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Abstract
This paper studies a predator–prey model with strong and weak Allee effects and
anti-predator behavior using a dynamical system approach. We perform a detailed
bifurcation analysis including saddle-node bifurcation, Hopf bifurcation of codimen-
sion 3, cusp of codimension 3, cusp typeBogdanov–Takens bifurcation of codimension
3, and codimension-2 cusp of the limit cycle. The involvement of strong and weak
Allee effects provides a new regime shift mechanism, which indicates the transition
from a homoclinic cycle to a new heteroclinic cycle connecting two boundary equi-
libria induced by the Allee effect and the carrying capacity. The role of anti-predator
behavior is fully uncovered by studying the interaction with the Allee effect. It is the
first time that we find a codimension-2 cusp of infinitesimal limit cycle in the predator–
prey system, which indicates the existence of a coexistence region of three limit cycles
due to the weakAllee effect. Different from the scenario in the reference (Aguirre et al.
in SIAM J Appl Math 69(5):1244–1262, 2009), it is a new generating mechanism of
limit cycle bifurcating from one Hopf bifurcation point with two saddle-node bifurca-
tion points on the limit cycle branch, and the double limit cycle curve originates from
a codimension-2 degenerate Hopf bifurcation point and disappears at another one.
The dynamics of the model with the Allee effect and anti-predator behavior are shown
to be more complicated than those for other predator–prey systems. The biological
interpretations of the bifurcation diagram and phase portrait are also provided.
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1 Introduction

The local and global dynamics in predator–prey systems have beenwidely investigated
by many researchers in order to uncover potential interactions. Based on the well-
known Lotka–Volterra predator–prey model initiated by Lotka [1] and Volterra [2],
many continuous and discrete models have been developed [3–18]. Zhu et al. [4]
studied the following generalized Gause-type predator–prey system

dx
dt

= r x(K − x) − p(x)y,

dy
dt

= y(−d + cp(x)),
(1)

where x is the density of prey and y is the density of predator.

p(x) := mx
ax2 + bx + 1

, a > 0, b > −2
√
a,m > 0,

is a generalized Holling type IV response. Here r , K, c and d denote the intrinsic
growth rate of the prey population, the environmental carrying capacity of the prey,
the constant of proportionality and the natural death rate of the predators, respectively.
The parameters r , c, d andK are all positive. p(x) is the functional response describing
the change in the density of the prey attacked per unit of time per predator. It models the
scenariowhere the prey can better defend or disguise themselveswhen their population
becomes large enough, a phenomenon called group defense. The function p(x) is
positive when x > 0, and its derivative is positive when x ∈ (0, 1√

a ). It has the

maximumat x = 1√
a
. Its derivative is negativewhen x > 1√

a
. The function goes to 0 as

x → ∞. This function can describe the effect of group defense (i.e. the prey can better
defend themselves with a sufficiently large population) [10]. The related bifurcation
analysis including saddle-node bifurcation, homoclinic bifurcation, and Bogdanov–
Takens bifurcation of codimension 3was investigated. The codimension-3 Bogdanov–
Takens bifurcation acts as an organizing center for the system. The topological location
of several kinds of bifurcation was studied in detail.

The Allee effect has been widely studied in predator–prey systems, which was
proposedbyAllee [19, 20]. It describes the relationship betweenpopulationgrowth and
population density. If the population density of a species is too sparse, its population
will be reduced. According to the strong Allee effect, the sparse or dense population
density will lead to negative growth, possibly causing the subsequent extinction [21–
34]. In other words, the Allee effect is regarded as the reason for the increase in
extinction risk at low densities [35].
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Arsie et al. [21] studied a predator–prey model with Holling IV functional response
and Allee effect in prey as follows:

dx
dt

= r x(K − x)(x − A) − p(x)y,

dy
dt

= y(−d + cp(x)),
(2)

where A represents the weak Allee effect or strong Allee effect in prey. The meaning
of the other parameters is the same as those in model (1). Strong Allee effect takes
place for 0 < A < K. On the other hand, the weak Allee effect never leads to negative
growth when the weak Alee effect acts on predators or prey. The equilibrium of the
system will change from asymptotically stable or central stable to unstable or central
stable, or the system will take a longer time to reach the stable state, and this will take
place for −K < A < 0. A = 0 represents a threshold value between the strong and
weak effects. Three limit cycles were found in predator–prey with the multiplicative
Allee effect. Nilpotent cusp singularity of order 3 and degenerate Hopf bifurcation
of codimension 3 are analyzed. An unfolding of the nilpotent saddle of codimension
3 was fully developed, indicating the existence of a heteroclinic cycle. However, the
coexistence region of three limit cycles is still open.

Recently, the existence and generating mechanism of multiple limit cycles has
attracted a lot of attention [21, 25, 36, 37]. Three limit cycles are found in Aguirre et
al. [36], the first two are generated by Hopf bifurcation and the third one arises from
a homoclinic bifurcation. The limit cycles are generated from different equilibria.
Arsie et al. [21] also obtained three limit cycles which are originating from one Hopf
bifurcation point. However, the true mechanism of the three limit cycles is not fully
revealed, including the coexistence parameter region for the three limit cycles and the
bifurcation characteristic of the limit cycle.

Group defense is also a type of anti-predator behavior. It represents the phenomenon
that predators decrease because the prey has an increased ability to defend when their
number is large enough [10]. Holling type IV has been used to study the phenomenon
of prey aggregation, which can increase caution and decrease the chance of being
attacked by the predator. Different species use their own defense mechanisms to fight,
kill or escape from predators, and each of them shows its unique defense mechanism
to avoid predation. It seems that the predator–prey relationship between organisms
was established long ago. However, there are also some special predation phenomena
in nature. Rodents can be eaten by snakes as prey and sometimes attack and eat snakes
as predators. Moreover, some large groups of beasts hunt each other and some juvenile
prey can escape from predation, when they become adults can counterattack juvenile
predators such as alligators used to hunt catfish but adult catfish can eat alligator
seedlings. Recognizing the effects of the anti-predator on reproduction, conservation,
and behavior of the species has attracted a lot of attention in recent years. The detailed
analysis and deep understanding of this phenomenon can bring important benefits
not only for ecology but also for various applied disciplines including fishing and
forestal industries. There are many examples of role reversals in predators and prey
(anti-predator behaviors) [38–41].
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Here we study a predator–prey model including the Holling IV response, strong
and weak Allee effects in prey, and anti-predator behavior.

dx
dt

= r x(K − x)(x − A) − p(x)y,

dy
dt

= y(−d + cp(x)) − ηxy,
(3)

where ηxy represents the interaction of the anti-predator behavior. The meaning of
the rest of the parameters is the same as those in model (2).

Using

(t, x, y) →
(
m2c2

r
t,

r
mc

x,
r

mc2
y
)
,

system (3) becomes

dx
dt

= x(K − x)(x − A) − p(x)y ! p(x)(G(x) − y),

dy
dt

= y(−d + p(x) − ηx),
(4)

in which p(x) is x
ax2+bx+1 and G(x) is (x − A)(K − x)(ax2 + bx + 1) with

(K, A, a, b, d, η) →
(
mc
r
K,

mc
r

A,
m2c2

r2
a,

mc
r
b,

r
m2c2

d,
1
mc

η

)
.

In view of weak and strong Allee effects, here we set −K < A < K. In addition,
since ax2 + bx + 1 > 0 and p(x) > 0 for all x > 0, then we have b > −2

√
a.

Denote

" = {(K, a, d, η, A, b) : −K < A < K, b > −2
√
a, a > 0, d > 0, η > 0}.

We can find a constant M > 0 such that for every (x, y) in the set

{(x, y)|x ≥ 0, y ≥ 0, p(x) < dy, x + y = N , N ≥ M},

one yields

dx
dt

+ dy
dt

= p(x)G(x) − dy − ηxy < p(x)G(x) − dy < 0.

All the orbits in the phase plane of model (4) will remain in a compact set enclosed
by the x-axis, y-axis, and x + y = M .
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In this paper, we study the complex dynamics of model (4) with the Holling IV
response, strong and weak Allee effects, and anti-predator behavior. Detailed bifur-
cation analysis including saddle-node bifurcation, Bogdanov–Taken bifurcation of
codimensions 2 and 3, Hopf bifurcation of codimension 3, saddle-node bifurcation of
limit cycle, and codimension-2 cusp of limit cycle is derived.

The rest of the paper is structured as follows. In Sect. 2, the existence and stability
of the equilibrium of model (4) are presented. In Sect. 3, we discuss saddle-node
bifurcation and the cusp type of Bogdanov–Taken bifurcation of codimension 3. We
prove the degenerate Hopf bifurcation of codimension 3 and show the coexistence of
three limit cycles originating from a Hopf bifurcation point. Further, the normal form
of codimension-2 cusp of limit cycle is revisited in Sect. 4. Numerical simulations are
performed to illustrate the theoretical results in Sect. 5. Some biological interpretations
of the bifurcation diagram and phase portrait exhibiting the significance of the Allee
effect and anti-predate behavior are given in Sect. 6. Some conclusions and discussions
are given at the end.

2 Local Stability Analysis

2.1 Number of Equilibria

System (4) always has one trivial equilibrium E0(0, 0) on the nonnegative x-axis
and two boundary equilibria EK (K , 0) and EA(A, 0) representing, respectively, the
extinction of predator and the threshold of Allee effect.

It s easy to see that p(x) = d + ηx if and only if h(x) is zero, where

h(x) ! aηx3 + x2(ad + bη)+ x(bd + η − 1)+ d. (5)

We get the derivative function of h(x) as follows

h′(x) = 2x(ad + bη)+ 3aηx2 + bd + η − 1. (6)

The corresponding roots of equation (6) are

x1 =
−

√
# − 2(ad + bη)

6aη
,

x2 =
√

# − 2(ad + bη)
6aη

,

# = 4(ad + bη)2 − 12aη(bd + η − 1).

From (5) and (6), we know that h(0) = d > 0.

Proposition 2.1 By analyzing the derivative function of the h(x), we obtain the exis-
tence of the root of h(x).
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(I) If # ≤ 0 or # > 0 and x2 ≤ 0, then h(x) has no real roots, i.e., system (4) has no
equilibria;

(II) If # > 0 and x2 > 0, we have the following cases.
(i) if h(x2) < 0, then h(x) has two real roots, i.e., system (4) has two equilibrium

points Eα(xα,G(xα)) and Eβ(xβ ,G(xβ)), where Eα is a node or focus and Eβ

is a hyperbolic saddle;
(ii) if h(x2) = 0, then h(x) has one real root, i.e., system (4) has a unique positive

equilibrium E∗(x∗, y∗), which is a degenerate equilibrium;
(iii) if h(x2) > 0, then h(x) has no real root, i.e., system (4) has no positive equilibrium.

Proof Since the function h′(x) is a continuous function, h′(x) > 0 is forever admitted
as # ≤ 0 or # > 0 and x2 ≤ 0. Thus, h(x) is monotonically increasing. In view of
h(0) = d > 0, h(x) has no real roots.

When # > 0 and x1 < 0 < x2, h′(x) < 0 as x ∈ (0, x2), h′(x) > 0 as x ∈
(x2,+∞). Moreover, when # > 0 and 0 < x1 < x2, h′(x) < 0 as x ∈ (x1, x2),
h′(x) > 0 as x ∈ (0, x1) ∪ (x2,+∞). In these two situations, we will have two
real roots of h(x) if h(x2) < 0 which are denoted by α and β. Thus, system (4) has
two positive equilibria Eα(xα,G(xα)) and Eβ(xβ ,G(xβ)). It has one unique root if
h(x2) = 0 which is denoted by x∗. In this case, system (4) has a unique positive
equilibrium E∗(x∗, y∗). We also notice that x∗ = x2 in this situation. There is no real
root if h(x2) > 0. See Fig. 1.

h(x2) =
1

27a2η2
(27a2dη2 + 3M2(ad + bη)+ 9aηM(bd + η − 1)+ M3),

M =
√
(ad + bη)2 − 3aη(bd + η − 1) − ad − bη.

Moreover, the Jacobian matrix of system (4) at any equilibrium E(x, y) takes the
form

J (E) =




x
(
K+A

(
3ax2+2bx−(b+2ax)K+1

)
+x(b(2K−3x)+ax(3K−4x)−2)

)

x(b+ax)+1 − x
x(b+ax)+1

(A−x)(x−K)
(
−ax2−(x(b+ax)+1)2η+1

)

x(b+ax)+1 0



 ,

(7)

Fig. 1 The distribution of roots of h(x) as # > 0, x1 > 0 and x2 > 0.
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and

det(J (E)) = x(x − A)(x − K)
(
η(x(ax + b)+ 1)2 + ax2 − 1

)

(x(ax + b)+ 1)2
,

tr(J (E)) = x
(
A

(
−K(2ax + b)+ 3ax2 + 2bx + 1

)
+ x(ax(3K − 4x)+ b(2K − 3x) − 2)+K

)

x(ax + b)+ 1
.

We can rewrite det(J (E)) as

det(J (E)) = x(x − A)(x − K)
(
h′(x)

(
ax2 + bx + 1

)
+ h(x)(−2ax − b)

)

(ax2 + bx + 1)2
. (8)

Since x(x − A)(K − x) > 0, the positive equilibrium Eα(xα,G(xα)) is a node or
focus and the positive equilibrium Eβ(xβ ,G(xβ)) is a hyperbolic saddle. +,

2.2 Linear Analysis

Define

d∗ = x2∗ (2ax∗ + b)
(x∗ (ax∗ + b)+ 1) 2

,

η∗ = 1 − ax2∗
(x∗ (ax∗ + b)+ 1) 2

,

K∗ = A2 (− (x∗ (ax∗ + b)+ 1))+ Ax∗
(
ax2∗ + 2bx∗ + 3

)
+ x2∗

(
ax2∗ − 1

)

x∗
(
−A (2ax∗ + b)+ 3ax2∗ + 2bx∗ + 1

) ,

(9)

which come from h(x∗) = 0, h′(x∗) = 0 and tr(J (E∗)) = 0, respectively.

Using (9), we obtain that the possible equilibrium of system (4) is

E(x∗,G(x∗)) = (x∗,
(A − 2x∗) (A − x∗) 2 (x∗ (ax∗ + b)+ 1) 2

x∗ (x∗ (−2aA + 3ax∗ + 2b) − Ab + 1)
).

Proposition 2.2 When (a, A, b, d, η,K) ∈ ", and h(x) = 0, there exists a unique
positive equilibrium E∗(x∗, y∗) for system (4). Furthermore,

(I) if K -= K∗, then E∗(x∗, y∗) is a saddle-node. It has a stable parabolic sector (or
an unstable parabolic sector) if K > K∗ (or K < K∗);

(II) if K = K∗, d∗, η∗, K∗ are defined by (9), then E∗(x∗, y∗) is a cusp. Moreover,
(i) if A -= A∗, then E∗(x∗, y∗) is a cusp of codimension 2;
(ii) if A = A∗, then E∗(x∗, y∗) is a cusp of codimension 3.

Proof The assertion (I) is proved in Xiao and Zhou [42] (see Lemma 2.7).
In the following, we prove that the degenerate equilibrium E∗(x∗, y∗) is a

codimension-2 cusp.
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Let X be x − x∗, Y be y− y∗, and dt = − ax2∗+bx∗+1
x∗ dτ , d = d∗,K = K∗ and η = η∗.

By Taylor expansion, model (4) becomes

dx
dt

= y + α1x2 + α2xy + o(|x, y)|2),
dy
dt

= α3x2 + o(|x, y|2),
(10)

where

α1 =
3bx∗

(
aA2 − Ab + 1

)

−A (2ax∗ + b)+ 3ax2∗ + 2bx∗ + 1
+ 1 − A

(
aA − Ab2 + b

)

−A (2ax∗ + b)+ 3ax2∗ + 2bx∗ + 1

+ 3x2∗
(
a2A2 − 3aAb + a + b2

)

−A (2ax∗ + b)+ 3ax2∗ + 2bx∗ + 1
+ 6a2x4∗ + 8ax3∗(b − aA)

−A (2ax∗ + b)+ 3ax2∗ + 2bx∗ + 1
,

α2 =
1

x∗
(
ax2∗ + bx∗ + 1

) − ax∗
ax2∗ + bx∗ + 1

,

α3 =
(A − x∗) 2

(
a2x3∗ − 3ax∗ − b

)

x∗
(
2aAx∗ − 3ax2∗ + Ab − 2bx∗ − 1

) .

By using Remark 1 of section 2.13 in Perko [43] (also in Huang et al. [39]), near (0,
0) model (10) is equivalent to

dx
dt

= y + o(|x, y)|2),
dy
dt

= α3x2 + 2α1xy + o(|x, y|2).
(11)

Then E∗(x∗, y∗) is a cusp of codimension 2.
Next, we prove the assertion (ii) of (II). Define

A∗ =
8a2x3∗ +

√
− (x∗ (ax∗ + b)+ 1) 2

(
4a (2x∗ (ax∗ + b) − 1)+ 3b2

)
+ 9abx2∗ + 3b2x∗ + b

2
(
a (3x∗ (ax∗ + b) − 1)+ b2

) ,

(12)

which leads to α1 = 0. Using Taylor expansion, system (4) can be written as (for
simplicity, we still denote X , Y , τ by x , y, t , respectively)

dx
dt

= y + β1x2 + β2xy + β3x3 + β4x2y + β5x4 + β6x3y + o(|x, y)|4),
dy
dt

= β7x2 + β8x3 + β9x2y + β10x4 + β11x3y + o(|x, y|4),
(13)
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where

β1 = 0,β2 =
1

x∗
(
ax2∗ + bx∗ + 1

) − ax∗
ax2∗ + bx∗ + 1

,

β3 =
4a3x3∗ + 6a2bx2∗ − 4a2x∗ + 4ab2x∗ − 2ab + b3

3a2x2∗ + 3abx∗ − a + b2
,β4 =

a2x3∗ − 3ax∗ − b

x∗
(
ax2∗ + bx∗ + 1

)
2
,

β5 =
−a4x5∗ + 10a3x3∗ + 10a2bx2∗ − 5a2x∗ + 5ab2x∗ − 2ab + b3

x∗
(
ax2∗ + bx∗ + 1

) (
3a2x2∗ + 3abx∗ − a + b2

) ,

β6 = −a3x4∗ + 6a2x2∗ + 4abx∗ − a + b2

x∗
(
ax2∗ + bx∗ + 1

)
3

,β7 =

(
ax2∗ + bx∗ + 1

) (
a2x3∗ − 3ax∗ − b

)

x∗
(
3a2x2∗ + 3abx∗ − a + b2

) ,

β8 = −a3x4∗ + 6a2x2∗ + 4abx∗ − a + b2

x∗
(
3a2x2∗ + 3abx∗ − a + b2

) ,β9 = −a2x3∗ + 3ax∗ + b

x∗
(
ax2∗ + bx∗ + 1

)
2
,

β10 = a4x5∗ − 10a3x3∗ − 10a2bx2∗ + 5a2x∗ − 5ab2x∗ + 2ab − b3

x∗
(
ax2∗ + bx∗ + 1

) (
3a2x2∗ + 3abx∗ − a + b2

) ,

β11 = a3x4∗ − 6a2x2∗ − 4abx∗ + a − b2

x∗
(
ax2∗ + bx∗ + 1

)
3

,

where d, K and η have been eliminated by (9).
We use the transformation

X = x,

Y = y + β1x2 + β2xy + β3x3 + β4x2y + β5x4 + β6x3y + o(|x, y|4),

that changes (13) to (still use x , y for X , Y ; for simplicity we always did this after the
transformation)

dx
dt

= y,

dy
dt

= γ1x2 + γ2y2 + γ3x3 + γ4x2y + γ5xy2 + γ6x4 + γ7x3y + γ8x2y2 + o(|x, y)|4),
(14)

where γi , (i = 1, . . . , 8) are given in “Appendix A”.
In addition, letting dt = (1 − γ2x)dτ , system (14) becomes (we still denote τ by

t , respectively)

dx
dt

= y(1 − γ2x),

dy
dt

= (1 − γ2x)(γ1x2 + γ2y2 + γ3x3 + γ4x2y + γ5xy2

+ γ6x4 + γ7x3y + γ8x2y2 + o(|x, y|4)).

(15)
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Letting X = x , Y = y(1 − γ2x), system (15) becomes

dx
dt

= y,

dy
dt

= γ1x2 + (−2γ1γ2)x3 + γ4x2y + (−γ 2
2 + γ5)xy2

+ (γ2γ
2
2 − 2γ2γ3 + γ6)x4 + (−γ2γ4 + γ7)x3y + (−γ 3

2 + γ8)x2y2 + o(|x, y|4).

(16)

Using the transformation

X = −x, Y = − y√−γ1
τ = √−γ1t,

we obtain

dx
dt

= y,

dy
dt

= x2 + 2γ2x3 +
(

−
√−γ1γ4

γ1

)
x2y + (−γ 2

2 + γ5)xy2

+
(

γ1γ
2
2 − 2γ3γ2 + γ6

γ1

)

x4 +
(√−γ1γ7

γ1
−

√−γ1γ2γ4

γ1

)
x3y

+ (γ 3
2 − γ8)x2y2 + o(|x, y|4).

(17)

By Proposition 5.3 in Lamontagne et al. [44], we obtain the equivalent system of (17)
as follows:

dx
dt

= y,

dy
dt

= x2 + Gx3y + o(|x, y|4),
(18)

where

G = −

√
(x∗(ax∗+b)+1)(ax∗(3−ax2∗)+b)

x∗(a(3x∗(ax∗+b)−1)+b2)

x∗ (x∗ (ax∗ + b)+ 1) 4
(
ax∗

(
ax2∗ − 3

)
− b

)T -= 0,

T = 12a6x10∗ + 36a5bx9∗ + x2∗
(
−20a2b + 28a2 + 8ab3 − 4ab2 − 12b4

)

+ x8∗
(
44a4b2 − 32a5

)

+ x∗
(
4a2 − 8ab2 + 12ab + b4 − 6b3

)

+ x3∗
(
−22a3 + 28a2b2 + 24a2b − 54ab3 − 6b5

)

+ x4∗
(
45a3b − 108a2b2 − 36ab4

)
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+ x6∗
(
−6a4b − 72a4 − 156a3b2 + 12a2b4

)
+ ab − b3

+ x7∗
(
−6a5 − 120a4b + 30a3b3

)

+ x5∗
(
32a4 − 2a3b2 − 144a3b − 98a2b3 + 2ab5

)

and A has been eliminated by (12).
Thus, system (4) undergoes a cusp bifurcation of codimension 3. +,
Proposition 2.3 When # > 0, x2 > 0 and h(x2) < 0 are satisfied, there are two posi-
tive equilibria Eα(xα, yα) and Eβ(xβ , yβ) for system (4). Further, Eβ is a hyperbolic
saddle and Eα is
(i) a stable hyperbolic focus or node when ST (α) < 0;
(ii) a weak focus or a center when ST (α) = 0;
(iii) an unstable hyperbolic focus or node when ST (α) > 0.

Proof Denote the sign of the determinant and trace of (7) by

SD(x) = x(x − A)(x − K)
(
ax2 + η(x(ax + b)+ 1)2 − 1

)
,

ST (x) = A
(
−K(2ax + b)+ 3ax2 + 2bx + 1

)

+x(ax(3K − 4x)+ b(2K − 3x) − 2)+K.

Substituting α and β into SD(x), we have

SD(α) = α(α − A)(α − K)
(
aα2 + η(α(aα + b)+ 1)2 − 1

)
,

SD(β) = β(β − A)(β − K)
(
aβ2 + η(β(aβ + b)+ 1)2 − 1

)
.

Note that, we find that α and β are two different positive roots of (5), then

h′(α) = −aα2 − η(α(aα + b)+ 1)2 + 1 < 0. (19)

h′(β) = −aβ2 − η(β(aβ + b)+ 1)2 + 1 > 0. (20)

From model (4), we have

x(K − x)(x − A) > 0.

It follows that SD(α) > 0 and SD(β) < 0 by (19) and (20). Hence we obtain the types
of Eα and Eβ . +,

3 Bifurcation Analysis

In this section, we discuss the existence of saddle-node bifurcation, Hopf bifurcation
of codimensions 3, Bogdanov–Takens bifurcation of codimensions 2 and 3 by the
method of normal form theory.
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3.1 Saddle-Node Bifurcation

From the last section, we obtain that two positive equilibria of system (4) will coincide
at E(x̃)which leads to h(x̃) = h′(x̃) = 0. Moreover, from (8), there may exist saddle-
node bifurcation of system (4).

Theorem 3.1 Suppose h(x̃) = h′(x̃) = 0. If r(x̃∗) -= 0, then system (4) goes through
a saddle-node bifurcation.

Proof Since h(x̃) = h′(x̃) = 0, the eigenvalues of J (Ẽ) are 0 and −r(x̃). From (8),
we have det(Ẽ) = 0. We use the following transformation to show that system (4)
undergoes a saddle-node bifurcation.

From (9), we have d̃ = x̃2(2ax̃+b)
(x̃(ax̃+b)+1)2

, η̃ = 1−ax̃2

(x̃(ax̃+b)+1)2
. Bringing Ẽ to the origin

by the transformation X̃ = x − x̃ , Ỹ = y − ỹ, system (4) becomes (we still denote X̃ ,
Ỹ as x̃ , ỹ, respectively)

dx̃
dt

= δ1x + δ2y + δ3xy + δ4x2 + δ5x3 + δ6x2y + O(|x̃, ỹ|4),
d ỹ
dt

= δ7x2 + δ8x3 + δ9x2y + O(|x̃, ỹ|4),
(21)

where δi , (i = 1, . . . , 9) are given in “Appendix B”.
Next, using the transformation

X = ỹ,

Y = (x∗
(
−3x∗(a(A +K) − b)+ 2aAK + 4ax2∗ − 2Ab − 2bK + 2

)

+ A(bK − 1) − K)x̃ + ỹ,

system (21) becomes

dX
dt

= ε1X2 + ε2X3 + ε3X2Y + O(|X , Y |4),
dY
dt

= −r(x∗)Y + ε4X2 + ε5XY + ε6X3 + ε7X2Y + O(|X , Y |4),
(22)

where εi , (i = 1, . . . , 7) and r(x∗) are, respectively, defined in “Appendix C”.
There exists the following center manifold in a sufficiently small neighborhood of

the origin (0, 0)

Y = ε4

r(x∗)
X2 + O(X3).

System (22) can be reduced on this center manifold as follows:

dX
dt

= ε2X2 + O(X3). (23)
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Due to ε2 -= 0, system (23) is topologically equivalent to

dX
dt

= ±X2 + O(X3).

Then system (4) goes through a saddle-node bifurcation based on Shan and Zhu [45].
+,

3.2 Bogdanov–Takens Bifurcation of Codimensions Two and Three

In this subsection, we consider the codimension-2 and codimension-3 Bogdanov–
Takens bifurcation of system (4) using the method of finding the parametric normal
form of Bogdanov–Takens bifurcation, which was developed by Dumortier et al. [46].
Here we use the natural mortality rate (d) of the predator, the prey’s carrying capacity
(K), and the intensity of anti-predator behavior (η) as the primary bifurcation param-
eters.

Firstly, we recall the following definition in Perko [43] and proposition in Li et al.
[37] which will be used in our proof.

Definition 3.1 The bifurcation that results from unfolding the following normal form
of a cusp of codimension 3,

dx
dt

= y,

dy
dt

= x2 ± x3y, (24)

is called a cusp type degenerate Bogdanov–Takens bifurcation of codimension 3.

Proposition 3.1 A universal unfolding of the normal form (24) is expressed by

{
dx
dt = y,
dy
dt = ν1 + ν2y + ν3xy + x2 ± x3y + R(x, y, ε),

(25)

where ε = (ε1, ε2, ε3) ∼ (0, 0, 0), D(ν1,ν2,ν3)
D(ε1,ε2,ε3)

-= 0 for small ε and

R(x, y, ε) = y2O(|x, y|2)+ O(|x, y|5)+ O(ε)(O(y2)+ O(|x, y|3))
+O(ε2)O(|x, y|). (26)

Theorem 3.2 When d = d∗ = f racx2∗ (2ax∗ + b)(x∗ (ax∗ + b)+ 1) 2, η = η∗ =
1−ax2∗

(x∗(ax∗+b)+1)2 , K = K∗ which are mentioned in (9), system (4) has an interior equi-
librium E(x∗,G(x∗)) which is a cusp of codimension-2 (i.e., B-T singularity). If we
take d and η as bifurcation parameters and | ∂(µ1,µ2)

∂(λ1,λ2)
|λ=0 -= 0, then system (4) goes

through codimension-2 Bogdanov–Takens bifurcation in a small neighborhood of the
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unique positive equilibrium E(x∗,G(x∗)). Further, if we take d, η, K as the pri-
mary bifurcation parameters and | ∂(ν1,ν2,ν3)

∂(λ1,λ2,λ3)
|λ=0 -= 0, then system (4) undergoes

codimension-3 Bogdanov–Taken bifurcation in a small neighborhood of the positive
equilibrium E(x∗,G(x∗)). Then we find an unstable homoclinic cycle, a stable limit
cycle, coexistence of two limit cycles, and a semi-stable limit cycle for different inter-
vals of parameter values for system (4).

Proof We prove codimension-2 Bogdanov–Takens bifurcation by using d and η as
primary bifurcation parameters.
Set

dx
dt

= x(x − A)(K − x) − xy
ax2 + bx + 1

,

dy
dt

= y
(

x
ax2 + bx + 1

− (d + λ1)+ x (− (η + λ2))

)
,

(27)

where λ1 and λ2 are small parameters near (0, 0). We are only interested in the phase
portrait of model (27) in a small neighborhood of E∗(x∗, y∗).

Let X = x − x∗, Y = y − y∗. Model (27) can be written as

dx
dt

= ε1 + ε2x + ε3y + ε4x2 + ε5xy + P1(x, y, λ1, λ2),

dy
dt

= ε6 + ε7x + ε8y + ε9x2 + ε10xy + P2(x, y, λ1, λ2),
(28)

where P1(x, y, λ1, λ2) and P2(x, y, λ1, λ2) are functions which has at least third
derivative about (x, y). The coefficients depend smoothly on λ1 and λ2, and

ε1 = ε2 = 0, ε3 = − x∗
ax2∗ + bx∗ + 1

,

ε4 = (A − x∗) 2
(
a2x3∗ − 3ax∗ − b

)
(
ax2∗ + bx∗ + 1

) (
2aAx∗ − 3ax2∗ + Ab − 2bx∗ − 1

)

+ (A − x∗) (x∗ (ax∗ + b)+ 1)
x∗ (2aA − 3ax∗ − 2b)+ Ab − 1

+ A − 2x∗,

ε5 = ax2∗ − 1(
ax2∗ + bx∗ + 1

)
2
, ε6 =

(A − x∗) 2 (λ1 + λ2x∗)
(
ax2∗ + bx∗ + 1

) 2

2aAx∗ − 3ax2∗ + Ab − 2bx∗ − 1
,

ε7 = λ2 (A − x∗) 2
(
ax2∗ + bx∗ + 1

) 2

2aAx∗ − 3ax2∗ + Ab − 2bx∗ − 1
, ε8 = −λ1 − λ2x∗,

ε9 = − (A − x∗) 2
(
a2x3∗ − 3ax∗ − b

)
(
ax2∗ + bx∗ + 1

) (
2aAx∗ − 3ax2∗ + Ab − 2bx∗ − 1

) , ε10 = −λ2.

Let X = x , Y = ε1+ε2x+ε3y+ε4x2+ε5xy+ P1(x, y, λ1, λ2). Model (28) reduces
to
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dx
dt

= y,

dy
dt

= ζ1 + ζ2x + ζ3y + ζ4x2 + ζ5xy + ζ6y2 + P3(x, y, λ1, λ2),
(29)

where P3(x, y, λ1, λ2) is a function which has at least third derivative about (x, y).
The corresponding coefficients depend smoothly on λ1 and λ2, and

ζ1 = ε3ε6 − ε1ε8, ζ2 = ε5ε6 + ε3ε7 − ε2ε8 − ε1ε10, ζ3 = ε2 + ε8 − ε1ε5

ε3
,

ζ4 = ε5ε7 − ε4ε8 + ε3ε9 − ε2ε10, ζ5 =
ε1ε

2
5

ε23
− ε2ε5

ε3
+ 2ε4 + ε10, ζ6 =

ε5

ε3
.

Next, let dt = (1 − ζ6x)dτ . System (29) becomes (still denote τ by t , respectively)

dx
dt

= y(1 − ζ6x),

dy
dt

= (1 − ζ6x)(ζ1 + ζ2x + ζ3y + ζ4x2 + ζ5xy + ζ6y2 + P3(x, y, λ1, λ2)).
(30)

Let X = x , Y = y(1 − ζ6x), and rewrite X , Y as x , y, respectively, one yields

dx
dt

= y,

dy
dt

= θ1 + θ2x + θ3y + θ4x2 + θ5xy + P4(x, y, λ1, λ2)),
(31)

where P4(x, y, λ1, λ2) is a function which has at least third derivative about (x, y).
We have

θ1 = ζ1, θ2 = ζ2 − 2ζ1ζ6, θ3 = ζ3, θ4 = ζ1ζ
2
6 − 2ζ2ζ6 + ζ4, θ5 = ζ5 − ζ3ζ6.

We find that when λ1 = λ2 = 0,

θ1 = θ2 = θ3 = 0,

θ4 =
x∗ (A − x∗) 2

(
ax∗

(
ax2∗ − 3

)
− b

)

(x∗ (ax∗ + b)+ 1) 2
(
A (2ax∗ + b) − 3ax2∗ − 2bx∗ − 1

) -= 0.

Moreover, let

X = θ2

2θ4
+ x, Y = y.
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Model (31) becomes

dx
dt

= y,

dy
dt

= ι1 + ι2y + ι3x2 + ι4xy + P5(x, y, λ1, λ2)).
(32)

Here P5(x, y, λ1, λ2) has at least third derivative about (x, y). We have

ι1 = θ1 − θ22
4θ4

, ι2 = θ3 − θ2θ5

2θ4
, ι3 = θ4, ι4 = θ5.

Assuming

X = ι24
ι3
x, Y = ι34

ι23
y, τ = ι3

ι4
t,

we have (use x , y, t for X , Y , τ )

dx
dt

= y,

dy
dt

= µ1 + µ2y + x2 + xy + P6(x, y, λ1, λ2)),
(33)

where P6(x, y, λ1, λ2) has at least third derivative about (x, y). We have

µ1 =
ι1ι

4
4

ι33
, µ2 =

ι2ι4

ι3
.

We write µ1 and µ2 using λ1 and λ2

µ1 = s1λ1 + s2λ2 + s3λ21 + s4λ1λ2 ++s5λ22 + 0(|λ1, λ2|),
µ2 = t1λ1 + t2λ2 + t3λ21 + t4λ1λ2 ++t5λ22 + 0(|λ1, λ2|),

(34)

Then it yields

∣∣∣∣
∂(µ1, µ2)

∂(λ1, λ2)

∣∣∣∣ =
32R6x3∗ (x∗ (ax∗ + b)+ 1) 6

(A − x∗) 6
(
ax∗

(
ax2∗ − 3

)
− b

)
5 (x∗ (2aA − 3ax∗ − 2b)+ Ab − 1) 3

-= 0,

where

R = 3x2∗
(
a2A2 − 3aAb + a + b2

)
+ x3∗

(
8ab − 8a2A

)
+ 6a2x4∗

+3bx∗
(
aA2 − Ab + 1

)
− aA2 + Ab(Ab − 1)+ 1.
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Thus, system (4) undergoes a codimension-2 Bogdanov–Takens bifurcation.
Next, we take d, η, K as bifurcation parameters to prove that model (4) has a

Bondanov-Takens bifurcation of codimension 3. Set

dx
dt

= x(x − A) ((λ3 +K) − x) − xy
ax2 + bx + 1

,

dy
dt

= y
(

x
ax2 + bx + 1

− (d + λ1)+ x (− (η + λ2))

)
.

(35)

Hereλi (i = 1, 2, 3) is in a sufficiently small neighborhood of (0, 0).Weare concerned
about the dynamics of system (35) near the equilibrium E∗(x∗, y∗).

Firstly, define X = x − x∗, Y = y = y∗. By using Taylor expansion, system (35)
can be rewritten as (we still denote X , Y by x , y, respectively)

dx
dt

= a00 + a10x + a01y + a20x2 + a11xy + a30x3 + a21x2y

+ a40x4 + a31x3y + O(|x, y|4),
dy
dt

= r00 + r10x + r01y + r20x2 + r11xy + r30x3 + r21x2y

+ r40x4 + r31x3y + O(|x, y|4),

(36)

where

a00 = λ3x2∗ − Aλ3x∗, a10 = 2λ3x∗ − Aλ3, a01 = − x∗
ax2∗ + bx∗ + 1

, a20 = λ3,

a11 =
ax2∗ − 1(

ax2∗ + bx∗ + 1
)
2
, a30 = − x∗ (2ax∗ + b)

(
2a (x∗ (ax∗ + b) − 1)+ b2

)

(x∗ (ax∗ + b)+ 1)
(
a (3x∗ (ax∗ + b) − 1)+ b2

) ,

a21 =
−a2x3∗ + 3ax∗ + b(
ax2∗ + bx∗ + 1

)
3
,

a40 =
x∗

(
b2 − 4a

)

(x∗ (ax∗ + b)+ 1) 2
+ a (ax∗ + b)

a (3x∗ (ax∗ + b) − 1)+ b2
− b

x∗ (ax∗ + b)+ 1
,

a31 =
a3x4∗ − 6a2x2∗ − 4abx∗ + a − b2(

ax2∗ + bx∗ + 1
)
4

, r00 =
(λ1 + λ2x∗) (x∗ (ax∗ + b)+ 1) 3

a (3x∗ (ax∗ + b) − 1)+ b2
,

r10 =
λ2 (x∗ (ax∗ + b)+ 1) 3

a (3x∗ (ax∗ + b) − 1)+ b2
, r01 = −λ1 − λ2x∗,

r20 =
ax∗

(
3 − ax2∗

)
+ b

a (3x∗ (ax∗ + b) − 1)+ b2
,

r11 = −λ2, r30 =
a

(
ax2∗

(
ax2∗ − 6

)
− 4bx∗ + 1

)
− b2

(x∗ (ax∗ + b)+ 1)
(
a (3x∗ (ax∗ + b) − 1)+ b2

) ,

r21 =
a2x3∗ − 3ax∗ − b(
ax2∗ + bx∗ + 1

)
3
,
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r40 =
−a4x5∗ + 10a3x3∗ + 5a2x∗ (2bx∗ − 1)+ ab (5bx∗ − 2)+ b3

(x∗ (ax∗ + b)+ 1) 2
(
a (3x∗ (ax∗ + b) − 1)+ b2

) ,

r31 =
−a3x4∗ + 6a2x2∗ + 4abx∗ − a + b2(

ax2∗ + bx∗ + 1
)
4

.

Next, we make the transformation

X = x, Y = a00 + a10x + a01y + a20x2 + a11xy + a30x3 + a21x2y

+ a40x4 + a31x3y + O(|x, y|4).

Then system (36) becomes

dx
dt

= y,

dy
dt

= b00 + b10x + b01y + b20x2 + b11xy + b02y2 + b30x3

+ b21x2y + b12xy2 + b40x4 + b31x3y + b22x2y2 + O(|x, y|5),

(37)

where

b00 = a01r00 − a00r01, b10 = a11r00 − a10r01 + a01r10 − a00r11,

b01 = a10 − a00a11
a01

+ r01, b20 = a21r00 − a20r01

+ a11r10 − a10r11 + a01r20 − a0r21,

b11 =
a00a211
a201

− a10a11
a01

+ 2a20 − 2a00a21
a01

+ r11, b02 =
a11
a01

,

b30 = a31r00 − a30r01 + a21r10 − a20r11 + a11r20 − a10r21 + a01r30 − a00r31,

b21 = −a00a311
a301

+ a10a211
a201

+ 3a00a21a11
a201

− a20a11
a01

+ 3a30 − 2a10a21
a01

− 3a00a31
a01

+ r21,

b12 =
2a21
a01

− a211
a201

, b40 = −a40r01 + a31r10 − a30r11 + a21r20

− a20r21 + a11r30 − a10r31 + a01r40,

b31 =
a00a411
a401

− a10a311
a301

+ a20a211
a201

− 4a00a21a211
a301

+ 3a10a21a11
a201

+ 4a00a31a11
a201

− a30a11
a01

+ 2a00a221
a201

+ 4a40 − 2a20a21
a01

− 3a10a31
a01

+ r31,
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b22 =
a311
a301

− 3a21a11
a201

+ 3a31
a01

.

Note that system (37) can be reduced to system (13) when λ1 = λ2 = λ3 = 0.
Secondly, several steps are used to transform model (37) to the normal unfolding

of the Bogdanov–Takens singularity of codimension 3. +,

(I) Removing the y2-term from system (37) We use the transformation x = X +
b02
2 X2, y = Y + b02XY to remove the y2-term, then system (37) becomes

dx
dt

= y,

dy
dt

= c00 + c10x + c01y + c20x2 + c11xy + c30x3

+ c21x2y + c12xy2 + c40x4 + c31x3y + c22x2y2 + O(|x, y|5),

(38)

where

c00 = b00, c10 = b10 − b00b02, c01 = b01, c20 = b00b202 − b10b02
2

+ b20,

c11 = b11, c30 = −b00b302 +
1
2
b10b202 + b30, c21 =

b02b11
2

+ b21,

c12 = 2b202 + b12, c40 = b00b402 − 1
2
b10b302 +

1
4
b20b202 +

b30b02
2

+ b40,

c31 = b02b21 + b31, c22 = −b302 +
3b12b02

2
+ b22.

We find that c00 = c10 = c01 = c11 = 0 when λ1 = λ2 = λ3 = 0.
(II) Removing the xy2-term from system (38) Let x = X + c12

6 , y = Y + c12
2 X2Y .

System (38) becomes the following, where xy2 has been eliminated.

dx
dt

= y,

dy
dt

= d00 + d10x + d01y + d20x2 + d11xy + d30x3

+ d21x2y + d40x4 + d31x3y + d22x2y2 + O(|x, y|5),

(39)

where

d00 = c00, d10 = c10, d01 = c01,

d20 = c20 − c00c12
2

, d11 = c11,

d30 = c30 − c10c12
3

, d21 = c21,

d40 =
1
4
c00c212 − c20c12

6
+ c40,
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d31 =
c11c12

6
+ c31, d22 = c22.

Again we have that d00 = d10 = d01 = d11 = 0 when λ1 = λ2 = λ3 = 0.
(III) Removing the x2y2-term from system (39) We assume x = X + d22

12 X
4, y =

Y + d22
3 X2Y . Model (39) becomes

dx
dt

= y,

dy
dt

= e00 + e10x + e01y + e20x2 + e11xy + e30x3

+ e21x2y + e40x4 + e31x3y + O(|x, y|5),

(40)

where

e00 = d00, e10 = d10, e01 = d01, e20 = d20, e11 = d11,

e30 = d30 − d00d22
3

, e21 = d21, e40 = d40 − d10d22
4

, e31 = d31.

It is clear that e00 = e10 = e01 = e11 = 0 when λ1 = λ2 = λ3 = 0.
(IV) Removing the x3-term and x4-term from system (40) Note that

e20 = − x∗
(
ax∗

(
3 − ax2∗

)
+ b

)
(
ax2∗ + bx∗ + 1

) (
a (3x∗ (ax∗ + b) − 1)+ b2

) + O(λ1, λ2, λ3) -= 0

for small λ. Let

x =
(
15e230 − 16e20e40

)
X3

80e220
− e30X2

4e20
+ X ,

y = Y ,

t = τ

((
45e230 − 48e20e40

)
X2

80e220
− e30X

2e20
+ 1

)

.

From model (40) we have

dx
dt

= y,

dy
dt

= f00 + f10x + f01y + f20x2 + f11xy + f30x3

+ f21x2y + f40x4 + f31x3y + O(|x, y|5),

(41)

where

f00 = e00, f10 = e10 − e00e30
2e20

, f01 = e01,
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f20 =
9e00e230
16e220

− 3e10e30
4e20

+ e20 − 3e00e40
5e20

,

f11 = e11 − e01e30
2e20

, f30 =
7e10e230
8e220

− 4e10e40
5e20

,

f21 =
9e01e230
16e220

− 3e11e30
4e20

+ e21 − 3e01e40
5e20

,

f40 =
e10e30e40

4e220
− 15e10e330

64e320
,

f31 =
7e11e230
8e220

− e21e30
e20

+ e31 − 4e11e40
5e20

.

We find that f00 = f10 = f01 = f11 = f30 = f40 = 0 when λ1 = λ2 = λ3 = 0.

(V) Removing the x2y-term from system (41) Since f20 =
x∗

(
a2x3∗−3ax∗−b

)

(ax2∗+bx∗+1)(3a2x2∗+3abx∗−a+b2)
+O(λ1, λ2, λ3) -= 0 for small λ, we choose the fol-

lowing transformation

x = X , y = f 221Y
3

36 f 220
+ f21Y 2

3 f20
+ Y , τ = t

(
f 221Y

2

36 f 220
+ f21Y

3 f20
+ 1

)

,

and get a new system of system (41) as follows (we still denote X , Y , τ by x , y, t ,
respectively)

dx
dt

= y,

dy
dt

= g00 + g10x + g01y + g20x2 + g11xy + g31x3y + R1(x, y, λ),
(42)

where

g00 = f00, g10 = f10, g01 = f01 − f0 f21
f20

,

g20 = f20, g11 = f11 − f10 f21
f20

, g31 = f31 − f21 f30
f20

.

We find that g00 = g10 = g01 = g11 = 0 when λ1 = λ2 = λ3 = 0. R1(x, y, λ) has
the property in (4.6) of Arsie at al. [21] which is one of the conditions undergoing
a Bogdanov–Takens bifurcation of codimension 3 (see, also, Lamontagne et al. [44],
and Chow et al. [47]).
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(VI) Changing g20 and g11 to 1 in system (42) We notice that

g20 =
x∗

(
a2x3∗ − 3ax∗ − b

)
(
ax2∗ + bx∗ + 1

) (
3a2x2∗ + 3abx∗ − a + b2

) + O(λ) -= 0,

g31 =
1(

ax2∗ + bx∗ + 1
) (
3a2x2∗ + 3abx∗ − a + b2

) (
−a2x3∗ + 3ax∗ + b

)

× (12a5x6∗ + 12a4bx5∗ − 3b4 − 64a4x4∗ + 4a3b2x4∗
− 96a3bx3∗ + 36a3x2∗ − 66a2b2x2∗ + 28a2bx∗

− 22ab3x∗ + 6ab2)+ O(λ) -= 0.

for small λ. By making the following transformation

x = 5
√
g20g

− 2
5

31 X , y = g4/520 g
− 3

5
31 Y , t = g

− 3
5

20
5
√
g31τ,

we can transform system (42) into (we still denote X , Y , τ by x , y, t respectively)

dx
dt

= y,

dy
dt

= h00 + h10x + h01y + x2 + h11xy + x3y + R2(x, y, λ),
(43)

where

h00 =
g0g

4/5
31

g7/520

, h10 =
g10g

2/5
31

g6/520

, h01 =
g1 5

√
g31

g3/520

, h11 =
g11

g2/520
5
√
g31

.

Note that h00 = h10 = h01 = h11 = 0 when λ1 = λ2 = λ3 = 0, and R2(x, y, λ) has
the same property as R1(x, y, λ).

(VII) Removing x-term from system (43) Let x = X − h10
2 , y = Y . System (43)

becomes (we still denote X , Y by x , y, respectively)

dx
dt

= y,

dy
dt

= ν1 + ν2y + ν3xy + x2 + x3y + R3(x, y, λ),
(44)

where ν1 = h0 − h210
4 , ν2 = − h310

8 − h11h10
2 + h1, ν3 = 3h210

4 + h11, and R3(x, y, λ) has
the same property as R1(x, y, λ).
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Next, with the help of Mathematica, we have

∣∣∣∣
∂(ν1, ν2, ν3)

∂(λ1, λ2, λ3)

∣∣∣∣
λ=0

= 3x∗ (x∗ (ax∗ + b)+ 1) 3

4 24/5
(
ax∗

(
3 − ax2∗

)
+ b

)
2
(

x3∗(ax∗(ax2∗−3)−b)
(x∗(ax∗+b)+1)2(x∗(3ax∗+b)−1)

)
7/5

× (x∗
(
b2x∗

(
5ax2∗ − 3

)
+ b

(
ax2∗

(
7ax2∗ − 10

)
− 1

)

+ ax∗
(
ax2∗

(
7ax2∗ − 19

)
+ 5

)
+ b3x2∗

)
− 1)

×
(

− R

x∗ (x∗ (ax∗ + b)+ 1) 2 (x∗ (3ax∗ + b) − 1)
(
ax∗

(
3 − ax2∗

)
+ b

)
)

4/5,

where

R = −12a5x9∗ − 16a4bx8∗ + 91a3bx6∗ + x4∗
(
23a2b + 25ab3

)

+ x3∗
(
−58a2 + 20ab2 + 3b4

)

+ x7∗
(
34a4 − 4a3b2

)
+ x5∗

(
46a3 + 67a2b2

)

+ x2∗
(
3b3 − 19ab

)
+ x∗

(
6a − 3b2

)
+ b.

Thus, system (4) goes through a codimension-3 Bogdanov–Taken bifurcation.

3.3 Hopf Bifurcation

In this subsection, we study the Hopf bifurcation of system (4) near the equilibrium
Eα(xα, yα) to find the existence condition of the limit cycle. As we know, there are
several methods to investigate the existence of degenerate Hopf bifurcation, for exam-
ple, Poincaré normal form [48], averaging method [47], successive function method
[49], Lyapunov-Schmidt reduction [50].

Theorem 3.3 No limit cycles can be found for system (4) if (a) bd + η − 1 > 0 or
(b) bd + η − 1 < 0 and h(x2) > 0; (c). G ′(x) > 0 for all x ∈ (s1,β), where
s1=max{0, A}.

Proof There is no positive equilibrium for system (4) when condition (a) or (b) holds.
Thus system (4) has no limit cycles. For condition (c), we make the following trans-
formation

x̂ = ln x, ŷ = ln y, τ = t
ax2 + bx + 1

,
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then we have

dx̂
dτ

= G(ex̂ ) − eŷ,
d ŷ
dτ

= −h(ex̂ ),

where h(·) is given in Eq. (5). Since G ′(x) is positive for any x ∈ (s1,β), we obtain

∇ · 〈G(ex̂ ) − eŷ,−h(ex̂ )〉 = d
dx̂

(G(ex̂ ) − eŷ)+ d
d ŷ

(−h(ex̂ )) = ex̂G ′(ex̂ ) > 0.

Using Dulac’s criteria, we know that system (4) has no limit cycles in the positive
cone. +,

Theorem 3.4 If A ≤ 0, α < K < β, and G ′(α) > 0, then system (4) has a limit cycle.

Proof It is easy to know that system (4) has three equilibria E0, EK and Eα if A ≤ 0,
G ′(α) > 0, and α < K < β. On the coordinate axes, there are stable manifolds
of two saddles E0 and EK. In particular, all orbits in the positive cone will remain
in the compact set, bounded by x-axis, y-axis and x + y = M . Eα is an unstable
focus or node. Thus, there exists a limit cycle surrounding the equilibrium Eα by
Poincare-Bendixson Theorem.

Now, we turn to compute the Lyapunov coefficient of the Hopf bifurcation point.
In order to simplify the computation as used in Perko [43], we let

x̄ = x
xα

, ȳ = y
yα

, τ = x2αt (45)

and change model (4) to (use t instead of τ )

dx̄
dt

= 1
x3α

(
xα x̄ (xα x̄ − A) (K − xα x̄) − yα (xα x̄) ȳ

a (xα x̄) 2 + bxα x̄ + 1

)
,

d ȳ
dt

= 1
x2α yα

(
yα ȳ

(
xα x̄

a (xα x̄) 2 + bxα x̄ + 1
− ηxα x̄ − d

))
.

(46)

Substituting the following parameter scaling

a = ā
x2α

, b = b̄
xα

, K = xαK̄, A = xα Ā, d = xα d̄, η = η̄, q = 1
xα

,

into system (46), with the help of (3) to eliminate yα and drop the bars, we have

dx
dt

= x
(
(A − 1)(K − 1)y(a + b + 1)

ax2 + bx + 1
+ (A − x)(x − K)

)
,

dy
dt

= qy
(

x
ax2 + bx + 1

− d − ηx
)
.

(47)
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Since system (47) has an equilibrium Ēα(1, 1) (i.e., Eα(xα, yα)) of system (4), then

d = −(a + b + 1)η + 1
a + b + 1

,

which is substituted into system (47) and we obtain the following system

dx
dt

= x
(
(A − 1)(K − 1)y(a + b + 1)

ax2 + bx + 1
+ (A − x)(x − K)

)
,

dy
dt

= qy
(

x
ax2 + bx + 1

− −aη − bη − η + 1
a + b + 1

− ηx
)
,

(48)

where

a, c,K > 0,−K < A < K, d > 0 → 0 < η <
1

1+ a + b
,

b > −2
√
a, 0 < xα < 1 → q > 1.

(49)

It is obvious to see that system (48) has the same qualitative property as system (4)
because transformation (45) is a linear sign-reserving transformation.
Next, we investigate the dynamics of system (48) in R+

2 = {(x, y)|x ≥ 0, y ≥ 0}. In
what follows, the Hopf bifurcation around new equilibrium Ẽα(1, 1) of system (48) is
studied, which is corresponding to the Hopf bifurcation around Eα(xα, yα)) in model
(4). +,

Theorem 3.5 If (49) and (52) hold, then system (48) has an equilibrium Ẽα(1, 1).
Moreover,

(i) if K < K∗, then Ẽα(1, 1) is an unstable hyperbolic node or focus;
(ii) if K > K∗, then Ẽα(1, 1) is a locally asymptotically stable hyperbolic node or

focus;
(iii) if K = K∗, then Ẽα(1, 1) is a weak focus or center.

Proof Firstly, we define the Jacobian matrix J (Ẽα(1, 1)) of system (48) at Ẽα(1, 1)
is as follows:

J (Ẽα(1, 1)) =




2bA−bKA+A−3b+2bK+K+a(3K+A(3−2K)−4)−2

a+b+1 (A − 1)(K − 1)

q
(

1−a
(a+b+1)2 − η

)
0



 .

(50)

Its determinant and trace are

det(J (Ẽα(1, 1))) =
(A − 1)(K − 1)q

(
η(a + b + 1)2 + a − 1

)

(a + b + 1)2
,
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and

tr(J (Ẽα(1, 1)))

= a(A(3 − 2K)+ 3K − 4) − AbK + 2Ab + A + 2bK − 3b +K − 2
a + b + 1

.

From yα = (xα − A)(K − xα)(ax2α + bxα + 1) = (xα − Āxα)(K̄xα − xα)(ax2α +
bxα + 1) = x2α(1 − Ā)(K̄ − 1)(ax2α + bxα + 1) > 0, we have (drop bars)

(1 − A)(K − 1) > 0 (51)

and det(J (Ẽα(1, 1))) > 0 if

η(a + b + 1)2 + a − 1 < 0, (52)

and tr(J (Ẽα(1, 1))) = 0 (> 0 or < 0) if K = K∗ (K < K∗ or K > K∗), where

K∗ = a(3A − 4)+ 2Ab + A − 3b − 2
a(2A − 3)+ (A − 2)b − 1

= 1+ (1+ a + b)(A − 1)
−1+ a(−3+ 2A)+ (−2+ A)b

.

(53)

When condition (49) holds, we have

− 1+ a(−3+ 2A)+ (−2+ A)b < 0, K > 1, A < 1. (54)

It is easy to obtain

d
dK

(tr(J (Ẽα(1, 1))))|K=K∗ = 1 − a(2A − 3) − (A − 2)b
a + b + 1

> 0.

Next, we focus on case (iii) in Theorem 3.3 and study the existence of Hopf bifurca-
tion around Ẽα(1, 1) of system (48), which is equal to the existence ofHopf bifurcation
around Eα(xα, yα) of system (4). We show the stability of the Hopf bifurcation and
periodic orbits near the positive equilibrium Ẽα(1, 1) of model (48) by computing the
Lyapunov coefficient.

Setting X = x − 1, Y = y − 1, and K = K∗, we rewrite system (48) as follows

dx
dt

= a01y + a20x2 + a11xy + a30x3 + a21x2y,

dy
dt

= b10x + b20x2 + b11xy + b30x3 + b21x2y,
(55)
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where

a01 =
aA2 − 2aA + a + A2b + A2 − 2Ab − 2A + b + 1

2aA − 3a + Ab − 2b − 1
,

a20 =
(A − 1)2

(
3a2 + 3ab − a + b2

)

(a + b + 1)(2aA − 3a + Ab − 2b − 1)
− 1,

a11 =
−aA2 + 2aA − a + A2 − 2A + 1

2aA − 3a + Ab − 2b − 1
,

a30 = − (a − 1)2(A − 1)
(a + b + 1)2

+ a(A − 2)+ A
a + b + 1

+ 1 − a(A − 2)2

a(2A − 3)+ (A − 2)b − 1
− 1,

a21 =
a2A2 − 2a2A + a2 − 3aA2 + 6aA − 3a − A2b + 2Ab − b

(a + b + 1)(2aA − 3a + Ab − 2b − 1)
,

b10 = − aq
(a + b + 1)2

+ q
(a + b + 1)2

− ηq,

b20 =
q

(
a2 − 3a − b

)

(a + b + 1)3
, b11 = − aq

(a + b + 1)2
+ q

(a + b + 1)2
− ηq,

b30 = −q
(
a3 − 6a2 − 4ab + a − b2

)

(a + b + 1)4
, b21 =

q
(
a2 − 3a − b

)

(a + b + 1)3
.

Using the transformation

X = x, Y =
√

− a1
b10

y, τ = −b10

√
− a1
b10

t,

we transform system (55) into

dx
dt

= y +
a20

√
− a01

b10

a01
x2 + a11

a01
xy +

a30
√

− a01
b10

a01
x3 + a21

a01
x2y,

dy
dt

= −x +
(

−b20
b10

)
x2 +

b11
√

− a01
b10

a01
xy +

(
−b30
b10

)
x3 +

b21
√

− a01
b10

a01
x2y.

(56)

By virtue of the formula used in Zhang et al. [51] and calculation by Matlab and
Mathematica, we have the first Lyapunov coefficient as follows

σ1 =

√
(A−1)2(a+b+1)3

q(a(2A−3)+(A−2)b−1)(η(a+b+1)2+a−1)
σ11

8(A − 1)2(a + b + 1)2
(
η(a + b + 1)2 + a − 1

) ,

where

ρ1 = −2A2b2 + 9Ab2 + 2Ab − 12b2 − 9b − 2,

ρ2 = −9A2b + 2A2 − 3Ab2 + 36Ab + 6b2 − 37b − 12,



116 Page 28 of 50 T. Wen et al.

ρ3 = 3A2b − 12A2 − 18Ab + 40A + 24b − 30,

ρ4 = 6A2 − 24A + 24,

ρ5 = 2A2b3 + 2A2b2 − 3Ab4 − 12Ab3 − 11Ab2

− 2Ab + 6b4 + 21b3 + 24b2 + 11b + 2,

ρ6 = A2b3 + 12A2b2 + 7A2b − 2A2 − 18Ab3 − 58Ab2

− 36Ab + 30b3 + 82b2 + 62b + 12,

ρ7 = 4A2b2 + 26A2b + 12A2 − 39Ab2 − 98Ab − 40A + 56b2 + 111b + 46,

ρ8 = 3A2b + 14A2 − 32Ab − 48A + 44b + 48,

ρ9 = 12 − 8A,

and

σ11 = ρ1 + ρ2a + ρ3a2 + ρ4a3 + (ρ5 + ρ6a + ρ7a2 + ρ8a3 + ρ9a4)η. (57)

From conditions (52) and (54), we find the sign of the σ1 is opposite to that of σ11.
Thus, we obtain the following results. +,

Theorem 3.6 Suppose K = K∗ and conditions (49), (51), (52) and (54) are satisfied.

(i) when σ11 > 0, we have a stable weak focus Ẽ(1, 1)with multiplicity one and a sta-
ble limit cycle bifurcating from Ẽ(1, 1), i.e., system (48) undergoes a supercritical
Hopf bifurcation;

(ii) when σ11 < 0, we have an unstable weak focus Ẽ(1, 1) with multiplicity one and
an unstable limit cycle bifurcating from Ẽ(1, 1), i.e., system (48) undergoes a
subcritical Hopf bifurcation;

(iii) when σ11 = 0, we have a weak focus Ẽ(1, 1) with multiplicity of at least two and
model (48) has a degenerate Hopf bifurcation of at least codimension 2.

Next, we focus on case (iii) in Theorem 3.4. We find σ11 = 0 if

η = η∗ = ρ1 + ρ2a + ρ3a2 + ρ4a3

−(ρ5 + ρ6a + ρ7a2 + ρ8a3 + ρ9a4)
. (58)

From case (iii) of Theorem 3.4, it is easy to know that system (48) could undergo a
degenerate Hopf bifurcation which is a codimension-2 Hopf bifurcation as K = K∗

and η = η∗. Using the formal series method in Freedman and Wolkowicz [10], with
the help of Mathematica and Matlab software, the second Lyapunov coefficient is
obtained as follows

σ2 =
−σ22

32
√
2(−1+ a(−3+ 2A)+ (−2+ A)b)m1q

√
−m3
m2

,
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where

m1 = (a + b + 1)3(b − (a − 3)a)2(1+ a2(6+ A(−8+ 3A))

+ b(3 − A + (3+ (−3+ A)A)b)

+ a(3 − A2 + (8+ 3(−3+ A)A)b))2 > 0,

m2 = (A2
(
3a2 + 3ab − a + b2

)
+ A

(
−8a2 − 9ab − 3b2 − b

)

+ a(6a + 8b + 3)+ 3b2 + 3b + 1)

× ((a − 3)a − b)(a(2A − 3)+ (A − 2)b − 1)q -= 0,

m3 = (A − 1)2(a + b + 1)3(−8a3A + 12a3 + 3a2A2b + 14a2A2

− 24a2Ab − 40a2A + 32a2b

+ aA2b2 + 9aA2b − 2aA2 − 15aAb2 − 34aAb + 24ab2

+ 43ab + 10a + 2A2b2 − 3Ab3

− 2Ab + 6b3 + 15b2 + 9b + 2+ 36a2 − 9Ab2) -= 0,

σ22 = −(m4 + m5q).

Note that m4 and m5 are too complicated and are omitted for simplicity. For example,
we take a = 0.0015, b = −0.035, A = −5, and according to conditions (49),
(52) and (54), we have K = 8.48741, η = 1.0344. Then m4 = 0.0041025, m5 =
−0.0000206483, and σ22 = −(m4 + m5q) = −(0.0041025 − 0.0000206483 ×
198.684) = −1.31628 × 10−8 < 0, i.e., system (48) has two coexistent limit cycles.
Since −1+ a(2A − 3)+ (A − 2)b < 0 and m1 > 0, the sign of σ2 is determined by
σ22.

Then we obtain the following results. +,

Theorem 3.7 Suppose K = K∗, η = η∗ and conditions (49), (51), (52) and (54) are
satisfied.

(i) if σ22 > 0, then we have an unstable weak focus Ẽ(1, 1) with multiplicity two.
Model (48) has a codimension-2 degenerate Hopf bifurcation, i.e., two limit cycles
(the inner one and the outer one are, respectively, stable and unstable) originating
from Ẽ(1, 1).

(ii) if σ22 < 0, then we have a stable weak focusẼ(1, 1) with multiplicity two. Model
(48) has a codimension-2 degenerate Hopf bifurcation, i.e., two limit cycles (the
inner one and the outer one are, respectively, unstable and stable) originating from
Ẽ(1, 1).

(iii) if σ22 = 0, then we have a weak focus Ẽ(1, 1) with multiplicity of at least three.
Model (48)may have a degenerate Hopf bifurcation of codimension≥ 3, i.e., three
limit cycles are originating from Ẽ(1, 1).

Next, we focus on case (iii) of Theorem 3.5. When σ2 = 0 equals to σ22 = 0, i.e.,

q = −m4

m5
, (59)
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system (48) may have degenerate Hopf bifurcation of codimension ≥ 3.
From case (iii) of Theorem 3.5, we see that system (48) may undergo a degenerate

Hopf bifurcation of codimension 2 as K = K∗, η = η∗ and q = q∗. By virtue of
the formal series method used in Freedman and Wolkowicz [10] and with the help
of Mathematica and Matlab software, the following third Lyapunov coefficient is
obtained

σ3 =
1

663552σ33

(1 − a(−3+ 2A) − (−2+ A)b)3
√

(A−1)2(a+b+1)3
q(a(2A−3)+(A−2)b−1)(a2η+a(2(b+1)η+1)+(b+1)2η−1)

N0

,

where N0 = (−1+ A)4(1+a+b)6q6(−1+a2η+ (1+b)2η+a(1+2(1+b)η))6 >
0, σ33 = −(N1 + N2A2 + N3A4). It is noted that the expressions of Ni , (i = 1, 2, 3)
are tedious, for simplicity, we omit them here. Since 1 − a(2A − 3) − (A − 2)b > 0
and N0 > 0, the sign of σ3 is determined by σ33. Then we get the following results.

Theorem 3.8 Assume K = K∗, η = η∗, q = q∗ and conditions (49), (51), (52) and
(54) are satisfied, we have

(i) if σ33 > 0, then we have an unstable weak focus Ẽ(1, 1) with multiplicity three.
Model (48) undergoes a codimension-3 degenerate Hopf bifurcation, i.e., three
limit cycles are originating from Ẽ(1, 1);

(ii) if σ33 < 0, then we have a stable weak focus Ẽ(1, 1) with multiplicity three.
Model (48) undergoes a codimension-3 degenerate Hopf bifurcation, i.e., three
limit cycles are originating from Ẽ(1, 1);

(iii) if σ33 = 0, then we have a weak focus Ẽ(1, 1) with multiplicity ≥ 4. Model (48)
may have degenerate Hopf bifurcation of codimension ≥ 4, i.e., four limit cycles
are originating from Ẽ(1, 1).

4 Cusp of Limit Cycle with Codimension 2

In this subsection,we revisit the periodic normal formon the centermanifold according
to Witte et al. [52] and Iooss [53].

Rewrite a general ODE system at u̇ = F(u), and assume that a limit cycle γ satisfies
u(0) = u(T ), where T > 0 is the minimum period. Expand F(u0(t) + v) by using
the Taylor expansion as follows:

F(u0(t)+ v(t)) = F(u0(t))+ A(t)v(t)+ 1
2! B(t; v1(t), v2(t))

+ 1
3!C(t; v1(t), v2(t), v3(t))

+ 1
4!D(t; v1(t), v2(t), v3(t), v4(t))

+ 1
5! E(t; v1(t), v2(t), v3(t), v4(t), v5(t))+ O(||v||6), (60)
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where

A(t)v = Fu(u0(t))v,

B(t; v1(t), v2(t)) = Fuu[v1, v2],
C(t; v1(t), v2(t), v3(t)) = Fuuu[v1, v2, v3],

D(t; v1(t), v2(t), v3(t), v4(t)) = Fuuuu[v1, v2, v3, v4],
E(t; v1(t), v2(t), v3(t), v4(t), v5(t)) = Fuuuuu[v1, v2, v3, v4, v5]. (61)

Define the initial-value problem for the fundamentalmatrix solutionY (t) as follows

dY
dt

= A(t)Y , y(0) = In, (62)

where In denotes the n×n identity matrix.We call The eigenvalues of the monodromy
matrix M = Y (T ) as (Floquet) multipliers of the limit cycle. The multipliers with
|µ| = 1 denote the critical multipliers. A trivial critical multiplier µn = 1 always
exists. The total number of critical multipliers (counting multiplicity) is denoted by
nc, and assume that the limit cycle is nonhyperbolic, i.e., nc = 2. Therefore, there is
an invariant nc-dimensional critical center manifoldWc(τ ) ⊂ Rn in the neighborhood
of τ .

Note that, there is a two-dimensional critical center manifold Wc(τ ) at the cusp
point of limit cycles (CPL) bifurcation, which can be parameterized locally by (τ, ξ)

as

u = u0(τ )+ ξv(τ )+ H(τ, ξ), τ ∈ [0, T ], ξ ∈ R, (63)

where

H(τ, ξ) = 1
2
h2(τ )ξ2 +

1
6
h2(τ )ξ3 + O(ξ4), (64)

satisfying H(T , ξ) = H(0, ξ), h2(0) = h2(T ) and h3(0) = h3(T ).
The normal form of codimension-2 cusp of limit cycle can be defined as follows:

ξ̇ = cξ3, ξ ∈ R, (65)

where

c = 1
6

∫ T

0
< ϕ∗,−6α1A(τ )v + 3A(τ )h2 + 3B(τ ; v1, v2)

+ 6A(τ )v + 3B(τ ; v1, h2, v2)+ C(τ ; v1, v2, v3) > dτ, (66)

v and ϕ∗ are the generalized eigenfunction and a nontrivial solution of the adjoint
eigenvalue problem, respectively, defined by
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




v̇ − A(τ )v − F(u0) = 0, τ ∈ [0, T ],
v(T ) − v(0) = 0,∫ T
0 < v, u0 > dτ = 0,






ϕ̇∗ − AT (τ )ϕ∗ = 0, τ ∈ [0, T ],
ϕ∗(T ) − ϕ∗(0) = 0.∫ T
0 < ϕ∗, v > dτ = 1,

and h2 is a unique solution of






ḣ2 − AT (τ )h2 − B(τ ; v, v) − 2Av − 2F(u0)+ 2α1F(u0) = 0, τ ∈ [0, T ],
h2(T ) − h2(0) = 0,∫ T
0 < v∗, h2 > dτ = 1.

5 Numerical Simulations

In this section, we choose parameter values to illustrate the theoretical results by using
numerical simulations with the aid of ODE software Matlab and AUTO [54].

We consider the role of the strong Allee effect by setting

K = 20, A = 2, a = 0.004905, b = −0.10891, d = 24.28, η = 0.005, (67)

which have been used in Arsie et al. [21].

5.1 K and! as the Bifurcation Parameters

The carrying capacity of the prey (K) is first used as the bifurcation parameter. There
are four boundary equilibria E0(0, 0), EA(2, 0), EK1(9.81763, 0), EK2(2.07305 ×
101, 0).All the boundary equilibria are transcritical bifurcation points, and there is one
subcritical Hopf bifurcation point HB(9.81763, 3.26253 × 101) as K = 2.01595 ×
101. The limit cycle branch bifurcating the Hopf point HB has one saddle-node
SN (1.37493×101, 3.81486×101) asK = 1.99229×101, period = 1.38636×10−1.
A family of limit cycles is approaching an unstable homoclinic cycle. The transition
of stability of equilibria is given in Fig. 2.

Next, the carrying capacity of the prey (K) and the intensity of anti-predator behav-
ior (η) are used as the bifurcation parameters. We obtain two-parameter bifurcation
diagram including Hopf bifurcation curve H (purple) saddle-node bifurcation curve
SN (green), homoclinic bifurcation curve Hom (red), and saddle-node bifurcation
curve of limit cycle SN L (blue). We have one Bogdanov–Takens bifurcation point
BT (1.35362 × 101, 3.42613 × 101) as K = 2.05323 × 101, η = 5.61953 × 10−1,

one generalize d Hopf bifurcation point GH(1.11918 × 101, 3.27432 × 101) as
K = 2.01991 × 101, η = 3.59101 × 10−1, See Fig. 3a. The transition of homo-
clinic cycle and heteroclinic cycle on the homoclinic bifurcation curve is illustrated
by Fig. 3b. The whole phase plane is divided into five regions: I − V , its correspond-
ing phase portraits are given in Fig. 4 as follows: (I) K = 19.9853, η = 0.39487: a
stable focus (11.3921,31.9489), a saddle (16.4041,27.5118); (II) K = 20.4433, η =
0.581991: two stable nodes (0,0) and (20.4433,0), a saddle (2,0); (III) K = 20.199,
η = 0.119345: two coexistent limit cycles. We find that the outermost= is stable
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Fig. 2 Schematic bifurcation
diagram for the carrying
capacity K, where
E0, EA, EK1, EK2, HB denote
the boundary equilibria and the
subcritical Hopf bifurcation
point. The solid line and the
dotted line denote the stability
and instability of equilibria

Fig. 3 a Two-parameter bifurcation diagram ofK versus η.Here SN , H , Hom, SN L denote Hopf bifurca-
tion curve, saddle-node bifurcation curve, homoclinic bifurcation curve, and saddle-node bifurcation curve
of limit cycle, respectively. b A family of homoclinic cycles are approaching a heteroclinic cycle asK and
η varied

while the innermost is unstable which encloses a stable focus (10.1869,32.7504);
(IV) K = 20.4191, η = 0.554912: a homoclinic cycle which is homoclinic to
a saddle point (14.0389,33.6241), enclosing a stable limit cycle and an unstable
focus (13.0607,33.7165); (V) K = 21.0617, η = 0.416971: an unstable focus
(11.5282,36.0019) and a saddle (16.1621,36.1542). Biologically speaking, the col-
lapse of the predator–prey system may occur once the intensity of anti-predator
behavior overpasses the threshold η = 5.61953×10−1,whether the carrying capacity
of prey is small or large.
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5.2 d and b as the Bifurcation Parameters

When the death rate of the predator (d) is used as the bifurcation parameter, we have
two boundary equilibria (2.0, 0) as d = 2.48439, (2.0 × 101, 0) as d = 2.54167 ×
101, one saddle-node bifurcation point SN (1.42714 × 101, 3.12627 × 101) as d =
3.20196×101, and one supercritical Hopf bifurcation point HB(9.40803, 3.21331×
101) as d = 2.29264 × 101. The limit cycle branch bifurcating from HB has one
saddle-node bifurcation point SN (1.36760× 101, 3.80390× 101) as d = 2.47903×
101, period = 1.37125 × 10−1.

When the death rate of the predator (d) and the intensity of group defense (b)
are used as the bifurcation parameters, we have one Hopf bifurcation curve H
with one generalized Hopf bifurcation point GH(1.09319 × 101, 3.29125 × 101)
as d = 2.68479 × 101, b = −1.07925 × 10−1, one Bogdanov–Takens bifurcation
point BT (1.36527 × 101, 3.06267 × 102) as d = 3.22885, b = 1.63083 × 10−1,

one saddle-node bifurcation curve SN , one homoclinic cycle bifurcation curve
Hom, one saddle-node bifurcation curve of limit cycle SN L. See Fig. 5a. Note
that the homoclinic cycle bifurcation curve exhibits the transition of homoclinic
cycles as d and b varied, see Fig. 5b. The whole phase plane is divided into six
regions: I − V I , its corresponding phase portraits are given in Fig. 6 as follows:
(I) d = 19.7269, b = −0.116389: one unstable limit cycle which encloses a sta-
ble focus (7.7555,27.6516); (II) d = 23.2225, b = −0.109456: two coexistent
limit cycles. The outermost one is stable, and the innermost one is unstable, which
encloses a stable focus (9.4093,31.73); (III) d = 22.5396, b = −0.123055: one sta-
ble focus (10.1869,32.7504); (IV) d = 20.0255, b = −0.0927508: a homoclinic
cycle enclosing an unstable focus (11.8376,47.3267), which is homoclinic to a sad-
dle (17.1792,36.5751); (V) d = 16.3239, b = −0.0721518: no positive equilibrium;
(VI) d = 27.6419, b = −0.104496: a stable focus (13.1043,36.2149) and a sad-
dle (15.5371,33.863). From a biological viewpoint, the predator and the prey may
undergo extinction finally by undergoing saddle-node bifurcation if the intensity of
group defense is high and the natural mortality rate of the predator is small, or with a
weak intensity of group defense and a large natural mortality rate of the predator.

5.3 A and! as the Bifurcation Parameters

When the strong Allee effect of the prey (A) and the intensity of anti-predator
behavior (η) are used as the bifurcation parameters, we have a two-parameter
bifurcation diagram including Hopf bifurcation curve H , saddle-node bifurcation
curve of equilibrium SN , saddle-node bifurcation curve of limit cycle SN L , homo-
clinic cycle bifurcation Hom. There are one generalized Hopf bifurcation point
GH(1.10423 × 101, 3.13170 × 101) as A = 2.20176, η = 3.29880 × 10−1,

and one Bogdanov–Takens bifurcation point BT (1.35362 × 101, 2.78704 × 101) as
A = 3.37915, η = 5.61953× 10−1. The homoclinic cycles on the homoclinic branch
are approaching a heteroclinic cycle. The homoclinic cycles are homoclinic to the
right equilibrium and finally become one heteroclinic cycle connecting two boundary
equilibria. See Fig. 7a, b. The whole phase plane is divided into five regions: I − V ,
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its corresponding phase portraits are given in Fig. 8 as follows: (I) A = 1.85697,
η = 0.314403: a stable focus (10.9674,32.5487) and a saddle (17.2468,24.6032); (II)
A = 2.10324, η = 0.112899: two infinitesimal limit cycles. The outermost one is sta-
ble, and the innermost one is unstable and encloses a stable focus (10.1647,31.6951);
(III) A = 2.4956, η = 0.574837: no positive equilibrium; (IV) A = 2.88379,
η = 0.420858: a saddle homoclinic cycle is homoclinic to a saddle (14.1939,28.3504),
and encloses an unstable focus (12.9243,28.4606); (V) A = 3.1551, η = 0.550125:
an unstable focus (12.9243,28.4606) and a saddle (14.1939,28.3504).

The biological implication is similar to that with the effect of the carrying capacity.
The collapse of the predator–prey systemmay occur once the intensity of anti-predator
behavior overpasses the same threshold of η = 5.61953 × 10−1, whether the strong
Allee effect of prey is small or large. However, we find that the existence of a het-
eroclinic orbit connecting two boundary equilibria EA(A, 0) and EK (K , 0), which
indicates that the predator population may go through extinction even with the small
intensity of anti-predator behavior due to the involvement of a strong Allee effect.

5.4 The Role ofWeak Allee Effect

We consider the role of the weak Allee effect by using a new set of parameter values
in Arsie et al. [21] as follows

K = 10.5, A = −0.5, a = 0.01809954751, b = −0.1809954751,

d = 8.99, η = 0.005. (68)

When the intensity of group defense (b) is taken as the bifurcation parameter, we
have one supercritical Hopf bifurcation point HB(6.40842, 2.00778 × 101) as b =
−1.61195× 10−1, and a saddle-node bifurcation point SN (7.42047, 2.00502× 101)
as b = −1.58292 × 10−1.

When the death rate of the predator (d) and the intensity of group defense (b) are
the primary bifurcation parameters, we obtain the two-parameter bifurcation diagram
including saddle-node bifurcation curve SN , Hopf bifurcation curve H , saddle-node
bifurcation curve of limit cycle SN L, and one homoclinic cycle bifurcation curve
Hom. There are oneBogdanov–Takens bifurcation point BT (6.88640, 1.42079×102)
as b = 5.03122×10−1, d = 1.25927, and the heteroclinic cycle connecting (0, 0) and
(10.5, 0). In particular, the saddle-node bifurcation curve of limit cycle SN L has one
codimension-2 cuspCPL of limit cycle, which indicates that there are coexistent three
limit cycles, see Fig. 9a. The transition between the homoclinic cycle and the hetero-
clinic cycle is illustrated by Fig. 9b. The whole phase plane is divided into five regions:
I − V , its corresponding phase portraits are given in Fig.10 as follows: (I) there are
two kinds of situation in this region: (a) d = 4.32258, b = −0.213085: two coexistent
limit cycles. The outermost one is stable, and the innermost one is unstable, which
encloses a stable focus (2.51055,13.9293); (b) d = 3.78893, b = −0.220932: three
coexistent limit cycles. The outermost one and the innermost one are stable, themiddle
one is unstable, and the innermost one encloses an unstable focus (2.2561,13.4891);
(II) d = 6.42346, b = −0.198362: a stable focus (3.43,14.7972); (III) d = 5.1964,
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b = −0.106871: an unstable focus (4.67751,27.0142) which will approach a homo-
clinic cycle; (IV) d = 3.99, b = −0.12: an unstable focus (3.21,21.672) and a saddle
heteroclinic cycle is heteroclinic to two saddles (0,0) and (10.5,0); There is an attract-
ing separatrix representing a critical curve which has to trespass for the predator. (V)
d = 6.53501, b = −0.1095: no positive equilibrium.

Note that, based on the normal form of codimension-2 cusp of the limit cycle in (66)
and with the help ofMatcont [55], we obtain the coefficient value c = −9.671688 < 0
as d = 3.181119, b = −2.295880 × 10−1, and period = 9.968795 × 10−1 in
Fig. 9a. It indicates that there are coexistent three limit cycles bifurcating from one
Hopf bifurcation point. Moreover, there exists a parameter region for two limit cycles
and a parameter region for three limit cycles in the acute angle region of the cusp point
CPL . However, it is not easy to locate the boundary between them.

Remark 1 Based on the above analysis, we find that the strong Allee effect may cause
the coexistence of two limit cycles while the weak Allee effect may cause the coexis-
tence of three limit cycles.

Remark 2 The whole bifurcation diagram will move to the lower right corner as
the intensity of anti-predator behavior η increases while keeping the bifurcation
structure unchanged. For example, if we choose η = 0.3, then there are one
Bogdanov–Takens bifurcation point BT (1.32797 × 101, 5.08500 × 101) as d =
1.58124 × 101, b = −8.99253 × 10−2, and one generalized Hopf bifurcation point
GH(1.09266 × 101, 3.29115 × 101) as d = 2.36122 × 101, b = −1.07926 × 10−1.
However, if η = 0.005, then there are one Bogdanov–Takens bifurcation point
BT (1.36527 × 101, 3.06267 × 102) when d = 3.22885, b = 1.63083 × 10−1,

and one generalized Hopf bifurcation point GH(1.09319 × 101, 3.29125 × 101) as
d = 2.68479 × 101, b = −1.07925 × 10−1.

Remark 3 The coexistence of two limit cycles in the predator–prey system is found in
the existing literature. However, the codimension-2 cusp of the limit cycle indicating
the coexistence of three limit cycles is rarely studied in the predator–prey system with
the Allee effect. The mechanism of the limit cycle is different from that in Aguirre et
al. [36].

Remark 4 Note that Aguirre et al. [36] found three limit cycles in a Leslie-Gower
predator–prey with Allee effect, the first two limit cycles originating from Hopf bifur-
cation and the third one arising from a homoclinic bifurcation. They are surrounded
by different equilibria. Actually, the first two small limit cycles bifurcate from one
Hopf bifurcation point and disappear at another Hopf bifurcation point, while the
third limit cycle bifurcates from one Hopf bifurcation point and a family of periodic
orbits approaches a homoclinic cycle or arises from a perturbed homoclinic cycle. The
generating mechanism of the third limit cycle is the same as the scenario of [41, 56].

6 Biological Interpretations

In this section, we provide biological interpretations on the basis of phase portraits of
two-parameter bifurcation diagrams under the assumption that the initial conditions
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are taken biologically meaningful. We consider the regimes where the trajectories are
stable for the initial conditions chosen outside the stable or unstable manifolds of
equilibrium, and not on an unstable limit cycle, which indicates that the final regime
will be the same if small changes perturb the initial conditions. There are three kinds
of stable regimes as described below.

(1) The regime with the extinction of the predator (REP), where there is an open
set of initial conditions in which the predator goes extinct, and the prey is at a
stable steady state. The phase portraits for the open region II in Fig. 3a, the open
region V in Fig. 5a, the open region III in Fig. 7b, and the open region V in Fig. 9a
correspond to the stable regime REP with both prey and predator converging to
the stable boundary equilibria (A, 0) or (K , 0), i.e., the predator will eventually
go extinct.

(2) The regime of multiple equilibria (RME), where the prey and the predator coexist,
tending to their stable equilibria. The phase portraits for regime III in Fig. 3a,
regime II in Fig. 5a and regime II in Fig. 7b, regime I(i) in Fig. 9a correspond to
the stable regime RME in a small region bounded by the interior of the limit cycle.

(3) The regime of oscillation (RO), where there is an open set of the initial conditions
for both the prey and the predator to tend to a stable oscillatory regime, i.e., a stable
limit cycle. See regime IV in Fig. 3a, regime II in Fig. 5a, regime I in Fig. 7b, regime
I(ii) in Fig. 9a, where we find this kind of stable regime RO.

Based on the above observations, we can make the following conclusions.

(a) The increasing intensity of anti-predator behavior can move the whole bifurcation
diagram to the lower right cornerwhile keeping the dynamics unchanged.However,
it may cause the predator to go extinct even with the large carrying capacity of the
prey.

(b) StrongAllee effect andweakAllee effect have a similar effect on the predator–prey
system as the intensity of group defense and the natural death rate of the predator
vary. The strong Allee effect could cause the predator to undergo extinction even
with the smaller intensity of the anti-predator.

(c) The increasing intensity of group defense could cause the predator to become
extinct even with a smaller death rate of the predator due to the emergence of a
heteroclinic cycle connecting two boundary equilibria.

Conclusion and Discussion

In this paper, we have studied the global dynamics of a predator–prey model with the
Allee effect and the anti-predator behavior by using the dynamical systems approach.
We have shown the existence of saddle-node bifurcation, Hopf bifurcation of codimen-
sion 3, homoclinic bifurcation, heteroclinic bifurcation, Bogdanov–Takens bifurcation
of codimension 3, saddle-node bifurcation of limit cycle, and codimension-2 cusp of
limit cycle. The results found in this paper reveal that the transition from the coexis-
tence of prey and predator to the extinction of the predator in a predator–prey model
can generate more complex dynamics, including the coexistence of three limit cycles
for the weak Allee effect and two coexistent limit cycles for the strong Allee effect.
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It is worth noting that a strong Allee effect may also cause multiple limit cycles to
generate under appropriate parameter values.

Our study also showed that the codimension-2 cusp of the infinitesimal limit cycle
leads to more complex dynamics, including homoclinic cycle bifurcation and hetero-
clinic cycle bifurcation, and saddle-node bifurcation of the limit cycle. It indicates that
the mechanism of the limit cycle is different from that in Aguirre et al. [36], where
the first two limit cycles are infinitesimal and the third one arises from a homoclinic
cycle. As far as we know, it is the first time to find the codimension-2 cusp of limit
cycle in a predator–prey system with the Allee effect. Based on the observations of
the bifurcation diagrams and their corresponding phase portraits, an important con-
clusion is obtained: if the intensity of the anti-predator is fixed, then the strong Allee
effect and the weak Allee effect have the similar effect on the predator–prey system
as the intensity of group defense and the natural death rate of the predator vary. The
anti-predator behavior may cause the predator to become extinct even with the small
carrying capacity of the prey. The strong Allee effect could cause the predator to go
extinct even with the smaller intensity of the anti-predator. The transition from the
homoclinic cycle to the heteroclinic cycle indicates the collapse of the predator–prey
system and the extinction of the predator.

Lastly, the degenerate homoclinic bifurcation point in the saddle-node bifurcation
curve of the limit cycle is not found since it actually connects two codimension-2
degenerate Hopf bifurcation points. Although we have located the possible coexis-
tence region of two limit cycles and the coexistence region of three limit cycles, it is
challenging to identify the boundary between them, which is left for future research.
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Appendix A

γ1 =
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ax2∗ + bx∗ + 1
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a2x3∗ − 3ax∗ − b
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3a2x2∗ + 3abx∗ − a + b2
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(
ax2∗ + bx∗ + 1

) − ax∗
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3a2x2∗ + 3abx∗ − a + b2
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γ4 = −a2x3∗ + 3ax∗ + b

x∗
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ax2∗ + bx∗ + 1
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2
+

3
(
4a3x3∗ + 6a2bx2∗ − 4a2x∗ + 4ab2x∗ − 2ab + b3
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3a2x2∗ + 3abx∗ − a + b2
,

γ5 = a2x4∗ − 4ax2∗ − 2bx∗ − 1
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2

,

γ6 = 3a4x6∗ − 23a3x4∗ − 16a2bx3∗ + 21a2x2∗ − 6ab2x2∗ + 12abx∗ − a − b3x∗ + 2b2

x2∗
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) (
3a2x2∗ + 3abx∗ − a + b2

) ,

γ7 = a2 − 2a(b − 3)b + (b − 3)b3

x∗
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) +
b
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a (bx∗ − 2)+ b2

)

(x∗ (ax∗ + b)+ 1) 2
+

(
b2 − 4a

)
(2ax∗ + b)

(x∗ (ax∗ + b)+ 1) 3

− a2 (−x∗)+ a (b (bx∗ − 1)+ 12)+ (b − 3)b2
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+
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(
4a − b2

) (
3abx∗ + a + 2b2

)

(
a − b2

) (
a (3x∗ (ax∗ + b) − 1)+ b2

) ,

γ8 = −a3x6∗ + 9a2x4∗ + 9abx3∗ + 3ax2∗ + 3b2x2∗ + 3bx∗ + 1

x3∗
(
ax2∗ + bx∗ + 1

)
3
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Appendix B

δ1 =
(
ax2∗ − 1

)
(A − x∗) (x∗ − K)

ax2∗ + bx∗ + 1
− AK+ 2Ax∗ + 2Kx∗ − 3x2∗ ,

δ2 = − x∗
ax2∗ + bx∗ + 1

, δ3 = − (A − x∗) (x∗ − K)
(
a2x3∗ − 3ax∗ − b

)
(
ax2∗ + bx∗ + 1

)
2

+ A +K − 3x∗,

δ4 =
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ax2∗ + bx∗ + 1
)
2
,

δ5 =
(
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) (
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)
(
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)
3

− 1,

δ6 =
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)
3
, δ7 =

(x∗ − A) (K − x∗)
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a2x3∗ − 3ax∗ − b

)
(
ax2∗ + bx∗ + 1
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2

,

δ8 =
a2x3∗ − 3ax∗ − b(
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)
3
,

δ9 =
(x∗ − A) (K − x∗)

(
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)
(
ax2∗ + bx∗ + 1

)
3
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Appendix C

ε1 =
(x∗ − A) (K − x∗)

(
a2x3∗ − 3ax∗ − b

)

(
ax2∗ + bx∗ + 1

)
2

,

ε2 = a2x2∗(−AK+ 2Ax∗ + 2Kx∗) − 3a2x4∗ + x∗ (−4a(A +K)+ 7ax∗ + 2b)+ A(aK − b) − bK(
ax2∗ + bx∗ + 1

)
2

,

ε3 = a2x3∗ − 3ax∗ − b(
ax2∗ + bx∗ + 1

)
3
,

ε4 = 1(
ax2∗ + bx∗ + 1

)
2
(−24a3x8∗ + 30a3Ax7∗ − 54a2bx7∗ + 30a3Kx7∗ − 40a2x6∗ − 9a3A2x6∗

− 39ab2x6∗ − 9a3K2x6∗ + 64a2Abx6∗ − 34a3AKx6∗ + 64a2bKx6∗ − 9b3x5∗ − a2x5∗ + 43aAb2x5∗
+ 9a3AK2x5∗ − 18a2bK2x5∗ + 45a2Ax5∗ − 18a2A2bx5∗ − 55abx5∗ + 45a2Kx5∗ + 9a3A2Kx5∗
+ 43ab2Kx5∗ − 67a2AbKx5∗ + 9Ab3x4∗ − 12a2A2x4∗ − 11aA2b2x4∗ − 18b2x4∗ − 12a2K2x4∗
− 2a3A2K2x4∗ − 11ab2K2x4∗ + 16a2AbK2x4∗ − 18ax4∗ + a2Ax4∗ + 56aAbx4∗ + 9b3Kx4∗
− 40aAb2Kx4∗ − 44a2AKx4∗ + 16a2A2bKx4∗ + 56abKx4∗ − 2A2b3x3∗ + 16Ab2x3∗ − 2b3K2x3∗
+ 8aAb2K2x3∗ + 10a2AK2x3∗ − 3a2A2bK2x3∗ − 13abK2x3∗ + 3ax3∗ + 16aAx3∗ − 13aA2bx3∗
− 11bx3∗ − 7Ab3Kx3∗ + 10a2A2Kx3∗ + 8aA2b2Kx3∗ + 16b2Kx3∗ + 16aKx3∗ − a2AKx3∗ + a2Kx4∗
− 46aAbKx3∗ − 3aA2x2∗ − 3A2b2x2∗ + Ab3K2x2∗ − 2a2A2K2x2∗ − aA2b2K2x2∗ − 3b2K2x2∗
− 3aK2x2∗ + 8aAbK2x2∗ − 3aAx2∗ + 8Abx2∗ + bx2∗ + A2b3Kx2∗ − 10Ab2Kx2∗ − 3aKx2∗ + Ax∗

− 10aAKx2∗ + 8aA2bKx2∗ + 8bKx2∗ − 2x2∗ + Ab2K2x∗ + aAK2x∗ − aA2bK2x∗ − bK2x∗

− A2bx∗ − Abx∗ + aA2Kx∗ + A2b2Kx∗ + 3aAKx∗ − 3AbKx∗ − bKx∗ +Kx∗ + AbK),

ε5 =
(x∗

(
−3x∗(a(A +K) − b)+ 2aAK+ 4ax2∗ − 2Ab − 2bK+ 2

)
+ A(bK − 1) − K)(ax2∗ − 1)

(
ax2∗ + bx∗ + 1

)
2

,

ε6 = 1(
ax2∗ + bx∗ + 1

)
2
(8a3x7∗ − 14a3Ax6∗ − 2a2bx6∗ − 14a3Kx6∗ − 32a2x5∗ + 6a3A2x5∗ − A2b

+ 6a3K2x5∗ − 4a2Abx5∗ + 20a3AKx5∗ − 4a2bKx5∗ − 3b3x4∗ − 3a2x4∗ + 7aAb2x4∗ − 7a3AK2x4∗
+ 4a2bK2x4∗ + 37a2Ax4∗ + 4a2A2bx4∗ − 47abx4∗ + 37a2Kx4∗ − 7a3A2Kx4∗ + 7ab2Kx4∗ − bK2

+ 9a2AbKx4∗ + 2Ab3x3∗ − 10a2A2x3∗ − 14b2x3∗ − 10a2K2x3∗ + 2a3A2K2x3∗ − 4a2AbK2x3∗
− 22ax3∗ + 2a2Ax3∗ + 48aAbx3∗ + 2b3Kx3∗ + 2a2Kx3∗ − 4aAb2Kx3∗ − 40a2AKx3∗ − aA2bK2

+ 48abKx3∗ + 12Ab2x2∗ + 10a2AK2x2∗ + a2A2bK2x2∗ − 11abK2x2∗ + 7ax2∗ + 20aAx2∗ − Ab

− 11aA2bx2∗ − 11bx2∗ − Ab3Kx2∗ + 10a2A2Kx2∗ + 12b2Kx2∗ + 20aKx2∗ − a2AKx2∗ + aA2K

− 4aA2x∗ − 2A2b2x∗ − 2a2A2K2x∗ − 2b2K2x∗ − 4aK2x∗ + 8aAbK2x∗ − 4aAx∗ + 8Abx∗

+ 2bx∗ − 8Ab2Kx∗ − 4aKx∗ − 12aAKx∗ + 8aA2bKx∗ + 8bKx∗ − 2x∗ + Ab2K2 + aAK2

− 42aAbKx2∗ + A2b2K+ aAK − 3AbK − bK+K) − 10ab2x5∗ + A − 4a2A2bKx3∗ ,

ε7 = Ab2K − Ab − bK − b

(ax2∗ + bx∗ + 1)3
+

x∗
(
5aAbK − 3aA − 3aK − 3a − 2Ab2 − 2b2K+ 2b

)

(ax2∗ + bx∗ + 1)3
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+
x2∗

(
6a2AK − 9aAb − 9abK+ 6a + 3b2

)

(ax2∗ + bx∗ + 1)3

+
x3∗

(
−a2AbK − 8a2A − 8a2K+ a2 + 13ab

)

(ax2∗ + bx∗ + 1)3
+

x4∗
(
−2a3AK+ 2a2Ab + 2a2bK+ 10a2

)

(ax2∗ + bx∗ + 1)3

+
x5∗

(
3a3A + 3a3K − 3a2b

)
− 4a3x6∗

(ax2∗ + bx∗ + 1)3
, (x∗)

= x2∗(2aAK − 2Ab − 2bK+ 2)+ x∗(A(bK − 1) − K)

ax2∗ + bx∗ + 1
+ 4ax4∗ − 3x3∗(a(A +K) − b)

ax2∗ + bx∗ + 1
.
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