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Abstract

This paper studies a predator—prey model with strong and weak Allee effects and
anti-predator behavior using a dynamical system approach. We perform a detailed
bifurcation analysis including saddle-node bifurcation, Hopf bifurcation of codimen-
sion 3, cusp of codimension 3, cusp type Bogdanov—Takens bifurcation of codimension
3, and codimension-2 cusp of the limit cycle. The involvement of strong and weak
Allee effects provides a new regime shift mechanism, which indicates the transition
from a homoclinic cycle to a new heteroclinic cycle connecting two boundary equi-
libria induced by the Allee effect and the carrying capacity. The role of anti-predator
behavior is fully uncovered by studying the interaction with the Allee effect. It is the
first time that we find a codimension-2 cusp of infinitesimal limit cycle in the predator—
prey system, which indicates the existence of a coexistence region of three limit cycles
due to the weak Allee effect. Different from the scenario in the reference (Aguirre et al.
in STAM J Appl Math 69(5):1244-1262, 2009), it is a new generating mechanism of
limit cycle bifurcating from one Hopf bifurcation point with two saddle-node bifurca-
tion points on the limit cycle branch, and the double limit cycle curve originates from
a codimension-2 degenerate Hopf bifurcation point and disappears at another one.
The dynamics of the model with the Allee effect and anti-predator behavior are shown
to be more complicated than those for other predator—prey systems. The biological
interpretations of the bifurcation diagram and phase portrait are also provided.
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1 Introduction

The local and global dynamics in predator—prey systems have been widely investigated
by many researchers in order to uncover potential interactions. Based on the well-
known Lotka—Volterra predator—prey model initiated by Lotka [1] and Volterra [2],
many continuous and discrete models have been developed [3—18]. Zhu et al. [4]
studied the following generalized Gause-type predator—prey system

d

d_): =rx(K—x)— p)y,

o M
i y(=d + cp(x)),

where x is the density of prey and y is the density of predator.

mx

m,a>0,b>—2ﬁ,m>0,

p(x) ==

is a generalized Holling type IV response. Here r, I, ¢ and d denote the intrinsic
growth rate of the prey population, the environmental carrying capacity of the prey,
the constant of proportionality and the natural death rate of the predators, respectively.
The parameters r, ¢, d and K are all positive. p(x) is the functional response describing
the change in the density of the prey attacked per unit of time per predator. It models the
scenario where the prey can better defend or disguise themselves when their population
becomes large enough, a phenomenon called group defense. The function p(x) is
positive when x > 0, and its derivative is positive when x € (0, \/LE)' It has the

maximumatx = \/LZ Its derivative is negative when x > \/LE The function goes to 0 as
x — oo. This function can describe the effect of group defense (i.e. the prey can better
defend themselves with a sufficiently large population) [10]. The related bifurcation
analysis including saddle-node bifurcation, homoclinic bifurcation, and Bogdanov—
Takens bifurcation of codimension 3 was investigated. The codimension-3 Bogdanov—
Takens bifurcation acts as an organizing center for the system. The topological location
of several kinds of bifurcation was studied in detail.

The Allee effect has been widely studied in predator—prey systems, which was
proposed by Allee [19, 20]. It describes the relationship between population growth and
population density. If the population density of a species is too sparse, its population
will be reduced. According to the strong Allee effect, the sparse or dense population
density will lead to negative growth, possibly causing the subsequent extinction [21—
34]. In other words, the Allee effect is regarded as the reason for the increase in
extinction risk at low densities [35].
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Arsie et al. [21] studied a predator—prey model with Holling I'V functional response
and Allee effect in prey as follows:

= = rx(K =) = A) = p(o)y,
t 2)
dy (
5 = Yd +ep()),
where A represents the weak Allee effect or strong Allee effect in prey. The meaning
of the other parameters is the same as those in model (1). Strong Allee effect takes
place for 0 < A < K. On the other hand, the weak Allee effect never leads to negative
growth when the weak Alee effect acts on predators or prey. The equilibrium of the
system will change from asymptotically stable or central stable to unstable or central
stable, or the system will take a longer time to reach the stable state, and this will take
place for —K < A < 0. A = 0 represents a threshold value between the strong and
weak effects. Three limit cycles were found in predator—prey with the multiplicative
Allee effect. Nilpotent cusp singularity of order 3 and degenerate Hopf bifurcation
of codimension 3 are analyzed. An unfolding of the nilpotent saddle of codimension
3 was fully developed, indicating the existence of a heteroclinic cycle. However, the
coexistence region of three limit cycles is still open.

Recently, the existence and generating mechanism of multiple limit cycles has
attracted a lot of attention [21, 25, 36, 37]. Three limit cycles are found in Aguirre et
al. [36], the first two are generated by Hopf bifurcation and the third one arises from
a homoclinic bifurcation. The limit cycles are generated from different equilibria.
Arsie et al. [21] also obtained three limit cycles which are originating from one Hopf
bifurcation point. However, the true mechanism of the three limit cycles is not fully
revealed, including the coexistence parameter region for the three limit cycles and the
bifurcation characteristic of the limit cycle.

Group defense is also a type of anti-predator behavior. It represents the phenomenon
that predators decrease because the prey has an increased ability to defend when their
number is large enough [10]. Holling type IV has been used to study the phenomenon
of prey aggregation, which can increase caution and decrease the chance of being
attacked by the predator. Different species use their own defense mechanisms to fight,
kill or escape from predators, and each of them shows its unique defense mechanism
to avoid predation. It seems that the predator—prey relationship between organisms
was established long ago. However, there are also some special predation phenomena
in nature. Rodents can be eaten by snakes as prey and sometimes attack and eat snakes
as predators. Moreover, some large groups of beasts hunt each other and some juvenile
prey can escape from predation, when they become adults can counterattack juvenile
predators such as alligators used to hunt catfish but adult catfish can eat alligator
seedlings. Recognizing the effects of the anti-predator on reproduction, conservation,
and behavior of the species has attracted a lot of attention in recent years. The detailed
analysis and deep understanding of this phenomenon can bring important benefits
not only for ecology but also for various applied disciplines including fishing and
forestal industries. There are many examples of role reversals in predators and prey
(anti-predator behaviors) [38—41].
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Here we study a predator—prey model including the Holling IV response, strong
and weak Allee effects in prey, and anti-predator behavior.

dx K A

- = rx(K —x)(x — A) — p(x)y,
d

d_); = y(—d 4 cp(x)) — nxy,

3)

where nxy represents the interaction of the anti-predator behavior. The meaning of
the rest of the parameters is the same as those in model (2).
Using

m2c?  r r
(t,x,y) — Tl‘, %X, W}’ )

system (3) becomes

dx

=7 = XK =0 = A4) = p()y = p)(G ) = y),
ol 4)
i y(=d + p(x) — nx),
in which p(x) is m and G(x) is (x — A)(K — x)(ax? + bx + 1) with
2.2 1
(’Ca A7 a, b5 d7 7]) - (E’C’ EA7 %a7 Eby %d7 _77)
r r r r m=c mc

In view of weak and strong Allee effects, here we set —/C < A < K. In addition,
since ax? + bx + 1 > 0 and p(x) > O for all x > 0, then we have b > —2./a.
Denote

I={K,a,d,n,A,b): =K <A <K,b>—-2a,a>0,d>0,n>0}.

We can find a constant M > 0 such that for every (x, y) in the set

{(x,Mx>0,y>0,pkx) <dy,x+y=N,N > M},

one yields

dx d
=+ d_f = p(x)G(x) — dy — nxy < p(x)G(x) — dy < 0.

All the orbits in the phase plane of model (4) will remain in a compact set enclosed
by the x-axis, y-axis, and x +y = M.



Modelling the Dynamics in a Predator-Prey System... Page50f50 116

In this paper, we study the complex dynamics of model (4) with the Holling IV
response, strong and weak Allee effects, and anti-predator behavior. Detailed bifur-
cation analysis including saddle-node bifurcation, Bogdanov—Taken bifurcation of
codimensions 2 and 3, Hopf bifurcation of codimension 3, saddle-node bifurcation of
limit cycle, and codimension-2 cusp of limit cycle is derived.

The rest of the paper is structured as follows. In Sect. 2, the existence and stability
of the equilibrium of model (4) are presented. In Sect. 3, we discuss saddle-node
bifurcation and the cusp type of Bogdanov-Taken bifurcation of codimension 3. We
prove the degenerate Hopf bifurcation of codimension 3 and show the coexistence of
three limit cycles originating from a Hopf bifurcation point. Further, the normal form
of codimension-2 cusp of limit cycle is revisited in Sect. 4. Numerical simulations are
performed to illustrate the theoretical results in Sect. 5. Some biological interpretations
of the bifurcation diagram and phase portrait exhibiting the significance of the Allee
effect and anti-predate behavior are given in Sect. 6. Some conclusions and discussions
are given at the end.

2 Local Stability Analysis
2.1 Number of Equilibria
System (4) always has one trivial equilibrium E((0, 0) on the nonnegative x-axis
and two boundary equilibria Eg (K, 0) and E4(A, 0) representing, respectively, the
extinction of predator and the threshold of Allee effect.
It s easy to see that p(x) = d + nx if and only if 2 (x) is zero, where

h(x) 2 anx® + x*(ad + bn) + x(bd + 1y — 1) +d. 5)

We get the derivative function of & (x) as follows

W' (x) = 2x(ad + bn) + 3anx> +bd +n — 1. (6)

The corresponding roots of equation (6) are

_ —/A—2(ad + bn)

A 6an
/A —2(ad + bn)
2= 6an ’

A = 4(ad + bn)> — 12an(bd +n — 1).

From (5) and (6), we know that 2(0) = d > 0.

Proposition 2.1 By analyzing the derivative function of the h(x), we obtain the exis-
tence of the root of h(x).
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@M If A <0o0rA > 0andx; <0, then h(x) has no real roots, i.e., system (4) has no
equilibria;

D) If A > 0 and x> > 0, we have the following cases.

(1) if h(x2) < O, then h(x) has two real roots, i.e., system (4) has two equilibrium
points Eq(xo, G(xg)) and Eg(xg, G(xg)), where E, is a node or focus and Eg
is a hyperbolic saddle;

(ii) if h(x2) = O, then h(x) has one real root, i.e., system (4) has a unique positive
equilibrium E.(x«, y«), which is a degenerate equilibrium;

(iii) ifh(xp) > O, then h(x) has no real root, i.e., system (4) has no positive equilibrium.

Proof Since the function A’(x) is a continuous function, A’ (x) > 0 is forever admitted
as A <0or A > 0and x < 0. Thus, A(x) is monotonically increasing. In view of
h(0) =d > 0, h(x) has no real roots.

When A > Oandx; < 0 < x3, W/'(x) < Oasx € (0,x3), (x) > Oasx €
(x2, +00). Moreover, when A > 0 and 0 < x1 < x2, //(x) < Oasx € (x1,x2),
h(x) > 0asx € (0,x1) U (x2, +00). In these two situations, we will have two
real roots of A (x) if A(x;) < O which are denoted by « and B. Thus, system (4) has
two positive equilibria Ey (xy, G(xy)) and Eg(xg, G(xg)). It has one unique root if
h(x) = 0 which is denoted by x,. In this case, system (4) has a unique positive
equilibrium E, (x4, ys). We also notice that x,, = x» in this situation. There is no real
root if h(xp) > 0. See Fig. 1.

1
h(x2) = ——— (27a%dn* + 3M*(ad + bn) + 9anM(bd + 1 — 1) + M),
27a%n?

M:\/(ad—i-bn)z—?)an(bd—f-n—1)—ad—bn.

Moreover, the Jacobian matrix of system (4) at any equilibrium E(x, y) takes the
form

x(’C+A(3ax2+2bx7(b+2ax)l€+1)+x(b(21C73x)+ax(3IC74x)72)) X
J(E) = x(b+ax)+1 T x(bFax)+1
(A—x)(x =) (—ax?—(x (b+ax)+1)>n+1) 0 ’
x(b+ax)+1
7
X, B X

Fig.1 The distribution of roots of (x) as A > 0, x; > 0 and x > 0.
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and
_ _ 5 -
deJ(Ey) = FEAE = K) (nGr(ax +6) + 12 +ax? — 1)
(x(ax 4+ b) +1)2
— 2 _ B B
tr(,(E)):x(A( KQax + b) + 3ax? + 2bx + 1) + x(ax (3K — 4x) + b(2K — 3x) 2)+1c).

x(ax +b) + 1
We can rewrite det(J (E)) as

x(x—A)x -K) (h’(x) (ax2 + bx + 1) + h(x)(—2ax — b))
(ax? + bx + 1)

det(J(E)) = . ®

Since x(x — A)(K — x) > 0, the positive equilibrium E, (x4, G(xy)) is a node or
focus and the positive equilibrium Eg(xg, G(xg)) is a hyperbolic saddle. O

2.2 Linear Analysis

Define
dy = xf (Rax, + b)
(x4 (@xy +b) + 1)2°
1-— axi
" @+ b+ D2 )
K, — A? (= (x4 (axy + b) + 1) + Axy (ax? 4 2bx, 4 3) 4+ x2 (ax2 — 1) |

X (—A (2axy + b) + 3ax2 + 2bx, + 1)
which come from A (x,) = 0, h'(x,) = 0 and tr(J (E,)) = 0, respectively.
Using (9), we obtain that the possible equilibrium of system (4) is

(A—2x,) (A —x) 2 (xs (ax, +b) + 1)?
X (X (—2aA +3ax, +2b) — Ab+1) ~

E(xy, G(x4)) = (x4,

Proposition 2.2 When (a, A,b,d,n,K) € T, and h(x) = O, there exists a unique
positive equilibrium E, (x4, ys) for system (4). Furthermore,

D if K # Ky, then E(xy, y4) is a saddle-node. It has a stable parabolic sector (or
an unstable parabolic sector) if IC > Iy (or K < Cy);
D) if K = Ky, dy, n«, Ky are defined by (9), then E. (x4, y:) is a cusp. Moreover,
(1) if A £ Ay, then E(xy, Vi) is a cusp of codimension 2;
(i) if A = Ay, then E(xy, yi) is a cusp of codimension 3.

Proof The assertion (I) is proved in Xiao and Zhou [42] (see Lemma 2.7).
In the following, we prove that the degenerate equilibrium FE.(x,, y.) is a
codimension-2 cusp.
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2
Let X bex — x4, Y be y — y,,and dt = —%b:"“dr,d =dy, K =K, and n = n,.
By Taylor expansion, model (4) becomes

dx 2 5
— =y +oax” +axy +o(lx, y)[9),
dt
(10)
D _ x4 o(jx, y%),
dt
where
B 3bxy (aA* — Ab+1) 1 —A(aA — Ab*> + D)
T TA Qax, +b) +3ax? + 2bxs + 1 | —A Qaxs + b) + 3ax? + 2bxs + 1
3x$ (azA2 —3aAb+a+ bz) 6a2xi + Saxi(b —aA)
—A QQaxy +b) +3ax2 +2bx, +1  —A QQaxs + b) +3ax2 + 2bx, +1°
1 aXy
oy =

Xy (axf—i—bx* + 1) B ax2 +bx, + 1’
(A —xy) 2 (azxi — 3ax, — b)
X (Zan* —3ax2 + Ab — 2bx, — 1) ’

a3 =

By using Remark 1 of section 2.13 in Perko [43] (also in Huang et al. [39]), near (0,
0) model (10) is equivalent to

dx 5
T +o(lx, ),
(11)
dy _ 2 2
I = o3x” 4+ 201xy + o(|x, y|9).

Then E.(x,, y,) is a cusp of codimension 2.
Next, we prove the assertion (ii) of (I). Define

8a%x3 + \/— (s (axy +b) + 1) 2 (4a (2xs (axy + b) — 1) + 3b%) + 9abx2 + 3b%x, + b
A = £}
* 2 (a Bxy (ax, +b) — 1) + b?)
(12)

which leads to «; = 0. Using Taylor expansion, system (4) can be written as (for
simplicity, we still denote X, Y, 7 by x, y, ¢, respectively)

dx

=y Brx? + Boxy + B3x> + Pax?y + Bsx* + Bex’y + o(lx, Y,
dy

o= Brx? + Bsx® 4 Box?y + Brox* + Br1xdy + o(lx, v,

(13)
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where
1 ax
B1=0,p = - ,
p X (ax2 +bx, +1)  ax2 +bx, +1
5 4(13)(;2 + 6asz>,2< — 4a2x* + 4ab2x* —2ab + b? 8 azxi —3ax, —b
3 = , P4 — 5
3a%x2 + 3abx, —a + b? xy (ax2 + bx, +1)2
5 —a*x) 4+ 10a’x3 + 10a?bx2 — 5a*x, + Sab*x, — 2ab + b’
5 = s
Xy (ax,% + bx, + 1) (3a2x£ + 3abxy, —a + bz)
—a3xi + 6112)@,2< + 4abxy — a + b> (axz + bxx + 1) <a2x3 — 3axy — b)
Be = 5 B = 5
X (ax* + bxy + 1) 3 X (3a2x* + 3abxy —a + b2)
—a3xi + 6az)c>,2< + dabxy — a + b* —azxf< +3axy +b
Bs = 5 By = 5 ,
X (3a2x* + 3abxy —a + bz) X (ax* + bxy + 1) 2
8 a*x3 — 10a3x} — 10a%bx? + 5a%x, — 5ab’x, + 2ab — b3
10 = s
X (ax% + bxy + 1) <3a2x% + 3abxy —a + bz)
8 a3xi' — 6a2x,% — dabxy 4 a — b?
11 =

X (axf + bxy + 1) 3

where d, K and n have been eliminated by (9).
We use the transformation
X =x,
_ 2 3 2 4 3 4
Y =y+ B1x” + Baxy + Bax” + Bax”y + Bsx” + Bex"y + o(|x, y|7),

that changes (13) to (still use x, y for X, Y; for simplicity we always did this after the
transformation)

dx
d
dy

—= = yix? +72y? + v + yax?y + ysxey? + yext + iy + yx?y? +o(lx, )Y,

dt
(14)

:y,

where y;, (i =1,...,8) are given in “Appendix A”.
In addition, letting dt = (1 — y»x)dt, system (14) becomes (we still denote t by
t, respectively)

dx

v — i

7 y( —yx)

dy 1
== 102+ 1y? + y3x’ + yaxty + psxy? (15

+ yext + ity + ysx?y? 4 o(lx, y1*).
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Letting X = x, Y = y(1 — y»x), system (15) becomes

ar _
o=
d—i = y1x? + (=27172)x° + yaxly + (=3 + ys)xy? (16)
+ (12 = 20213 + vo)x* + (—yavs + )Xy + (=3 + ye)xy +o(x, yI*).
Using the transformation
X=-x, Y=——2— t=J 1,
-
we obtain
dx _
a7
dy V TV1V4
—= =x2 42 + (=" ) 2y + (=13 + ys)xy?
dt V1 (17)

Y1 Y1 14t

2
-2 + — —
N (Vle V3v2 Y6)x4+ (\/ vy V1V2V4)x3y

+ (5 — y)x*y* +o(lx, yIh).

By Proposition 5.3 in Lamontagne et al. [44], we obtain the equivalent system of (17)
as follows:

dx

dx _ |

a (1)
df = x4 Gxy +o(x, y1*),

where

(xx(axs+b)+1) (ax,(3—ax2)+b)
X (a(3x*(ax*+b)_1)+b2)
G=-— T #0,
X (Xx (axy + b) + 1) * (axy (ax2 —3) — b)

T = 12a%!% + 36a°bx) + x2 (—20a%b + 284% + 8ab® — 4ab® — 12b*
* *

8 (440*p? — 32a5>

X
+ox ( a® — 8ab® + 12ab + b* — 6b3)

( 2243 + 28a%b? + 24a%b — Shab’ — 6b5)
+ (

450%b — 1084%b* — 36ab4)
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+x8 (=6a*h — 724 — 156a°b? + 124%*) + ab — b?
+x! (—6a5 —120a%b + 30a3b3)
oS (32a4 — 24307 — 144a3b — 984%b° + 2ab5)

and A has been eliminated by (12).
Thus, system (4) undergoes a cusp bifurcation of codimension 3. O

Proposition 2.3 When A > 0, x > 0 and h(x2) < 0 are satisfied, there are two posi-
tive equilibria Ey(xy, Yo) and Eg(xg, yg) for system (4). Further, Eg is a hyperbolic
saddle and E,, is

(1) a stable hyperbolic focus or node when St (o) < 0;
(ii) a weak focus or a center when St (o) = 0;
(iii) an unstable hyperbolic focus or node when St (a) > 0.

Proof Denote the sign of the determinant and trace of (7) by

Sp(x) = x(x — A)(x — K) (ax2 T p(x(ax +b) + )% — 1) ,

Sr(x) = A (—/C(zax 4 b) + 3ax? + 2bx + 1)
+x(ax(BK — 4x) + b2K — 3x) —2) + K.

Substituting « and B into Sp(x), we have
Sp(@) = al@ — A)a — K) (aa2 + n(alaa +b) + )% — 1) ,
S(B) = BB = M(B 0 (ap® +n(B@p+b) + 1>~ 1).
Note that, we find that & and B are two different positive roots of (5), then

W (@) = —aa® — n(a(aa +b) + D> +1 < 0. (19)
W) =—ap>—nBaB+b) +1)>+1>0. (20)

From model (4), we have

x(K—=x)(x —A) > 0.
It follows that Sp () > 0 and Sp(B) < 0by (19) and (20). Hence we obtain the types
of E, and Eg. a
3 Bifurcation Analysis
In this section, we discuss the existence of saddle-node bifurcation, Hopf bifurcation

of codimensions 3, Bogdanov—Takens bifurcation of codimensions 2 and 3 by the
method of normal form theory.
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3.1 Saddle-Node Bifurcation

From the last section, we obtain that two positive equilibria of system (4) will coincide
at E(X) which leads to 4(X) = h'(X) = 0. Moreover, from (8), there may exist saddle-
node bifurcation of system (4).

Theorem 3.1 Suppose h(x) = h'(X) = 0. If r(Xy) # 0, then system (4) goes through
a saddle-node bifurcation.

Proof Since h(X) = h’'(X) = 0, the eigenvalues of J(E) are 0 and —r(%). From (8),
we have det(E) = 0. We use the following transformation to show that system (4)
undergoes a saddle-node bifurcation.

PQaith) 5 _ __l-ai’ Bringing E to the origin
T T Gairb 1 T T Gasrprn? DTTENE &
by the transformation X = x —x, Y = y — y, system (4) becomes (we still denote X,

Y as X, y, respectively)

From (9), we have d =

= 81x + 82y + 83xy + 84x% + 85x° 4+ Sexy + O(F, 7Y,

dx
dt

21
45 1)

= 872 4 83 + 8ox?y + O(I%, 3|,

where §;, (i =1,...,9) are given in “Appendix B”.
Next, using the transformation

X =7,
Y = (x, <—3x*(a(A +K0) — b) + 2aAK + 4ax? — 2Ab — 26K + 2)
FABK —1) =i+ 7,

system (21) becomes

dX
dt
dy
dt

=a X+ X +aX’Y +0(X, Y[,
(22)
= —r(x)Y +eaX?> +6sXY + 66X + e XY + 0(X, YY),

where €;, (i = 1,...,7) and r(x,) are, respectively, defined in “Appendix C”.
There exists the following center manifold in a sufficiently small neighborhood of
the origin (0, 0)

€4

N 7 (x4)

Y X2+ 0(Xx3).

System (22) can be reduced on this center manifold as follows:

dx
o= eX>+ 0(Xd). (23)
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Due to €3 # 0, system (23) is topologically equivalent to

dx
RS S N010. 60 )
7 +0(X”)

Then system (4) goes through a saddle-node bifurcation based on Shan and Zhu [45].
O

3.2 Bogdanov-Takens Bifurcation of Codimensions Two and Three

In this subsection, we consider the codimension-2 and codimension-3 Bogdanov—
Takens bifurcation of system (4) using the method of finding the parametric normal
form of Bogdanov—Takens bifurcation, which was developed by Dumortier et al. [46].
Here we use the natural mortality rate (d) of the predator, the prey’s carrying capacity
(K), and the intensity of anti-predator behavior (1) as the primary bifurcation param-
eters.

Firstly, we recall the following definition in Perko [43] and proposition in Li et al.
[37] which will be used in our proof.

Definition 3.1 The bifurcation that results from unfolding the following normal form
of a cusp of codimension 3,

dx _

ar

d

d_)t) :x2:|:x3y, 24)

is called a cusp type degenerate Bogdanov—Takens bifurcation of codimension 3.

Proposition 3.1 A universal unfolding of the normal form (24) is expressed by

dx __

dai =Y

d ) 3 (25)

S =vi+ny+unxy+x£xy+Rx,y, ),
where ¢ = (g1, €2, €3) ~ (0, 0, 0), % £ 0 for small ¢ and

R( ) 2 5 2 3
X, y,8) =y O(lx, yI)) + O(lx, y[7) + 0(e)(O(y*) + O(|x, y[*))
+0 () 0(Ix, y)). (26)
Theorem 3.2 When d = d, = fracxf (Qaxy + b) (x4 (axs +b) + 1) 2 N =N, =
)

(X(GL%, K = K which are mentioned in (9), system (4) has an interior equi-
librium E (x4, G(x4)) which is a cusp of codimension-2 (i.e., B-T singularity). If we

take d and n as bifurcation parameters and |%| =0 7 0, then system (4) goes

through codimension-2 Bogdanov—Takens bifurcation in a small neighborhood of the
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unique positive equilibrium E(xx, G(xy)). Further, if we take d, n, K as the pri-
mary bifurcation parameters and |{;¥;L’T‘m| r=0 7 O, then system (4) undergoes
codimension-3 Bogdanov—Taken bifurcation in a small neighborhood of the positive
equilibrium E(x., G(xy)). Then we find an unstable homoclinic cycle, a stable limit
cycle, coexistence of two limit cycles, and a semi-stable limit cycle for different inter-

vals of parameter values for system (4).

Proof We prove codimension-2 Bogdanov—Takens bifurcation by using d and n as
primary bifurcation parameters.
Set

dx Xy
— = -AAK—-—x)— ——F—,
dt x(x ) %) ax?+bx +1

i = (d + 1) +x (= (5 + 32))
_— = _—— X (— ,
dt Y ax2+bx +1 ! 1 2

(27)
where A1 and A; are small parameters near (0, 0). We are only interested in the phase
portrait of model (27) in a small neighborhood of E. (xy, y«).

Let X = x — x4, Y =y — y.. Model (27) can be written as

dx
T =eitextey + £4x” + £sxy + Pi(x, y, A1, A),

d
d_)t) = 6 + £7x + £3y + eox? + e10xy + Pa(x, ¥, A1, A2),

(28)

where Pi(x,y, A1, A2) and Pa(x, y, A1, Ap) are functions which has at least third
derivative about (x, y). The coefficients depend smoothly on 1| and A;, and

Xx
T axlabx+ 1
(A—xy)?2 (azx;f —3ax, — b)

- (ax2 + bx, + 1) (2aAx, — 3ax2 + Ab — 2bx, — 1)

(A —xy) (xg (axs +b) + 1)

Xy 2aA — 3ax, — 2b) + Ab — 1

ax?—1 (A —x)% (M + daxy) (ax2 + bx, + 1) 2
T @2t b+ )2 T 2aAx,—3ax2+ Ab—2bx, —1
M (A —x)? (ax2 + bx, + 1) 2
2aAxy — 3ax2 + Ab — 2bx, — 1’

(A—xy)?2 (azxi —3ax, — b)

= — s = —M.
T T (ax2 + bx, + 1) (aAx, — 3ax2 + Ab — 2bx, — 1) =T

g1 =6 =0,

+A_2X*,

&7 = £8 = —Al — A2Xy,

LetX =x,Y = ¢ +82x+83y+84x2+85xy+P1 (x, y, A1, A2). Model (28) reduces
to
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dx

dx _

j; (29)
SEh oLy + cax? + &sxy + Ley? + P3(x, ¥, A1, A2),

where P3(x, y, A1, Ap) is a function which has at least third derivative about (x, y).
The corresponding coefficients depend smoothly on A1 and A7, and

£185
{1 = €386 — €18, {2 = €586 + €367 — €268 — £€1€10, {3 = €2 + €8 — et
3
)
1€5 £285 &5
4 = e587 — €468 + €389 — €2610, {5 = —5 — —— + 284 + €10, 56 = —-
€3 3 €3

Next, let dt = (1 — ¢gx)dt. System (29) becomes (still denote t by ¢, respectively)

dx (1 )
= = — £ex),
a7 %6
i (30)
o7 = (=80 (@ + Lx + Gy + Gax® + gsxy + L6y” + P3(x, y, A1, A2).
Let X =x,Y = y(1 — {¢x), and rewrite X, Y as x, y, respectively, one yields
dx
- =Y
& (1)
d_i =01 + 02x + 03y 4 04x + Osxy + Py(x, y, A1, 12)),

where Pi(x, y, A1, A2) is a function which has at least third derivative about (x, y).
We have

01 =2¢1, 6 =20 —28018, 03=103, 04 = §1§62 — 2886 + 84, 05 = &5 — £386.
We find that when A| = A, =0,

01=0,=0;=0,
Xx (A — xy) 2 (ax* (axf — 3) — b)
N (x4 (axy +b) +1)2 (A Raxy + b) — Saxs — 2bx, — 1)

04 # 0.

Moreover, let

X=— , Y =y.
294+x y



116 Page 16 of 50 T.Wen etal.

Model (31) becomes
dx
—_ = y’
ar (32)
d—f =11 + 02y + i3x2 4+ uxy + Ps(x, y, A, A2)).
Here Ps(x, y, A1, A2) has at least third derivative about (x, y). We have
03 105
U=0] — 2, =03 — —>, 13="04, 14=0s.
1 1 494 2 3 204 3 4 4 5
Assuming
2 3
l L
X="Sy y="2y =2
L3 L3 L
we have (use x, y, t for X, Y, 1)
dx
— =y,
o (33)
o=y X% 4 xy 4 Ps(x, y, A1, 22)),
where Pg(x, y, A1, A2) has at least third derivative about (x, y). We have
thj oty
1= —73" H2=—.
13 13
We write (¢1 and p» using A and Ay
(1 = s1A1 + 5200 + 5307 + sahiha 4 +s545 + O(|Aq, A2)), )
p2 =ty + ha + A3 4 tyhihg 4+ +533 4+ 0(A1, Azl),
Then it yields
‘a(m, w)| _ 32R%x3 (xs (axs +b) + 1) °
A, A) | (A —x,)0 (ax* (ax,% — 3) — b) 5 (xx 2aA —3ax, —2b) + Ab —1)3
#0,

where
R = 3xf (azA2 —3aAb+a+ b2> + x;f (Sab — 8a2A) + 6a2xi

+3bx, (aA2 — Ab+ 1) —aA + Ab(Ab — 1) + 1.
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Thus, system (4) undergoes a codimension-2 Bogdanov-Takens bifurcation.
Next, we take d, n, IC as bifurcation parameters to prove that model (4) has a
Bondanov-Takens bifurcation of codimension 3. Set

dx Xy
_— = — A — e ——
7 x(x ) (A3 + K) —x) e —

dy_

. (35)
dr° ax? +bx +1

—(d+)»1)+x(—(77+?»2)))-

Here X; (i = 1, 2, 3) isinasufficiently small neighborhood of (0, 0). We are concerned
about the dynamics of system (35) near the equilibrium E, (x., V).

Firstly, define X = x — x4, Y = y = y,. By using Taylor expansion, system (35)
can be rewritten as (we still denote X, Y by x, y, respectively)

dx 2 3 2
T apo + aiox +ao1y + axox” +ajxy +azox” +azx°y
+asox* + a3’y + 0(x, yh,
dy 2 3 2 (36)
7 = oo +ri0x +ro1y + r20x” + riixy + r3ox” +rax”y
+ raoxt +r31x%y + 0(x, y|h),
where
ago = Aax2 — Ad3Xs, a10 = 2A3Xs — A3, dp) = —zx—*, axy) = A3,
axg; +bxy +1
ax? —1 B Xy (2axs + b) (2a (xs (axs + b) — 1) +b?)
T @2 b+ )2 T T s + b) + 1) (a Grs (@xe +5) — 1) + 52)
. —azxi’ +3axy + b

= (ax?+bx,+1)3°

Xx (b2 — 4a) a(axs +b) b
0 @t )+ D2 aGrnaxs+b) — D)+ b2 xy(axe+b)+1°

a*xt — 6a’x2 — dabx, +a — b? (M + 2axy) (xx (axs +b) +1)3
a1 = (ax?+bx, +1)4 » 0= Bxs (axy +b) — 1)+ b2
A (X (axs +b) +1)3

ro0 =~ G (@rn 1) — D+ 52 7ol = —A] — AXy,

axs (3 — axﬁ) +b
0T G Gx (axe+b) — D)+ B
= o, rao = a (axf (axf — 6) —4bx, +1) — b?

’ (xs (axs + b) + 1) (a Bxy (axy +b) — 1) +b2)’

a’x} —3ax, — b

r2 =

(axf—i—bx* + 1)3’
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—a*x? +10a’x] + 5a%x, (2bx, — 1) 4+ ab (Sbx, —2) + b3
r40 = ,
40 (x4 (axe +b) +1)2 (a (Bxy (axs +b) — 1) + bz)
—a’x + 6a’x? + 4abx, —a + b?

(axf + bxy + 1) 4

r3p =

Next, we make the transformation

X =x, Y =ap +aiox +ao1y + a20x2 +anxy + a30x3 + a21x2y
+ agox* + a31 %y + O(|x, y[*).

Then system (36) becomes

dx
dr
dy 37
i boo + b1ox 4 bo1y + baox* + brixy 4 boay? + b3ox> 37)
2 2 4 3 2.2 5
+ bo1x7y + braxy” + baox” + b31x7y + boax“y” + O(|x, y|”),
where
boo = ap17ro0 — aooro1, b1o = ariroo — aioror + ao1r10 — Aoor11,
apopdii
bo1 = ajo — + ro1, bao = az1roo — axoroi
aol
+ aiirio — ajor11 + aoi1r2o — aor2i,
2
appay;  aodil 2appaz; apy
bi=—7F——-———+2am0———— +ru.bop=—,
ag, ap1 aol aol

b3o = az1rop — azoro1 + a1r10 — axor11 + ai1r20 — aior21 + aop1r30 — Aeor31,

3 2
__doody aan

by =
3 2
apy dpy
3agoaziair  azoain 2a10a21  3apoazi
3 - + 3azo — - + a1,
ao] aol aol aol
2
2ap1  aj
bip = —— — —~, bao = —aoro1 + azirio — azori + az21ro
o1 ag
— axor21 + aiir3o — aor31 + ao1r4o,
4 3 2 2
by = G001 _ @i0ai; | G247, 4agoaziay, | 3aipaziann | 4agpaziai
3= d4 (13 a2 03 a2 612
01 01 01 01 01 01

2
azpair . 2apoa
— + 2 +4ax

aol ag, aot api

_ 2axa21  3ajoas

+ 31,
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3
a 3azian  3azn
by = % — 3 + —.
g apy 4ot
Note that system (37) can be reduced to system (13) when A1 = Ap = A3 = 0.
Secondly, several steps are used to transform model (37) to the normal unfolding
of the Bogdanov—-Takens singularity of codimension 3. O

(I) Removing the y*-term from system (37) We use the transformation x = X +
b%X 2 y =Y + bpp XY to remove the yz-term, then system (37) becomes

dx
dt
dy
dt

= y’
= coo + c10X + co1y + Czox2 +crixy + 630x3 (38)
+ c21x%y 4 c12xy® + caox® + c313°y 4 cx?y + O(|x, yP),

where

b1oboz

2
co0 = boo, c10 = b1o — booboz, co1 = bo1, 20 = boobpy, — + by,

bozb11

1
c11 = b1, ¢30 = —boobd, + Eblob(z)z + b3p, c21 = + by,

b3obo2
2

1 1
c12 = 2b(, + bia. cao = boobg, — §b10b82 + Zb20b32 + + by,

3b12b2

c31 = boobyy + b3y, c20 = —b, + + bn.
We find that cog = c19 = co1 = c¢11 =0 when Ay = Ay = A3 =0.

(1) Removing the xy*-term from system (38) Let x = X + Boy=Y+ %XZY.
System (38) becomes the following, where xy? has been eliminated.

dx B

a7

d

d_f =doo+d10x+d01y+d20x2+d“xy+d3ox3 (39)

+ do X%y + daox* + d31 Py + dox?y* + O(Ix, yI),

where
doo = c00, dio = c10, do1 = co1,
dyy = c20 — 0002012, dip = ci1,
dyp = c30 — w, dy1 = c21,
dao = %6000%2 - 62060 R
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clicn
d31 =

+ c31, dy = 2.

Again we have that dyg = djo = dp1 =dj1 =0when iy =1y =213 =0.

(III) Removing the x*y*-term from system (39) We assume x = X + dy x4, y =

12
Y + d%XZY. Model (39) becomes

dx B

dr

d

d_: = ego + e10x + €01y + e20x” + eq1xy + e3ox° (40)

2 4 3 5
+e21x7y +eqx” +e31x”y + O(lx, yI°),
where
eoo = doo, e10 =dio, eor =do1, ex =dy, el =dii,

dooda diodr
e30 = d3p — 7 0 e =dy1, e40 =d40 — raRtERE) =d3.

It is clear that egg = ej0 = eg1 = €11 = 0 when A = Ay = A3 = 0.
(IV) Removing the x3-term and x*-term from system (40) Note that

Xx (ax* (3—61)65)—{—[))
T O(A1, A2, A 0
! (ax? + bxs + 1) (a Bxs (axy +b) — 1) +b?) + 00 22, 43) #

for small A. Let

(15¢3, — 16ex0e40) X*  e30X?

X = — + X,
80e3, 4e20
y=Y,
. (453, — 48ex0ea0) X*  e30X o
806%0 2e20

From model (40) we have

dx _

a7

d

d_f = foo + fiox + fory + frox> + fiixy + fzox® @1

+ P12y + faox* + iy + 0(x, v,
where

€00€30
2820 ’

Sfoo = eo0o, f10 = e10 — for = eor,
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2
9eqoe3y  3eroeson 3epoeqo
fa0 = 5 = + e —
16e3, 4eo Sexo
2
e01€30 Teroezy  4eioesn
Ju=en— o= —5 -
2e20 8820 Sex
9eprel,  3erresn 3eg1e40
fa1 = > — t+en———
16e3, 4e20 Sex0
f e0ez0eqn  15e10€3,
40 = >— — 3
de3 6de,
Te11e3,  e2ies0 deyreqo
fr=—s2 - ey —

8¢3, e 5e20

We find that foo = fi0 = for = fi1 = f30 = fao =0when A; = A = A3 =0.

(V) Removing the x>y-term from  system  (41)
x*(azx;}—Sax*—b)
(ax2+bx,+1) (3a?x2+3abx.—a+b?)

lowing transformation

_ f221Y3 f21Y2 + I = f221Y2
36f5% 3f0 362

Since  fa9
+O (A1, A2, A3) # 0 for small A, we choose the fol-

+_+1>7

and get a new system of system (41) as follows (we still denote X, Y, 7 by x, y, ¢,

f21f3o‘

respectively)
dx _
ar Yy,
dy 2 3y 4R )
2 8w + g10x + go1y + g20x" + gu1xy + g31x°y + Ri(x, y, 1),
where
Jofa
800 = foo, &10 = f10, go1 = fo1 — ,
120
f10/21
820 = fr0, 811 = fil — ———, 831 = f31 —
f20

(42)

We find that goo = g10 = go1 = g11 = O when A = A» = A3 = 0. R{(x, y, A) has
the property in (4.6) of Arsie at al. [21] which is one of the conditions undergoing
a Bogdanov—Takens bifurcation of codimension 3 (see, also, Lamontagne et al. [44],

and Chow et al. [47]).
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(VI) Changing g0 and g11 to I in system (42) We notice that

Xy (azxi’ —3ax, — b)
(ax? 4 bx, + 1) (3a%x2 + 3abx, — a + b?)
1
(axf + bx, + 1) (3a2x£ + 3abx, —a + bz) (—a2x£ + 3ax, + b)
x (12a°x8 + 12a*bx — 3b* — 64a*x? + 4a’b*x?
— 96a3bx$ + 36a3x$ — 66a2b2xf + 28a2bx*
— 22ab’x, + 6ab®) + O(L) # 0.

820 = +0M) #0,

831 =

for small A. By making the following transformation

2 3
_2 45 —3
X =y 8208315X, y = 82(/) 8315 Y, 1 =gy 78317,

wlw

we can transform system (42) into (we still denote X, Y, t by x, y, t respectively)

dx
— y’
21; (43)
d_i = hoo + h1ox + hoty + x* + hiixy + X7y + Ra(x, y, 1),
where
4/ 5
hoo — 80831, 8108 o 81VEN L &1L
00 =555 Mo ="¢5— Mol ="35 M1 =5 "—.
820 820 820 820 /831

Note that hog = h19 = ho1 = h11 = 0 when A1 = A = A3 =0, and Ry(x, y, 1) has
the same property as Ry (x, y, A).

(VII) Removing x-term from system (43) Let x = X — %, y = Y. System (43)

becomes (we still denote X, Y by x, y, respectively)

dx
— =y,
élh (44)
d_)t) = v + vy +vaxy +x2 +x3y + Ri(x, y, 1),
h3 ho

2
where vy = ho— 10, vy = —Ho Ao oy = Mo 4 pyyand Ry(x, y, 1) has
the same property as Ry (x, y, A).
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Next, with the help of Mathematica, we have

‘3(\)1, V2, 13)
(A1, A2, A3)

=0
_ 30 (% (axs +b) + 1)

4045 a2 2 x3 (ax+ (ax3—3)—b) 7/5
4245 (ax, (3 — ax3) +b) ((x*(ax*+b>+1>2<x*<3ax*+b>—1) !

X (X (bzx* <5axf — 3) +b (axf (7ax5 — 10) — 1)

+axy (axf (7ax$ — 19) + 5) + beE) -1

_ R 4/5
x ( X (Xx (ax + ) + 1D 2 (x, Bax, +b) — 1) (ax* (3 — axﬁ) + b)) ’

where

R = —12a°x% — 16a*bx® + 91a%bx® + x* (23a2b + 25ab3)
43 (—58a2 +20ab? + 3b4)
+x] (340" — 4a®?) + 5] (46a° + 67a%?)
+x2 (36 = 19ab) + x, (60 — 36%) +b.

Thus, system (4) goes through a codimension-3 Bogdanov—Taken bifurcation.

3.3 Hopf Bifurcation

In this subsection, we study the Hopf bifurcation of system (4) near the equilibrium
Ey (x4, yo) to find the existence condition of the limit cycle. As we know, there are
several methods to investigate the existence of degenerate Hopf bifurcation, for exam-
ple, Poincaré normal form [48], averaging method [47], successive function method

[49], Lyapunov-Schmidt reduction [50].

Theorem 3.3 No limit cycles can be found for system (4) if (a) bd +n — 1 > 0 or
(b) bd +n —1 < 0and h(xy) > 0; (c). G'(x) > O for all x € (s1,B), where

s1 =max{0, A}.

Proof There is no positive equilibrium for system (4) when condition (a) or (b) holds.
Thus system (4) has no limit cycles. For condition (c), we make the following trans-

formation

t
t=Ilnx, y=Iny, 1= ———|
x Y Y ax? +bx +1
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then we have

dx . o
2 —Geh -,

= —h(e),
dt @)

3
dt
where A (-) is given in Eq. (5). Since G'(x) is positive for any x € (s1, 8), we obtain
. . . d . . d . c .
V- (G(e") — e, —h(e")) = == (G(e") —e”) + —=(—h(e")) = " G'(e") > 0.
dx dy

Using Dulac’s criteria, we know that system (4) has no limit cycles in the positive
cone. O

Theorem3.4 IfA <0,a < K < B, and G'(a) > 0, then system (4) has a limit cycle.

Proof 1t is easy to know that system (4) has three equilibria Eg, Ex and E, if A <0,
G'(¢) > 0,and @ < K < B. On the coordinate axes, there are stable manifolds
of two saddles Eg and Ejc. In particular, all orbits in the positive cone will remain
in the compact set, bounded by x-axis, y-axis and x + y = M. E, is an unstable
focus or node. Thus, there exists a limit cycle surrounding the equilibrium E, by
Poincare-Bendixson Theorem.

Now, we turn to compute the Lyapunov coefficient of the Hopf bifurcation point.
In order to simplify the computation as used in Perko [43], we let

X=—, y=—, t=x,t 45)
and change model (4) to (use ¢ instead of 7)

dx 1 L -
=3 (xax (xgx — A) (K — xoX) —

Ya (XqX)y )

d_{ 3 ) a (xg%) 2 + bxgx + 1 )
dy 1 _ XgX c_4
- = — NXgX — .
dt  x2yg YaX\ 4 (X X) 2 + bxex + 1 e
Substituting the following parameter scaling
7 b . . - 1
a:%, b=—, K=x4K, A=x4A, d=xqd, n=1, q=—,
X5 Xo Xo
into system (46), with the help of (3) to eliminate y, and drop the bars, we have
d A-DK -1 b+1
d—f=x<( )(zﬂzy(i;r + )+(A—x)(x—iC)),
ax X
47)

dy X J
- = —— —d —nx .
dt 1y ax? +bx +1 7
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Since system (47) has an equilibrium Eq(1,1) (ie., Ey(xq, Vo)) of system (4), then

_ —(a+b+Dn+1

d
a+b+1

I

which is substituted into system (47) and we obtain the following system

d_x:x<(A—1)(IC—1)y(a+b+1)_i_(A_x)(x_,C))’

dt 24 bx+1
ax< + bx + (48)
dy X —an—bn—n+1
— =gqy 3 — —nxj,
dt ax* +bx +1 a+b+1
where
1
a,c,K>0,-K<A<K,d>0—->0<n< ———,
l4+a+5b (49)

b>-2a,0<xy<1—¢g>1.

It is obvious to see that system (48) has the same qualitative property as system (4)
because transformation (45) is a linear sign-reserving transformation.

Next, we investigate the dynamics of system (48) in R; ={(x,y)lx >0,y >0}.In
what follows, the Hopf bifurcation around new equilibrium Eq(1,1) of system (48) is
studied, which is corresponding to the Hopf bifurcation around E, (x4, Y« )) in model
4). O

Theorem 3.5 If (49) and (52) hold, then system (48) has an equilibrium Ey(1,1).
Moreover,

(1) if K < K*, then E~a(1, 1) is an unstable hyperbolic node or focus;
(i) if K > K*, then Eq(1,1) is a locally asymptotically stable hyperbolic node or
focus;
(iii) if K = K*, then E,(1,1)isa weak focus or center.

Proof Firstly, we define the Jacobian matrix J(Eq(1, 1)) of system (48) at Eqo(1,1)
is as follows:

2bA—bKA+A—-3b+2bK+K+a(3K+A(B—2K)—4) -2
a+b+1 (A-DE-D

J(Eo(1,1) = L
q ((a+b+l)2 - '7) 0

(50)

Its determinant and trace are

(A—D(K-Dg(na+b+1>+a—1)
(@a+b+1)2

det(J(Ey(1, 1)) =

3
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and

tr(J (Eq (1, 1))
B a(AB=2K)+3K —4) — ADK +2Ab+ A+ 2bK —3b+ K -2
- a+b+1 ’

From y, = (xo — A_)(IC_— xo,)(axg + bxeg + 1) = (x4 — Axa)(lixa — xa)(axg +
bxg 4+ 1) = x2(1 — A)(K — 1)(ax2 + bxy + 1) > 0, we have (drop bars)

1-—AK-1)>0 (51)
and det(J (Ey (1, 1)) > 0 if
na+b+1%*+a—-1<0, (52)

and tr(J (Ex(1,1))) =0 (> 0 or < 0)if £ = K* (K < K* or £ > K*), where

K*_a(3A—4)+2Ab+A—3b—2
T aRA-3)+(A-2b—1

53
. (tatbAa-D &9
o —14a(=3+24)+(—2+ A’
When condition (49) holds, we have
—14+a(-3424A)+(2+A)b<0, £K>1, A<. (54)

It is easy to obtain

1—aRA-3)—(A-2)b
>0
a+b+1

d -
R(tr(J(Ea(l, D))lc=kc+ =

Next, we focus on case (iii) in Theorem 3.3 and study the existence of Hopf bifurca-
tion around Ea (1, 1) of system (48), which is equal to the existence of Hopf bifurcation
around Eq (xy, yo) of system (4). We show the stability of the Hopf bifurcation and
periodic orbits near the positive equilibrium E, (1, 1) of model (48) by computing the
Lyapunov coefficient.

Setting X =x — 1, Y = y — I, and K = K*, we rewrite system (48) as follows

ax _ 2 3 >
p =ag1y + axx” +apxy +azx” +ayx’y,
! (55)

d
d_)t] = biox + baox? + biixy + byox® + barx?y,
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where

aA®> —2aA+a+ A’b + A* —2Ab —2A + b+ 1
= 2aA —3a+ Ab—2b — 1 ’
(A—1)*(3a> 4+ 3ab —a +b?)
0= T DA —3a tAb—2b 1)

—aA? +2aA —a+ A% —2A +1

M= TT00A —Bat+ Ab—26—1
@a—D2A=1) a(A-=2)+A 1 —a(A —2)? .
a = — — 1,
30 a+b+1)? atb+1 ' aRA—3)+(A—2b—1
a’A? —2a%>A 4 a® — 3aA? 4 6aA —3a — A’h +2Ab — b
ay) = s
2 (@+b+1)2aA —3a+ Ab—2b—1)
aq q
bio = — _—
vy gy A oy iy AL
2
qgla®—3a—b a
PO L etk PR B -,
(@a+b+1) (@a+b+1) (@a+b+1)
b — q(a3—6a2—4ab+a—b2)b _q(a2—3a—b)
0= @+b+ D T T bt 1)
Using the transformation
ay ai
X=ux, Y= |-y, 1=—bo/—7—1
b1oy bio
we transform system (55) into
aol aol
d a0/ ~ o, as0y/ ~p,
dx _ N s an NI IREN
dt aopl ap1 ap1 ap1 (56)
by, /—doL bay . [— o1
d b 1 b b 21 b
—y=—x+<—2)x2+—wxy+<—ﬁ>x3+—mx2y.
dt b1o ap| bio apl

By virtue of the formula used in Zhang et al. [51] and calculation by Matlab and
Mathematica, we have the first Lyapunov coefficient as follows

1@RA—3)HA-2)b-1) (n(atbt D2 +a—1) 1

T 8A-D2atb+ DX(natbt D> ra—1)

\/ (A=D2(@+b+1)?

ol

where

p1 = —2A%b% + 9Ab> + 2Ab — 12b> — 9b — 2,
02 = —9A%b + 2A% — 3Ab> + 36Ab + 6b> — 37b — 12,
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03 = 3A%b — 12A% — 18Ab + 40A + 24b — 30,
04 = 6A% —24A + 24,
ps = 2A%b° +2A%b% — 3Ab* — 12Ab° — 11 AD?
—2Ab + 6b* 4+ 210> +24b% + 11b + 2,
06 = A%b> + 12A%6> + 7A%b — 2A% — 18Ab> — 58ADb>
— 36Ab + 30b° + 82b% + 62b + 12,
07 = 4A%b% + 26A%b + 12A% — 39Ab*> — 98Ab — 40A + 56b% + 111b + 46,
pg = 3A%b + 14A% — 32Ab — 48A + 44b + 48,
po =12 — 8A,

and

o1 = p1 + pra + p3a* + psa® + (ps + pea + pra® + psa’ + poat)n.  (57)

From conditions (52) and (54), we find the sign of the o} is opposite to that of oy;.
Thus, we obtain the following results. O

Theorem 3.6 Suppose I = K* and conditions (49), (51), (52) and (54) are satisfied.

(1) when o1 > 0, we have a stable weak focus E(l, 1) with multiplicity one and a sta-
ble limit cycle bifurcating from E(1, 1), i.e., system (48) undergoes a supercritical
Hopf bifurcation;

(ii) when o171 < 0, we have an unstable weak focus E (1, 1) with multiplicity one and
an unstable limit cycle bifurcating from E,1), ie., system (48) undergoes a
subcritical Hopf bifurcation;

(iii) when o1 = 0, we have a weak focus E (1, 1) with multiplicity of at least two and
model (48) has a degenerate Hopf bifurcation of at least codimension 2.

Next, we focus on case (iii) in Theorem 3.4. We find 11 = 0 if

£ _ p1 + p2a + p3a® + paa’

= . (58)
—(ps + pea + p7a® + psa’ + poa*)

n=n

From case (iii) of Theorem 3.4, it is easy to know that system (48) could undergo a
degenerate Hopf bifurcation which is a codimension-2 Hopf bifurcation as £ = C*
and n = n*. Using the formal series method in Freedman and Wolkowicz [10], with
the help of Mathematica and Matlab software, the second Lyapunov coefficient is
obtained as follows

—022

3V2(—1+a(=3+24) + (=2 + Abymiq, /7

02
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where

my = (a+b+13b—(a—3)a) (1 +a*(6+ A(—8 +3A))
+bB—A+ @+ (=3+ A)A)b)
+a(3— A%+ (8 +3(=3+ A)A)b)* > 0,
my = (A (3a2 +3ab—a+ bz) iy (—8a2 — 9ab —3b? — b)
+a(6a + 8b +3) +3b* +3b + 1)
x ((@—3)a—>b)aA—-3)+(A—-2)b—1)g #0,
my=(A—1D%*a+b+1)>(—8a>A + 12a° + 3a> A%b + 14a* A?
— 244> Ab — 40a> A + 32a%b
+aA%b? +9aA%b — 2a A% — 15a Ab* — 34aAb + 24ab’
+ 43ab + 10a 4 2A%b* — 3Ab°
—2Ab + 6b> + 156> 4+ 9b + 2 + 36a> — 9Ab?) + 0,
022 = —(my4 + msq).

Note that m4 and m5 are too complicated and are omitted for simplicity. For example,

we take a = 0.0015, b = —0.035, A = -5, and according to conditions (49),
(52) and (54), we have K = 8.48741, n = 1.0344. Then m4 = 0.0041025, ms =
—0.0000206483, and 07y = —(m4 + msq) = —(0.0041025 — 0.0000206483 x

198.684) = —1.31628 x 1078 <0, ie., system (48) has two coexistent limit cycles.
Since —1 +a(2A —3) + (A —2)b < 0 and m; > 0, the sign of o is determined by
02).

Then we obtain the following results. O

Theorem 3.7 Suppose K = K*, n = n™ and conditions (49), (51), (52) and (54) are
satisfied.

() if 020 > 0, then we have an unstable weak focus E(1, 1) with multiplicity two.
Model (48) has a codimension-2 degenerate Hopf bifurcation, i.e., two limit cycles
(the inner one and the outer one are, respectively, stable and unstable) originating
from E(1, 1).

(i1) if o2 < 0, then we have a stable weakfocusE(l, 1) with multiplicity two. Model
(48) has a codimension-2 degenerate Hopf bifurcation, i.e., two limit cycles (the
inner one and the outer one are, respectively, unstable and stable) originating from
E(1,1).

(iil) if oop = 0, then we have a weak focus E(1,1) with multiplicity of at least three.
Model (48) may have a degenerate Hopf bifurcation of codimension > 3, i.e., three
limit cycles are originating from E(1,1).

Next, we focus on case (iii) of Theorem 3.5. When o7 = 0 equals to o2 = 0, i.e.,

—my
q=—": (59
ms
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system (48) may have degenerate Hopf bifurcation of codimension > 3.

From case (iii) of Theorem 3.5, we see that system (48) may undergo a degenerate
Hopf bifurcation of codimension 2 as = K*, n = n* and ¢ = ¢*. By virtue of
the formal series method used in Freedman and Wolkowicz [10] and with the help
of Mathematica and Matlab software, the following third Lyapunov coefficient is
obtained

1
663552 933

o s 3 (A—1)2(a+b+1)3 ’
(1 —a(=3+24) — (=2 + A)b) \/q(a(ZA—3)+(A—2)b—1)(a2n+a(2(b+l)n+l)+(b+1)277—1)NO

03 =

where No = (= 1+ A)*(1+a+b)0¢%(—1+a’n+ (1 +b)*n+a(l +2(1+b)n))® >
0,033 = —(N] + N2 A2 4+ N3AY). Tt is noted that the expressions of N;, (i = 1,2, 3)
are tedious, for simplicity, we omit them here. Since 1 —a(2A —3) — (A —2)b > 0
and Ny > 0, the sign of o3 is determined by o33. Then we get the following results.

Theorem 3.8 Assume K = K*, n = n*, ¢ = q* and conditions (49), (51), (52) and
(54) are satisfied, we have

() if 033 > 0, then we have an unstable weak focus E(1, 1) with multiplicity three.
Model (48) undergoes a codimension-3 degenerate Hopf bifurcation, i.e., three
limit cycles are originating from E(1, 1);

(ii) if o33 < O, then we have a stable weak focus E(l, 1) with multiplicity three.
Model (48) undergoes a codimension-3 degenerate Hopf bifurcation, i.e., three
limit cycles are originating from E(1, 1);

(iii) if 033 = 0, then we have a weak focus E(l, 1) with multiplicity > 4. Model (48)
may have degenerate Hopf bifurcation of codimension > 4, i.e., four limit cycles
are originating from E(,1).

4 Cusp of Limit Cycle with Codimension 2
In this subsection, we revisit the periodic normal form on the center manifold according
to Witte et al. [52] and Iooss [53].

Rewrite a general ODE system atu = F(u), and assume that a limit cycle y satisfies

u(0) = u(T), where T > 0 is the minimum period. Expand F (uo(#) + v) by using
the Taylor expansion as follows:

1
F(upt) +v(t)) = F(uo(t)) + A@)v(®) + EB(t; v (1), v2(t))
1
+§C(t; v1(1), v2(1), v3(1))
1
+$D(t; v1(1), v2(t), v3(t), va(t))

1
5 E@ 01, 1200, v3(1), valt), v5()) + O(llvl®), (60)
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where

A(t)v = Fy(uo(0))v,
B(t; vi(1), v2(1)) = Fyulvi, v2],
C(t; v1(0), v2(1), v3(1)) = Fuuulvi, v2, v3],
D(t; v1(t), v2(1), v3(1), v4(2)) = Fuyuulvr, v2, v3, v4],
E(t; v1(2), v2(2), v3(2), v4(1), v5(1) = Fuuuuulvi, v2, v3, v4, V5] (61)

Define the initial-value problem for the fundamental matrix solution Y (¢) as follows

dY—AtY 0) =1 62
E_ ()7y()_ns ( )

where I, denotes the n x n identity matrix. We call The eigenvalues of the monodromy
matrix M = Y(T) as (Floquet) multipliers of the limit cycle. The multipliers with
;] = 1 denote the critical multipliers. A trivial critical multiplier u,, = 1 always
exists. The total number of critical multipliers (counting multiplicity) is denoted by
n¢, and assume that the limit cycle is nonhyperbolic, i.e., n, = 2. Therefore, there is
an invariant n.-dimensional critical center manifold W¢(z) C R" in the neighborhood
of t.

Note that, there is a two-dimensional critical center manifold W¢(t) at the cusp
point of limit cycles (CPL) bifurcation, which can be parameterized locally by (z, &)
as

u=uo(t) +&v(r)+ H(r,§),7€[0,T].§ €R, (63)

where
1 1
H(t,§) = Ehz(f)éz + 5h2<r>s3 + 0(&Y), (64)

satisfying H(T, &) = H(0, &), hy(0) = hp(T) and h3(0) = h3(T).
The normal form of codimension-2 cusp of limit cycle can be defined as follows:

E=c&, £eR, (65)
where

1 T
c= 6_/ < ¢*, =601 A(T)v + 3A(T)hy + 3B(T; v, v12)
0

+6A(t)v + 3B(t; v1, ho, v2) + C(7; vy, V2, v3) > dr, (66)

v and ¢* are the generalized eigenfunction and a nontrivial solution of the adjoint
eigenvalue problem, respectively, defined by
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V=AW —Fup) =0,7€[0,T], [¢*—AT(0)p*=0,7 €0, T],
v(T) —v(0) =0, o*(T) — ¢*(0) = 0.
f0T<v,u0>dr:O, fOT<(p*,v>dt=1,

and %3 is a unique solution of

h.2 — AT (t)hy — B(t; v, v) — 2Av — 2F (ug) + 21 F (ug) =0, 7 € [0, T,
ha(T) — h2(0) =0,
Jf <v* hy>dr =1

5 Numerical Simulations

In this section, we choose parameter values to illustrate the theoretical results by using
numerical simulations with the aid of ODE software Matlab and AUTO [54].
We consider the role of the strong Allee effect by setting

K =20,A=2,a =0.004905, b = —0.10891, d = 24.28, n = 0.005, (67)
which have been used in Arsie et al. [21].

5.1 KC and ] as the Bifurcation Parameters

The carrying capacity of the prey (K) is first used as the bifurcation parameter. There
are four boundary equilibria E((0, 0), E4(2,0), Ex1(9.81763,0), Ex2(2.07305 x
10!, 0). All the boundary equilibria are transcritical bifurcation points, and there is one
subcritical Hopf bifurcation point H B(9.81763, 3.26253 x 10') as K = 2.01595 x
10'. The limit cycle branch bifurcating the Hopf point H B has one saddle-node
SN(1.37493x 10!, 3.81486 x 101) as K = 1.99229x 10!, period = 1.38636x 107"
A family of limit cycles is approaching an unstable homoclinic cycle. The transition
of stability of equilibria is given in Fig. 2.

Next, the carrying capacity of the prey (K) and the intensity of anti-predator behav-
ior (n) are used as the bifurcation parameters. We obtain two-parameter bifurcation
diagram including Hopf bifurcation curve H (purple) saddle-node bifurcation curve
SN (green), homoclinic bifurcation curve Hom (red), and saddle-node bifurcation
curve of limit cycle SN L (blue). We have one Bogdanov—Takens bifurcation point
BT (1.35362 x 10',3.42613 x 10') as K = 2.05323 x 10", n = 5.61953 x 107},
one generalize d Hopf bifurcation point GH(1.11918 x 10',3.27432 x 10') as
K = 2.01991 x 10!, n = 3.59101 x 10~!, See Fig.3a. The transition of homo-
clinic cycle and heteroclinic cycle on the homoclinic bifurcation curve is illustrated
by Fig. 3b. The whole phase plane is divided into five regions: I — V/, its correspond-
ing phase portraits are given in Fig.4 as follows: (I) K = 19.9853, n = 0.39487: a
stable focus (11.3921,31.9489), a saddle (16.4041,27.5118); (II) K = 20.4433, n =
0.581991: two stable nodes (0,0) and (20.4433,0), a saddle (2,0); (IIT) I = 20.199,
n = 0.119345: two coexistent limit cycles. We find that the outermost= is stable
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Fig.2 Schematic bifurcation 30 T T T
diagram for the carrying
capacity /C, where

Eg, E4, Excy, Exca, HB denote 251
the boundary equilibria and the
subcritical Hopf bifurcation
point. The solid line and the 201
dotted line denote the stability
and instability of equilibria

06 SN I
BT
0.5
H
0.4
| GH
03 I\
0.2
SNL
0.1
Il
OPoo 195 20.0 20.5
K
(@) (b)

Fig.3 a Two-parameter bifurcation diagram of /C versus n. Here SN, H, Hom, SN L denote Hopf bifurca-
tion curve, saddle-node bifurcation curve, homoclinic bifurcation curve, and saddle-node bifurcation curve
of limit cycle, respectively. b A family of homoclinic cycles are approaching a heteroclinic cycle as K and
n varied

while the innermost is unstable which encloses a stable focus (10.1869,32.7504);
V) £ = 20.4191, n = 0.554912: a homoclinic cycle which is homoclinic to
a saddle point (14.0389,33.6241), enclosing a stable limit cycle and an unstable
focus (13.0607,33.7165); (V) K = 21.0617, n = 0.416971: an unstable focus
(11.5282,36.0019) and a saddle (16.1621,36.1542). Biologically speaking, the col-
lapse of the predator—prey system may occur once the intensity of anti-predator
behavior overpasses the threshold = 5.61953 x 10~!, whether the carrying capacity
of prey is small or large.
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5.2 d and b as the Bifurcation Parameters

When the death rate of the predator (d) is used as the bifurcation parameter, we have
two boundary equilibria (2.0, 0) as d = 2.48439, (2.0 x 10',0) as d = 2.54167 x
10", one saddle-node bifurcation point SN(1.42714 x 10',3.12627 x 10') as d =
3.20196 x 10!, and one supercritical Hopf bifurcation point H B(9.40803, 3.21331 x
101) as d = 2.29264 x 10'. The limit cycle branch bifurcating from HB has one
saddle-node bifurcation point SN (1.36760 x 10!, 3.80390 x 10') as d = 2.47903 x
10!, period = 1.37125 x 101

When the death rate of the predator (d) and the intensity of group defense (b)
are used as the bifurcation parameters, we have one Hopf bifurcation curve H
with one generalized Hopf bifurcation point GH (1.09319 x 10',3.29125 x 10")
as d = 2.68479 x 101, b = —1.07925 x 10!, one Bogdanov-Takens bifurcation
point BT (1.36527 x 10',3.06267 x 10%) as d = 3.22885,b = 1.63083 x 107!,
one saddle-node bifurcation curve SN, one homoclinic cycle bifurcation curve
Hom, one saddle-node bifurcation curve of limit cycle SNL. See Fig.5a. Note
that the homoclinic cycle bifurcation curve exhibits the transition of homoclinic
cycles as d and b varied, see Fig.5b. The whole phase plane is divided into six
regions: [ — VI, its corresponding phase portraits are given in Fig.6 as follows:
D d = 19.7269, b = —0.116389: one unstable limit cycle which encloses a sta-
ble focus (7.7555,27.6516); (II) d = 23.2225, b = —0.109456: two coexistent
limit cycles. The outermost one is stable, and the innermost one is unstable, which
encloses a stable focus (9.4093,31.73); (IIl) d = 22.5396, b = —0.123055: one sta-
ble focus (10.1869,32.7504); (IV) d = 20.0255, b = —0.0927508: a homoclinic
cycle enclosing an unstable focus (11.8376,47.3267), which is homoclinic to a sad-
dle (17.1792,36.5751); (V) d = 16.3239, b = —0.0721518: no positive equilibrium;
(V) d = 27.6419, b = —0.104496: a stable focus (13.1043,36.2149) and a sad-
dle (15.5371,33.863). From a biological viewpoint, the predator and the prey may
undergo extinction finally by undergoing saddle-node bifurcation if the intensity of
group defense is high and the natural mortality rate of the predator is small, or with a
weak intensity of group defense and a large natural mortality rate of the predator.

5.3 A and 1 as the Bifurcation Parameters

When the strong Allee effect of the prey (A) and the intensity of anti-predator
behavior () are used as the bifurcation parameters, we have a two-parameter
bifurcation diagram including Hopf bifurcation curve H, saddle-node bifurcation
curve of equilibrium SN, saddle-node bifurcation curve of limit cycle SN L, homo-
clinic cycle bifurcation Hom. There are one generalized Hopf bifurcation point
GH(1.10423 x 10',3.13170 x 10') as A = 2.20176,n = 3.29880 x 107!,
and one Bogdanov-Takens bifurcation point BT (1.35362 x 10!, 2.78704 x 101) as
A =3.37915, 5 = 5.61953 x 10~!. The homoclinic cycles on the homoclinic branch
are approaching a heteroclinic cycle. The homoclinic cycles are homoclinic to the
right equilibrium and finally become one heteroclinic cycle connecting two boundary
equilibria. See Fig.7a, b. The whole phase plane is divided into five regions: I — V,
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Fig.6 Phase portraits in regions /-V of Fig.5a
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its corresponding phase portraits are given in Fig.8 as follows: (I) A = 1.85697,
n = 0.314403: a stable focus (10.9674,32.5487) and a saddle (17.2468,24.6032); (II)
A =2.10324, n = 0.112899: two infinitesimal limit cycles. The outermost one is sta-
ble, and the innermost one is unstable and encloses a stable focus (10.1647,31.6951);
III) A = 2.4956, n = 0.574837: no positive equilibrium; (IV) A = 2.88379,
n = 0.420858: a saddle homoclinic cycle is homoclinic to a saddle (14.1939,28.3504),
and encloses an unstable focus (12.9243,28.4606); (V) A = 3.1551, n = 0.550125:
an unstable focus (12.9243,28.4606) and a saddle (14.1939,28.3504).

The biological implication is similar to that with the effect of the carrying capacity.
The collapse of the predator—prey system may occur once the intensity of anti-predator
behavior overpasses the same threshold of 77 = 5.61953 x 10~!, whether the strong
Allee effect of prey is small or large. However, we find that the existence of a het-
eroclinic orbit connecting two boundary equilibria E4(A, 0) and Ex (K, 0), which
indicates that the predator population may go through extinction even with the small
intensity of anti-predator behavior due to the involvement of a strong Allee effect.

5.4 The Role of Weak Allee Effect

We consider the role of the weak Allee effect by using a new set of parameter values
in Arsie et al. [21] as follows

K =10.5, A =-0.5,a =0.01809954751, b = —0.1809954751,
d = 8.99,n = 0.005. (68)

When the intensity of group defense (b) is taken as the bifurcation parameter, we
have one supercritical Hopf bifurcation point H B(6.40842, 2.00778 x 10') as b =
—1.61195 x 107!, and a saddle-node bifurcation point SN (7.42047, 2.00502 x 10')
as b = —1.58292 x 107!,

When the death rate of the predator (d) and the intensity of group defense (b) are
the primary bifurcation parameters, we obtain the two-parameter bifurcation diagram
including saddle-node bifurcation curve SN, Hopf bifurcation curve H, saddle-node
bifurcation curve of limit cycle SN L, and one homoclinic cycle bifurcation curve
H om. There are one Bogdanov—Takens bifurcation point BT (6.88640, 1.42079 x 10%)
ash = 5.03122x 107!, d = 1.25927, and the heteroclinic cycle connecting (0, 0) and
(10.5, 0). In particular, the saddle-node bifurcation curve of limit cycle SN L has one
codimension-2 cusp C P L of limit cycle, which indicates that there are coexistent three
limit cycles, see Fig. 9a. The transition between the homoclinic cycle and the hetero-
clinic cycle is illustrated by Fig. 9b. The whole phase plane is divided into five regions:
I — V, its corresponding phase portraits are given in Fig. 10 as follows: (I) there are
two kinds of situation in this region: (a) d = 4.32258, b = —0.213085: two coexistent
limit cycles. The outermost one is stable, and the innermost one is unstable, which
encloses a stable focus (2.51055,13.9293); (b) d = 3.78893, b = —0.220932: three
coexistent limit cycles. The outermost one and the innermost one are stable, the middle
one is unstable, and the innermost one encloses an unstable focus (2.2561,13.4891);
(II) d = 6.42346, b = —0.198362: a stable focus (3.43,14.7972); (III) d = 5.1964,
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b = —0.106871: an unstable focus (4.67751,27.0142) which will approach a homo-
clinic cycle; (IV) d = 3.99, b = —0.12: an unstable focus (3.21,21.672) and a saddle
heteroclinic cycle is heteroclinic to two saddles (0,0) and (10.5,0); There is an attract-
ing separatrix representing a critical curve which has to trespass for the predator. (V)
d = 6.53501, b = —0.1095: no positive equilibrium.

Note that, based on the normal form of codimension-2 cusp of the limit cycle in (66)
and with the help of Matcont [55], we obtain the coefficient value c = —9.671688 < 0
as d = 3.181119,h = —2.295880 x 107!, and period = 9.968795 x 10~! in
Fig.9a. It indicates that there are coexistent three limit cycles bifurcating from one
Hopf bifurcation point. Moreover, there exists a parameter region for two limit cycles
and a parameter region for three limit cycles in the acute angle region of the cusp point
C P L. However, it is not easy to locate the boundary between them.

Remark 1 Based on the above analysis, we find that the strong Allee effect may cause
the coexistence of two limit cycles while the weak Allee effect may cause the coexis-
tence of three limit cycles.

Remark 2 The whole bifurcation diagram will move to the lower right corner as
the intensity of anti-predator behavior n increases while keeping the bifurcation
structure unchanged. For example, if we choose n = 0.3, then there are one
Bogdanov—Takens bifurcation point BT (1.32797 x 10!, 5.08500 x 10') as d =
1.58124 x 10', b = —8.99253 x 1072, and one generalized Hopf bifurcation point
GH (1.09266 x 10',3.29115 x 10!) as d = 2.36122 x 10!, b = —1.07926 x 10~
However, if n = 0.005, then there are one Bogdanov-Takens bifurcation point
BT (1.36527 x 10',3.06267 x 10%) when d = 3.22885,h = 1.63083 x 107,
and one generalized Hopf bifurcation point G H (1.09319 x 10',3.29125 x 10') as
d =2.68479 x 10!, b = —1.07925 x 107"

Remark 3 The coexistence of two limit cycles in the predator—prey system is found in
the existing literature. However, the codimension-2 cusp of the limit cycle indicating
the coexistence of three limit cycles is rarely studied in the predator—prey system with
the Allee effect. The mechanism of the limit cycle is different from that in Aguirre et
al. [36].

Remark 4 Note that Aguirre et al. [36] found three limit cycles in a Leslie-Gower
predator—prey with Allee effect, the first two limit cycles originating from Hopf bifur-
cation and the third one arising from a homoclinic bifurcation. They are surrounded
by different equilibria. Actually, the first two small limit cycles bifurcate from one
Hopf bifurcation point and disappear at another Hopf bifurcation point, while the
third limit cycle bifurcates from one Hopf bifurcation point and a family of periodic
orbits approaches a homoclinic cycle or arises from a perturbed homoclinic cycle. The
generating mechanism of the third limit cycle is the same as the scenario of [41, 56].

6 Biological Interpretations

In this section, we provide biological interpretations on the basis of phase portraits of
two-parameter bifurcation diagrams under the assumption that the initial conditions
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are taken biologically meaningful. We consider the regimes where the trajectories are
stable for the initial conditions chosen outside the stable or unstable manifolds of
equilibrium, and not on an unstable limit cycle, which indicates that the final regime
will be the same if small changes perturb the initial conditions. There are three kinds
of stable regimes as described below.

(1) The regime with the extinction of the predator (REP), where there is an open
set of initial conditions in which the predator goes extinct, and the prey is at a
stable steady state. The phase portraits for the open region II in Fig. 3a, the open
region V in Fig. 5a, the open region III in Fig. 7b, and the open region V in Fig.9a
correspond to the stable regime REP with both prey and predator converging to
the stable boundary equilibria (A, 0) or (K, 0), i.e., the predator will eventually
g0 extinct.

(2) The regime of multiple equilibria (RME), where the prey and the predator coexist,
tending to their stable equilibria. The phase portraits for regime III in Fig.3a,
regime II in Fig. 5a and regime II in Fig. 7b, regime I(i) in Fig.9a correspond to
the stable regime RME in a small region bounded by the interior of the limit cycle.

(3) The regime of oscillation (RO), where there is an open set of the initial conditions
for both the prey and the predator to tend to a stable oscillatory regime, i.e., a stable
limit cycle. See regime IV in Fig. 3a, regime Il in Fig. 5a, regime I in Fig. 7b, regime
I(ii) in Fig. 9a, where we find this kind of stable regime RO.

Based on the above observations, we can make the following conclusions.

(a) The increasing intensity of anti-predator behavior can move the whole bifurcation
diagram to the lower right corner while keeping the dynamics unchanged. However,
it may cause the predator to go extinct even with the large carrying capacity of the
prey.

(b) Strong Allee effect and weak Allee effect have a similar effect on the predator—prey
system as the intensity of group defense and the natural death rate of the predator
vary. The strong Allee effect could cause the predator to undergo extinction even
with the smaller intensity of the anti-predator.

(c) The increasing intensity of group defense could cause the predator to become
extinct even with a smaller death rate of the predator due to the emergence of a
heteroclinic cycle connecting two boundary equilibria.

Conclusion and Discussion

In this paper, we have studied the global dynamics of a predator—prey model with the
Allee effect and the anti-predator behavior by using the dynamical systems approach.
We have shown the existence of saddle-node bifurcation, Hopf bifurcation of codimen-
sion 3, homoclinic bifurcation, heteroclinic bifurcation, Bogdanov—Takens bifurcation
of codimension 3, saddle-node bifurcation of limit cycle, and codimension-2 cusp of
limit cycle. The results found in this paper reveal that the transition from the coexis-
tence of prey and predator to the extinction of the predator in a predator—prey model
can generate more complex dynamics, including the coexistence of three limit cycles
for the weak Allee effect and two coexistent limit cycles for the strong Allee effect.
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It is worth noting that a strong Allee effect may also cause multiple limit cycles to
generate under appropriate parameter values.

Our study also showed that the codimension-2 cusp of the infinitesimal limit cycle
leads to more complex dynamics, including homoclinic cycle bifurcation and hetero-
clinic cycle bifurcation, and saddle-node bifurcation of the limit cycle. It indicates that
the mechanism of the limit cycle is different from that in Aguirre et al. [36], where
the first two limit cycles are infinitesimal and the third one arises from a homoclinic
cycle. As far as we know, it is the first time to find the codimension-2 cusp of limit
cycle in a predator—prey system with the Allee effect. Based on the observations of
the bifurcation diagrams and their corresponding phase portraits, an important con-
clusion is obtained: if the intensity of the anti-predator is fixed, then the strong Allee
effect and the weak Allee effect have the similar effect on the predator—prey system
as the intensity of group defense and the natural death rate of the predator vary. The
anti-predator behavior may cause the predator to become extinct even with the small
carrying capacity of the prey. The strong Allee effect could cause the predator to go
extinct even with the smaller intensity of the anti-predator. The transition from the
homoclinic cycle to the heteroclinic cycle indicates the collapse of the predator—prey
system and the extinction of the predator.

Lastly, the degenerate homoclinic bifurcation point in the saddle-node bifurcation
curve of the limit cycle is not found since it actually connects two codimension-2
degenerate Hopf bifurcation points. Although we have located the possible coexis-
tence region of two limit cycles and the coexistence region of three limit cycles, it is
challenging to identify the boundary between them, which is left for future research.
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