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Abstract—Serverless computing has become increasingly pop-
ular for cloud applications, due to its compelling properties of
high-level abstractions, lightweight runtime, high elasticity and
pay-per-use billing. In this revolutionary computing paradigm
shift, challenges arise when adapting data analytics applications
to the serverless environment, due to the lack of support
for efficient state sharing, which attract ever-growing research
attention. In this paper, we aim to exploit the advantages of task-
level orchestration and fine-grained resource provisioning for
data analytics on serverless platforms, with the hope of fulfilling
the promise of serverless deployment to the maximum extent.
To this end, we present ACTS, an autonomous cost-efficient
task orchestration framework for serverless analytics. ACTS
judiciously schedules and coordinates function tasks to mitigate
cold-start latency and state sharing overhead. In addition, ACTS
explores the optimization space of fine-grained workload distri-
bution and function resource configuration for cost efficiency.
We have deployed and implemented ACTS on AWS Lambda,
evaluated with various data analytics workloads. Results from
extensive experiments demonstrate that ACTS achieves up to
98% monetary cost reduction while maintaining superior job
completion time performance, in comparison with the state-of-
the-art baselines.

Index Terms—serverless computing, cost-efficiency, data ana-
lytics, cloud resource provisioning

I. INTRODUCTION

Serverless architectures facilitate Function-as-a-Service
(FaaS) in cloud computing, bringing salient features of
lightweight runtime, ease of management, high elasticity, and
fine-grained billing for cloud users. With the wide adoption
of and increasing support for serverless platforms by cloud
providers, such as Amazon Lambda [1], Google Cloud Func-
tions [2], and Microsoft Azure Functions [3], serverless com-
puting becomes a promising paradigm that will revolutionize
cloud programming [4]. The benefits of serverless computing
have been driving the paradigm shift for a wide variety
of application workloads, including real-time video encoding
[5], machine learning [6] and data analytics [7]. By design,
serverless computing is suitable for an application that is easily
decomposed to short-lived stateless functions. However, data
analytics jobs, such as MapReduce jobs, typically consist of
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sequential execution stages, decomposable to functions that
are parallel within an individual stage but stateful across
consecutive stages. As such, it remains challenging to fulfil
the promise out of the serverless shift for data analytics
applications. More specifically, the challenges arise from the
following coupled consideration: lowering the overhead of
cross-stage state sharing, requesting function resources wisely,
and scheduling functions for performance-oriented or cost-
oriented objectives.

To address these challenges, a number of ephemeral state
sharing solutions [7], [8] [9] have been proposed for serverless
analytics, which rely on far-memory [10]systems for high-
throughput and low-latency intermediate data transfer across
function tasks. These solutions, however, sacrifice cost effi-
ciency for application performance, incurring extra cost to
build the far-memory systems or subscribe to faster storage
services. On the other hand, several existing efforts focus on
the orthogonal perspectives of function scheduling [11] [12]
or fine-grained resource configurations [13] for job completion
time and cost efficiency objectives.

In this paper, we propose our solution based on a com-
prehensive consideration of all the challenging issues stated
above. In particular, we leverage the benefit of REST API for
function-to-function data transfer, pipeline function tasks with
the exploit of warm lambdas, and allocate function resources
judiciously, to offer an optimal end-to-end execution plan for
serverless analytics. We articulate the benefits to motivate our
design with an example of a MapReduce job to be executed
in the serverless environment. Vanilla analytics frameworks
usually launch tasks of a stage only when all the tasks of the
previous stage have finished, which is called a lazy approach.
When deploying the MapReduce job on a serverless platform,
the lazy schedule would not invoke the reducer functions until
all the mappers outputs are ready, i.e., written into the storage
such as Amazon S3 [14] as the naive design. The execution
timeline of the example job with three mappers (of different
size) and one reducer is shown in Fig. la.

Now if we keep a mapper lambda alive and reuse it for
the reducing task, the invocation and initialization time of
the reducer can be saved, as depicted in Fig. 1b. In addition
to mitigating the negative effect of function cold start [15],
the approach in Fig. 1b also reduces the storage read/write
overhead due to the data locality at Map3, in comparison with
Fig. 1a. We can further eliminate the storage read/write of
intermediate data by facilitating direct data transfer across
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Fig. 1: Execution timeline of a MapReduce job, with three mappers (of different sizes) and a reducer, under different settings in the serverless environment:
(a) Default lazy approach, state sharing through storage service, (b) Warm lambda for the reducer, state sharing through storage service, and (¢) Warm lambda

for the reducer, state sharing through REST APIL

tasks through REST APIs. The challenge, however, is to
schedule the execution of functions so that the functions
invoking and invoked will not have to wait for each other
for data transfer. For example, if Map3 invokes Map1 and
Map2 at the start of its execution and fetches data after its
mapping finishes, similar as the execution order in Fig. 1b,
Map1 and Map2 will be largely prolonged until the reducer
finishes data reading, which increases the monetary cost. Thus,
a better scheduling is desired as in Fig. lc, to fully utilize the
advantages of direct transfer and optimize the cost efficiency.

Another challenge, as well as an opportunity, is the fine-
grained workload distribution and resource configuration for
multi-stage analytics jobs, subject to platform limitations on
function resources and data transfer size. For cloud users,
there is little general guidance on serverless provisioning
among the large configuration space, including the per-stage
parallelism, per-function invocation scheduling and resource
allocation, etc. Existing frameworks (e.g., Pywren [16] and
Caerus [12]) for serverless analytics typically have coarse-
grained task orchestration and resource provisioning, which
may easily result in a suboptimal deployment, incurring extra
billing costs for cloud users.

Having identified all the aforementioned potential and chal-
lenges, in this paper, we present ACTS, an Autonomous
Cost-efficient Task orchestration framework for Serverless
analytics. To mitigate the adverse effect of function cold start
and reduce the overhead of function state sharing (i.e., inter-
mediate data transfer across functions), ACTS schedules and
coordinates function tasks in a mode similar to fork-join. In
particular, in each computation stage, a group of functions will
invoke other functions through REST following the schedul-
ing decisions and receive their states upon their completion.
Leveraging the benefits of warm containers, this group of
functions will continue for the next stage processing, avoiding
cold-start latency and state sharing overhead if new functions
were invoked. The scheduling of function invocations will be
judiciously determined in ACTS to avoid function idle time
waiting for data transfer. ACTS further explores the space
of fine-grained workload distribution and function resource
configuration for cost efficiency. Based on a cost model, ACTS
solves an optimization problem to minimize the monetary
cost of a serverless data analytics job, without violating the
platform limitations such as the function temporary storage
size and the data transfer size.

Finally, we have implemented ACTS and deployed it on

AWS Lambda for extensive performance evaluation. Real-
world experiments have been conducted with various data
anaytics workloads at different scales, including three types
of queries over Uservisits and Rankings datasets, sort, and
two different machine learning workloads. Results demonstrate
the effectiveness of ACTS in automatically configuring and
orchestrating lambda functions for data analytics towards
monetary cost minimization. Compared with the state-of-the-
art baselines, ACTS consistently exhibits its advantages of cost
saving, as well as performance improvement: it achieves cost
reduction up to 98% for the queries workloads, at least 49%
for the machine learning jobs, and up to 45% for the sort job,
while maintaining superior job completion time performance
with 6% to 62% improvement.

The rest of the paper is organized as follows. Sec. II
presents the background of serverless analytics and motivates
our design of ACTS with an intuitive example. Sec. III presents
our proposed approach on task-level orchestration in detail.
Sec. IV implements ACTS and demonstrates its advantages
over the baselines with real-world experiments. Sec. V dis-
cusses the related work, and Sec. VI presents concluding
remarks.

II. BACKGROUND AND MOTIVATION

In this section, we present a brief background of serverless
computing, particularly focused on data analytics. We then
identify the limitations in current serverless analytics and
motivate our design with an intuitive example.

A. Serverless Data Analytics

Serverless computing has emerged as a promising paradigm
with increasing popularity because of its ability to simplify
the code deployment with one-click upload and lightweight
execution. With serverless computing, users no longer need to
handle the complexities of cluster provisioning and manage-
ment. The fine-grained pay-per-use billing model and high-
elasticity in serverless computing also benefit a user in terms
of cost efficiency, since the user does not have to pay for idle
virtual machines during workload dynamics as in traditional
cloud computing. Due to these compelling features, the past
several years have witnessed the computing paradigm shift
among a wide array of real-world applications ( [5]-[7], [17]-
[19] efc.), including data analytics (e.g., [7]).

However, such a paradigm shift is nontrivial for data ana-
Iytics applications, which typically proceed in interdependent
computation stages. Although parallel tasks within a single



stage can be directly mapped to stateless serverless functions,
the intermediate data transfer across consecutive stages poses
challenges in the serverless environment, as direct communica-
tions between serverless functions are not supported by cloud
providers [4]. Existing works thus turn to commercial storage
or caching services (such as Amazon S3 [14], ElastiCache
[20]) or build dedicated far-memory systems (Pocket [8], Jiffy
[9], etc.) for state sharing at extra expense. The choice of
data transfer mechanism would impact the end-to-end job
completion time, as well as the total monetary cost. Another
performance factor with serverless architecture is the function
cold-start latency, which is the time taken for allocating an
ephemeral container and initializing function modules when
the function is launched for the first time. Thus, leveraging
warm containers when planning task executions offers an
intuitive optimization perspective for job completion time per-
formance. Finally, cloud users have more flexibility for their
jobs on serverless platforms, as resources are allocated and
charged at function-level granularity. With such flexibility, the
promise is that a user could plan its end-to-end job execution,
by launching functions at just the right time and allocating
function resources with just the right amount, to optimize
his cost-efficiency. However, there lacks general guidance on
fine-grained function scheduling and resource configuration,
making it hard for cloud users, especially nonexperts in
distributed computing or programming, to navigate the large
design space with coupled decision variables. Therefore, in
this paper, we are motivated to tackle these challenges in
serverless analytics, to fulfil its promise on cost efficiency to
an maximum extent.

B. Motivation Experiment

We consider an example MapReduce job for Wordcount to
motivate our desgin for serverless data analytics. As a sample
execution setting, without loss of generality, eight mappers are
launched concurrently, followed by three reducing stages, as
shown in Fig. 2. More specifically, reducer s1r1 in the first
reducing stage reads and handles the outputs from mappers
m1, m2, and m3. Similarly, reducers s1r2 and s1r3 process
the outputs of m4-m6 and m7-m8, respectively. In the next
reducing stage, reducer s2r1 is executed to handle the outputs
from reducers s1r1 and s1r2 in the previous stage. The final
reducer s3r1 processes the intermediate data from s2r1 and
s1r3. All the intermediate data are communicated through
standard storage service. The memory size for each lambda
function is 256 MB. Fig. 2 presents the execution timeline of
the MapReduce job on AWS Lambda, under different schedule
of function tasks, respectively. The block length for each
function task represents the function running time (or the task
execution/completion time), including the storage reading and
writing time.

In Fig. 2a, tasks are scheduled with the Lazy approach: a
task will not be started until all its upstream tasks, i.e., the tasks
with the outputs it needs to read, have finished. As illustrated,
s1r1 is scheduled when the slowest mapper m1, among all the
upstream tasks m1-m3, finishes. Following such a scheduling,
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Fig. 2: Execution timeline of a MapReduce job for Wordcount under three
different scheduling (and different state sharing) of function tasks in the
serverless environment: (a) /lazy scheduling as the default, (b) NIMBLE [12]
scheduling as the state-of-the-art, (c) ACTS scheduling as our approach.

the job completes when the last task s3r1 finishes, yielding
a job completion time of 248 seconds. Fig. 2b presents the
timeline when tasks are scheduled with NIMBLE [12], the
state-of-the-art task-level scheduling algorithm for serverless
analytics. The general idea of NIMBLE is to optimally overlap
the downstream reading with upstream computation, so that
the non-pipelineable computation in the downstream task can
start as soon as possible for fastest job completion while
the pipelineable data reading takes the shortest possible time
for minimum monetary cost. As shown in Fig. 2b, each
reducer task can be split into read and computation phases,
which are pipelineable and non-pipelineable, respectively. For
reducer s1r1, its computation phase starts almost immediately
when the last mapper it relies on ( m1) finishes, as the data
reading phase is ideally scheduled and overlapped with the
upstream mappers. Such a pipelining way of reading and
computation continues until the final stage, resulting in a faster
job completion time of 175 seconds compared with the lazy
schedule.

Next, we present our proposed idea of task-level function
orchestration, applied to the same Wordcount workload. As
previously illustrated by Fig. 1, warm lambdas and REST
data transfer will be leveraged in our framework named ACTS.
Fig. 2c presents the execution of function tasks with ACTS,
where mappers m7 and m8 invoke m1-m5 and m6, respectively,
at appropriate time instants through REST API. When the



Algorithm 1 Orch_Heuristic

Input: 7{: The list of input object size, O, @

Output: Orchestration j
1: Define N <« 0, boolean stagecheck=TRUE, Orchestration j
2: while stagecheck do //Create stage s

3: N < N + 1, warmcheck < FALSE
4:  Define list Lambdas < AL A2, .\ list output
5: for ¢ +— Lambdas do
6: Create a list warmsets ;
7: Allocate object size fi],s from H with A\¢
8: Append the binary label warm W; s =1 to AL
9: Append % to warmsets ;
10: Define Size < f]  + fij’s/z
11: Remove \i from Lambdas
12: for | + Lambdas do
13: Size < Size + fljys/z
14: Allocate object size fis from H with )\é
15: if (Size >= O or fis/z >= (@) then Break
16: else
17: Append the binary label warm W; s = 0 to AL
18: Append A to warmsets ;
19: warmcheck=TRUE
20: Remove A\, from Lambdas
21: Append output size (Size — fij’s)/z to output
22: Append warmset; ; to Orchestration j for stage s

23: H <+ output

24: if length of H{==1 then stagecheck=FALSE

25: if warmcheck==FALSE then Set Orchestration [j] as NULL
26: Break

27: Return Orchestration j

functions m1-m5 finish computing, they will transfer their data
back to the function m7 which invokes them. Upon receiving
all the data through REST, function m7 will be kept alive and
proceed to the next stage processing, which is the reducing.
The same applies to function m8. All the functions have the
same memory allocation as in the previous settings. Compared
with the previous two approaches in Fig. 2, our approach
ACTS, with resource configurations yet to be further optimized,
manages to reduce the job completion time by about 35%
over the state-of-the-art NIMBLE scheduling, as evidence by
the completion time in Fig. 2c. Moreover, with respect to the
monetary cost for executing the same analytics, ACTS achieves
at least 63% cost saving compared to lazy and NIMBLE
scheduling. Such an improvement is due to multi-dimensional
factors, including better execution plan, workload distribution,
and the advantages of warm functions and REST data transfer.

III. DESIGN OF ACTS FOR COST-EFFICIENT SERVERLESS
ANALYTICS

Based on the observations from our motivation experiment
in Section 2, we present the detailed design of our serverless
analytics framework in what follows.

A. Task Orchestration

Our two-phase job modeling consists of mapper and reducer
phases. The reducer phase has more than one stage. We
consider a particular orchestration j. Each stage s can have
a total of Py(s € {1,2,, N}) number of lambdas. The warm
lambdas in each stage are labeled as W; s = 1. In each stage, a
lambda processes the input data of size fi]’ - Bach lambda will

1
£
=
K]
g
=
H
H
g
=
2
=

— o I
Lazy NIMBLE Orch_Heuristic Lazy NIMBLE Orch_Heuristic

(a) Cost (b) Job completion time
Fig. 3: Job completion times and monetary costs of three different settings:
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output the objects with smaller size as ff /%, where z is the
assumed deviation of lambda processed output. For example,
in the first stage, the first lambda will read the objects with
a total size of f{ . We consider this lambda Al as a warm
lambda. Consider that the next stage’s first lambda reads A{’s
output. So, AP’s input is f{, = (f{,/z+ f3,/z+ f3./2)/=.
Here fil and f§,1 are the inputs of the first stage lambdas that
are attached to the warm lambda A\1. The orchestration j can
have flexible resource allocation and provisioning, including
the number of stages, the number of lambdas in each stage,
any number of warm lambdas in each stage, and any lambdas
that can be attached to a warm lambda W; ; = 0.

We propose a heuristic called Orch_Heuristic to distribute
computation workloads to the lambdas, select and label warm
lambdas, and append a set of lambdas to the warm lambdas.
Our Algorithm 1 develops an orchestration using the heuristic
considering temporary storage limitation O and REST data
transfer limitation () with a serverless platform. Algorithm
1 creates a particular orchestration for a given set of object
sizes H. The loop (line 5) runs the stages to create an
orchestration j until the final output of that stage is empty. In
each stage, the algorithm labels warm lambdas as W , = 1,
attaches objects sizes, and creates a set of lambdas (W; s = 0)
called warmsets; for each warm lambda (1ines 7-9). The
algorithm checks the need for temporary storage and data
transfer size of each warm lambda when appending the other
lambdas to warmset; ; over the limitations O and ) (lines
15-20). For each stage, when each set of lambdas W; , = 0 or
1 is ready, the warmset ; is appended to the jth orchestration
(lines 22). At the end of each stage, the outputs are stored
in the list . If /{ has only one output then it will be the
final output (line 24). Otherwise it will go to the next stage
and continue the loop. We check whether there are lambdas
W;,s = 0 attached to warm lambdas to avoid creating more
stages like other existing approaches with fixed orchestrations
(line 25). Finally, Algorithm 1 returns the orchestration j.

We implement Algorithm 1 in Python, execute it for a
10 GB two-phase (MapReduce) Wordcount job, and find the
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orchestration for one input object size per lambda. Then we
run the orchestration on the AWS Lambda platform. We
execute the same job using lazy and NIMBLE approaches.
All three settings are allocated the same randomly selected
memory of 1536 MB. We present the results of job comple-
tion time and total cost in Fig. 3 to evaluate our algorithm
against the other two. Fig. 3b shows 28% performance
improvement for Orch_Heuristic compared to the NIMBLE
approach and Fig. 3a shows at most 71% cost reduction for
Orch_Heuristic over other settings. The NIMBLE approach
uses two EC2 instances whereas lazy uses S3 for the data
transfer. Orch_Heuristic gives 65% cost reduction compared
to the NIMBLE approach without incurring the EC2 instance
cost. The reason behind the results of Orch_Heuristic is that it
carefully packs the objects into warm lambdas and runs in two
stages, while other approaches complete the job through four
stages. Also, Algorithm 1 reduces the lambdas’ initialization
times by aggregating tasks in warm lambdas, and reduces the
cost as well as time by REST data transferring.

B. Resource Configuration

In AWS Lambda, we can allocate the memory for a lambda
from 128 MB to 10,240 MB in unit MB increments. The CPU
capacity of a lambda function is proportional to the allocated
function memory. We elaborate on the benefits of appropriate
resource allocations and provisioning by executing a 10 GB
Wordcount job on AWS Lambda in three different settings.
Setting 1 (called ran_mem) and setting 2 (called diff_mem)
follow Algorithm 1 for one object per lambda. ran_mem is
allocated with 1536 MB for all stages, whereas different ran-
domly selected memories for each stage (512 MB, 1024 MB)
are allocated for diff_mem. The setting 3 diff_obj allocates two
objects per lambda and different memories for different stages
(1024 MB, 2048 MB). Fig. 4a and Fig. 4b show the monetary
costs and job completion times, respectively, for the three
settings. There is 8% completion time reduction in ran_mem
over diff mem. Since diff obj allocates more objects than
other settings, the number of lambda invocations is smaller.
However, diff_mem shows at least 20% cost reduction over
the other two settings. Thus, a number of factors, including
memory allocations, the number of lambdas, and object size
allocations (i.e., workload distributions), collectively impact
the job performance and cost on serverless platforms. This
sample experiment shows that our heuristic (Algorithm 1)
can be coupled with variables of different dimensions to
generate different orchestrations. In the upcoming subsections,

we derive a cost model and formulate a cost optimization
problem to navigate the design space of multi-dimensional
variables such as memory allocation and function scheduling.

C. Cost Modeling

We define a binary variable y;(j € 1,2,,n) for each
orchestration j, where n denotes the length of a complete
set of possible orchestrations for a MapReduce job. In an
orchestration j (generated by Algorithm 1), the total number of
possible stages, including mapper and all reducer stages, is N.
Each stage s can have a total of Ps(s € {1,2,, N}) lambdas.
Each lambda i(i € Ps) in stage s appends the details such as
whether it is warm or not (warm lambda is represented with
Wi.s = 1), the lambdas that belong to a warm lambda (I € g;:
q; represents the set of lambdas which belong to the warm
lambda ¢), and the set of objects’ sizes ff . We use the words
step and stage interchangeably and will add explanation where
used differently.

As mentioned in the previous subsection, in AWS Lambda,
we can allocate the memory for a lambda within the 128
MB to 10,240 MB range. The CPU allocation of a lambda
function is roughly proportional to the function memory range.
AWS Lambda can allocate 2 to 6 vCPUs to a function. For
example, when configuring memory within the 128 - 3008
MB range, a maximum of 2vCPUs can be allocated by the
provider. Similarly, different ranges of memory blocks will
lead to a different allocation of vCPUs. Fig. 5 presents the
lambda processing time of a 1IMB job (deployed on a single
lambda) given four different ranges of memory allocations.
All the four ranges show relatively small variations in lambda
processing time within the ranges. The three ranges 128-137
MB, 1435-1444 MB, and 2999-3008 MB are associated with
the CPU allocation of 2 vCPUs while the 5308-5317 MB
setting has 4 vCPUs. Hence, the gap of the processing times
between the memory allocations of different CPU capacities is
larger than between the settings of memory blocks associated
with the same CPU allocation. The cost of a lambda function
largely relies on its runtime and the price of its compute
resource allocation (memory size). Based on the experimental
observation in Fig. 5 and for problem tractability, we consider
a total of L types of memory allocations, which evenly spread
out the allowable range.

We use binary variable z7 ., (k =1,2,---,L) to specify
whether the k-th type of memory is allocated out of the L
categories for lambdas of stage s. Intuitively, we have
@i, €401}, Vke{1,2,---,L}; S at,=1 ()
which indicates that only one category of memory allocation
can be assigned by nature. For an orchestration j from
Algorithm 1 in AWS Lambda, REST data transfer is used
between warm and other lambdas within an individual stage,
whereas Amazon S3 is used between stages for intermediate
data storage. Since Algorithm 1 compacts stages into a fewer
number than that in the lazy approach, the need for S3 is
very less or eliminated. The total cost of a particular lambda
includes the S3 input read cost and its own processing cost.
In addition, if it is a warm lambda, the total cost further



includes the processing cost of the outputs from other lambdas
belonging to it and the S3 write cost. Otherwise, the total
cost of a non-warm lambda includes the REST transfer cost.
Data read request cost per second is denoted as D. The size
of input read by the ¢ th lambda is (y,f/). The S3-Lambda
bandwidth is denoted as B. The warm lambdas (W; , = 1)
write the output to the S3. Data write request cost per second
is denoted as G. The warm lambda output is expressed as
Fl o = [(f]s/2) +Xie,, (1] /2)]/ 2. The lambdas (W; s = 0)
that belong to a warm lambda transfer their outputs to the
warm lambda. Data transfer cost per MB size is denoted
as E. We use v; and uj, to represent the price and unit
computation time of the particular type of lambda. Then we
have the read, processing, write and transfer costs expressed
as:

Ureaa = D(y; f],)/B @)
Uprocess = Domr #5105 1[0 17) + Wiy 17,) /248)

Wi s Zleqi (yjflj;s)/z} > kec V5 T g
Uwrite = (G/B)Wi o(y;F}..), Usena = E(yjflj;s)/z “4)
The initialization time of a lambda is denoted as ¢;, and

the invoking cost is represented as I. Then the total cost of a
lambda can be expressed as:

Cijas = Uread + U;m’ocess + Uypritet (5)
(1- Wi7S)Usend +1+t Zkeﬁ U;,kx;,k

D. Cost Minimization

The objective of our formulation is to minimize the mon-
etary cost, which is 37, > cn D iep, C ,, over variables
y; and x7 ., represented as follows.

Flzy) =Y Y > i, 6)

JEN sEN i€ P;s
s.t. Eq.(l),yj € {0, 1}, Vj € {1, 2, ,n} (7

For a particular orchestration j,7; = 1, the objective Eq. (6)
can be written as G(x, y). Now the formulation on variable z
is:

min
I)y

min
T

G(z,9) ®)

s.t. Eq. (1) &)
The formulation falls into the category of linearly-constrained
zero-one quadratic program on &, given any y. The objective
in Eq. (8) consists of constant items ( fis, z,G, B, etc. from
Eq. (6)). Replacing them with real numbers Q)5 and P}, for a
particular j, we can rearrange the formulation as:

L L
min E Qjz T + E Pjx;
z
Jj=1 Jj=1

st x; €{0,1}F (11)
To solve this problem, we build a quadratic convex reformu-

lation using semidefinite relaxation [21]. As we do not have
any equality constraint, replacing the product of z;x; by a

(10)

variable X; yields:

L L

min ZQij+Zijj (12)
7j=1 7j=1

S.t. X]’ = l'jl'j,fl,'j S {0, 1}L (13)

Using the semidefinite relaxation of the previous formulation,
we can replace the constraints Eq. (15) and (16) with the

linear matrix inequality X = xz® > 0. From Schur’s Lemma
t

x] > 0. Now the

[22], the linear matrix is equivalent to e

obtained form of SDP relaxation is:

L L
min > Q;X;+ > P (14)
j=1 j=1
t L2 o) seRL X est (15)
s.t. s x| 2Y T ,

Here the ST defines L x L symmetric matrix. Now we
use the optimal solution to this SDP in order to build a
quadratic reformulation. We introduce the QCR method [21]
of reformulating the formulation by adding a combination of
quadratic functions that can vanish on a feasible solution set
X. For any u € RF

L L L
Gu(x,9) =Y Qzjm; + Y Pixj+ Yy pi(a3 —x;) (16)
j=1 j=1 j=1

The function G,,(z,y) is a reformulation since for all z € X,
G.(z,y) is equal to G(z,y). And we have to find the
w such that G,(x,y) is convex. So, from the semidefinite
relaxation, G(z,y) is transformed into convex. We can solve
the reformulated problem (16) using mixed-integer convex
quadratic programming. It has already been proved in [21]
that solving the above semidefinite relaxation SDP allows us
to deduce optimal values for p. The optimal value y of
pizj € {1,2,---,L} will be given by the optimal values of
the dual variables associated with constraint (20). The resulting
quadratic convex reformulation is:

RQconv : Min G- (z,y)
st. oz €{0,1}F
The formulation Eq. (7)-(9) can be rewritten as,

L n n L
OX,y) DD an; X+ by + > dpy (19)
j=1 k=1

k=1j=1

7)
(18)

min
zeRY yeR™

t
E f;,] >0, Eq. ()and(7) z € RF, X € S* (20)

Here real number ay;, b;, and dj consists of constants
( fij’yz,G,B, etc.) from Eq. (6). We denote that ¢,,;, and
p are the optimal values of (19) and (8) for a particular y,
respectively. We’ve shown that Eq. (6) formulation can be
relaxed on any given y and it is clear that ¢,,;,, <= p. So, the
global minimum of y will give the optimal value for (6). The
formulation (19) confirms that it is a binary quadratic problem.
Hence any MIQP and BQP [23] [24] solvers can be used to
solve this problem.



Algorithm 2 ACTS

Input: M: Number of objects, F: The set of input objects sizes
Output: Orchestration and configuration
: for j «+ [1,5] do
Create object size list H by summing sizes of j objects
Execute Algorithm 1 for input objects H
if Orchestration [j]==NULL then Break

1
2
3
4
5: Define binary variables y and x
6
7
8
9

: Calculate cost as in Eq. (6)
: Define formulation as in Eq. (7)-(9)
. (z,y) <Execute the optimizer
: Define S_MR from (z,y)
10: for s <+ 0, N do //For the S_MR
11: for i < 0, Ps do
12: Calculate launch time <— (T3, — T;), Update S_MR.

13: Execute S_M R on AWS Lambda

REST Transfer

Invoke
Orchestration j

User |
Input

Object size list

Orchestrations (n),
Memory blocks

T\\

Stage n

(‘1\.\

Stage 1

Fig. 6: Architecture overview of ACTS for serverless analytics with au-
tonomous cost-efficient task orchestration.

E. Design of ACTS

We next develop Algorithm 2 to find the cost-minimal
orchestration with the best resource configuration for a two-
phase multi-stage job. First, it creates an input object sizes
list. For example, if the number of objects per lambda is 2
(7 = 2 in line 1), then the sum of each two objects will be
inserted in the list . We assumed the number of repetitions
as 5 for the loop to eliminate big object size summations (#)
and unnecessary time for limitations checking of Algorithm
1. As in line 3, it executes Algorithm 1 and finds the
best orchestration for j, and if there is no set of lambdas
attached to the warm, Algorithm 2 will break and re-enter the
loop (1ine 4). If there is no orchestrations listed, because of
limitations, then the Lazy approach solution will be followed
with memory configurations [13]. Algorithm 2 creates the
formulation in Eq. (7)-(9), executes the optimizer, and finds
the best orchestration (S_M R) with appropriate resource
provisioning plan (1ine [7-91]). For this best orchestration, it
calculates the launch times of each lambda (1ine [11-13]),
to be elaborated soon. Finally, ACTS deploys the orchestration
with appropriate memory configurations using found resource
provisioning plan on AWS Lambda.

Lambda Function Scheduling. In each stage s, warm
lambdas are launched concurrently at the initiation of that
stage. Other lambdas that belong to a particular warm lambda
are invoked by the warm lambda. As shown in Fig. 7, the
launch time of a non-warm lambda is T, — T;. Here T, is

E ] )

S3 read : Process

D)
i

)

W_{i,s}=1 [ S3 read Process

W_{i,s}=0

Fig. 7: Function launch time.

the summation of S3 read and processing time of the warm
lambda’s own input. 7; is the summation of S3 read and
processing time of the lambda attached to the warm lambda.
The following equations substitute lambda ¢ with warm for
warm lambda and nwarm for the other attached lambdas.

. I s s .
Ty = (yjfzjuarm,s)/B + Zk:l xj,kuj,kyjfljilarm,s 2D

Ty = (3 Fwarm,s)/ B+ Sy 05685 19 Fwarm,s— (22)

Now, we are ready to integrate each component into our
automated prototype ACTS for the fine-grained task-level
orchestration. As illustrated in Fig. 6, given the user input,
the Profiler creates multiple orchestrations as in Algorithm
2 (line[1-5]) using the Orch_Generator component and
passes the orchestrations and the selected memory blocks (as
explained in Section 3.2) to the Cost Optimizer. Then the
Cost Optimizer runs the solver and results in the best orches-
tration with resource provisioning plan and configurations as
in Algorithm 2 (1ine[6-10@]). Finally, the Driver deploys
and executes the analytics job on the serverless platform
accordingly.

IV. PERFORMANCE EVALUATION

In this section, we present the implementation of ACTS, and
evaluate its performance with real-world experiments.

A. Prototype Implementation and Experimental Setup

ACTS prototype is implemented to run on the AWS Lambda
platform. The algorithm explained in the previous section
is implemented in Python to run on the client machine. It
includes the profiler and optimizer. After orchestration is
ready, the prototype is deployed as Mapper and Reducer
task zip files in the AWS Lambda platform, and input is
uploaded to the AWS S3. ACTS utilizes REST API to handle
the intermediate data transfer. We have implemented different
baseline settings to compare with our prototype.

Baseline Lazy: The MapReduce style prototypes such as
PyWren [16] and Locus [7] follow the Lazy scheduling as
explained in previous sections. Our baseline has the multi-
stage MapReduce style, and functions are allocated 3008 MB
of memory. It consists of a number steps with 1 object per
mapper and 2 objects per reducer. Here AWS S3 is used to
store the input and intermediate outputs.

Baseline NIMBLE: NIMBLE baseline is implemented by
following the state-of-the-art Caerus. Since it does not consider
any technique to allocate memory or objects per lambda,
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Fig. 8: Job completion time breakdown of Aggregation query workload under Lazy, NIMBLE, and ACTS settings.

we follow the same configuration as our baseline Lazy. We
employed two m4.4xlarge instances to handle the intermediate
outputs and AWS S3 to store input data.

In our evaluations, we illustrate the performance and mone-
tary cost with error bars of standard deviation by running each
of the experiments three times. In the following subsections,
we present the results and analysis of three groups of exper-
iments. We compare our ACTS with the two baselines Lagzy
and NIMBLE for various data analytics workloads, including
three different BigData Benchmark queries [25], two machine
learning workloads, and MapReduce sort (100GB).

B. Results and Analysis

Big Data Benchmark. In our first set of evaluations, we
run the three Big Data Benchmark queries in three different
settings: Lazy, NIMBLE and ACTS. Here, the selection queries
(Scanla, Scan2a) of the PageRank algorithm are executed
over the Rankings dataset, with 90 million rows and a size
of 6.38 GB. More specifically, Scanla and Scan2a are se-
lection queries that correspond to two different conditions of
pageRank>1000 and pageRank>100, respectively. Aggrega-
tion query, referred to as Aggregation2a, is evaluated on the
Uservisits dataset with 155 million rows and 25.4 GB size.

Fig. 9a presents the total monetary cost of our prototype,
in comparison with the two baselines, over the three different
queries stated above. Our ACTS shows 91%, 93%, and 53%
cost reductions over Lazy approach. The task orchestration
with ACTS results in 3 stages for two Scan queries and 4 stages
to finish the Aggregation query, whereas the Lazy setting
has 5 stages to finish the selection queries and 9 stages for
the aggregation query. Leveraging warm lambdas and REST
data transfer together lead to the reduction of intermediate
storage cost and function invocation cost in ACTS, as com-
pared to Lazy. Also, the coarse-grained sub-optimal memory
allocations with Lazy is avoided by fine-grained appropriate
configurations in ACTS, contributing to the reduction of the
total monetary cost. Compared with the NIMBLE baseline,
ACTS shows nearly 98%, 98%, and 82% reductions in total
costs. If we do not account for the cost incurred by the EC2
instances used in NIMBLE for intermediate data sharing, ACTS
still exhibits nearly 60%, 63%, and 45% cost savings.

While ACTS is demonstrated to optimize the monetary cost,
it also exhibits advantages with respect to job completion time
performance, achieving better or at least similar performance
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Fig. 9: Monetary costs and job completion times of different queries workloads
under Lazy, NIMBLE, and ACTS settings.
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Fig. 10: Monetary costs and job completion times of machine learning
workloads (KNN and KMeans) under Lazy, NIMBLE, and ACTS settings.

level compared to the baseline approaches. As evidenced
by Fig. 9b, ACTS shows 62%, 58%, and 58% performance
improvement compared to Lazy. Also, ACTS shows 28%,
25%, and 6% performance improvement over NIMBLE. The
reasons for the performance improvement include the usage
of warm lambdas (task aggregation), REST data transfer, ap-
propriate stage level memory allocations, judicious association
of lambdas with each warm lambda, and reduced number of
stages, which contribute to the cost minimization as well. In
a more intuitive way, Fig. 8 presents the stage-level timeline
breakdown for the Aggregation 2a query job, to more clearly
illustrate the job execution details under different settings. The
Lazy and NIMBLE prototypes in Fig. 8a and Fig. 8b execute
202 lambdas concurrently in stage 1 since they don’t follow
any heuristic to check objects sizes and distribute workloads.
In contrast, the heuristic with ACTS presented in Algorithm 1
carefully packs the input objects in stage 1 by considering the
platform limitations like temporary storage and data transfer
(for REST) sizes. Also, ACTS uses S3 as intermediate storage
within stages for only three times. As shown in Fig. 8c, all
the warm lambdas start the execution concurrently whereas
others are launched at different times calculated by Algorithm
2. The Lazy approach starts all the lambdas concurrently in
all stages when the outputs are ready for intake in each other
stage. NIMBLE’s first stage lambdas execute concurrently and



continue launching the next stage when a part of the output
is ready. Due to the appropriate workload assignment across
lambdas through Algorithm 2, the total number of lambda
invocations is fewer in ACTS compared to the other two
baselines. These reasons behind the performance improvement
of ACTS contribute to the cost saving as well. For example,
fewer lambda launches, less usage of storage services, and
fine-grained appropriate memory allocations also reduce the
monetary cost of ACTS compared to the baselines.

Machine Learning Analytics. We further evaluate the mon-
etary cost of ACTS in comparison with the baselines Lazy and
NIMBLE for two machine learning workloads elaborated as
follows. The first evaluation involves the K-nearest neighbors
algorithm for classification problems. This supervised classifi-
cation algorithm classifies unlabeled data from labeled inputs
by comparing the k£ numbers of known classified neighbors.
The similarities can be calculated based on Euclidean distance,
Manhattan distance, or Hamming distance. We execute the K-
nearest neighbors in ACTS, Lazy , and NIMBLE prototypes
following the MapReduce paradigm. More specifically, map-
pers compute the Euclidean distance, and reducers sort the
distances and predict using k-closest neighbors. The K-nearest
neighbors algorithm is trained on a 10 GB dataset to predict the
price of a laptop given its configuration. Fig. 10a and Fig. 10b
present the evaluation results in terms of monetary cost and job
completion time for two types of jobs, including the K-nearest
neighbors job referred to as KNN. As clearly observed, ACTS
results in 49% cost reduction compared to Lazy, and 96% cost
reduction over NIMBLE.

The second job is the K-means clustering, an unsupervised
machine learning algorithm that discovers patterns by grouping
similar data points into K clusters. ACTS, Lazy, and NIMBLE
implement it in the MapReduce form. Mappers accept data
and a list of centers (global constant), compute the nearest
center for each data, and finally store centers and their data
points. Reducers take the former outputs from mappers and
compute the new centers based on distance calculation. Each
iteration is transformed into a series of reducer steps. We apply
K-means clustering on a 10 GB seeds dataset. As shown in
Fig. 10a, ACTS achieves 56% and 96% cost reductions over
Lazy and NIMBLE approaches, respectively. When eliminating
the cost of EC2 instances for NIMBLE, ACTS still shows
60% cost reduction over it. While minimizing the cost, ACTS
also manages to achieve 33% and 15% performance improve-
ment over Lazy and NIMBLE, respectively, as illustrated in
Fig. 10b. Therefore, ACTS works effectively and maintains its
advantages over the baselines for the MapReduce convertible
machine learning workloads.

MapReduce Sort. Finally, we evaluate our prototype with a
100 GB sorting job, still in comparison with the two baseline
settings. Fig. 1la and Fig. 11b present the total monetary
cost and completion time of the job achieved by ACTS, in
comparison with Lazy and NIMBLE. Again, ACTS shows 45%
and 9% cost reductions over NIMBLE and Lazy baselines,
respectively, while achieving 6% and 26% performance
improvements. In summary, ACTS consistently exhibits its
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Fig. 11: Monetary costs and job completion times of Sort (100GB) workloads
under Lazy, NIMBLE, and ACTS settings.

advantages over the state-of-the-art baselines, with respect to
both the monetary cost and job completion time performance.

C. Discussion

The running time overhead of ACTS incurred by the BQP
solver is within a few seconds on a laptop (Intel®Core™;i7-
8750H CPU@2.20 GHzx12,2x8GiB memory). It is expected
that the overhead can be negligible (in milliseconds) on a
more powerful commodity server. Though implemented in
AWS Lambda, ACTS can be adapted to Google Functions
and Azure Functions with minimal modifications in our model
and problem formulation. Extension to other platforms will
be left as our future work. Our current study is focused on a
two-phase (MapReduce style) multi-stage serverless analytics
job. Extending it to a more general data analytics job, with a
complex DAG (Directed Acyclic Graph) of stages, is nontrivial
and remains open, which will be left as our future direction.

V. RELATED WORKS

On serverless platforms, users can deploy and run their
applications without worrying about the infrastructure com-
plexities, charged at the function invocation granularity. To
deploy data analytics applications in the serverless environ-
ment, challenges arise due to the need for data analytics tasks
to exchange intermediate data which is not well supported by
serverless providers. To address the challenges, existing works
either subscribe to commercial storage or caching services
provided in the cloud (such as Amazon S3 [14], ElastiCache
[20]) or manually build far-memory systems (Pocket [8], Jiffy
[9], etc.) that are dedicated and optimized for serverless state
sharing at extra expense. For example, PyWren [16], Server-
less architecture [26], MARLA [27], and Astra [13] utilize
S3 for the intermediate data transfer for MapReduce or query
style analytics jobs. Lambada [28] and Flint [29] leverage SQS
and/or DynamoDB to store and retrieve the data. Locus [7]
extends Pywren and augments shuffle in MapReduce using
expensive fast ElastiCache (Redis) [20] instances combined
with the much cheaper S3 service. Pocket [8] presents a
distributed far-memory system for high-throughput and low-
latency intermediate data transfer of serverless analytics. Jiffy
[9] further enables fine-grained far-memory sharing and multi-
plexing across concurrent serverless analytics jobs. The data-
centric approach [30] provides a data bucket abstraction to
hold the intermediate data generated by functions. Different
from these efforts, ACTS leverages the advantages of REST
API for function invocations and data transfer, aiming at cost
efficiency for serverless analytics jobs.



Apart from the existing state sharing or intermediate data
transfer solutions for serverless data analytics aforementioned,
recently, task level scheduling for serverless analytics has
increasingly gained research attention. Wukong [11] adopts
decentralized scheduling and task clustering in its serverless
framework that can reduce data movement over the network
and improve cost-effectiveness. Orion [31] provisions VMs,
bundles functions, and pre-warms at appropriate timings for
serverless DAG applications according to a distribution-based
latency model which requires repeated dry-runs. The state-of-
the-art Caerus [12] theoretically defines and studies the server-
less scheduling problem for data analytics as a new problem.
It presents NIMBLE scheduling to efficiently pipeline task ex-
ecutions within a data analytics job, minimizing execution cost
while being Pareto-optimal between cost and job completion
time for serverless analytics. Compared to these efforts, ACTS
incorporates the consideration of task level scheduling, while
targeting a more complex problem with multi-dimensional
decisions to make. As demonstrated in our evaluation, task-
level orchestration, coupled with warm containers, REST data
transfer, fine-grained resource provisioning, can be more cost-
efficient.

VI. CONCLUSION

We present ACTS for serverless data analytics in this
paper, which is an autonomous framework that generates
and enforces cost-efficient task orchestration and resource
configuration for data analytics jobs. ACTS relies on function
invocation and state sharing in a mode similar to fork-join,
exploiting warm containers and REST data transfer to reduce
the overhead of cold-start latency and function state sharing.
In addition to the careful scheduling of function invocations,
it further explores the fine-grained resource configuration and
workload assignment space to generate and enforce cost-
minimal decisions. We have implemented ACTS and deployed
it on AWS Lambda for extensive real-world experiments. Eval-
uated with various data analytics workloads, ACTS consistently
exhibits better performance with respect to both monetary cost
saving and job completion time reduction, in comparison with
the state-of-the-art baselines.
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