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Mathematical modeling has provided quantitative information consistent with
experimental data, greatly improving our understanding of the progression of
type 1 and type 2 diabetes. However, diabetes is a complex metabolic disease
and has been found to be involved in crosstalk interactions with diverse
endocrine diseases. Mathematical models have also been developed to
investigate the quantitative impact of various hormonal disorders on glucose
imbalance, advancing the precision treatment for secondary diabetes. Here we
review the models established for the study of dysglycemia induced by
hormonal disorders, such as excessive glucocorticoids, epinephrine, and
growth hormone. To investigate the influence of hyperthyroidism on the
glucose regulatory system, we also propose a hyperthyroid-diabetes
progression model. Model simulations indicate that timely thyroid treatment
can halt the progression of hyperglycemia and prevent beta-cell failure. This
highlights the diagnosis of hormonal disorders, together withblood sugar tests,
as significant measures for the early diagnosis and treatment of diabetes. The
work recapitulates updated biological research on the interactions between
the glucose regulatory system and other endocrine axes. Further mathematical
modeling of secondary diabetes is desired to promote the quantitative study of
the disease and the development of individualized diabetic therapies.
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1 Introduction

Diabetes Mellitus is one of the leading diseases affecting global health and socio-
economic development. Diabetes is a condition where the normal glucose-insulin
regulatory system is disturbed, the cause of which is multifactorial and complex.
Diabetes isclassified into different categories corresponding to distinct pathogeneses,
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among which, type 1 and type 2 diabetes are the most common
(1). Aside from pancreatic hormones, glucose homeostasis is
under the control of diverse hormones such as epinephrine,
glucocorticoids (GCs), growth hormone, and thyroxine
(Figure 1). Hormonal diseases have an important impact on
glucose control and can exacerbate the progression of diabetes
(2). Secondary diabetes is a broad subtype of diabetes including
glucose metabolism disorders correlated with various endocrine
diseases or medications (1). In recent years, this subgroup has
raised the concern of clinicians due to the high incidence of
endocrine disorders and drug-induced side effects (3).

Secondary diabetes is commonly involved with acromegaly,
hypercortisolism, and thyroid disorders (2, 4). Thyroid disease is the
second most frequent endocrine disorder in medical practice
following diabetes (5). A number of studies have reported the
rising incidence of diabetes mellitus in patients with thyroid
hormone dysregulation and vice versa (6, 7). Hypercortisolism is
a clinical state attributed to over-exposure to excessive GCs and
plays a significant role in the development of diabetes observed in
patients subject to chronic stress, Cushing’s syndrome, or long-term
GCs treatment (8). Acromegaly is a hormonal disorder caused by
the excessive production of growth hormones during adulthood.
The prevalence of diabetes in acromegaly varies between 19% to
56% (2). Significantly increased mortality and rate of complications
have been reported in these endocrinopathies associated diabetes (2,
9). Compared with patients having type 1 or type 2 diabetes,
patients with secondary diabetes are exposed to higher risk and
demand intensive treatment. Nevertheless, the management of

secondary diabetes is challenging as the patients are already
vulnerable to the primary disease. To alleviate the difficulty of
managingsecondary diabetes, quantitative approaches to investigate
the complex hormone dynamics are desired.

Mathematical models are crucial quantitative tools to test the
mechanisms underlying complicated biological systems. Over the
past five decades, many mathematical models have been
developed to study diabetes facilitating the identification of
potential therapies. In particular, mathematical modeling can
accelerate the development of the artificial pancreas which
provides optimal management of type 1 diabetes (10). The
majority of mathematical models are formulated for the study
of type 1 and type 2 diabetes (11–14). For example, the type 2
diabetes progression models developed by De Gaetano and his
collaborators provide practical approaches in the evaluation of
long-term implications of anti-diabetic interventions (15–17).
These models were validated by data from the Diabetes
Prevention Program study (18, 19), capable of describing the
effect of intensive lifestyle intervention and metformin
administration, as well as the long-term variation of diagnostic
indices in cohorts of virtual patients. Moreover, a physiology-
based pharmacokinetic–pharmacodynamic model is proposed by
López-Palau et al. to emulate blood glucose dynamics more
accurately by including physiological features (20). The work
incorporates the effect of gastric emptying and incretin
hormones and fits mathematical functions individually to
emulate the pathophysiology of type 2 diabetes. However, few
models have been developed to investigate secondary diabetes, let

FIGURE 1

The impact of diverse hormones on the glucose regulatory system. The detailed influences of a specific hormone on glucose regulation are
described in text.
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alone the models specific to a particular type of secondary
diabetes. To promote the mathematical research in secondary
diabetes, we will start with a review of major models established
for the studies of dysglycemia induced by excessive
glucocorticoids, epinephrine, and growth hormone, respectively.
These models, which depict the dynamic interactions between
hormonal disorders and glucose metabolism, can facilitate the
investigation of the underlying mechanisms of secondary diabetes
as well as the design of chronomedicine.

To the best of our knowledge, no mathematical models have
been developed for the study of progression to secondary diabetes
induced by excessive thyroid hormones. We formulate the first
hyperthyroid-diabetes model to study the impact of
hyperthyroidism onthe progression of diabetes. We investigate
the disturbed glucose-insulin dynamics for patients under two
different progression rates of hyperthyroidism. The altered
glucose-insulin dynamics of hyperthyroid patients after the
administration of anti-thyroid drugs are analyzed upon the
proposed drug-treatment model. The hyperthyroid-diabetes
model enables the quantitative investigation of the hyperthyroid
impact on the glucose regulatory system, as well as the delineation
of the time course of diabetes remission under anti-thyroid drug
treatment, which may assist clinicians in choosing appropriate
dosage regimens for patients to achieve euglycemia within a
specified time frame.

2 Existing models of
secondary diabetes

2.1 A model of hypercortisolism-induced
dysglycemia

Glucocorticoids (GCs) are a class of steroid hormones that have
profound effects on energy mobilization, especially glucose
metabolism. Synthetic GCs are widely prescribed in medical
practice because of their anti-inflammatory, immunosuppressive,
and antiallergic effects. However, excess and/or long-term treatment
of GCs can induce undesired diabetogenic side effects (21). Aside
from drug-induced hypercortisolism, pituitary tumor (Cushing’s
disease) and chronic stress are the other two causes of excessive GCs
and increase the risk of diabetes development (8). Investigations of
the links between glucocorticoid and glucose dynamics are desired
to achieve effective glucose control.

Glucocorticoids facilitate the process of gluconeogenesis in
the liver, while they reduce glucose uptake and utilization by
antagonizing insulin effects in white adipose tissue and skeletal
muscle. As a result, over-exposure to GCs leads to hyperglycemia
and insulin resistance (22). Although the causal relationship
between GCs and dysglycemia is affirmative, the impact of GCs
on the pancreatic beta-cells remains debatable (21). Several
studies proposed that the effects of synthetic GCs on
pancreatic islets and insulin biosynthesis or release depend on

the dose and duration of GCs treatment (23, 24). Research in
murine models and human studies have shown excess GCs can
cause compensatory beta-cell hyperplasia and hyperinsulinemia,
with the coexistence of normoglycemia. However, long-term
GCs therapy that oversteps the beta-cell compensatory capacity
begets impaired insulin secretion, hyperglycemia, and
consequent type 2 diabetes (22).

Zavala et al. developed a mathematical model investigating
the impact of disrupted cortisol rhythms on the response to oral
glucose tolerance tests (OGTT) (25). The model incorporates the
effect of transmembrane glucose transporters (GLUTs) on the
glucose uptake of fat and skeletal muscle cells, which is under
the regulation of both insulin and GCs. In particular, insulin
facilitates the translocation of GLUT1, GLUT3 and GLUT4 from
intracellular pools to the cell membrane to amplify the glucose
uptake in adipocytes and muscle cells, while GCs antagonize this
process by translocating GLUTs from the cell membrane back to
intracellular compartments (26, 27). In pancreatic beta cells,
GLUT1, GLUT2 and GLUT3 are involved in glucose sensing and
possess different affinities for extracellular glucose compared to
those in fat and muscle cells (26, 28). The model is described by
the following ordinary differential equations:

dG tð Þ
dt

= F tð Þ + vfe Gð Þ − a cLfL Gð Þ + cMfM Gð Þ½ $T − rGG, (1)

dI tð Þ
dt

= e+sSb Gð ÞhQ Qð Þ − rII, (2)

dT
dt

= u + vI fI Ið Þð Þ 1 − Tð Þ − d + vQfQ Qð Þ
! "

T , (3)

Where G(t) and I(t) stand for the blood concentrations of
glucose and insulin at time t (min), respectively; the variable
T∈(0,1) denotes the fraction of translocatable GLUTs in the cell
membrane of peripheral cells, and 1–T represents the fraction of
GLUTs that docked inside the cell. The functions in Eq. 1-3 are
supported by sigmoidal functions with the general form f(x, km,
h) = xh

xh+khm
, where km stands for the half maximum constant and h

is the Hill coefficient. In the glucose equation, F(t) represents the
glucose boluses from feeding or OGTTs. The term vfe(G) stands
for the endogenous glucose production from gluconeogenesis and
glycogenolysis, and v denotes the maximum rate of the process.
The term at [cLfL(G)+ cMfM(G)]T represents the glucose uptake by
fat and muscle cells, which depends on the fraction of active
GLUTs. The factors cLfL(G) and cMfM(G) stand for the glucose
transport mediated by GLUT 1,3 and GLUT 4 respectively, which
have different affinities for extracellular glucose. The last term rGG
represents the first-order glucose removal. In theinsulin equation,
e stands for the basal insulin secretion rate; Sb(G) denotes the
glucose sensing in beta-cells; s represents the maximum insulin
secretory rate; hQ(G) stands for the regulatory effects of GCs on
beta-cell insulin secretion; rII represents the first order insulin
removal. In the last equation, the term (u+vIfI(I))(1–T) accounts
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for the translocation rate of GLUTs to the cell membrane, where u
denotes the basal translocation rate and fI(I) represents the
insulin-mediated translocation from the intracellular pools to
the cell membrane, at a maximum rate v1. In the second term,
(d+ vQfQ(Q))T accounts for the translocation rate of GLUTs from
the cell membrane down to intracellular pools, where d denotes
the basal translocation rate and vQfQ(Q) represents the GCs
regulated translocation in the same direction.

The model predicts a magnified glucose and insulin non-
oscillatory OGTT response under the sub-chronic treatment of
dexamethasone (cortisol agonist). In comparison, excess cortisol
may enhance the magnitude of the glucose responses to OGTTwith
maintained circadian and ultradian variability, while greatly
suppressing the insulin response and its circadian and ultradian
variability. The results also show that excess cortisol results in a right
shift of the Starling’s curve toward higher fasting glucose levels,
which reveals the impact of hypercortisolism on the progression of
diabetes. Overall, this work illustrates how mathematical modeling
can provide circadian timing approaches to interpret clinical data,
and the potential of mathematical modeling to facilitate the design
of the chronotherapies for diabetes secondary to hypercortisolism.

2.2 Models studying the impact of
epinephrine on glucose regulation

Epinephrine, also known as adrenaline, is a stress hormone
that can cause an acceleration in heart rate and glucose
metabolism, as well as an increase in blood pressure and
muscle strength. The release of epinephrine is typically
increased under acute stress to prepare the body for fight-or-

flight response (29). As the link between stress and diabetes
progression has been brought to the forefront, the impact of
epinephrine on glucose metabolism arouses increasing attention
from researchers (Figure 2). In particular, studies have shown
that surgery-induced metabolic stress, which causes the acute
elevation of epinephrine, can significantly increase the rate of
dysglycemia and the mortality of hospitalized patients (30). In
type 1 diabetes, the counterregulatory response of epinephrine to
hypoglycemia is an important factor to be considered for the
design of glucose control strategies (34, 35).

Several mathematical models have been developed to
investigate the quantitative influence of epinephrine on the
glucose regulatory system. However, the biological mechanisms
some of these models built upon are challenged by further findings
of the different metabolic effects of short-term versus long-term
epinephrine. Many studies list epinephrine as raising blood glucose,
inducing potent insulin-counteracting effects when administered in
a short term. Nevertheless, chronic infusion of low-dose
epinephrine can enhance insulin sensitivity and glucose uptake in
skeletal muscle. The divergent impact may be attributable to the
acute versus chronic effects of epinephrine on b2 stimulation (31).
Chronic epinephrine infusion enhanced glycogen synthesis
activation and insulin-dependent glucose uptake in rat skeletal
muscles (33). Moreover, experiments have shown low dose of b2-
adrenoceptor agonists can improve glucose tolerance in diet-
induced obese mice within 4 days of treatment. Prolonged
treatment with the low dose of b2-adrenoceptor agonists can
further enhance whole-body insulin sensitivity, immensely reduce
hepatic glycogen levels, and lower blood glucose levels (32).
Assuming the effects of epinephrine on glucose regulation in
animal studies are consistent with human dynamics, a

FIGURE 2

The effects of epinephrine on glucose regulation. Surgery induced metabolic stress, which causes the acute elevation of epinephrine, can
significantly increase the rate of dysglycemia of hospitalized patients. The acute influence of epinephrine on the glucose regulation have been
shown to be divergent from the impact of chronic infusion of low-dose epinephrine in vivo (30–33).
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mathematical model should be carefully designed in view of the
dosage and duration of epinephrine. We propose that models
investigating the impact of epinephrine on the short-term
glucose-insulin dynamics should be formulated upon different
mechanisms, compared to the models studying the effect on the
long-term glucose regulation.

Mohammed et al. established a model with the variables of
glucose, insulin, beta-cell mass, and epinephrine to study the
glucose regulation under the influence of trauma, excitement
and/or stress (36). This model, as shown below, was formulated
upon the model of Topp et al. (37), adding the variable of
epinephrine to the glucose and insulin equations:

dG
dt

= R0 + Ge − EGO + SIIð ÞG,

dI
dt

=
sG2

G2 + a
b − r + kð ÞI,

db
dt

= −d + r1G − r2G
2! "
b ,

where G (mg/dl), I (mU/ml), b (mg) represent the blood
glucose concentration, insulin concentration, and the mass of
functional beta-cells at time t (days), respectively. The parameter
R0 stands for the net rate of glucose production per day. The
term SGOG represents insulin-independent uptake of glucose,
while SIIG depicts the insulin-dependent uptake of glucose. In
particular, the coefficient SI (ml/mU/day) represents insulin
sensitivity. The insulin secretion from beta-cells is
hypothesized to be stimulated by elevated glucose levels in the
form of the Hill function, and the parameter s denotes the
secretory capacity per beta-cell. The parameter k is the insulin
clearance rate (/day). The functional beta-cell mass is designed
as a second degree polynomial function of glucose with the
assumption that moderate glucose level facilitates the growth of
beta-cells, while high glucose level aggravates beta-cell apoptosis.
The term Ge (mg/dl/day) stands for increasing rate of glucose
concentration due to epinephrine, and r (/day) represents the
rate constant of insulin suppression by epinephrine.

As we can deduce from the formulation of the model,
Mohammed et al. assumed that epinephrine can raise glucose
levels by increasing hepatic glucose production and suppressing
insulin secretion. Considering this model was built on Topp’s
model, which was developed to study the long-term glucose-
insulin dynamics, we expect a better formulation of the model
should take the long-term effect of epinephrine into
consideration. The enhanced glucose uptake in skeletal muscle
and improved insulin sensitivity underthe durable impact of
epinephrine can be revealed by adjusting the settings of the
model equations. Furthermore, as the long period effect of low-
dose epinephrine may reduce the blood glucose level, it seems
improper to investigate trauma/stress-induced dysglycemia,

focusing only on the impact of epinephrine. For example,
exercise, as one of the most potent stimuli to release
epinephrine, is a significant approach to ameliorate/prevent
diabetes (31). Durable excessive secretion of GCs induced by
chronic stress may be a more reasonable factor accounting for
the commencement of dysglycemia.

Kwach et al. proposed a model (38) to study the acute
influence of epinephrine on short-term glucose-insulin dynamics.
The model was built upon the assumption that epinephrine can
induce small net stimulation of insulin secretion from pancreatic
b-cells, which remains debatable as human studies have confirmed
the effect of epinephrine on repressing endogenous insulin
secretion (39, 40). The assumed self-stimulating effect of
epinephrine, presented in the epinephrine equation of the model,
needs further justification as well. Kumar and Sandhya filled in
biological details of the model of Kwach et al. in their work (41).
Their paper cited the study of Sherwin et al. (42), in which the
experiment showed that a rapid riseof epinephrine can induce a
transient elevation of hepatic glucose output, suppress endogenous
insulin secretion, and directly inhibit insulin-stimulated glucose
utilization. Nevertheless, the model of Kwach et al. was directly
employed in (41) without further modification. The sign of the
epinephrine term might be negative in the insulin equation of the
model to describe the negative impact of epinephrine on insulin
secretion. Examining the biological mechanisms underlying
mathematical models isa crucial step to obtaining constructive
model implications. A well-developed model for the acute
influence of epinephrine on glucose regulation may help to
devise a glucose-control strategy for hospitalized patients at risk
of hyperglycemia due to surgery-induced metabolic stress.

Type 1 diabetic patients with exogenous insulin therapy are
exposed to the risk of hypoglycemia, as their systemic insulin levels
may not be reduced in time when the glucose levels begin to decline.
In this case, epinephrine becomes the first line of counterregulatory
hormone responding to hypoglycemia, due to the early
deterioration of glucagon secretion. Moscardó et al. formulated a
model to investigate the counterregulatory action of epinephrine
during hypoglycemia in type 1 diabetes (43). The model is extended
upon the Bergman Minimal Model (44) by adding terms to the
glucose equation to account for the influence of epinephrine:

dI
dt

=
u1 tð Þ
VolI

− nI,

dX
dt

= p3I − p2X,

dG
dt

= p4 +
u2 tð Þ
VolG

− p1G − XG + paA tð Þ − ph max  (Gb2 − G, 0),

A tð Þ =
0 if G tð Þ > Gth

Am tð Þ − Abasal if G tð Þ ≤ Gth

,

(
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Where A(0) = Abasal, G(0) = G*. The variables G, I, and X
stand for the blood glucose concentration (mg/dl), plasma
insulin (mU/ml), and insulin action from a remote
compartment (/min), respectively. As the insulin supply for
type 1 diabetic patients comes from exogenous infusion, the
insulin secretion term is denoted by u1(t)

VolI
, where u1(t) (µU/min)

denotes the insulin infusion rate and VolI denotes the insulin
distribution volume. The parameter p3 represents the rate of
insulin input in the compartment. The clearance rates of plasma
insulin and insulin from a remote compartment are denoted by
n and p2 respectively. In the glucose equation, p4 stands for the
hepatic glucose production rate; u2(t)

VolG
depicts the clamp

experimental conditions with the glucose infusion rate u2(t)
and the glucose distribution volumes VolG; p1G denotes the
glucose uptake independent of insulin and XG stands for the
glucose uptake rate under the influence of insulin; Am(t)
represents the plasma epinephrine concentration (ng/l) and
Abasal denotes the basal epinephrine concentration; Gth

represents the glucose threshold activating the epinephrine
response; thus, A(t) denotes the epinephrine “effect” which
would be activated only after the glucose falls below the
glucose threshold; phmax(Gb2–G,0) denotes the increase of
glucose utilization when glucose stays below a threshold Gb2,
the value of which is assumed to be in the hypoglycaemic range
and greater than Gth. The term phmax(Gb2–G,0) is added mainly
for a good fit to data.

Studies have shown some diabetic patients under high insulin
therapy experienced the stage where the counterregulatory
response of epinephrine begins to prevent plasma glucose from
further decreasing after the glucose level falls below the activation
threshold of epinephrine (around 60 mg/dl) (43). After the
epinephrine concentration peaks at the hypoglycaemic plateau,
epinephrine secretion rapidly declines when the glucose level
starts to recover, returning to its basal level. The work of
Moscardó et al. made it possible to present the physiological
behavior during hypoglycemia. As this model neglected the
inhibitory effect of epinephrine on insulin-dependent glucose
utilization in the short term, an improvement over this model
may depict a better influence of epinephrine on short-term
glucose regulation. Overall, this modeling approach provides a
better understanding of the counterregulatory response of
epinephrine and may facilitate the design of predictive methods
to avoid hypoglycaemic events.

2.3 A model investigating the
influence of growth hormone on
glucose regulation

Growth hormone (GH) or somatotropin, is an important
peptide hormone that stimulates growth, cell reproduction, and
regeneration. GH also stimulates the production of insulin-like
growth factor 1 (IGF-1), a hormone similar to insulin in

molecular structure (45). GH has been characterized as one of
the anti-insulin hormones. The diabetogenic effect of GH is also
validated by the high prevalence of diabetes in patients with
acromegaly, a condition wherein the excessive growth hormones
are produced citep (29). The risk of hyperglycemia exists
likewise in patients with GH deficiency who need the GH
administration for treatment. Large-scale cohort studies have
shown that, compared to the general population, the incidence
of developing type 2 diabetes for children under GH treatment
was increased more than six times, especially in patients with
predisposing risk factors, such as obesity (46–48).

The effects of GH on glucose regulation (Figure 3) are
intricate partially due to its indirect impacts via IGF-1, which
has glucose-lowering functions analogous to insulin (49). GH
can elevate glucose production in the skeletal muscle and liver
and diminish glucose utilization in adipose tissue by
antagonizing the action of insulin. Insulin secretion is also
enhanced for the compensation of elevated blood glucose after
GH administration (50). Prior studies have demonstrated that
low-dose GH may have beneficial effects on insulin resistance
and glucose homeostasis due to increased circulating IGF-1,
while long-term GH treatment in high doses impairs insulin
sensitivity and exacerbates insulin resistance (51). Thus, cautious
monitoring of the possible adverse impact on glucose
metabolism induced by GH treatment is advocated.
Mathematical models investigating the quantitative influence
of growth hormone on the long-term glucose dynamics may
facilitate the examination of the durable effect of GH therapy.

Alali et al. developed a model studying the effect of growth
hormone on glucose homeostasis (52). The model, as shown
below, is extended upon the model of Boutayeb et al. (53),
including an equation of GH to depict the interaction of GH
withglucose and free fatty acids (FFA):

dG
dt

= a − b + cRIð ÞG +m1 F − Fbð Þ + cGH,

dI
dt

=
bdG2

e + G2ð Þ 1 + Rð Þ
− fI − fRI,

db
dt

= −g + hG − iG2! "
b ,

dR
dt

= j 1 − Rð Þ − kIR − lR,

dF
dt

= −m2 F − Fbð Þ +m3 G − Gbð Þ + x GH − GHbð Þ,

dGH
dt

= p − wGH − s F − Fbð Þ − zR,

Where G, I, b, R, and F stand for the blood glucose level (g/l),
plasma insulin concentration (mU/ml), b-cell mass (mg), the
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fraction of insulin receptors on the membrane of the muscle
cells, and the concentration of FFA (mmol/l) at time t (days),
respectively. The parameter a denotes the constant secretion rate
of glucose by the liver and kidneys. The term b + cRI denotes the
total body glucose utilization rate. The FFA-induced glucose
production is represented by m1(F–Fb), and the GH-induced
glucose production through gluconeogenesis and glycogenolysis
is denoted by cGH. In the insulin equation, the factor G2

(e+G2)

depicts the sigmoidal relationship between the extracellular
glucose concentration and the insulin secretion; d

1+R represents
the insulin secretion factor per b cell; fI stands for the insulin
clearance by liver and kidneys; fRI denotes the insulin clearance
by the muscle cell receptors. The b-cell equation follows the
same formulation in Topp’s model (37). In the receptor
equation, j represents the recycling rate of internalized
receptors: k stands for the insulin-induced down-regulation
rate of receptors on the cell membrane; l denotes the clearance
rate of the surface receptors. The parameters Fb, Gb, and GHb

represent the basal concentration of FFA, glucose, and growth
hormones, respectively. The term m3(G–Gb) denotes the
lipogenesis rate induced by excess glucose, and x(GH–GHb)
represents the lipolysis rate stimulated by GH. The clearance
rate of FFA is denoted by m2(F–Fb). In the GH equation, p
represents the production rate of GH by the somatotropic cells;
wGH stands for the clearance of GH by the liver; the GH uptake
by fat cells and receptors is represented by s(F–Fb) and
zR, respectively.

This work provides the first mathematical model that
incorporates GH into the glucose regulatory system. The

receptor equation obtained from the base model in (53)
impedes this model from data fitting and applications. In
addition, the insulin equation cited from the base model may
be questionable. The variable R was designed to denote the
fraction of insulin receptors on the membrane of the muscle
cells, while the term d

1+R was claimed to represent the insulin
secretion factor per eta -cell. The impact of the changed behavior
of insulin receptor can be implied by designing the insulin
sensitivity coefficient c to vary with other variables in the
system. Moreover, as b-cell function and insulin level play a
significant role in the glucose regulation, incorporating the
variable GH into the insulin and b-cell equation is important
for a better investigation of the influence of GH on glucose
dynamics. Further modeling work studying the interaction
between GH and glucose regulation is desired to help unravel
the intricate physiological effect of GH with different dosages
and treatment duration.

3 Hyperthyroidism-induced diabetes

The thyroid is an endocrine gland in the neck that secretes
triiodothyronine (T3) and thyroxine (T4) (54). Both high and
low levels of thyroid hormones can produce adverse effects on
the body. The production of T3 and T4 is under the control of
thyroid-stimulating hormone (TSH) and thyrotropin-releasing
hormone (TRH). This secretory system is sequential: the
hypothalamus secretes TRH, stimulating the anterior pituitary
gland to produce TSH, after which, the TSH stimulates the

FIGURE 3

The effects of GH on glucose regulation are intricate partially due to its indirect impacts via IGF-1, which has glucose-lowering functions
analogous to insulin. Low-dose GH has been shown to benefit insulin sensitivity and glucose homeostasis due to increased circulating IGF-1,
while long-term GH treatment in high doses impairs insulin sensitivity and exacerbates insulin resistance.
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thyroid to generate T3 and T4. If the thyroid hormones become
overly elevated in the blood, the TSH levels are suppressed in
response, lowering the thyroid hormone secretion (55). The
negative feedback control of the Hypothalamus-Pituitary-
Thyroid (HPT) axis, as shown in Figure 4, maintains the
thyroid hormone regulation, forming the set points of T3, T4,
and TSH.

An elevated risk of T2DM in patients with hyperthyroidism
has been documented (6, 7). We propose a hyperthyroidism-
induced diabetes model based on our previous work of a
generalized diabetes progression model (56):

dG
dt

= Gin + p1 Xð Þ − f2 Gð Þ − C Ið ÞGI,

dI
dt

= f1 Gð Þp2 Xð Þb − kI,

db
dt

= f3 Ið Þ + p3 Xð Þð Þb ,

where f2(G) = g1G, C(I) = r0 +
r1

r2+er3 I
, f1(G) =

s1G
2

G2+s2
, f3(I) =

m1I
I2+(m2)

2 −m3. Here, G (mg/dl), I (mU/ml), b (mg) represents the
plasma glucose concentration, insulin concentration, and the
mass of functional beta-cells (preserving appropriate insulin

production and secretion) at time t (days), respectively. The
parameter Gin depicts the sum of the average glucose uptake rate
and the hepatic glucose production per day. The term f2(G)
represents the insulin-independent uptake of glucose, while C(I)
GI stands for the insulin-dependent uptake of glucose. The term
f1(G) represents the beta-cell secretory function (the ability to
produce, store and release insulin)per cell, and k (/day) denotes
the insulin clearance rate. The function f3(I) represents the net
growth rate of functional beta-cell mass that depends on the
insulin level. Moreover, we incorporate an interference factor X
into the glucose regulatory model, accounting for the progressive
impact of the environmentally induced or epigenetic-related
diabetogenic factor on the glucose regulation. The function p1
(X) stands for the increased hepatic glucose production caused
by the pathological factor; p2(X) represents the impact of the
factor on the insulin secretion rate; p3(X) describes the abnormal
response of beta-cells to a hostile environment that develops in a
slow time scale. All parameters in the model are positive.

The underlying mechanism of the impact of hyperthyroidism
on the deterioration of glucose control has been widely
investigated in the literature (57). As a larger deviation of the
T3 level from its set point (denoted by the parameter U) leads toa
worse impact on the GIb regulatory system, we quantify the
hyperthyroid factor X by jT3−U j

U and integrate its impact to the
glucose regulatory system with the influence functions pi(X) (i =
1,2,3). Prior research has shown that excess thyroid hormones can
increase hepatic glucose production through the elevated hepatic
expression of glucose transporters as well as enhanced
glycogenolysis and gluconeogenesis activities (58). We design
the elevated hepatic glucose production p1(X) to be a power
function of X, which can be determined by the extent to which
the hyperthyroid factor impacts the glucose generation rate.
Moreover, T3 exerts profound effects on the proliferation of
pancreatic islet cells and insulin secretion (57, 59). Increased
secretion of insulin and elevated fasting insulin are observed in
hyperthyroidism (60, 61). We thus assume the beta-cell secretion
function is linearly increasing with X, as shown in Eq. 5.
Furthermore, excess T3 leads to considerable impairment of the
islet function, while physiological T3 treatment promotes beta-cell
proliferation (57, 62). In view of this, we assume functional beta-
cell mass undergoes the influence of X in a pattern of a downward
parabola and formulate the function p3(X) with the form in Eq. 6.

p1 Xð Þ = h1X
a , (4)

p2 Xð Þ = 1 + h2X, (5)

p3 Xð Þ = q1X q2 − Xð Þ : (6)

Although T3 is the biologically active thyroid hormone in
target tissues, approximately 80% of the T3 production in
humans comes from the deiodination of T4 (63). The
deiodination activity in human involves two iodothyronine

FIGURE 4

The HPT-axis negative feedback mechanism. The free T3 and T4
concentrations lower than their respective normal set point values
lead to the secretion of TRH from the hypothalamus. The pituitary
gland is subsequently promoted to produce and secrete TSH into
the blood, which in turn stimulates the thyroid follicle cells to
secrete T3 and T4. In contrast, when the plasma levels of free T3
and T4 are elevated beyond their normal range, the hypothalamus
and pitutary gland respond by reducing the secretion of TRH and
TSH, which slows down the production of T3 and T4.
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deiodinases (D2 and D3), the interactionsbetween which are
complex and vary with different physiological conditions (64–
66). The majority of T3 and T4 are bound to thyroglobulin in
blood, and the fraction that can flow freely in the blood are
abbreviated as FT3 and FT4. The lab testof FT4 is considered as a
more accurate evaluation of thyroid hormone concentration
than the measurement of total T3, T4 and FT3 due to the
limitation of measuring technique (67). In addition, serum TSH
concentration is regarded as a more robust index of the thyroid
hormone status. Therefore, physicians generally prescribe
patients the blood test of FT4 and TSH to assess their thyroid
condition (68). To formulate a simple and attractive model that
only involves the essential components of the complex
endocrine subsystems and that is accessible to data fitting, we
assume the elevated blood FT4 concentration can indicate the
excessive intracellular T3 level in hyperthyroidism and replace
the variable T3 with FT4 in the model. The dynamics of FT4 are
investigated based upon our previous study of thyroid hormone
regulatory system (55). We note the amount of FT4 is always
greater than its euthyroid set points U during the progression
from euthyroidism to hyperthyroidism. Therefore, we construct
the following system to study the impact of hyperthyroidism on
the diabetes progression.

3.1 Hyperthyroid-diabetes
progression model

The hyperthyroid-diabetes model without hyperthyroid
treatment is given by

dG
dt

= Gin + p1
FT4 − U

U

# $
− f2 Gð Þ − C Ið ÞGI,

dI
dt

= f1 Gð Þp2
FT4 − U

U

# $
b − kI,

db
dt

= f3 Ið Þ + p3
FT4 − U

U

# $% &
b ,

dFT4
dt

=
a1 tð ÞTSH
b1 + TSH

− d1FT4,

dTSH
dt

= a2 −
a2 FT4 − Uð Þ
b2 + FT4

− d2TSH,

where a1(t) stands for the time-dependent FT4 synthesis
factor; b1 represents the TSH concentration corresponding to
half the maximal synthesis rate of FT4; d1 is the decay rate of
FT4; a2 represents the default release rate of TSH from the
pituitary when FT4 reaches the euthyroid set point value; b2+2U
is the concentration of FT4 resulting in half the maximal
inhibitory effect on the TSH secretion rate controlled by the

pituitary; d2 represents the decay rate of TSH. The expression of
a1(t) varies among individuals with different progression rates
of hyperthyroidism.

By setting the coefficients of X in pi(X) to be close to zero, our
hyperthyroid diabetes model can illustrate the case where
diabetic patients are free from hyperthyroidism. In the clinical
scenario, some patients with hyperthyroidism develop diabetes
over time, while others can stay away from diabetes in life time.
The diverse genetic traits of individuals may determine their
cellular response to the hyperthyroid factor, which can be
expressed by different parameter values in pi(X).

3.2 Hyperthyroid-diabetes model under
hyperthyroid treatment

It has long been recognized that the treatment of
hyperthyroidism can improve glucose control. A nation-wide
cohort study shows that the treatment of thyroid dysfunctions
can reduce the manifestation of T2DM (69). To quantitatively
analyze the benefits of hyperthyroid treatment to the glucose
regulatory system, we incorporate the drug treatment to the FT4
equation and formulate the hyperthyroid-diabetes model under
treatment as follows:

dG
dt

= Gin + p1
FT4 − U

U

# $
− f2 Gð Þ − C Ið ÞGI,

dI
dt

= f1 Gð Þp2
FT4 − U

U

# $
b − kI,

db
dt

= f3 Ið Þ + p3
FT4 − U

U

# $% &
b ,

dFT4
dt

=
a1 tð ÞTSH
b1 + TSH

− d1FT4 −
d3D

D + IC50
FT4,

dTSH
dt

= a2 −
a2 FT4 − Uð Þ
b2 + FT4

− d2TSH,

where D represents the anti-thyroid drug (ATD, e.g.
Carbimazole) dosage (mg); D3 stands for the maximum
reduction rate of FT4 caused by drug intake; IC50 represents
the dosage of the ATD that achieves half of the maximum
reduction rate (70).

3.3 Influence of hyperthyroidism on the
progression of diabetes

Because patients have varied rates of hyperthyroid
progression, we investigate the GIb dynamics for virtual
pat ients under two different progress ion rates of
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hyperthyroidism. We adopt (7-18 pg/ml) and (0.4-4 mU/l) as
the normal reference range for the FT4 and TSH respectively
(71, 72), and assume U=12.5 pg/mL (the average value of the
lower and upper bound of FT4) as the set point of FT4 for the
patients we study below. Notably, an apparent deviation from
the set point value of FT4 without crossing the bounds of the
inter-individual reference range, is sufficient to cause
physiological impact on the patients. The American Diabetes
Association (ADA) characterizes the fasting glucose levels of
euglycemia, pre-diabetes, and diabetes as less than 100 mg/dl,
100-125 mg/dl, and greater than 125 mg/dl, respectively (73).
These ranges are contingent on the source and may vary slightly
across different labs. In our work, we consider 5 - 20 mU/mL as
the reference range for normal fasting insulin and I≥25m U/mL
as the criterion of hyperinsulinemmia (74–76). The model
parameters are listed in Table 1, where the values of h2, b1, a2,
b2 are chosen to ensure the consistency between simulated
hormone dynamics and clinical observations. The remaining
parameters are adopted from our previous work (56) where the
model was validated by the Pima Inidan data.

We first consider a virtual patient A who is euglycemic and
would develop hyperthyroidism with a fast progression rate, as
shown in Figure 5B. Figure 5A shows that the increasing amount

of excess thyroid hormones drives the gradual and continuous
elevation of the glucose level (fasting) before FT4 reaches 19.3
pg/ml. Although the glucose level would be dragged down by 8
mg/dl in 63 days by improved insulin sensitivity, the rising
excessive thyroid hormones start deteriorating beta-cells
afterwards. The continuous decline of insulin and persistent
escalation of glucose follow subsequently. After the gradual
elevation of FT4 for 1.7 years, the glucose level of this virtual
patient would reach 125mg/dl, the threshold of the diabetic
stage. When the FT4 level exceeds its set point value by 124%, a
complete beta-cell failure occurs and drives patient A to the late
stage of diabetes. The observation of fluctuated blood glucose
level is common in clinical settings (77).

Suppose virtual patient B develops hyperthyroidism at a slow
rate, spending an extra 17 years more than patient A to reach the
FT4 level of 20 pg/ml, as presented in Figure 6B. The time for
this patient to develop diabetes would be postponed for 16.7
years compared to patient A, which exhibits the benefit of
delayed hyperthyroid progression on slowing the course of
diabetes. However, compared to the glucose level of 125 mg/dl
that patient A would develop with the FT4 of 24.1 pg/ml, patient
B would be in the late stage of diabetes with the same FT4 level.
Additionally, the elevated glucose level of patient B is

TABLE 1 Parameter values for the hyperthyriod-diabetes progression model.

Parameters Value Source

r0 0.019 ml·mU–1·day–1 (56)

r1 1.98 ml·mU–1·day–1 (56)

r2 3.088 — (56)

r3 0.05 — (56)

Gin 864 mg·dl–1·day–1 (37)

g1 1.44 day–1 (37)

s1 86.4 mU·ml–1·day–1 (56)

s2 20000 mg2·dl–2 (37)

k 432 day–1 (37)

m1 0.1 day–1 (56)

m2 100 mU·ml–1 (56)

m3 0.004 day–1 (56)

h1 300 mg·dl–1·day–1 (56)

a 1
3

— (56)

h2 1 — see text

q1 0.04 day–1 (56)

q2 0.5 — (56)

n1 0.0005 — (56)

n2 1 — (56)

b1 2.75 mU·L–1 see text

d1 0.099 day–1 (55)

U 12.5 mmol·L–1 see text

d2 16.6355 day–1 (55)

a2 10 mU·L–1·day–1 see text

b2 1 mmol·L–1 see text
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overwhelmingly higher than that of patient A, when their FT4
levels both increase from 20 pg/ml to 24 pg/ml. These results
indicate that aside from the amount of excess thyroid hormones,
the duration of hyperthyroid exposure affects the severity
of hyperglycemia.

3.4 Significance of hyperthyroid
treatment for glucose control

We investigate the influence of drug treatment on the GIb
dynamics for the fast progression of hyperthyroidism. The results
of timely treated hyperthyroidism are shown in Figure 7.We assume
the ATD drug is administered daily after day 500 with the dose
increasing intermittently, that is, the dosage D is designed as a
piecewise function, the specific expression of which is described in
the caption of Figure 7. The graphs depict that the initial rise of FT4
level would cause a temporary upsurge of glucose level around the
initial point of glucose, which is then quickly counterbalanced by the
fast increase of insulin levels. In contrast with the increasing trend of
the glucose level in Figure 5A, the administration of 3mg ATD drug
after day 500 would result in a sharp reduction of both the glucose
level and the insulin level in 10 days.

However, the dose is not enough to counteract the impact of the
hyperthyroid factor, and the FT4 level would be elevated again,
leading to an upsurge of the glucose level.We then increase theATD

dose to 5 mg for the next 100 days. As a result, the elevated dosage
would drive the FT4 down close to its set point value. Subsequently,
the glucose level decreases again. Yet this level of treatment is
insufficient as the inherent deterioration of the thyroid remains, a
condition demonstrated in Figure 5B. To enhance the treatment, an
increased dosage is applied every one hundred days until day 800
when the dosage becomes fixed. Consequently, the FT4 level
approaches the steady state with 12.9 pg/ml, an improvement over
the steady state of Figure 6B. Moreover, the glucose level would be
regulated within the normal range after day 1500, a dramatic
improvement relative to Figure 5A. In contrast with the massive
mortality of beta-cell and the deficient insulin level exhibited in the
lateperiodofFigure5, the thyroid treatmentpreventsbeta-cell failure
and the occurrence of insufficient insulin. Overall, the result
highlights that the management of thyroid dysfunction may be of
primary consideration for the therapy of diabetic patients.

Notably, our simulation results indicate belatedly treatment
of hyperthyroidism fails to reverse diabetes. In Figure 8, we
assume the ATD drug is initiated on day 700 when the FT4 level
is 8.2 pg/ml higher than the value on day 500. The dosage
regimen in the following days remains the same as in Figure 7. In
this scenario, although the FT4 level can quickly decrease under
treatment and maintain a favorable level after day 1000, the
ongoing beta-cell failure cannot be halted. This indicates the
early diagnosis and timely treatment of hyperthyroidism are key
to mitigating diabetes.

A B

DC

FIGURE 5

Dynamics of glucose, insulin, and functional beta-cell mass level with fast progressing hyperthyroidism. (A-D) Time evolution of blood glucose
concentration, plasma FT4 and TSH concentrations, insulin level, and functional betacellmass. The initial conditions of FT4 and TSH are set to
be 12.5 pg/ml and 0.6 mU/l, respectively. The parametervalues are listed in Table 1. We assume the FT4 synthesis factor for patient A to be a1(t)

= 6:9 + 30
1+e(6−0:01t)

. Withthe gradual elevation of FT4, the glucose level of this patient would reach 122.5 mg/dl on day 507. The glucose wouldbe

dragged down slightly to 114.5 mg/dl in 63 days by improved insulin sensitivity. However, the glucose level wouldrise again thereafter
subsequent to the continuous decline of insulin, which is caused by the damage of excessive thyroidhormones to beta-cells. With the gradual
elevation of FT4 for 1.7 years, the glucose level of patient A would cross 125mg/dl, the threshold of overt diabetes. As the FT4 level further
increases, a complete beta-cell failure occurs and drivespatient A to the late stage of diabetes.
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A B

DC

FIGURE 6

Dynamics of glucose, insulin, and functional beta-cell mass level with slowly progressing hyperthyroidism.Here a1(t) = 6:9 + 30
1+e(6−t=1300)

. All the

other parameter values and initial conditions remain the same as in Figure 5. (A-D) Time evolution of blood glucose concentration, plasma FT4
and TSH concentrations, insulin level, and functionalbeta-cell mass. Graph (b) shows patient B would reach the FT4 level of 20 mg/dl in
approximately 18.5 years, whichis delayed 17 years than patient A. The time for him to develop diabetes would be postponed for 16.7 years,
comparedwith patient A. However, patient B would step into the late stage of diabetes with an FT4 level of 24.1 pg/ml, whilepatient A just cross
the threshold of diabetes with the same level of FT4.

FIGURE 7

Dynamics of altered glucose, insulin, and functional beta-cell mass levels with timely treated hyperthyroidism. The ATD dosage D is designed as
a piecewise function in the following pattern: D = 0, for t ≤ 500; D = 3, for 500< t ≤ 600; D = 8, for 600< t ≤ 700; D = 12, for 700< t ≤ 800; D =
15, for 800< t ≤ 900; D = 20, for t > 900. The parameter values in the drug intervention term are: d3 = 1, IC50 = 30. All the other parameter
values and initial conditions remain the same as those in Figure 5. The initial rise of FT4 level would cause a temporary upsurge of glucose level
around the initial point, which is then quickly counterbalanced by the fast increase of insulin levels. In contrast with the increasing trend of the
glucose level in Figure fFT4fastProgressingHyper(a), the administration of 3mg ATD drug after day 500 can drag the FT4 level down by 5.2 pg/
ml in 10 days, followed by the 19.3 units reduction of glucose level and 19.6 units decrease of insulin level. However, the dose is not enough to
prevent the FT4 level from increasing after day 510, which would result in the rise of glucose. We then increase the ATD dose to 5 mg after day
600. As a result, the elevated dosage would drive the FT4 down close to its set point value, and the glucose level would decrease again. Yet this
level of treatment is insufficient as the inherent deterioration of the thyroid remains. To enhance the treatment, an increased dosage is applied
every one hundred days until day 900 when the dosage becomes fixed. At the end, the FT4 level approaches the steady state with 12.9 pg/ml
and the glucose level would be regulated within the normal range after day 1500.
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4 Discussion

As a metabolic disease, diabetes has been found to be involved
in crosstalk interactions with other endocrine diseases (78).
Endocrine axes are the complex physiological regulatory systems
connecting with each other and other body systems (e.g., the
digestive system). To discover the complete glucose regulatory
network, investigations of the impact of excessive hormone
production on dysglycemia are necessary (1–3). Research on
untangling the complex interactions of endocrine regulation
would greatly facilitate the therapy for patients with secondary
diabetes, in which the robust control of multiple hormone
secretions is needed.

There has been an increased appreciation of the value of
mathematical modeling in studying endocrine disease, which
provides quantitative methods to investigate complex hormone
dynamics as well as the insights to experimental research (10).
Variousmathematical models have been developed focusing on
different aspects of type 1 and type 2 diabetes. Nevertheless, the
models exploring the influence of hormonal disorders on glycemic
imbalance are sparse, retarding the advancement of precise
medicine for secondary diabetes. To boost the research in
secondary diabetes, we review the primary models established for
the study of dysglycemia induced by excessive glucocorticoids,
epinephrine, and growth hormone, respectively.

To our knowledge, there has been only one model developed to
investigate the impact of excess glucocorticoids on dysglycemia. The
work of Zavala et al. (25) suggests that special attention to the
transient post-OGTT dynamics in patients with hypercortisolism or
glucocorticoid therapy is needed to reduce the underestimate of the

diabetes prevalence in hypercortisolism. The glucocorticoids-
glucose-insulin model in this work is built upon the model
studying the short-term glucose-insulin dynamics. A model
investigating the quantitative impact of glucocorticoids on long-
term glucose dynamic is also needed to facilitate a systemic
understanding of chronodisruption as well as the chronotherapies
for the treatment of hypercortisolism-induced diabetes. Although
there are several models in the literature established to study the
influence of epinephrine on the glucose regulatory system, the aim
of some of the models for a further understanding of the glucose
regulation under chronic stress may not be achievable, as the
updated biological findings indicate that the long period effect of
low-dose epinephrine can improve insulin sensitivity and reduce
blood glucose level in vivo (31–33). Durable excessive secretion of
GCs may be a more reasonable factor accounting for the
dysglycemia induced by chronic stress. The effects of growth
hormones on glucose regulation is intricate and changes
substantially with different dosage and treatment duration (49,
51). Mathematical models studying the impact of growth
hormones on the long-term glucose-insulin dynamics with varied
dosage regimens are desired to help patients under durable growth
hormone therapy to reduce the risk of developing dysglycemia.
There has been one model established so far incorporating the
influence of growth hormones to the long-term glucose regulation
(52). An improvement over this model can facilitate untangling the
complex interaction between growth hormones and glucose
regulation, as well as the design of optimized therapy.

The quantitative impact of hyperthyroidism on diabetes
progression has been studied by our hyperthyroid-diabetes
model. The simulation results delineate the accumulation of

FIGURE 8

Dynamics of altered glucose, insulin, and functional beta-cell mass levels with belatedly treated hyperthyroidism. The ATD dosage D is designed
as a piecewise function in the following pattern: D = 0, for t ≤ 700; D = 12, for 700< t ≤ 800; D = 15, for 800< t ≤ 900; D = 20, for t > 900. All
the other parameter values and initial conditions remain the same as those in Figure 7. The anti-hyperthyroid treatment starts at day 700, when
the beta-cell defect already occurred. Although the FT4 level sharply decreases and approaches the set point value after day 1000, there is no
apparent mitigation of diabetes, which is in significant contrast with the outcome of timely treated hyperthyroidism.
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excessive thyroid hormones would gradually impair glucose
control, and the processcan be delayed when the progression
towards hyperthyroidism is retarded. The longer time patients are
exposed to hyperthyroidism, the higher risk of developing diabetes
would be posed to them, even with stable thyroid hormones. The
altered glucose-insulin dynamics of hyperthyroid patients after the
administration of anti-thyroid drugs were analyzed upon
the proposed drug-treatment model for hyperthyroidism. The
results indicate that timely thyroid treatment can halt the
progression of hyperglycemia and prevent beta-cell failure,
underlying the reversal of diabetes. This is in line with the result
from a nation-wide cohort study reporting the occurrence rate of
T2DM in hyperthyroid patients decreased after thyroid treatment
(69). These conclusions support the appeal that thyroid
dysfunction should be managed initially in the diabetic
treatment. The model may have the potential to help develop
therapeutic strategies for hyperthyroidism-induced diabetes.

To reduce the complexity of the model, we incorporate merely
the FT4 and TSH variables in the formulation of the hyperthyroid
submodel, aiming at depicting the essential feature of the
regulatory system with the fewest components . A
comprehensive mathematical model of the HPT axis involving
both T3-TSH interaction and deiodinase activities has been
established, though the submodel per se is composed of five
differential equations (79). In the hyperthyroid-diabetes model,
we considered only the influence of thyroid hormones on the
glucose regulation. Changes in serum TSH are also associated with
the incidence of T2DM, but the connection is merely significant in
hypothyroidism (57). In contrast, excessive thyroid hormones,
rather than suppressed TSH level, have major effects on beta-cell
apoptosis and hyperglycemia for patients with hyperthyroidism.
Therefore, we neglected the impact of TSH on the glucose
regulatory system in the model to avoid the introduction of
additional parameters. Similarly, the influence of excessive
thyroid hormones on insulin degradation was omitted for
simplicity. It is of primary consideration that the assumptions
underlying the model equations reflect the key characteristics of
the glucose regulatory system and that the models generate
plausible results in agreement with observations. aining all the
concentrations of blood glucose, insulin, FT4, and TSH, we have
not validated the model with individual measurements.This is a
common predicament for mathematicians investigating the
interaction of multiple subsystems. We envisage this obstacle
would eventually be eliminated with facilitated collaborations
between modelers and clinicians.

Although the model validation involves a comprehensive set
of data on glucose, insulin, FT4, and TSH, which remains
challenging, the model and simulations explore the possible
interactions between glucose regulation and other endocrine
components. isage this gap would be reduced with facilitated
collaborations between modelers and clinicians. Computer
simulations can be an imperative option to explore treatment
strategies before the actual harm occurs to patients. Stochastic

models or statistical models (80) accounting for random factors
would be closer to reality than deterministic models described in
this paper. However, stochastic models introduce more
complexity that remains challenging to be analyzed. The
deterministic models reviewed here and the new hyperthyroid-
diabetes model may inspire more work with a stochastic frame in
the future, further strengthening the collaboration with
clinicians to enhance their applications to real cases. Although
the applications of artificial intelligence (machine learning)
algorithms have been become increasingly popular in
manymedical domains, the formulation of such algorithms for
modeling the long-term progression of diabetes remains limited
(81). Time delays, which are common in modeling the metabolic
system (82–85), may induce uncertainty and make machine
learning challenging to capture chaotic phenomena (86, 87). No
artificial intelligence work related to secondary diabetes has been
established so far. By taking the initiative in secondary diabetes
modeling, our work provides insights and motivations in the
development of AI algorithms.

In summary, mathematical models has facilitated the
understanding of the mechanism underlying the intertwined
endocrine axes. Efforts on merging the glucose-insulin model
with other endocrine subsystem models would promote the
discovery of the entire glucose regulatory network. In this
paper, we recapitulate updated biological research results for
the crosstalk interactions between glucose regulatory system and
other endocrine hormones. Future perspectives of mathematical
modelling in the field of secondary diabetes are addressed to
promote further mathematical research untangling the
complexity of secondary diabetes. These efforts would facilitate
the development of precise medicine forsecondary diabetes.
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20. López-Palau NE, Olais-Govea JM. Mathematical model of blood glucose
dynamics by emulating the pathophysiology of glucose metabolism in type 2
diabetes mellitus. Sci Rep (2020), 1–11. doi: 10.1038/s41598-020-69629-0

21. Rafacho A, Ortsäter H, Nadal A, Quesada I. Glucocorticoid treatment and
endocrine pancreas function: implications for glucose homeostasis, insulin
resistance and diabetes. J Endocrinol (2014), R49–62. doi: 10.1530/JOE-14-0373

22. Kuo T, McQueen A, Chen TC, Wang JC. Regulation of glucose homeostasis
by glucocorticoids. Glucocorticoid Signaling (2015), 99–126. doi: 10.1007/978-1-
4939-2895-8_5

23. Jeong IK, Oh SH, Kim BJ, Chung JH, Min YK, Lee MS, et al. The effects of
dexamethasone on insulin release and biosynthesis are dependent on the dose and
duration of treatment. Diabetes Res Clin Pract (2001), 163–71. doi: 10.1016/S0168-
8227(00)00229-1

24. van Raalte DH, Nofrate V, Bunck MC, van Iersel T, Schaap JE, Nässander UK,
et al. Acute and 2-week exposure to prednisolone impair different aspects of b-cell
function in healthy men. Eur J Endocrinol (2010), 729–35. doi: 10.1530/EJE-09-1034
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40. Efendić S, Luft R, Cerasi E. Quantitative determination of the interaction
between epinephrine and various insulin releasers in man. Diabetes (1978), 319–26.
doi: 10.2337/diab.27.3.319

41. Kumar D, et al. (2016). Modeling for diabetes detection with the help of
epinephrine behavior, in: 3rd International Conference on Computing for Sustainable
Global Development (INDIACom), (New Delhi, India: IEEE). pp. 1842–5. Available
at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=7724585.

Yang et al. 10.3389/fendo.2022.1070979

Frontiers in Endocrinology frontiersin.org15

https://doi.org/10.2337/dc10-S062
https://doi.org/10.1007/s00592-009-0112-9
https://doi.org/10.53738/REVMED.2017.13.565.1158
https://doi.org/10.30442/ahr.0501-9-39
https://doi.org/10.1371/journal.pone.0066711
https://doi.org/10.1155/2013/390534
https://doi.org/10.2174/1573399818666220224140934
https://doi.org/10.1177/1474651410371321
https://doi.org/10.1016/j.tem.2019.01.008
https://doi.org/10.1152/ajpendo.00512.2019
https://doi.org/10.3389/fendo.2020.583016
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=4177084
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=4177084
https://doi.org/10.1016/j.bej.2011.02.019
https://doi.org/10.1152/ajpendo.90444.2008
https://doi.org/10.1152/ajpendo.00421.2011
https://doi.org/10.1371/journal.pone.0222833
https://doi.org/10.1056/NEJMoa012512
https://doi.org/10.2337/diabetes.54.4.1150
https://doi.org/10.1038/s41598-020-69629-0
https://doi.org/10.1530/JOE-14-0373
https://doi.org/10.1007/978-1-4939-2895-8_5
https://doi.org/10.1007/978-1-4939-2895-8_5
https://doi.org/10.1016/S0168-8227(00)00229-1
https://doi.org/10.1016/S0168-8227(00)00229-1
https://doi.org/10.1530/EJE-09-1034
https://doi.org/10.1101/2020.02.27.968354
https://doi.org/10.1152/ajpendo.00712.2009
https://doi.org/10.2337/diabetes.55.02.06.db05-0720
https://doi.org/10.1126/science.2006409
https://doi.org/10.1002/cphy.c140007
https://core.ac.uk/download/pdf/190333833.pdf
https://doi.org/10.1007/s11906-011-0243-6
https://doi.org/10.1007/s11906-011-0243-6
https://doi.org/10.1007/s00125-020-05171-y
https://doi.org/10.1007/s00125-020-05171-y
https://doi.org/10.1111/j.1365-201X.2005.01437.x
https://doi.org/10.1152/ajpendo.00310.2004
https://doi.org/10.2337/dc13-1004
https://doi.org/10.4236/mnsms.2019.94005
https://doi.org/10.4236/mnsms.2019.94005
https://doi.org/10.1006/jtbi.2000.2150
https://doi.org/10.2337/diab.42.2.307
https://doi.org/10.2337/diab.27.3.319
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=7724585
https://doi.org/10.3389/fendo.2022.1070979
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


42. Sherwin RS, Shamoon H, Hendler R, Saccà L, Eigler N, Walesky M.
Epinephrine and the regulation of glucose metabolism: effect of diabetes and
hormonal interactions. Metabolism (1980), 1146–54. doi: 10.1016/0026-0495(80)
90024-4
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