
How the Great Firewall of China Detects and Blocks Fully Encrypted Trafc

Mingshi Wu

GFW Report

Jackson Sippe

University of Colorado Boulder

Danesh Sivakumar

University of Maryland

Jack Burg

University of Maryland

Peter Anderson

Independent researcher

Xiaokang Wang

V2Ray Project

Kevin Bock

University of Maryland

Amir Houmansadr

University of Massachusetts Amherst

Dave Levin

University of Maryland

Eric Wustrow

University of Colorado Boulder

Abstract
One of the cornerstones in censorship circumvention is fully

encrypted protocols, which encrypt every byte of the payload

in an attempt to “look like nothing”. In early November 2021,

the Great Firewall of China (GFW) deployed a new censorship

technique that passively detects—and subsequently blocks—

fully encrypted trafc in real time. The GFW’s new censorship

capability affects a large set of popular censorship circum-

vention protocols, including but not limited to Shadowsocks,

VMess, and Obfs4. Although China had long actively probed

such protocols, this was the rst report of purely passive de-

tection, leading the anti-censorship community to ask how

detection was possible.

In this paper, we measure and characterize the GFW’s new

system for censoring fully encrypted trafc. We nd that, in-

stead of directly dening what fully encrypted trafc is, the

censor applies crude but efcient heuristics to exempt trafc

that is unlikely to be fully encrypted trafc; it then blocks the

remaining non-exempted trafc. These heuristics are based

on the ngerprints of common protocols, the fraction of set

bits, and the number, fraction, and position of printable ASCII

characters. Our Internet scans reveal what trafc and which IP

addresses the GFW inspects. We simulate the inferred GFW’s

detection algorithm on live trafc at a university network tap

to evaluate its comprehensiveness and false positives. We

show evidence that the rules we inferred have good coverage

of what the GFW actually uses. We estimate that, if applied

broadly, it could potentially block about 0.6% of normal In-

ternet trafc as collateral damage.

Our understanding of the GFW’s new censorship mecha-

nism helps us derive several practical circumvention strategies.

We responsibly disclosed our ndings and suggestions to the

developers of different anti-censorship tools, helping millions

of users successfully evade this new form of blocking.

1 Introduction

Fully encrypted circumvention protocols are a cornerstone of

censorship circumvention solutions. Whereas protocols like

TLS begin with a handshake that comprises plaintext bytes,

fully encrypted (randomized) protocols—such as VMess [23],

Shadowsocks [22], and Obfs4 [7]—are designed such that

every byte in the connection is functionally indistinguishable

from random. The idea behind these “looks like nothing” pro-

tocols is that they should be difcult for censors to ngerprint

and therefore costly to block.

On November 6, 2021, Internet users in China reported

blockings of their Shadowsocks and VMess servers [10]. On

November 8, an Outline [42] developer reported a sudden

drop in use from China [69]. The start of this blocking co-

incided with the sixth plenary session of the 19th Chinese

communist party central committee [1, 4], which was held on

November 8–11, 2021. Blocking these circumvention tools

represents a new capability in China’s Great Firewall (GFW).

To our knowledge, although China has been using passive traf-

c analysis and active probing together to identify Shadow-

socks servers since May 2019 [5], it is the rst time the censor

has been able to block fully encrypted proxies en masse in

real time, completely based on passive trafc analysis. The

importance of fully encrypted protocols to the entire anti-

censorship ecosystem and the mysterious behaviors of the

GFW motivate us to explore and understand the underlying

mechanisms of detection and blocking.

In this work, we measure and characterize the GFW’s new

system for passively detecting and censoring fully encrypted

trafc. We nd that, instead of directly dening what fully

encrypted trafc is, the censor applies at least ve sets of

crude but efcient heuristics to exempt trafc that is unlikely

to be fully encrypted trafc; it then blocks the remaining non-

exempted trafc. These exemption rules are based on common

protocol ngerprints, a crude entropy test using the fraction of

set bits, and the fraction, position, and maximum contiguous

count of ASCII characters in the rst TCP payload.

Due to the black-box nature of the GFW, our inferred rules

may not be exhaustive; however, we evaluate our inferred

rules on real-world trafc from a network tap at CU Boulder,

and provide evidence that our rules have signicant overlap

with the GFW’s. We also nd that the inferred detection al-

gorithm would block roughly 0.6% of all connections on our

network tap. Possibly to mitigate over-blocking caused by

false positives, our Internet scans show that the GFW strategi-

cally only monitors 26% of connections and only to specic

IP ranges of popular data centers.

We also analyze the relationship between this new form of

passive censorship and the GFW’s well-known active probing

system [5], which operate in parallel. We nd that the active

probing system also relies on this trafc analysis algorithm

but has additional packet length-based rules applied. Con-

sequently, the circumvention strategies that can evade this

new blocking will also prevent the GFW from identifying and

subsequently active-probing the proxy servers.

We derive various circumvention strategies from our un-

derstanding of this new censorship system. We responsibly

and promptly shared our ndings and circumvention sugges-

tions with the developers of various popular anti-censorship

tools, including Shadowsocks [22], V2Ray [59], Outline [42],

Lantern [20], Psiphon [21], and Conjure [33]. These circum-

vention strategies have been widely adopted and deployed

since January 2022, helping millions of users bypass this new

censorship. As of February 2023, all circumvention strategies

these tools adopted are reportedly still effective in China.

2 Background

2.1 Trafc Obfuscation Strategies

Tschantz et al. divide approaches to obfuscating censorship

circumvention trafc into two types: steganograpic and poly-

morphic [57, § V]. The goal of steganographic proxies is to

make circumvention trafc look like allowed trafc; the goal

of polymorphism is to make circumvention trafc not look

like forbidden trafc.

The two most common approaches to achieving steganog-

raphy are mimicking and tunneling. Houmansadr et al. [39]

conclude that mimicking a protocol is fundamentally awed

and suggest that tunneling through allowed protocols be a

more censorship-resistant approach. Frolov and Wustrow [35]

demonstrate that even when a tunneling approach is used, it

still requires effort to perfectly align protocol ngerprints with

popular implementations, in order to avoid blocking by pro-

tocol ngerprints. For instance, in 2012, China and Ethiopia

deployed deep packet inspection to detect Tor trafc by its

uncommon ciphersuits [44, 55, 67]. Censorship middlebox

vendors have previously identied and blocked meek [29]

trafc based on its TLS ngerprint and SNI value [28].

To avoid this complexity, many popular proxies opt for

polymorphic designs. A common way to achieve polymor-

phism is to fully encrypt the trafc payload, starting from the

rst packet in a connection. Without any plaintext or xed

header structure to ngerprint, the censor cannot easily iden-

tify proxy trafc with regular expressions or by looking for

specic patterns in trafc. This design was rst introduced in

Obfuscated OpenSSH in 2009 [16]. Since then, it has been

employed by Obfsproxy [24], Shadowsocks [22], Outline [42],

VMess [23], ScrambleSuit [68], Obfs4 [7], and partially used

in Geph4 [58], Lantern [20], Psiphon3 [21], and Conjure [33].

Fully encrypted trafc is often referred to as “looks like

nothing” trafc, or misunderstood as “having no characteris-

tics”; however, a more accurate description would be “looks

like random”. In fact, such trafc does have an important char-

acteristic that sets it apart from other trafc: Fully encrypted

trafc is indistinguishable from random. Since there are no

identiable headers, trafc will have high entropy homoge-

neously throughout the entire connection, even in the rst

data packet. By contrast, even encrypted protocols like TLS

have relatively low-entropy handshake headers that convey

supported versions and extensions.

In 2015, Wang et al. [61, §5.1] used the length and high

Shannon entropy of the rst packet payload in a connection

to identify randomized trafc, like Obfs4. Similarly, in 2017,

Zhixin Wang released a proof-of-concept tool that used the

high Shannon entropy of the rst three packets’ payloads in a

connection to identify Shadowsocks trafc [40]. Madeye ex-

tended the tool to additionally use the payload length distribu-

tion to detect ShadowsocksR trafc [47]. He et al. [70, §IV.A]

and Liang et al. [46, §II.A] used a single-bit frequency detec-

tion algorithm, rather than the Shannon entropy, to measure

the randomness of Obfs4 trafc. In 2019, Alice et al. found

that the GFWwas using the length and entropy of the rst data

packet in each connection to suspect Shadowsocks trafc [5].

2.2 Active Probing Attacks and Defenses

In active probing attacks, the censor sends well-crafted pay-

loads to a suspected server and measures how it responds.

If the server responds to these probes in an identiable way

(e.g. lets the censor use it as a proxy), the censor can block

it. As early as August 2011, the GFW was observed to send

seemingly random payloads to foreign SSH servers that ac-

cepted SSH logins from China [49]. In 2012, the GFW rst

looked for a unique TLS ciphersuit to identify Tor trafc; it

then sent active probes to the suspected servers to conrm its

guess [64, 66, 67]. In 2015, Ensa et al. conducted a detailed

analysis of the GFW’s active probing attacks against various

protocols [27]. Since May 2019, China has deployed a censor-

ship system to detect and block Shadowsocks servers in two

steps: It rst uses the length and entropy of the rst packet pay-

load in each connection to passively identify possible Shadow-

socks trafc, and then sends various probes, in different stages,

to the suspected servers to conrm its guess [5]. In response,

researchers proposed various defenses against active probing

attacks, including consistent server reactions [9, 34] and ap-

plication fronting [36,45]. Shadowsocks, Outline, and V2Ray

have incorporated probe-resistant designs [5,19,32,34,43,71],

making them unblocked in China since September 2020 [5],

until the recent blocking in November 2021 [10].

Experiments Time Span China Vantage Points US Vantage Points Sections

Characterization Nov. 6, 2021 – May 18, 2022 (6 months) 3 (TC, BJ),1 (Ali, BJ) 3 (DO, SFO) §4

Re-running Feb. 16, 2023 (1 day) 1 (TC, BJ) 1 (DO, SFO) §4.1,§4.2,§4.3

Active Probing May 19 – Jun. 8, 2022 (3 weeks) 1 (TC, BJ) 2 (DO, SFO) §5

Internet Scan May 12–13, 2022 (2 days) 9 (TC, BJ) 1 (Scan, Univ) §6

Live Trafc Jul. – Sept., 2022 (3 months) 1 (TC, BJ) 1 (DO, SFO), 1 (Tap, Univ) §7

Table 1: Experiment timeline and vantage points— In total, we used one VPS in AlibabaCloud (Ali) Beijing (AS37963),

ten VPSes in TencentCloud (TC) Beijing (AS45090), four VPSes in DigitalOcean (DO) San Francisco (AS14061), and two

machines at the University of Colorado Boulder (Univ) (AS104).

3 Methodology

We crafted and sent various test probes between hosts inside

and outside of China, letting them be observed the GFW. We

observed the GFW’s reactions by capturing and comparing

trafc on both endpoints. This logging allows us to identify

any dropped or manipulated packets, as well as active probes.

Experiment timeline and Vantage points. We summarized

the timeline and vantage point usage of all major experiments

in Table 1. In total, we used ten VPSes in TencentCloud

Beijing (AS45090) and one VPS in AlibabaCloud Beijing

(AS37963). We did not observe any differences in the cen-

soring behavior between our vantage points within China or

any affected external vantage points. We used four VPSes in

DigitalOcean San Francisco (AS14061): three of them were

affected by the new censorship, the other one was not. We

turned these four VPSes into sink servers; that is, the servers

listen on all ports from 1 to 65535 to accept TCP connections,

but do not send any data back to the client. We also employed

two machines in the CU Boulder (AS104) for Internet scan-

ning and live trafc analysis. We checked the IP addresses of

our VPSes against IP2Location database [3], conrming their

geo-locations are as reported by their providers.

Triggering censorship. Because fully encrypted trafc is

indistinguishable from random data, beyond using actual cir-

cumvention tools, we developed measurement tools that send

random data to trigger blocking in our study. The tools initiate

a TCP handshake, send a random payload of a given length,

and then close the connection.

Using residual censorship to conrm blockings. Similar

to how the GFW blocks many other protocols [13, 14, 17, 63],

after a connection triggers the censorship, the GFW blocks

all subsequent connections having the same 3-tuple (client

IP, server IP, server port) for 180 seconds. This residual cen-

sorship allows us to conrm blocking by sending follow-up

connections from the same client to the same port of the server.

We make ve TCP connections one by one with a one-second

interval in between. If all ve connections failed, we conclude

that the 3-tuple is blocked. Once a 3-tuple is blocked, we do

not use it for further tests in the next 180 seconds.

Accouting for probabilistic blocking with repeated tests.

We often had to make multiple connections with the same pay-

load before we observed blocking. In Section 6.3, we explain

that this is because the GFW employs a probabilistic blocking

strategy, where censorship is only triggered approximately a

quarter of the time. To account for this probabilistic behavior,

we send the same payload in up to 25 connections before

drawing any blocking (or not blocking) conclusion. If we can

successfully make 25 connections with the same payload in

a row, then we conclude that the payload (or server) is not

affected by this censorship. If after sending the payload at

least once, a sequence of 5 subsequent connection attempts

timeout (due to residual censorship), we label the payload

(and server) as affected by censorship. We use this method of

repeated connections to measure blocked payloads in all the

tests throughout our study.

4 Characterizing the New Censorship System

We conduct experiments to understand how the GFW detects

and blocks fully encrypted connections. Detailed in Table 1,

between Nov 6, 2021 and May 18, 2022, we used three VPSes

in China and three sink servers in the US to conduct our ex-

periments. During the same period, we also used one VPS

in AlibabaCloud Beijing (AS37963) to repeat all our experi-

ments. We did not observe any differences in the censoring

behavior among our vantage points within China or any af-

fected external vantage point. On February 16, 2023, we reran

our experiments and conrmed all detection rules still held.

This time, we used one VPS in TencentCloud BJ and one sink

server in DigitalOcean SFO.

Algorithm 1 presents a high-level overview of the GFW’s

detection rules we inferred, and Figure 1 illustrates examples

of these inferred rules in action. While we cannot infer the

order in which these rules get applied or if they are exhaustive,

our experiments conrm specic components of the GFW’s

censorship strategy. We nd that, instead of directly dening

what fully encrypted trafc is, the censor applies at least ve

sets crude but efcient heuristic rules to exempt trafc that

is unlikely to be fully encrypted trafc; it then blocks the

remaining non-exempted trafc. These exemption rules are

based on common protocol ngerprints, a crude entropy test

using the fraction of bits set, and the fraction, position, and

maximum contiguous count of ASCII characters.

Algorithm 1 The GFW uses at least ve heuristic rules to

detect and block fully encrypted trafc. The censor applies

this algorithm to TCP connections sent from China to certain

IP subnets and employs probabilistic blocking (Section 6).

Allow a connection to continue if the rst TCP payload (pkt)

sent by the client satises any of the following exemptions:

Ex1:
popcount(pkt)

len(pkt) ≤ 3.4 or
popcount(pkt)

len(pkt) ≥ 4.6.

Ex2: The rst six (or more) bytes of pkt are [0x20,0x7e].

Ex3: More than 50% of pkt’s bytes are [0x20,0x7e].

Ex4: More than 20 contiguous bytes of pkt are [0x20,0x7e].

Ex5: It matches the protocol ngerprint for TLS or HTTP.

Block if none of the above hold.

4.1 Entropy Exemption (Ex1)

We observed that the fraction of bits set inuences whether

a connection is blocked. To determine this, we sent repeated

connections to our server and observed which were blocked.

In each connection, we sent one of 256 different byte patterns,

consisting of 1 byte repeated 100 times (e.g., \x00\x00\x00

. . . , \x01\x01\x01 . . . , . . . , \ xff \ xff \ xff . . .). We sent each

pattern in 25 connections to our server, and observed if any

patterns resulted in blocking subsequent connections, indicat-

ing the payload triggers blocking. We found 40 byte patterns

triggered blocking, while the remaining 216 patterns did not.

Example patterns that were blocked include \x0f\x0f\x0f . . . ,

\x17\x17\x17 . . . , and \x1b\x1b\x1b . . . (and 37 others).

All of the blocked patterns consist of bytes with exactly

4 (out of 8) bits that were 1 (for instance, \x1b in binary

is 00011011). We hypothesized that the number of set bits

(1 bits) per byte may play a role, as uniformly random data

will have close to the same number of total 1s and 0s in binary.

In effect, this is essentially measuring the entropy of the bits

within the client’s packet.

We conrmed this by sending combinations of bytes that

were individually allowed, but together resulted in being

blocked. For example, both \xfe \xfe \xfe . . . and \x01\x01

\x01 . . .were not blocked individually, but these bytes sent

together as \xfe \x01\xfe \x01 . . . resulted in blocking. We

note \xfe \x01 has 8 (out of 16) bits set to 1 (an average of

4 bits per byte set), while \xfe has 7 out of 8, and \x01 has

1 of 8 set, explaining why individually they are allowed, but

together they are blocked.

Of course, random or encrypted data will not always have

exactly half of the bits set to 1. We tested how close to half

the GFW needed in order to block, by sending a sequence

of 50 random bytes (400 bits) with an increasing number of

bits set. We produced 401 bitstrings with 0–400 bits set to 1,

and shufed each string, yielding a set of random strings with

0–8 bits set per byte (in increments of 0.02 bits/byte). For

each string, we made 25 connections and sent the string to

observe if it triggered subsequent connections to be blocked.

We found that all strings with ≤ 3.4 or ≥ 4.6 bits/byte set

were not blocked, while strings with between 3.4 and 4.6

bits/byte set were blocked.

There was a single exception to this for a string with 4.26

bits/byte set, which we determined was not blocked due to hav-

ing over 50% of its bytes be printable ASCII characters; we

show next this is an exemption rule (Ex2). We repeated our ex-

periment and conrmed that other strings with the same num-

ber of bits set with less printable ASCII are indeed blocked.

In summary, we nd that the GFW exempts a connection if

the fraction of bits set in the client’s rst data packet deviates

from half. This corresponds to a crude measure of entropy:

random (encrypted) data will have close to half of the bits set

to 1, while other protocols usually have fewer 1 bits per byte

due to plaintext or zero-padded protocol headers. For instance,

Google Chrome version 105 sends a TLS client hello with

an average of only 1.56 bits set per byte, falling outside the

censorship range, owing to padding with zeros.

4.2 ASCII Characters Exemption (Ex2-4)

We observed several exceptions to the bit counting rule we

discovered in Section 4.1. For instance, the pattern \x4b\x4b\

x4b . . .was not blocked, despite having exactly 4 bits set per

byte. Indeed, there are actually 70 characters (8 choose 4) that

have exactly 4 bits set, but our analysis found that only 40 of

those triggered censorship. What about the other 30?

These other 30 byte values all fall within the byte range

that comprises the printable ASCII characters, 0x20–0x7e.

We conjecture that the GFW exempts characters presumably

to allow “plaintext” (human-readable) protocols.

We found three ways in which the GFW exempts connec-

tions based on printable ASCII characters in the rst packet

payload from the client: if the rst six bytes are printable

(Ex2); if more than half of the bytes are printable (Ex3); or if

it contains more than 20 contiguous printable bytes (Ex4).

First six bytes are printable (Ex2). We observe that the

GFW exempts blocking if the rst 6 bytes of a connection fall

within the printable byte range 0x20–0x7e. If there are char-

acters outside this range in the rst 6 bytes, then a connection

may be blocked, assuming it does not have other exempting

properties (for example, fewer than 3.4 bits per byte set). We

tested this by generating messages where the rst n bytes

were sourced from different character sets (such as ASCII

printable characters) and the rest of the message would be

random unprintable characters. We nd that for n < 6, we

observe censorship, but for n≥ 6 where the rst n bytes are

ASCII printable characters, no blocking occurs.

Half of the rst packet are printable (Ex3). If more than

half of all bytes in the rst packet fall into the printable ASCII

f9 ab cd ef 9a 8d c1...
Unprintable bytes

First 6 bytes

unprintable

BLOCKED

41 42 43 44 45 46 c1...
Printable bytes

First 6 bytes

printable

NOT BLOCKED

(a) First six printable exemption (Ex2): the

GFW exempts a connection if the rst six

bytes (or more) are all printable.

1e9ca7fab01b149dd2a1ef1aff

be149dd2a1476f6f6462796500

BLOCKED

<50% of data

is printable

6f726c6400616e6420494d4321

be149dd2a148656c6c6f200057

NOT BLOCKED

>50% of data

is printable

(b) Half printable exemption (Ex3): the

GFW exempts a connection if its rst pay-

load has more than 50% printable ASCII.

494d43203a28149dd2a1ef9fff

...49dd2a1476f6f6462796520

BLOCKED

Run of only 14

printable bytes

6c6420616e6420494d43212121

...49dd248656c6c6f20776f72

NOT BLOCKED

Run of >20

printable bytes

(c) Contiguous printable exemption (Ex4):

the GFW counts the max number of con-

tiguous printable bytes, and exempts a con-

nection if the value is more than 20 bytes.

avg 4

bits/byte

avg 1.67

bits/byte

49
01001001

fa
11111010

e3
11100011

91
10010001

5c
01011100

83
10000011

00
00000000

01
00000001

02
00000010

03
00000011

04
00000100

05
00000101

BLOCKED

NOT BLOCKED

(d) Popcount exemption (Ex1): the GFW calculates the

average number of bits set (popcount) per byte as a crude

measure of entropy, and exempts a connection if the value

is less than 3.4 or greater than 4.6.

GET / HTTP/1.1\r\n...
Fingerprint

HTTP

Matches

NOT BLOCKED

16 03 01 00 a5 01 00...
Fingerprint

TLS

Matches

NOT BLOCKED

f9 ab cd ef 9a 8d c1...
No fingerprint

No

Match

BLOCKED

(e) Protocol exemption (Ex5): the GFW exempts a con-

nection if its rst few bytes match HTTP or TLS protocol.

Figure 1: Examples of GFW’s trafc exemption rules— The GFW exempts a TCP connection if the payload of its rst data

packet matches any of the rules above. Trafc not exempted by any of the rules will be blocked. Printable characters refer to

any character in range [0x20,0x7e]. Figures 1(a) , 1(b) , and 1(c) are introduced in Section 4.2. Figure 1(e) is introduced in

Section 4.3. Figure 1(d) is introduced in Section 4.1.

range 0x20–0x7e, the GFW exempts the connection. We

tested this by sending packets consisting of 10 bytes of char-

acters outside this range (e.g. 0xe8), followed by a repeating

sequence of 6 bytes: 5 within the range (e.g., 0x4b), and one

outside. We repeat this 6 byte sequence 5 times, and then

pad the end of the string with n bytes outside the range (in

Python notation: " \xe8"*10 + (" \x4b"*5 + "\xe8")*5 + "\

xe8"*n). This experiment gives us a variable-length pattern

that decreases the fraction of bytes in the printable ASCII

range as we increase n. We nd that for n< 10, connections

are not blocked, while for n≥ 10 they are. This corresponds

to blocking when the fraction of printable characters is less

than or equal to half, and not blocking when greater than half.

We design our probes to avoid triggering other GFW ex-

emptions, such as bit counts (Ex1), printable prexes (Ex2), or

runs of printable characters (Ex4). For example, we use 0x4b

and 0xe8 as our printable and non-printable characters respec-

tively, since they both have exactly 4 bits set. This prevents

the GFW from exempting our connection from blocking due

to the bit count rule (Ex1) discussed previously. In addition,

we avoid having contiguous runs of printable 0x4b characters,

as we observed that such runs can also exempt a connection

from blocking, which we discuss next. We repeated our ex-

periments with other patterns that also met these constraints

(e.g. 0x8d and 0x2e), and observed the same results.

More than 20 contiguous bytes are printable (Ex4). A

contiguous run of printable characters can also exempt block-

ing, even if the total fraction of printable characters is less

than half. To test this, we sent a pattern of 100 bytes of a

character outside the printable range (0xe8) with a varying

number of contiguous bytes from the printable range (we used

0x4b). Our payload started with 10 bytes of 0xe8, followed

by n bytes of 0x4b, and then 90−n bytes of 0xe8, for a total

length of 100 bytes. We varied n from 0–90, and sent each

of the 91 payloads in 25 connections to our server. We found

that with n ≤ 20, the connection was blocked. For n > 20,

the connection was not blocked, indicating the presence of a

run of printable characters exempts blocking. Of course, past

n> 50, the connection will also be exempt, because of Ex3.

Other encodings. We tested whether Chinese characters in

the rst packet were exempted from blocking in the same

way as printable ASCII characters did. We used strings of

6–36 Chinese characters encoded in UTF-8, as well as GBK

(identical to GB2312 for the character we used). All of these

tests were blocked, suggesting that there is no exemption for

Chinese characters. It is possible that the presence of Chinese

characters in these encodings is rare, or that parsing these

encodings adds unjustied complexity since it is hard to know

where an encoded string starts or ends.

4.3 Common Protocols Exemption (Ex5)

To avoid blocking popular protocols by mistake, we observe

that the GFW explicitly exempts two popular protocols. The

GFW appears to infer protocols from the rst 3–6 bytes of the

client’s packet: If they match the bytes of a known protocol,

the connection is exempted from blocking, even if the rest

of the packets do not conform to the protocol. We tested six

common protocols and found that the TLS and HTTP proto-

cols are explicitly exempted. This list may not be exhaustive,

as there may be other exempted protocols we did not test.

TLS. TLS connections start with a TLS Client Hello mes-

sage, and the rst three bytes of this message cause the GFW

to exempt the connection from blocking. We observe that the

GFW exempts any connection whose rst three bytes match

the following regular expression:

[\x16-\x17]\x03[\x00-\x09]

This corresponds to the one-byte record type, followed

by a two-byte version. We enumerated all 256 patterns of

‘XX\x03\x03’ followed by 97 bytes of random data, and

found all patterns were blocked except those that start with ei-

ther 0x16 (corresponding to the Handshake TLS record type,

used in the Client Hello) or 0x17 (corresponding to the Ap-

plication Data record type). While normal TLS connections

do not begin with Application Data [52, 53], when TLS is

used over Multipath-TCP (MPTCP) [31], it is common for

one of the TCP subows to be used for the Client Hello and

for other subows to send Application Data immediately after

the TCP connection is established [15]. As of today, only TLS

versions 0x03[0x00-0x03] have been dened [52,53], but

the GFW allows even later (not yet dened) versions.

HTTP. The byte pattern used by the censor to identify HTTP

trafc is simply the method followed by a space. If a message

starts with GET , PUT , POST , or HEAD , the connection will

be exempt from blocking. The space character (0x20) after

each verb is necessary to exempt connections from blocking.

Not including this space character, or replacing it with any

other byte will not exempt the connection. The other HTTP

methods (OPTIONS , DELETE , CONNECT , TRACE , PATCH)

fall into the ASCII printable exemption (Ex2), as the rst 6

bytes are printable characters. We nd that the method is case-

insensitive: GeT , get , and similar variations are exempt.

Typos in the verb (e.g., TEG) are not exempt.

Non-exempted protocols. We tested other common proto-

cols: SSH, SMTP, and FTP would be exempt as they all start

with at least 6 bytes of printable ASCII (rule Ex2). DNS-over-

TCP is exempt due to containing a large fraction of zeros,

making it exempt by the Ex1 rule. However, if a large enough

amount of random data was appended after a DNS-over-TCP

message, it would be blocked.

This observation raises the question of why the censor

has explicit rules to exempt TLS and HTTP, but not other

protocols. After all, the censor does not need to exempt these

two protcols explicitly: HTTP will commonly be exempt by

printable ASCII for the rst 6 bytes (rule Ex2), and TLS

Client Hello messages have relatively low bit-wise entropy

(rule Ex1), owing to many zero elds. Nonetheless, the censor

may employ these simple but efcient rules to quickly exempt

the bulk of trafc (TLS and HTTP) from the more in-depth

analysis of calculating the popcount, fraction of ASCII, etc.

4.4 How the GFW Disrupts Connections

Once the GFW detects fully encrypted trafc using Algo-

rithm 1, it blocks the subsequent trafc as introduced below.

Packets are dropped from client to server. We triggered

the GFW’s blocking and compared the captured packets from

both the sending client and receiving server. We observe that

after triggering blocking, the client’s packets are dropped by

the GFW, and do not reach the server. However, packets sent

by the server are not blocked and are still received at the client.

UDP trafc is not affected. The new censorship system is

limited to TCP. Sending a UDP datagram with a random pay-

load cannot trigger the blocking. Additionally, once a 3-tuple

(client IP, server IP, server Port) is blocked due to a triggering

TCP connection, UDP datagrams to or from the same (server

IP, server Port) are not affected. Because of the absence of

UDP blocking, users may experience odd behavior while us-

ing Shadowsocks: they can still access websites or use apps

that rely on UDP (e.g. QUIC or FaceTime), but cannot ac-

cess websites that use TCP. This is because Shadowsocks

proxies TCP trafc with TCP and proxies UDP trafc with

UDP. Not detecting or blocking UDP trafc may reect the

censor’s worse is better engineering mindset. From a prac-

tical view, the current TCP blocking can already effectively

paralyze these popular circumvention tools, while employ-

ing UDP censorship requires additional resources and invites

extra complexity to the censorship system.

Trafc on all ports can get blocked. We set up a sink server

listening on all ports from 1 to 65535 in US. We then let our

client in China continuously make connections with 50-byte

random payloads to each port of the US server and stop when a

port got blocked. We nd that blocking can happen on all ports

from 1 to 65535. Therefore, running circumvention servers

on an unusual port cannot mitigate the blocking. We also do

not observe any difference in censor’s behaviors among ports.

The duration of residual censorship is affected by the

number of on-going residual blocking. We nd that once

this new censorship system blocks a connection, it continues

to drop all subsequent TCP packets having the same 3-tuple

(client IP, server IP, server port) for 120 or 180 seconds. This

behavior is often referred to as “residual censorship” [13, 14,

17, 63]. Unlike some other residual censorship systems [13],

the GFW’s residual censorship timer does not reset when

additional packets are sent.

We also nd that the GFW seems to limit the number of

connections it residually blocks at any given time. We let

our clients in China repetitively make connections to 500

ports of a single server simultaneously. In each connection,

the client sent 50 bytes of random data and then closed the

connection. We recorded the duration of each occurrence of

residual censorship. As shown in Figure 2, in comparison to

the 180 s duration when only one port is blocked, the residual

censorship duration in this experiment decreased dramatically.

Figure 2: Residual censorship duration— When we repeti-

tively send 50-byte random data to 500 ports of a single server

simultaneously, the residual censorship time decreases dramat-

ically. About 40% of the blockings lasted only 10 s, shorter

than the 180 s duration when only one port was blocked. This

suggests that the GFW may limit the number of connections

it residually blocks at any given time.

4.5 How the GFW Reassembles Flows

In this section, we examine how the GFW’s new censorship

system reassembles ows and considers ow directions.

A complete TCP handshake is necessary. We observe that

sending a SYN packet followed by a PSH+ACK packet contain-

ing random data (without the server completing its end of the

handshake) is not sufcient to trigger blocking. The blocking

is thus harder to exploit for residual censorship attacks [13].

Only client-to-server packets can trigger the blocking.

We nd that the GFW not only checks if the random data

is sent to a destination IP address that falls in an affected IP

range, it also examines and will only block if the random data

is sent from client to server. The server here is dened as the

host that sends a SYN+ACK during the TCP handshake.

We learned this by setting up four experiments between the

same two hosts. In the rst experiment, we let the Chinese

client connect and send random data to the foreign server; in

the second experiment, we still let the Chinese client connect

to the foreign server, but let the foreign server send random

data to client; in the third experiment, we let the US client

connect and send random data to Chinese server; in the forth

experiment, we let the US client connect to the Chinese server,

but then let the Chinese server send random data to the US

client. Only connections in the rst experiments were blocked.

The GFW only examines the rst data packets. The GFW

appears to only analyze the rst data packet in a TCP con-

nection, without reassembling the ows with multiple data

packets. We tested this with the following experiment. After

a TCP handshake, we send the rst data packet with only one

byte of payload \x21. After waiting for one second, we then

send the second data packet with a 200-byte random payload.

We repeated the experiment 25 times, but the connections

never got blocked. This is because after seeing the rst data

packet, the GFW had already exempted the connections by

rule Ex1 as it contained 100% printable ASCII in the payload.

In other words, if the GFW reassembled multiple packets into

a ow during its trafc analysis, it would have been able to

block these connections.

We found that the GFW does not wait until seeing an ACK

response from the server to block a connection. We cong-

ured our server to drop any outgoing ACK packets with an

iptables rule. We then made connections with 200-byte

random payloads to the server. The GFW still blocked these

connections though the server never sent any ACK packets.

The GFW waits more than 5 minutes for the rst data

packets. We examine how long the GFW monitors a TCP

connection after the TCP handshake, but before it sees the rst

data packet. From the observation that it requires a complete

TCP handshake to trigger the blocking, we infer the GFW

may be stateful. It is thus reasonable to suspect the GFW only

monitors a connection for a limited amount of time, as it can

be expensive to maintain a state forever without expiring it.

Our client completed TCP handshakes and then waited for

100, 180, or 300 seconds, before sending 200 bytes of random

data. We then repeated the experiment but used iptables

rules to drop any RST or TCP keepalive packets in case they

helped the GFW keep the connection state active. We found

that these connections still triggered blocking, suggesting the

GFW maintained connection states for at least ve minutes.

5 Relation with the Active Probing System

As introduced in Section 2.2, the GFW has been sending ac-

tive probes to Shadowsocks servers since 2019 [5]. In this

section, we study the relationship between this newly dis-

covered real-time blocking system and the existing active

probing system. By conducting designed measurement exper-

iments and analyzing historical datasets, we show that while

these two censorship systems work in parallel, the current

trafc analysis module of the active probing system applies

all ve sets of exemption rules summarized in Algorithm 1

and Figure 1, with one additional rule that examines the pay-

load length of the rst data packet. We also show evidence

that the trafc analysis algorithm used by the active probing

system [5] may have evolved since 2019.

Active probing experiment. Prior to the deployment of this

new real-time blocking system, inferring the trafc analysis

algorithm of the active probing system was extremely chal-

lenging, if possible at all. This is because the GFW employs

an arbitrary delay between seeing a triggering connection and

sending active probes [5, §3.5], making it difcult to account

Crafted Payload Affected Server Unaffected Server

connections # probes # connections # probes

2-byte random (\xfe\x01) 33k 0 169k 0

50-byte random 29k 0 169k 0

200-byte random 33k 141 169k 679

"GET " + 50-byte random 170k 0 169k 0

\x16\x03\x03 + 50-byte random 170k 0 169k 0

\x17\x03\x03 + 50-byte random 170k 0 169k 0

"GET " + 50-byte random 170k 0 169k 0

\x16\x03\x03 + 200-byte random 170k 0 169k 0

\x17\x03\x03 + 200-byte random 170k 0 169k 0

Low bit counting (2.5) 170k 0 169k 0

High bit counting (5.2) 170k 0 169k 0

More than half printable 170k 0 169k 0

First six bytes printable + 200-byte random 170k 0 169k 0

More than 20 contiguous bytes 170k 0 169k 0

Table 2: Number of connections received from our controlled client and number of active probes received from the GFW. Between

May 19, 2022 and June 8, 2022, our client repetitively sent the same 14 payloads from a VPS in Tencent Cloud Beijing datacenter

in China, to 14 ports of two different hosts in the DigitalOcean San Francisco datacenter in US. One US host is known to be

affected by the current blocking system, while the other US host is unaffected. In total, our client in China repetitively sent around

170k connections to each port of the two US servers. The only exception is, when the residual censorship was triggered and the

client could not make connections to the affected server, the total number of successful legitimate connections was around 33k.

for which probes by the GFW are triggered by which con-

nections we send. Now that we have inferred a list of trafc

detection rules of this new blocking system in Section 4, we

can test if a payload exempted by Algorithm 1 will also not

get suspected by the active probing system.

We conducted the experiments between May 19, 2022 and

June 8, 2022. As shown in Table 2, we crafted 14 different

types of payloads: three of them are random data with lengths

of 2, 50, and 200 bytes; the remaining 11 were data with

various lengths that will only be exempted by exactly one

of the exemption rules in Algorithm 1. We then sent the

same 14 payloads from a VPS in Tencent Cloud Beijing

China, to 14 ports of two different hosts in DigitalOcean San

Francisco US. One US host is known to be affected by the

current blocking system, while the other US host is unaffected.

This way, if we received any probes from the GFW, we know

certain exemption rules used by the current blocking system

are not used by the active probing system.

In total, our client in China sent around 170k connections

to each port of the two US servers. We then took steps to

isolate the GFW’s probes from other Internet scanners’. We

check the source IP address of each probe against IP2Location

database [3] and AbuseIPDB [2]. We do not consider it as

a probe from the GFW if it was a non-Chinese IP or from a

known spammer IP address. We further check if the probe

belongs to any known types of probes sent by the GFW.

The two systems work independently. The new censorship

machine makes its blocking decisions purely based on passive

trafc analysis, without relying on China’s well-known active

probing infrastructure [5,27,64,66,67]. We know this because,

while the GFW still sends active probes to the servers, in more

than 99% of the tests, the GFW did not send any active probes

to the server before blocking a connection. For example, as

summarized in Table 2, we made 33,119 connections but only

received 179 active probes. Indeed, similar to the ndings by

prior work [5, §4.2], active probes are rarely triggered.

We want to emphasize that this nding does not mean that

defenses against active probing are not necessary or not im-

portant anymore [5, 9, 34]. On the contrary, we believe that

the GFW’s reliance on purely passive trafc analysis is par-

tially because Shadowsocks, Outline, VMess, and many other

censorship circumvention implementations have adopted ef-

fective defenses against active probing [5,9,19,32,34,43,71].

The fact that the GFW still sends active probes to servers

implies that the censor still attempts to use active probing to

accurately identify circumvention servers whenever possible.

The active probing system applies the ve exemption rules,

with one additional length rule, to suspect trafc. This

experiment suggests two points. First, similar to the ndings

by Alice et al. [5, §4.2], the active probing system applies an

additional rule to examine the length of the connection. In our

case, only connections with 200-byte payloads ever triggered

the active probing, not ones with 2 bytes or 50 bytes. Second,

the trafc exempted by any of the ve rules discovered in

Algorithm 1 will also not trigger the active probing system.

The active probing system has evolved since 2019. We

want to know if the same detection rules in Algorithm 1 were

historically used to trigger active probing. To analyze it, we

obtained 282 payloads that got replayed (and thus once trig-

gered the GFW) in the low-entropy experiment from Alice

et al. [5, §4.1]. We then wrote a program to determine if a

payload would be exempted by the current blocking system,

and fed the program with the obtained 282 payloads. As a re-

sult, 45 probes that previously triggered active probing were

exempted (by rule Ex3). On May 19, 2022, we repeatedly

sent these 45 payloads through the GFW, conrming that they

were indeed exempted from the current blocking. For each

payload, we made 25 connections with it from a VPS in Ten-

centCloud Beijing to a sink server in DigitalOcean SFO. This

result suggests that the GFW has likely updated the trafc

analysis module of its active probing system since 2020. In

addition, the probes sent by the current GFW are also differ-

ent from those observed in 2020 [5, §3.2]. The new probes

are essentially random payloads that are distributed in trios

of 16, 64, and 256 bytes. For each of these lengths, the GFW

sent about the same number of probes: 48, 46, and 47 to one

server, and 238, 228, and 233 to the other.

6 Understanding the Blocking Strategies

In this section, we conduct measurement experiments to char-

acterize the censor’s blocking strategies. We nd that, possibly

to mitigate false positives and reduce operation costs, the cen-

sor strategically limits the scope of blocking to specic IP

ranges of popular data centers, and it applies a probabilistic

blocking strategy to 26% of all connections to these IP ranges.

6.1 Internet Scanning Experiment

On May 12, 2022, we performed a 10% IPv4 Internet scan

on TCP port 80, from a server located at CU Boulder. Fol-

lowing prior work that identies unreliable hosts in Internet

scans [41], we remove IPs that respond with a TCP window

of 0 (as we cannot send them data), or do not accept a sub-

sequent connection. This leaves us with 7 million scannable

IPs. We then randomly and equally split these 7 million IP

addresses into nine subsets, and assigned each to our nine van-

tage points in TencenCloud Beijing datacenter. We then used

a measurement program we wrote and installed in all nine

vantage points for the experiment. For each IP, the program

connects to its port 80 sequentially up to 25 times, with a one-

second interval in between. In each connection, we send the

same 50 bytes of random data that can trigger the blocking.

If we see 5 consecutive connections time out (fail to connect)

after we have sent data, we label the IP as affected. Otherwise,

if all 25 connections succeed, we label the IP as unaffected.

We label IPs that we cannot connect to at all as unknown (e.g.,

the server is down, or a network failure unrelated to the GFW

prevents us from connecting in the rst place).

We also repeated this process but sent 50 bytes of \x00,

which does not trigger blocking by the GFW. If a server is

marked as affected in this test, it is likely due to the server

Figure 3: Affected fraction of ASes and prexes— For

each AS (and /20 prex), we calculate the fraction of GFW-

affected IPs over all tested IPs in it, and plot the CDF. We can

see that only a small fraction of ASes are affected, and most

subnets are “all-or-nothing” (either the entire subnet’s IPs are

affected, or few to none are).

blocking us, and not the GFW, and we remove these IPs from

our results. This leaves just over 6 million IPs.

Finally, we remove “ambiguous” results that may be due

to intermittent network failures or unreliable vantage points.

Specically, we remove IPs that either of our random or zero

scans labelled unknown (we were never able to connect), or

had intermittent connection timeouts (e.g., several connec-

tions timed out, but not 5 consecutively). This leaves 5.5 mil-

lion IPs that we can easily label as unaffected (all 25 con-

nections succeeded) or affected (at some point it appeared

blocked after we sent random data).

6.2 Not All Subnets/ASes are Affected Equally

Of the 5.5 million processed IPs, 98% of them are un-

affected by the GFW’s blocking, suggesting that China is

fairly conservative in employing this new censorship. We

group these 5.5 million IP addresses into their allocated IP

prexes and ASes, using pyasn with an AS database from

April 2022 [51]. For IP prexes larger than /20, we break the

allocation into a set of /20 prexes to keep allocations roughly

the same size. Our 5.5 million IPs comprise 538 unique ASes

that have at least 5 results, and the vast majority of these are

largely unaffected by the GFW’s blocking.

Figure 3 shows the distributions of the fraction of affected

ASes and /20 prexes. We found that more than 90% ASes

are affected in an all-or-nothing way: either all IP addresses

we tested in the AS are affected by the GFW’s blocking, or

no IP addresses we tested in the AS are unaffected. We also

observe that only a few ASes are affected: over 95% of ASes

see less than 10% of their IPs affected, and only 7 ASes see

more than 30% of their IPs affected.

Figure 4: Top affected ASNs— We observe that not all ASes

are affected, and even within each AS, different prexes are

affected differently. For each AS, we looked at each /20 in

their network, and calculated the fraction of IPs blocked in

each /20 subnet. The results were very close to all-or-nothing:

either all IPs in a /20 were affected, or none were.

Figure 4 shows the top affected ASes. While this is skewed

toward larger ASes (which have more IPs in our scan), it

shows both ASes that are heavily affected (e.g., Alibaba US,

Constant) and ones that are not (Akamai, Cloudare). In ad-

dition, some ASes have a mix of affected and not affected

prexes (Amazon, Digital Ocean, Linode). All of the affected

or partly-affected ASes we see are popular VPS providers

that could be used to host proxy servers, while large unaf-

fected ASes do not typically sell VPS hosting to individual

customers (e.g. CDNs).

6.3 Characterizing Probabilistic Blocking

As introduced in Section 3, we send up to 25 connections

with the same payload before drawing any conclusions about

blocking. This is necessary because the censor implements

blocking probabilistically. In other words, just sending a ran-

dom payload to an affected server once would only sometimes

trigger blocking; however, if one keeps making connections

with the same payload to the affected server, blocking will

occur eventually. This raises the question on what the proba-

bility is for a connection to get blocked, and why the censor

implements blocking only probabilistically.

Estimating the blocking rate. From our 10% Internet scan

(Section 6.2), there were 109,489 IP addresses that we label as

blocked. As shown in Figure 5, the distribution of the number

of successful random data connections we can make to each

IP address before getting blocked ts a geometric distribution.

This result suggests that the blocking of each connection is

independent, with a probability of 26.3%.

Why probabilistic blocking is used. We conjecture that the

censor employs probabilistic blocking possibly for two rea-

sons: First, it allows the censor to only examine one-fourth of

Figure 5: CDF of the number of successful connections from

our client in China to each of 109,489 affected IP addresses

before getting blocked. We made up to 25 connections to

port 80 of each IP address. The distribution ts a geometric

distribution, suggesting the blocking of each connection is

independent, with a probability of p= 26.3%.

connections, reducing computation resources. Second, it helps

the censor reduce the collateral damage to non-circumvention

connections. While this reduction also comes at the expense

of lower true positives, the residual censorship may make up

for it: once a connection is determined to be blocked, subse-

quent connections are also blocked for several minutes after,

making it difcult for proxy users to successfully connect

once detected. This may also further support prior claims that

censors put more emphasis on reducing their false positive

rate than in achieving a high true positive rate [57].

7 Evaluating the GFW’s Detection Rules

In this section, we evaluate the false positive rate and com-

prehensiveness of the GFW’s detection rules we inferred in

Section 4. To determine the impact this blocking may have

on regular trafc, we simulate the inferred detection rules to

trafc on our university network without actually blocking

any trafc. Different from the GFW, we simulate the detection

rules against all TCP connections observed without limiting

the detection to 26% of connections to specic IP ranges of

popular data centers. We expect to see little to no circum-

vention trafc in this network, and any trafc that would be

blocked under detection rules likely represents false positive

blocking. We nd that the inferred detection algorithm would

block roughly 0.6% of all connections on our network. Due to

the black-box nature of the GFW, our inferred rules may only

be a subset of what the GFW uses; however, we show that

all connections that Algorithm 1 would block were indeed

blocked when we sent their prexes along with random data

through the GFW, suggesting our inferred rules have good

coverage of what the GFW uses.

Figure 6: Common exemptions— For each connection on

CU Boulder tap, we determine which rules in Algorithm 1

would exempt it from being blocked. We divide the exemption

rule Ex5 in Section 4.3 into 3-, 4-, and 5-byte patterns and

present them in three rows for ne-grained classication. We

analyze 1.7 billion connections collected from July 2022

until September 2022. For brevity, this graph only shows

intersections with a count greater than 1,000,000. We observe

37 different intersections of exemptions in the full set.

7.1 Trafc Analysis Experiment

We have access to a 40 Gbps network tap at CU Boulder

that allows us to process copies of all incoming and outgoing

packets on our campus. Using this, we collected a dataset

comprising only destination port numbers and the rst 6 bytes

of payload data for connections that do not already satisfy the

other exemption rules in Algorithm 1. More precisely, we im-

plemented a custom packet analysis tool using PF_RING [50].

For each connection, we inspected the rst data packet sent by

the client. We ensured that the packet has a correct TCP check-

sum, and that its sequence number is the rst expected data

packet after the TCP handshake in the connection (making

sure we have not missed the rst data packet). For connections

that are not exempted by Algorithm 1—i.e., those we expect

to be blocked—we logged the destination port and the rst

six bytes of the connection to help identify its protocol.

We performed this collection between July 2022 and

September 2022. In total, we analyzed 1.7 billion connec-

tions and logged 442,928 unique 6-byte prexes of would-

be-blocked connections. For each of these 442,928 6-byte

prexes, we append the same 194-byte random data to it to

make a 200-byte payload. We then repetitively sent each pay-

load past the real GFW in September 2022, to test whether

they were indeed blocked, or if instead there were exemptions

we had not previously identied. For each payload, we made

up to 25 connections with it from a VPS in TencentCloud

Beijing to a sink server in DigitalOcean SFO.

Figure 7: The rst 6-bytes of blocked connections— For

the 9.7 million (0.6%) connections from our tap that would

be blocked under the GFW rules we inferred, we count the

occurences of their unique rst 6-bytes. The most popular 6-

byte prex appears in over 479 thousand connections (5.0%),

meaning a rule that explicitly allowed this 6-byte value could

reduce the GFW’s false-positive rate by this amount.

7.2 Experiment Results and Analysis

Estimating the false positive rate. In total, we analyzed 1.7

billion connections on our network between July 2022 and

September 2022. For each connection, we determine which

rules in Algorithm 1 would exempt it from being blocked. As

shown in Figure 6, we observe on average that 0.6% of TCP

connections from our tap would be blocked under the GFW’s

detection rules we inferred.

There are at least two strategies the censor employs to

reduce the false positive rate. First, as introduced in Section 6,

the GFW only applies this censorship to a fraction of IP

subnets. This decision may be an attempt to mitigate the base-

rate problem faced by the censor [11]. Since relatively few

connections in total are proxy connections, even a small false

positive rate (such as 0.6%) would result in blocking mostly

benign trafc, if applied broadly. By narrowing the scope of

IPs it is applied to, China can reduce the collateral damage of

its censorship. Second, as explored in Section 6.3, even for

trafc towards this subset of IP subnets, the GFW is observed

to block only about one-quarter of all trafc, reducing the

false positive rate to one-fourth.

It is possible that the 0.6% of connections we identied

may be fully encrypted proxies. To investigate this possibility,

we keep a count of the number of unique 6-byte prexes

we see in each connection that would be blocked under the

GFW’s rules. If these connections are all truly fully encrypted

proxies, we would expect to see a uniform distribution over

the 2566 possible 6-byte values. Otherwise, if there are 6-byte

values that occur frequently, it could be headers of popular

protocols, indicating false positives in the GFW’s blocking.

Figure 7 shows the distribution of the rst 6 bytes of all

9.7 million connections from our tap that would be blocked

Bytes in hex Port Occurences

45 44 00 01 00 00 5222 479K 5.0%

ee 2f 8c ec 40 d1 8000 427K 4.4%

00 00 00 00 00 00 50386 104K 1.1%

00 c4 71 58 64 51 443 34K 0.4%

00 c4 71 42 30 6e 443 33K 0.3%

0e 53 77 61 72 6d 7680 32K 0.3%

1b 00 04 c6 27 53 8886 32K 0.3%

c6 e6 cd ed 00 00 33445 29K 0.3%

00 01 00 00 0f 00 443 27K 0.3%

16 f1 04 00 a1 00 80 12K 0.1%

Table 3: Ten most common rst six bytes of blocked con-

nections— We record the rst six bytes of all connections

that we simulate as blocked on the CU Blouder network. In

this data, we nd repeated six bytes and display the top ten,

the most common port it appeared on, and the respective per-

centage of the total simulated blocked connections.

under the GFW rules we inferred. In addition, Table 3 shows

the top 6-byte values from would-be blocked connections.

While we are not able to identify many of these protocols,

their frequency along with the low entropy indicates that they

are not likely to be fully encrypted proxies.

Estimating the comprehensiveness of the inferred

rules. Among the 442,928 payloads we crafted and sent

past the real GFW, we found only one prex got exempted

by the GFW, which alerted us to the TLS Application Data

prex exemption (\x17\x03[\x00-\x09]). We added this

exemption to our inferred rules (Ex5). This result suggests

our inferred rules have good coverage of what the GFW uses.

8 Circumvention Strategies

Our understanding of this new censorship system allows us to

derive multiple circumvention strategies. In Section 8.1 and

Section 8.2, we introduce two widely adopted countermea-

sures that have been helping users in China bypass censor-

ship since January 2022 and October 2022, respectively. We

discuss other circumvention strategies in Appendix A. We

responsibly and promptly shared our ndings and suggestions

with the developers of various popular anti-censorship tools

that have millions of users, which we detail in Section 8.3.

8.1 Customizable Payload Prexes

The exemption rules Ex2 and Ex5 from Algorithm 1 only look

at the rst several bytes in a connection, allowing the GFW to

efciently exempt non-fully encrypted trafc; however, this

lends itself to a potential countermeasure. Specically, we

propose prepending a customizable prex to the payload of

the rst packet in a (circumvention) connection.

Customizable IV header. Shadowsocks connections begin

with an Initialization Vector (IV), which is of length 16 or

32 bytes depending on the encryption ciphers [22]. As intro-

duced in Section 4.2, turning the rst six (or more) bytes of

the IVs into printable ASCII will exempt connections by the

rule Ex2. Similarly, turning the rst three, four, or ve bytes

of the IVs into common protocol headers will exempt connec-

tions by the rule Ex5 (e.g., turning the rst three bytes of an

IV into 0x16 0x03 0x03). These countermeasures require

minimal changes to the client and no changes to the server,

and therefore has been adopted by many popular circumven-

tion tools [48,56,62,72]. Restricting the rst few bytes of a

32-byte IV to be printable ASCII will not reduce the random-

ness to the point that affects the security of encryption. For

example, even xing the rst six bytes to printable ASCII still

leaves the IVs with 26 random bytes, which is still more than

a typical 16-byte IV.

Limitations. This is a stopgap solution and could potentially

be blocked by the censor fairly easily. The censor may skip

the rst several bytes and apply the detection rules to the

rest data in a connection. Protocol mimicry is also difcult

in practice [39]. The censor can enforce stricter detection

rules, or actively probe a server to check if it is genuinely

running TLS or HTTP. Nevertheless, the fact that this strategy

still works as of February 2023, more than one year since

its adoption by many popular circumvention tools in January

2022, underscores that even simple solutions can be effective

against nite-resourced censors [8, 30, 57].

8.2 Altering Popcount

As introduced in Section 4.1, the GFW exempts a connection

if its rst data packet has an average popcount-per-byte ≤ 3.4

or ≥ 4.6 (Ex1). Based on this observation, one can increase

(decrease) the popcount by inserting additional ones (zeroes)

into the packet to bypass censorship. We introduce and an-

alyze a exible scheme that alters the popcount-per-byte to

any given value or range. We implemented this scheme on

Shadowsocks-rust [54] and Shadowsocks-android [6], help-

ing users in China bypass censorship since October 2022 [8].

In January 2023, a large-scale circumvention service in China

(that asked not to be named), also implemented a version of

this scheme and found similar success.

At a high level, we take original fully-encrypted packets

as input: By operating only on the ciphertexts, we do not

risk violating condentiality. When sending a packet, we rst

compute its average popcount-per-byte; if the value is greater

than 4, then we determine how many one-bits we would have

to add to the packet in order to obtain a popcount over 4.6.

Conversely, if the popcount is less than 4, then we determine

how many zero-bits we would have to add to decrease the

popcount to less than 3.4. In either case, we append the neces-

sary number of one- or zero-bits to the original ciphertext and

then append 4 bytes denoting the number of bits added, ulti-

mately giving us a bit-string B that has a popcount-per-byte

that would not subject it to censorship.

Of course, simply appending ones or zeroes would be easy

to ngerprint. To address this, we do bit-level random shuf-

ing. In particular, we leverage the existing shared secrets,

such as password, as a seed to deterministically construct a

permutation vector. In each connection, we update this permu-

tation vector and use it to shufe all the bits in the bit-string

B before sending it. To decode, the receiver rst updates the

permutation vector and then uses it to un-shufe the bit-string;

then it reads the last 4 bytes to determine the number of bits

added, removes that number of bits, and is thus able to recover

the original (fully encrypted) packet.

In practice, we take two additional steps to further obfus-

cate the trafc. Since it is an obvious ngerprint if all connec-

tions share the same popcount-per-byte value, we set the goal

value to a parameterizable range. Second, since the 4-byte

length tag in plaintext may be a ngerprint, we encrypt it (the

same way these circumvention tools encrypt proxy trafc).

This scheme has several advantages. First, the scheme sup-

ports parameterizable popcount-per-byte in case the GFW up-

dates its popcount rule to block an even larger range. Second,

because of its careful design, there are no obvious ngerprints

that would signal to the censor that this is a popcount-adjusted

packet. Finally, it incurs low overhead; it adds only as many

ones (or zeroes) strictly necessary (padded to the nearest byte).

In the worst case—increasing the popcount from 4 to 4.6—

this incurs only about 17.6% overhead. As a result, it could

feasibly be applied not just to the rst packet, but to every

packet in the connection, thereby insulating it against future

updates to the censor that might look past the rst packet.

8.3 Responsible Disclosure

On November 16, 2021, ten days after the GFW employed this

new blocking [10], we revealed details of this new blocking

to the public [37, 38]. With the development of our under-

standing of this new blocking, we derived and evaluated dif-

ferent circumvention strategies. We responsibly and promptly

shared our ndings and suggestions with the developers of

various popular anti-censorship tools that have millions of

users, including Shadowsocks [22], V2Ray [59], Outline [42],

Lantern [20], Psiphon [21], and Conjure [33]. Below we

introduce our disclosure and the responses from the anti-

censorship community in detail.

On January 13, 2022, we shared our rst circumvention

strategy with a group of developers. This solution, detailed in

Section 8.1, requires minimal code changes to the clients and

no changes to the servers. By January 14, 2022, Shadowsocks-

rust developer zonyitoo, V2Ray developer Xiaokang Wang

and Sagernet developer nekohasekai had already added this

circumvention solution as an option to their clients [48, 62,

72]. On October 4, 2022, database64128 implemented a user-

customizable version of this strategy on Shadowsocks-go [18].

On October 25, 2022, Outline developers adopted a highly

customizable solution for their client [56]. On October 14,

2022, we released a modied Shadowsocks [8] that employed

the popcount-altering strategy we detailed in Section 8.2.

As of February 14, 2023, all circumvention strategies

adopted by these tools are reportedly still effective in China.

In January 2023, Outline developers reported that the num-

ber of Outline servers (that opted-in for anonymous metrics)

had doubled since they adopted the mitigation above. In Jan-

uary 2023, a large circumvention service provider in China

(that asked not to be named at this time) also implemented

our proposed scheme and has also found success.

While we did not study countries other than China, our pro-

posed circumvention strategies are reported to be also work-

ing in Iran, another country that reportedly blocks and throttles

fully encrypted proxies [65]. On February 13, 2023, Lantern

developers reported that the adopted protocol “accounted

for the majority of our Iran trafc” since January 2023. On

February 13, 2023, a different circumvention service provider

reported that, after enabling Outline’s mitigation feature in

November 2022, their services turned from being completely

blocked to serving 850k daily users from Iran.

9 Ethics

Censorship measurement research carries an element of risk

and responsibility which we take seriously. Our research in-

volves handling sensitive network trafc, scanning large num-

bers of hosts, and performing network measurements in a

sensitive country. Due to the sensitive nature of this work, we

approached our institution’s IRB with our detailed research

plan for review. While the IRB determined that the work does

not involve human subjects (and thus does not require IRB

review), we have designed and implemented extensive precau-

tionary efforts to minimize potential risks and harms. In this

section, we discuss these risks and detail the precautionary

measures we adopted to manage and mitigate them.

Trafc analysis. We worked closely with our university’s

network operators, who have extensive experience in manag-

ing such projects, to deploy our network measurement tool to

ensure it is within the network use policy and respects user

privacy. We design our experiments to avoid collecting poten-

tially sensitive information, such as IP addresses, which could

reveal human identiable information. We collect minimal

information and focus on tracking aggregate statistics to avoid

potentially identifying individuals. Specically, we only ana-

lyzed the very rst TCP data packet in each connection and

ignored any subsequent packets. In addition, we only logged

the rst six bytes of data and keep an aggregate count of their

occurrences; no raw trafc was ever inspected by a human

nor logged. We practiced the least privilege principle, giving

only a subset of our team access to this data.

Internet scanning. To minimize the risk of overwhelming

servers when performing Internet-wide scans, we followed

the best practices outlined in prior work in Internet scanning

and widescale censorship measurement [26, 60]. We set up a

dedicated webpage, along with a reverse DNS to it, on port 80

of our scanning host at CU Boulder. The webpage explains

what data our scanning collects, and offers ways to opt out of

future scans. During our entire experiment period, we received

and honored seven removal requests, which is typical based

on past experiences scanning the Internet [25, §5.3] [26, §5.1].

Our follow-up scans to these servers were low-bandwidth: we

sent less than 100 bytes for each request, and each server only

performed one connection at a time to avoid overwhelming

their network or connection pool resources.

The use of vantage points. Active censorship measurement

from within censored countries requires additional considera-

tions and prudent evaluation. We rst explored the possibility

of performing the measurement remotely but conrmed that

this censorship could not be triggered from outside of China.

While it may be low risk to have sensitive queries observed

by the censor, we follow similar standards discussed in prior

work to limit the number of these sensitive queries we send [5].

In particular, we only send queries on port 80 to servers that

are listening on that port, and made no concurrent connections

to the same server to avoid overwhelming server operations.

Our research team consulted experts with a deep under-

standing of the nature and legal concerns of Chinese cen-

sorship, who helped us make informed decisions on which

VPS providers to use and how to use them. We selected two

large-scale VPS providers run by well-known commercial

companies in order to avoid any potential legal risks to indi-

viduals. We registered our VPSes with the accurate identity

and contact information of one of our researchers who is

neither a citizen of nor resides in China. We received no com-

plaints from the providers throughout our research. As done

in prior work [5], we do not inform these large VPS providers

of the experiments ahead of time, to avoid potential experi-

ment bias (e.g. interference in results) or placing potential

legal obligations or burdens on the VPS providers.

We manage the risk of potentially getting any server

blocked by the GFW temporarily or in the long term. For

all hosts we controlled in this study, we assigned dedicated

IP addresses to them to avoid blocking shared IP addresses.

In addition, we rented our non-censoring network hosts from

a VPS provider that permits censorship circumvention usage

and even offers automatic installation of circumvention tools.

Similar to the ndings in prior work on residual censorship

in China [13, 14, 17, 63], we tested using our own servers and

conrmed that the GFW never blocked any of our machines’

IP addresses for more than 180 seconds, and the blocking only

affected trafc from our clients to the servers, without interfer-

ing with trafc from others’. Knowing that our servers were

used for ve months but never experienced any long-term

blocking, we proceeded to perform our large-scale scans.

10 Conclusion

In this work, we exposed and studied China’s latest censorship

system that dynamically blocks fully encrypted trafc in real

time. This powerful new form of censorship has affected many

mainstream circumvention tools partially or in full, including

Shadowsocks, Outline, VMess, Obfs4, Lantern, Phiphon, and

Conjure. We conducted extensive measurements to infer vari-

ous properties about the GFW’s trafc analysis algorithm and

evaluated its comprehensiveness and false positives against

real-world trafc. We use our knowledge of this new cen-

sorship system to derive effective circumvention strategies.

We responsibly disclosed our ndings and suggestions to the

developers of different anti-censorship tools, helping millions

of users successfully evade this new form of blocking.

Acknowledgments

We thank our shepherd and other anonymous reviewers for

their valuable comments and feedback. We also thank the

brave users in China for immediately reporting the blocking

incidents to us. We are grateful to Benjamin M. Schwartz,

zonyitoo, nekohasekai, database64128, AkinoKaede, Max Lv,

Mygod, DuckSoft, and many other developers from the anti-

censorship community for their prompt patches, assistance,

and discussions. We express our sincere appreciation to Out-

line developer, Vinicius Fortuna, at Jigsaw for offering in-

sightful suggestions and assisting us in reaching out to the

community. We thank Lantern developers Adam Fisk and Ox

Cart for sharing the deployment experience of their tool in

Iran. We also thank Milad Nasr for his informative input. We

appreciate klzgrad sharing thoughtful comments on an earlier

draft of the paper. We are also deeply grateful to David Field

for providing a proof-of-concept patch against obfs4, con-

tributing to the discussions, providing constructive feedback

and suggestions on an earlier draft of the paper, and offering

guidance and support throughout the entire study.

This work was supported in part by NSF grants CNS-

1943240, CNS-1953786, CNS-1954063 and CNS-2145783,

by the Young Faculty Award program of the Defense Ad-

vanced Research Projects Agency (DARPA) under the grant

DARPA-RA-21-03-09-YFA9-FP-003, and by DARPA under

Agreement No. HR00112190125. The views, opinions, and/or

ndings expressed are those of the authors and should not be

interpreted as representing the ofcial views or policies of the

Department of Defense or the U.S. Government. Approved

for public release; distribution is unlimited.

Availablity

To maintain reproducibility and encourage future research,

we released our source code and data: https://gfw.report/

publications/usenixsecurity23/en.

References

[1] 19th central committee of the chinese communist

party. https://en.wikipedia.org/wiki/19th_Central_

Committee_of_the_Chinese_Communist_Party.

[2] Abuseipdb. https://www.abuseipdb.com/.

[3] Ip2location lite data. http://www.ip2location.com/.

[4] Sixth plenary session of the 19th cpc central committee.

https://zh.wikipedia.org/zh-cn/%E4%B8%AD%E5%

9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%

E7%AC%AC%E5%8D%81%E4%B9%9D%E5%

B1%8A%E4%B8%AD%E5%A4%AE%E5%A7%

94%E5%91%98%E4%BC%9A%E7%AC%AC%E5%

85%AD%E6%AC%A1%E5%85%A8%E4%BD%

93%E4%BC%9A%E8%AE%AE.

[5] Alice, Bob, Carol, Jan Beznazwy, and Amir Houmansadr.

How China detects and blocks Shadowsocks. In In-

ternet Measurement Conference. ACM, 2020. https:

//censorbib.nymity.ch/pdf/Alice2020a.pdf.

[6] Shadowsocks android developers. Shadowsocks-

android. https://github.com/shadowsocks/

shadowsocks-android.

[7] Yawning Angel et al. Obfs4 specication. https://gitlab.

com/yawning/obfs4/blob/master/doc/obfs4-spec.txt.

[8] Anonymous and Amonymous. Sharing a modied

Shadowsocks as well as our thoughts on the cat-

and-mouse game, October 2022. https://github.com/

net4people/bbs/issues/136.

[9] Anonymous, Anonymous, Anonymous, David Field,

and Amir Houmansadr. A practical guide to defend

against the GFW’s latest active probing, January 2021.

https://github.com/net4people/bbs/issues/58.

[10] Anonymous, Vinicius Fortuna, David Field, Xiaokang

Wang, Mygod, moranno, et al. Properly cong-

ured shadowsocks servers reportedly blocked in china,

November 2021. https://github.com/net4people/bbs/

issues/69#issuecomment-962666385.

[11] Stefan Axelsson. The base-rate fallacy and its implica-

tions for the difculty of intrusion detection. In Pro-

ceedings of the 6th ACM Conference on Computer and

Communications Security, pages 1–7, 1999. https://

www.cse.psu.edu/~trj1/cse543-f16/docs/Axelsson.pdf.

[12] Kevin Bock. Iran: A new model for censorship, March

2020. https://geneva.cs.umd.edu/posts/iran-whitelister/.

[13] Kevin Bock, Pranav Bharadwaj, Jasraj Singh, and Dave

Levin. Your censor is my censor: Weaponizing censor-

ship infrastructure for availability attacks. In Workshop

on Offensive Technologies. IEEE, 2021. http://www.cs.

umd.edu/~dml/papers/weaponizing_woot21.pdf.

[14] Kevin Bock, iyouport, Anonymous, Louis-Henri Merino,

David Field, Amir Houmansadr, and Dave Levin. Ex-

posing and circumventing China’s censorship of ESNI,

August 2020. https://github.com/net4people/bbs/issues/

43#issuecomment-673322409.

[15] Olivier Bonaventure. MPTLS : Making TLS and

Multipath TCP stronger together. Internet-Draft draft-

bonaventure-mptcp-tls-00, Internet Engineering Task

Force, October 2014. https://datatracker.ietf.org/doc/

draft-bonaventure-mptcp-tls/00/.

[16] brl. Obfuscated OpenSSH. https://github.com/brl/

obfuscated-openssh.

[17] Zimo Chai, Amirhossein Ghafari, and Amir

Houmansadr. On the importance of encrypted-

SNI (ESNI) to censorship circumvention. In Free and

Open Communications on the Internet. USENIX, 2019.

https://www.usenix.org/system/les/foci19-paper_

chai_update.pdf.

[18] database64128. taint: add unsafe stream

prex, October 2022. https://github.com/

shadowsocks/shadowsocks-org/issues/204#

issuecomment-1266710067.

[19] database64128, zonyitoo, Xiaokang Wang, and neko-

hasekai. Shadowsocks 2022 Edition: Secure L4 Tun-

nel with Symmetric Encryption, October 2022. https:

//github.com/net4people/bbs/issues/58.

[20] Lantern developers. Lantern. https://github.com/

getlantern.

[21] Psiphon3 developers. Psiphon3. https://psiphon.ca/.

[22] Shadowsocks developers. Shadowsocks aead cihpher

specication. https://shadowsocks.org/guide/aead.html.

[23] VMess developers. Vmess. https://www.v2y.org/en_

US/developer/protocols/vmess.html.

[24] Roger Dingledine. Obfsproxy: the next step in

the censorship arms race. https://blog.torproject.

org/obfsproxy-next-step-censorship-arms-race, Febru-

ary 2012.

[25] Zakir Durumeric, Michael Bailey, and J. Alex

Halderman. An Internet-Wide view of Internet-

Wide scanning. In 23rd USENIX Security Sym-

posium (USENIX Security 14), pages 65–78, San

Diego, CA, August 2014. USENIX Association.

https://www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/durumeric.

[26] Zakir Durumeric, Eric Wustrow, and J. Alex Hal-

derman. ZMap: Fast internet-wide scanning and

its security applications. In 22nd USENIX Se-

curity Symposium (USENIX Security 13), pages

605–620, Washington, D.C., August 2013. USENIX

Association. https://www.usenix.org/conference/

usenixsecurity13/technical-sessions/paper/durumeric.

[27] Roya Ensa, David Field, Philipp Winter, Nick Feam-

ster, Nicholas Weaver, and Vern Paxson. Examining

how the Great Firewall discovers hidden circumven-

tion servers. In Internet Measurement Conference.

ACM, 2015. http://conferences2.sigcomm.org/imc/

2015/papers/p445.pdf.

[28] David Field. Cyberoam rewall blocks meek by TLS

signature. https://groups.google.com/forum/#!topic/

trafc-obf/BpFSCVgi5rs/, 2016.

[29] David Field, Chang Lan, Rod Hynes, Percy Wegmann,

and Vern Paxson. Blocking-resistant communication

through domain fronting. Privacy Enhancing Technolo-

gies, 2015(2), 2015. https://www.icir.org/vern/papers/

meek-PETS-2015.pdf.

[30] David Field and Lynn Tsai. Censors’ delay

in blocking circumvention proxies. In Free and

Open Communications on the Internet. USENIX,

2016. https://www.usenix.org/system/les/conference/

foci16/foci16-paper-eld.pdf.

[31] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and

C. Paasch. TCP Extensions for Multipath Operation

with Multiple Addresses. RFC 8684, RFC Editor, March

2020. https://tools.ietf.org/html/rfc8684.

[32] Vinicius Fortuna. Outline changes since the prelinimary

report, August 2020. https://github.com/net4people/bbs/

issues/22#issuecomment-670781627.

[33] Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex

Halderman, Nikita Borisov, and Eric Wustrow. Conjure:

Summoning proxies from unused address space. In

Computer and Communications Security. ACM, 2019.

https://jhalderm.com/pub/papers/conjure-ccs19.pdf.

[34] Sergey Frolov, Jack Wampler, and Eric Wustrow. De-

tecting probe-resistant proxies. In Network and

Distributed System Security. The Internet Society,

2020. https://www.ndss-symposium.org/wp-content/

uploads/2020/02/23087.pdf.

[35] Sergey Frolov and Eric Wustrow. The use of TLS in

censorship circumvention. In Network and Distributed

System Security. The Internet Society, 2019. https://

tlsngerprint.io/static/frolov2019.pdf.

[36] Sergey Frolov and Eric Wustrow. HTTPT: A probe-

resistant proxy. In Free and Open Communications on

the Internet. USENIX, 2020. https://www.usenix.org/

system/les/foci20-paper-frolov.pdf.

[37] GFW Report. 有证据表明中国的防火长城

已经对任何看似随机的流量进行动态的封锁,

November 2021. https://twitter.com/gfw_report/status/

1460800856086003717.

[38] GFW Report. The GFW has now been able to dynam-

ically block any seemingly random trafc in real time,

November 2021. https://twitter.com/gfw_report/status/

1460796633571069955.

[39] Amir Houmansadr, Chad Brubaker, and Vitaly

Shmatikov. The parrot is dead: Observing un-

observable network communications. In Sym-

posium on Security & Privacy. IEEE, 2013.

https://people.cs.umass.edu/~amir/papers/parrot.pdf.

[40] isofew. sssniff, 2017. https://github.com/isofew/sssniff.

[41] Liz Izhikevich, Renata Teixeira, and Zakir Durumeric.

{LZR}: Identifying unexpected internet services. In

30th USENIX Security Symposium (USENIX Security

21), pages 3111–3128, 2021. https://www.usenix.org/

conference/usenixsecurity21/presentation/izhikevich.

[42] Jigsaw. Outline. https://getoutline.org/.

[43] Jigsaw. Outline v1.1.0. https://github.com/Jigsaw-Code/

outline-ss-server/releases/tag/v1.1.0.

[44] George Kadianakis. GFW probes based on tor’s ssl

cipher list, 2011. https://gitlab.torproject.org/legacy/

trac/-/issues/4744.

[45] klzgrad. NaïveProxy. https://github.com/klzgrad/

naiveproxy.

[46] Di Liang and Yongzhong He. Obfs4 trafc identica-

tion based on multiple-feature fusion. In 2020 IEEE

International Conference on Power, Intelligent Com-

puting and Systems (ICPICS), pages 323–327, 2020.

https://ieeexplore.ieee.org/document/9202018.

[47] madeye. sssniff, 2017. https://github.com/madeye/

sssniff.

[48] nekohasekai. Add shadowsocks reducedIv-

HeadEntropy option, January 2022. https:

//github.com/SagerNet/v2ray-core/commit/

27fad5daaa1c33ed1c928d6c447df983a88d14a3.

[49] Leif Nixon. Some observations on the Great Firewall of

China, November 2011. https://www.nsc.liu.se/~nixon/

sshprobes.html.

[50] ntop. PF_RING: High-speed packet capture, l-

tering and analysis. https://www.ntop.org/products/

packet-capture/pf_ring/.

[51] pyasn developers. pyasn. https://github.com/

hadiasghari/pyasn.

[52] Eric Rescorla. The Transport Layer Security (TLS)

Protocol Version 1.3. RFC 8446, August 2018. https:

//datatracker.ietf.org/doc/html/rfc8446#section-4.1.2.

[53] Eric Rescorla and Tim Dierks. The Transport Layer

Security (TLS) Protocol Version 1.2. RFC 5246, Au-

gust 2008. https://datatracker.ietf.org/doc/html/rfc5246#

appendix-E.

[54] Shadowsocks rust developers. Shadowsocks-rust. https:

//github.com/shadowsocks/shadowsocks-rust.

[55] Runa Sandvik. Ethiopia introduces deep

packet inspection. https://blog.torproject.org/

ethiopia-introduces-deep-packet-inspection, 2012.

[56] Benjamin M. Schwartz and Vinicius Fortuna. feat: salt

prex support, November 2022. https://github.com/

Jigsaw-Code/outline-client/pull/1454.

[57] Michael Carl Tschantz, Sadia Afroz, Anonymous, and

Vern Paxson. SoK: Towards grounding censorship cir-

cumvention in empiricism. In Symposium on Security

& Privacy. IEEE, 2016. https://www.eecs.berkeley.edu/

~sa499/papers/oakland2016.pdf.

[58] Eric Tung. Geph4 sosistab - an obfuscated datagram

transport for horrible networks. https://github.com/

geph-ofcial/sosistab.

[59] V2Ray developers. V2Ray. https://github.com/v2y/

v2ray-core.

[60] Benjamin VanderSloot, Allison McDonald, Will Scott,

J. Alex Halderman, and Roya Ensa. Quack: Scal-

able remote measurement of application-layer censor-

ship. In USENIX Security Symposium. USENIX,

2018. https://www.usenix.org/system/les/conference/

usenixsecurity18/sec18-vandersloot.pdf.

[61] Liang Wang, Kevin P. Dyer, Aditya Akella, Thomas

Ristenpart, and Thomas Shrimpton. Seeing through

network-protocol obfuscation. In Computer and Com-

munications Security. ACM, 2015. http://pages.cs.wisc.

edu/~liangw/pub/ccsfp653-wangA.pdf.

[62] Xiaokang Wang. Shadowsockets reduecd IV head en-

tropy experiment, January 2022. https://github.com/

v2y/v2ray-core/pull/1552.

[63] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song,

and Srikanth V. Krishnamurthy. Your state is not mine:

A closer look at evading stateful Internet censorship. In

Internet Measurement Conference. ACM, 2017. http:

//www.cs.ucr.edu/~krish/imc17.pdf.

[64] Tim Wilde. Knock knock knockin’ on bridges’

doors, 2012. https://blog.torproject.org/blog/

knock-knock-knockin-bridges-doors.

[65] WinkVPN, GibMeMyPacket, wkrp, et al.

Shadowsocks blocked in Iran?, October 2022.

https://github.com/net4people/bbs/issues/142#

issuecomment-1289393093.

[66] Philipp Winter. GFW actively probes obfs2bridges,

March 2013. https://bugs.torproject.org/8591.

[67] Philipp Winter and Stefan Lindskog. How the Great

Firewall of China is blocking Tor. In Free and

Open Communications on the Internet. USENIX,

2012. https://www.usenix.org/system/les/conference/

foci12/foci12-nal2.pdf.

[68] Philipp Winter, Tobias Pulls, and Juergen Fuss. Scram-

bleSuit: A polymorphic network protocol to circumvent

censorship. In Workshop on Privacy in the Electronic

Society. ACM, 2013. https://censorbib.nymity.ch/pdf/

Winter2013b.pdf.

[69] xspeed, Vinicius Fortuna, et al. I think

SS is detected by GFW, November 2021.

https://github.com/shadowsocks/shadowsocks-libev/

issues/2860#issuecomment-974250511.

[70] He Yongzhong, Hu Liping, and Gao Rui. Detection of

Tor trafc hiding under obfs4 protocol based on two-

level ltering. In 2019 2nd International Conference on

Data Intelligence and Security (ICDIS), pages 195–200,

2019. https://ieeexplore.ieee.org/document/8855280.

[71] zonyitoo. Shadowsocks-rust v1.8.5. https://github.com/

shadowsocks/shadowsocks-rust/releases/tag/v1.8.5.

[72] zonyitoo. Security: First 6 bytes of payload

should be printable characters, January 2022. https:

//github.com/shadowsocks/shadowsocks-rust/commit/

53aab484f8daba6f5cee6896b034af943cc3d406.

A Other Stopgap Circumvention Strategies

Use a non-TCP transport protocol. As introduced in Sec-

tion 4.4, UDP trafc does not trigger blocking. Currently, one

can circumvent censorship by simply switching to (or tunnel-

ing over) UDP or QUIC. This is merely a stopgap measure,

as the censor can enable their censorship for UDP.

Base64-encode the rst packet. Recall that the GFW does

not censor connections if more than 50% of the rst packet’s

bytes are printable ASCII. One straightforward way to sat-

isfy this property would be to simply base64-encode all of

the encrypted trafc. This, too, is only a stopgap solution;

base64-encoded data is easy to detect, and the censor could

simply base64-decode and then apply its rules. Although it is

effective against the GFW today, we do not consider it as a

long-term solution.

More than 20 contiguous bytes of printable ASCII. The

GFW exempts connections if the rst packet has more than

20 contiguous bytes of printable ASCII. One way to satisfy

this is to base64-encode only a small portion of the fully-

encrypted packet—or even just insert at least 21 printable

ASCII characters into the ciphertext. While we believe this

would be more difcult to detect than base64-encoded the

entire packet, it also strikes us as a short-term stopgap.

All of the above countermeasures can be implemented

on the client-side only, without requiring support from the

proxy server. This is possible by applying an idea from prior

work [12]: sending a packet such as the ones described above

that gets processed by the censor but not by the proxy. For

instance, prior to sending the actual rst packet of the con-

nection, the client could send a packet that satises one of the

above rules but that has a broken checksum (which the censor

will not check, but the proxy will) or a limited TTL (large

enough to reach the censor but not the destination). While

these techniques were rst veried against Iran’s Protocol Fil-

ter, we have veried that these same approaches work against

the GFW’s blocking of fully encrypted trafc. Although this

provides an encouragingly easy path for deployment, it alone

does not elevate these stopgap solutions to longer-term ones.

