1, 3 day*1. We fix the starting time of
antiviral treatment to day 35, in agreement with the study design in
experiment (Honeycutt et al., 2017). With a increasing from a = 0.01
day*1 to a = 3 day*1, more latently infected cells are activated, resulting
in a slightly higher viral load before cART initiation (see Fig. 7a). When
a = 0.01 day*1, viral load varies from 101.8957 to 102.8254 RNA copies/ml
at 3.54 days after treatment interruption. The growth rate of the virus is
approximately 0.605 day*1. With a larger a, viral rebound occurs after a
longer period following cART interruption, corresponding to a smaller
viral growth rate (i.e., 0.495 and 0.481 day*1 for a = 0.1 and a = 3
day*1, respectively). In Fig. 7b, when a = 0.01 day*1, the population of
latently infected cells is about 71 cells/ml at the time of cART cessation.
As the activation rate a increases, the number of latently infected cells
decreases. In summary, there is an inverse relationship between the
activation rate a of latently infected cells and the viral growth rate or
the latent reservoir size at treatment termination.

Scenario B: The initiate time of ART is the same, but the duration
is different.

For a given initial value of the viral load, we study the effect of
longer treatment on the latent cell level at treatment cessation and the
time to viral rebound. ART is assumed to be maintained for 70, 100,
and 150 days, respectively in Fig. 8a. When the treatment lasts for 150
days, the viral rebound time is 12.82 days. During this period, viral
load increases from 100.0017 RNA copies/ml to 102.8267 RNA copies/ml,
and thus the viral growth rate is about 0.507 day*1. The rebound times
corresponding to 70 and 100 days of treatment are 3.5 and 6.917 days,
respectively. Similarly, we can show that the growth rates of virus
are 0.544 and 0.605 day*1 respectively for the 70 and 100 days of
treatment. In Fig. 8b, the latent reservoir size at treatment cessation
is higher for a shorter treatment period. These results show that there
is an inverse correlation between the duration of treatment and the
growth rate of the virus/the size of the latently-infected population at
the end of antiretroviral therapy. Thus, a prolonged treatment period
plays an important role in reducing the latent reservoir, slowing down
the viral growth and prolonging the rebound time. In conclusion, early
ART initiation and longer ART duration can delay the time to viral
rebound after treatment cessation.

4. Conclusion and discussion

Different types of humanized mice models have been used and
they provided excellent platforms for the analysis of HIV latency,
persistence, reactivation, and eradication (Horwitz et al., 2013; Denton
et al., 2014; Honeycutt et al., 2013; Seay et al., 2015). BLT mice are
reconstituted with human T cells and macrophages, both of which are
targets of HIV infection in vivo. By fitting the basic model, i.e. model
(3), with the infection of two target cell populations to the viral load
data from BLT mice, we find that model (3) is unable to capture the
viral decay dynamics observed in treated BLT mice, regardless of the
relative magnitude of the death rates of infected CD4+ T cells and
macrophages (Fig. 2). To address this issue, we include the latently
infected CD4+ T cells in model (3). As expected, the model (3) with
latently infected CD4+ T cells (i.e. model (5)) agrees with the viral load
data in treated and untreated BLT mice well (Figs. 3 and 4). Moreover,
it follows from Table 2 that Fig. 3 provides a better fit than Fig. 4 in
fitting the viral load data in treated and untreated BLT mice. The viral
load decline has three distinct phases (Fig. 3). In the third phase, viral
load is suppressed to below the detection limit. According to the fitting
result in Fig. 3, the virions in the third phase result from the activation
of latently infected CD4+ T cells. This suggests that latently infected
CD4+ T cells may be the reason for the viral rebound observed in BLT
mice after therapy interruption (Honeycutt et al., 2017). It is worth
noting that when estimating the parameters using the MoM model
(1), we fit the model to the individual viral load data of all the six
untreated MoM (Fig. 1). Model (1) provides good fits to the viral load
data, although the fitted curves have different trends. The parameter
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Fig. 8. The effect of varying the treatment duration on the time to viral rebound. The
dynamics of viral load (a) and latently infected cells (b) are plotted before, during, and
after antiretroviral treatment. The parameters are the same as those in Fig. 3.

estimates are given in Table 1. For each parameter, although different
mice have different estimates, the deviation between them is not large.
For the BLT mice, we had to use the average data for fitting due to
limited data available for each mouse. Thus, the fitting cannot capture
the inter-individual variation of mice. According to the fitting results to
individual data in MoM, we speculate that the fitting to the individual
data of BLT would be similar to the average data and the following
conclusion remains unchanged: (1) including the latently infected cells
in model (3) can improve the fits of the model to the viral load data
in BLT mice; (2) viral persistence under treatment may be due to the
latent infection of CD4+ T cells.

Latently infected CD4+ T cells can escape antiretroviral treatment
and immune surveillance and are considered a major obstacle to viral
elimination. In this paper, the half-life of the latently infected CD4+
T cells (i.e. ln 2_�L) is about 16.2 days. These cells may decay at a
slower rate and thus have a longer half-life in patients under long-
term suppressive therapy (Siliciano et al., 2003; Ramratnam et al.,

2000). In an experimental study, Chomont et al. (2009) showed that
the stability of latent reservoir can be maintained by the homeostatic
proliferation of latently infected cells. A logistic term representing the
homeostatic proliferation has also been employed in some mathemati-
cal models (Rong and Perelson, 2009b; Wang et al., 2017a; Wang and
Rong, 2019; Guo et al., 2021). In this paper, we did not include the
logistic term of latently infected cells due to limited viral load data for
model validation.

The time to viral rebound is associated with the latent reservoir size
at treatment cessation. A small latent reservoir size would increase the
predicted time to rebound (Fig. 5). Thus, reducing the latent reservoir
has the priority in controlling the virus. A strategy to activate the
latency involves the use of latency reversal agents (LRAs), such as au-
ranofin (Shytaj et al., 2012), histone deacetylase inhibitors (Shirakawa
et al., 2013), DNA methylase inhibitors (Kauder et al., 2009), and
activators of protein kinase C (Archin and Margolis, 2014). However,
some studies have shown that LRAs (i.e. ‘‘shock’’ strategy) alone can
activate latent cells, but may not be sufficient to purge the latent
reservoir (Vaidya and Rong, 2017; Halper-Stromberg and Nussenzweig,
2016). The ‘‘shock and kill’’ strategy needs more investigation.

Viral rebound occurs in BLT mice after the interruption of treat-
ment, as shown in Fig. 5a. From Figs. 6 and 8, we find that an earlier
and longer treatment plays an important role in reducing the latent
cell level at treatment cessation. Consequently, when treatment stops,
the time to viral rebound time is largely postponed. In addition to
delaying the time to viral rebound, early treatment might also help to
limit viral diversity, offer protection of innate immunity, and accelerate
immune restoration (Delwart et al., 2002; Alter et al., 2005; Hecht
et al., 2006). Wolfgang et al. (2013) showed that a longer ART duration
in primary HIV infection is also associated with a higher probability of
viral control after ART stops. Altogether, these results suggest that early
and long-term treatment provides significant benefits to HIV-infected
patients.

By fitting model (1) to the viral load data of treated MoM, we
estimated that the death rate of infected macrophages �M is 0.58 day*1.
This means that infected macrophages have a half-life of about 1.19
days. Similar estimates for the half-life of infected macrophages have
been obtained by Micci et al. (2014) and Honeycutt et al. (2017). Given
the short half-life of infected macrophages during ART treatment, it
is possible that no rebound is expected after ART interruption, which
was the case for 67% of the ART-treated MoM in the Ref. Honeycutt
et al. (2017). However, 33% of the virally suppressed MoM still had
viral rebounds after therapy interruption. This implies that some other
factors may lead to viral persistence and subsequent viral rebound. The
long-lived macrophages, such as microglial cells and astrocytes in the
central nervous system, could be an explanation. These cells can live
from weeks to decades despite effective treatment and thus contribute
to viral persistence and re-establishment of productive infection after
treatment interruption (Reu et al., 2017). Using the macaque model
of HIV infection, Avalos et al. (2017) showed that latently infected
microglial cells persist in most suppressed macaques. They further
found that the virions produced by these microglial cells are infectious
and replication-competent. Thus, latently infected macrophages may
be a source of a viral rebound during treatment interruption. Unfor-
tunately, no information on the latent macrophages was given in the
experimental study in mice (Honeycutt et al., 2017). For this reason,
we did not include the latent macrophage pool in the model.

To make the fitted parameters (the death rate of infected
macrophages �M , the death rate of infected CD4+ T cells �T , the
total loss rate of latently infected CD4+ T cells �) well separated,
we assume that cART is sufficiently effective, as used in many other
modeling studies to estimate parameters (Perelson et al., 1997, 1996;
Perelson and Nelson, 1999). In this case, we study the dynamics and
sources of viral load in the multiple distinct phases, and mathematically
obtain the duration each phase lasts. In the numerical simulations
(Section 3), the dynamics of the virus and latent cells are described
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under three different conditions, namely, no treatment, perfect treat-
ment, and drug withdrawal. We also obtain the relationship between
the time to rebound and the pre-ART viral load, latent cells, and
viral growth rate. If the treatment is not 100% effective, then viral
replication continues throughout cART treatment, bringing a high risk
of drug-resistant viral mutants (Mansky and Temin, 1995). However,
the studies on the existence of ongoing viral replication during cART
presented contradictory evidence. For example, limited viral evolution
during ART (Kieffer et al., 2004; Joos et al., 2008) and unsuccessful
treatment intensification (Gandhi et al., 2010; Dinoso et al., 2009) both
suggest that the level of ongoing viral replication is minimal. Thus, we
assumed that antiretroviral therapy is very effective in blocking viral
infection. The estimated values of �M , �T , and � with this assumption
would be the minimal estimates. Although we can distinguish different
mechanisms of ART’s actions (such as blocking infection or reducing
viral production) in the model, it is difficult, if not impossible, to
estimate their efficiency based on the available viral load change data.

This paper and Conway and Perelson (2015) both study the time to
viral rebound but the models and focus are different. The Ref. Conway
and Perelson (2015) focuses on the potential effect of immune response
on the post-treatment control of HIV infection in humans using a model
with only CD4+ T cell infection. Our model is developed based on the
reconstituted features of humanized mice. Macrophages are the only
target of HIV infection in humanized MoM while CD4 and macrophages
both are the targets of infection in BLT. Our models include them
(from simple to complex) and model predictions are fitted to multiple
datasets in different mice. Rong and Perelson (2009b,c) used models
and simulations to explain the overall long-term dynamics during HIV
treatment, such as viral persistence, the latent reservoir stability, and
viral blips, without comparing with any specific dataset. Here we
distinguish the roles of the two target cell populations in different
mice and fit the models to the data. Based on the fitting results,
we further study the rebound dynamics after treatment interruption.
Taken together, the phenomena of low viral load persistence during
suppressive antiretroviral therapy and viral rebound after treatment
cessation have also been observed in patients and investigated with
models. However, the studies of HIV infection in humans are often
complicated by the existence of multiple target cells such as CD4+ T
cells and macrophages. In this paper, we distinguish these two target
cell populations and fit the models to the viral load data in MoM
and BLT mice. Some conclusions agree with previous modeling results
for patients but this work might be the first time (to the best of our
knowledge) using models to investigate the potential roles of various
target cells in HIV infection dynamics in mice.

Although we can include immune responses such as CD8+ T cell
response in the model for BLT mice (i.e. add another equation of CD8
to the model), there are no immune data available from those mice
for model validation (Honeycutt et al., 2017). A recent study shows
that the addition of model details without data support might lead to
substantial uncertainties because it generally increases the number of
influential parameters and the order of the highest-order effect active
in the model (Puy et al., 2022). For this reason, we did not include
immune responses explicitly in the model when studying the viral load
dynamics. Alternatively, the immune effect can be considered to be
included in the infected cell death rate or viral clearance rate.

Like other animal models for biomedical research, there are limita-
tions for humanized mice in the study of HIV infection. One of them
is the relatively low volume of blood plasma, which leads to a reduced
ability in measuring virus suppression below a threshold of 668 RNA
copies/ml (Honeycutt et al., 2017). Other limitations include the lim-
ited number of peripheral blood cells, and the relatively short lifespan
of these animals (Garcia, 2016). However, these limitations may not
affect the main findings of the present work: (1) the latent infection of
CD4+ T cells can be a source contributing to HIV persistence during
suppressive therapy; (2) the latent cell count at treatment interruption
and pre-ART viral load are reversely correlated with the time to viral

rebound after ART interruption; (3) earlier ART initiation and longer
treatment duration can delay HIV rebound. Humanized mice provide
an accelerated model for the evaluation of relevant interventions in
treating HIV infection.
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