
ACTS: Autonomous Cost-Efficient Task
Orchestration for Serverless Analytics

Jananie Jarachanthan†∗, Li Chen∗, Fei Xu‡
†University of Jaffna, ∗University of Louisiana at Lafayette, ‡East China Normal University

AbstractÐServerless computing has become increasingly pop-
ular for cloud applications, due to its compelling properties of
high-level abstractions, lightweight runtime, high elasticity and
pay-per-use billing. In this revolutionary computing paradigm
shift, challenges arise when adapting data analytics applications
to the serverless environment, due to the lack of support
for efficient state sharing, which attract ever-growing research
attention. In this paper, we aim to exploit the advantages of task-
level orchestration and fine-grained resource provisioning for
data analytics on serverless platforms, with the hope of fulfilling
the promise of serverless deployment to the maximum extent.
To this end, we present ACTS, an autonomous cost-efficient
task orchestration framework for serverless analytics. ACTS
judiciously schedules and coordinates function tasks to mitigate
cold-start latency and state sharing overhead. In addition, ACTS
explores the optimization space of fine-grained workload distri-
bution and function resource configuration for cost efficiency.
We have deployed and implemented ACTS on AWS Lambda,
evaluated with various data analytics workloads. Results from
extensive experiments demonstrate that ACTS achieves up to
98% monetary cost reduction while maintaining superior job
completion time performance, in comparison with the state-of-
the-art baselines.

Index TermsÐserverless computing, cost-efficiency, data ana-
lytics, cloud resource provisioning

I. INTRODUCTION

Serverless architectures facilitate Function-as-a-Service

(FaaS) in cloud computing, bringing salient features of

lightweight runtime, ease of management, high elasticity, and

fine-grained billing for cloud users. With the wide adoption

of and increasing support for serverless platforms by cloud

providers, such as Amazon Lambda [1], Google Cloud Func-

tions [2], and Microsoft Azure Functions [3], serverless com-

puting becomes a promising paradigm that will revolutionize

cloud programming [4]. The benefits of serverless computing

have been driving the paradigm shift for a wide variety

of application workloads, including real-time video encoding

[5], machine learning [6] and data analytics [7]. By design,

serverless computing is suitable for an application that is easily

decomposed to short-lived stateless functions. However, data

analytics jobs, such as MapReduce jobs, typically consist of

Corresponding author: Li Chen (li.chen@louisiana.edu). This work was
supported in part by the BoRSF under Grants LEQSF(2019-22)-RD-A-21 and
LEQSF(2021-22)-RD-D-07, in part by the NSF under Awards OIA-2019511
and CNS-1650551, in part by the NSFC under Grant 61972158, and in part
by the Science and Technology Commission of Shanghai Municipality under
Grants 20511102802 and 22DZ2229004.

sequential execution stages, decomposable to functions that

are parallel within an individual stage but stateful across

consecutive stages. As such, it remains challenging to fulfil

the promise out of the serverless shift for data analytics

applications. More specifically, the challenges arise from the

following coupled consideration: lowering the overhead of

cross-stage state sharing, requesting function resources wisely,

and scheduling functions for performance-oriented or cost-

oriented objectives.

To address these challenges, a number of ephemeral state

sharing solutions [7], [8] [9] have been proposed for serverless

analytics, which rely on far-memory [10]systems for high-

throughput and low-latency intermediate data transfer across

function tasks. These solutions, however, sacrifice cost effi-

ciency for application performance, incurring extra cost to

build the far-memory systems or subscribe to faster storage

services. On the other hand, several existing efforts focus on

the orthogonal perspectives of function scheduling [11] [12]

or fine-grained resource configurations [13] for job completion

time and cost efficiency objectives.

In this paper, we propose our solution based on a com-

prehensive consideration of all the challenging issues stated

above. In particular, we leverage the benefit of REST API for

function-to-function data transfer, pipeline function tasks with

the exploit of warm lambdas, and allocate function resources

judiciously, to offer an optimal end-to-end execution plan for

serverless analytics. We articulate the benefits to motivate our

design with an example of a MapReduce job to be executed

in the serverless environment. Vanilla analytics frameworks

usually launch tasks of a stage only when all the tasks of the

previous stage have finished, which is called a lazy approach.

When deploying the MapReduce job on a serverless platform,

the lazy schedule would not invoke the reducer functions until

all the mappers outputs are ready, i.e., written into the storage

such as Amazon S3 [14] as the naive design. The execution

timeline of the example job with three mappers (of different

size) and one reducer is shown in Fig. 1a.

Now if we keep a mapper lambda alive and reuse it for

the reducing task, the invocation and initialization time of

the reducer can be saved, as depicted in Fig. 1b. In addition

to mitigating the negative effect of function cold start [15],

the approach in Fig. 1b also reduces the storage read/write

overhead due to the data locality at Map3, in comparison with

Fig. 1a. We can further eliminate the storage read/write of

intermediate data by facilitating direct data transfer across979-8-3503-9973-8/23/$31.00 ©2023 IEEE

Time

Map1
Map2
Map3 Red1

Invocation & initialization time Storage read time Storage write time REST transfer time

(a) Lazy (b) Warm Lambda

Map1
Map2
Map3

Map1
Map2
Map3

(c) REST data transfer and Warm Lambda

Time
Red1

Time
Red1

Fig. 1: Execution timeline of a MapReduce job, with three mappers (of different sizes) and a reducer, under different settings in the serverless environment:
(a) Default lazy approach, state sharing through storage service, (b) Warm lambda for the reducer, state sharing through storage service, and (c) Warm lambda
for the reducer, state sharing through REST API.

tasks through REST APIs. The challenge, however, is to

schedule the execution of functions so that the functions

invoking and invoked will not have to wait for each other

for data transfer. For example, if Map3 invokes Map1 and

Map2 at the start of its execution and fetches data after its

mapping finishes, similar as the execution order in Fig. 1b,

Map1 and Map2 will be largely prolonged until the reducer

finishes data reading, which increases the monetary cost. Thus,

a better scheduling is desired as in Fig. 1c, to fully utilize the

advantages of direct transfer and optimize the cost efficiency.

Another challenge, as well as an opportunity, is the fine-

grained workload distribution and resource configuration for

multi-stage analytics jobs, subject to platform limitations on

function resources and data transfer size. For cloud users,

there is little general guidance on serverless provisioning

among the large configuration space, including the per-stage

parallelism, per-function invocation scheduling and resource

allocation, etc. Existing frameworks (e.g., Pywren [16] and

Caerus [12]) for serverless analytics typically have coarse-

grained task orchestration and resource provisioning, which

may easily result in a suboptimal deployment, incurring extra

billing costs for cloud users.

Having identified all the aforementioned potential and chal-

lenges, in this paper, we present ACTS, an Autonomous

Cost-efficient Task orchestration framework for Serverless

analytics. To mitigate the adverse effect of function cold start

and reduce the overhead of function state sharing (i.e., inter-

mediate data transfer across functions), ACTS schedules and

coordinates function tasks in a mode similar to fork-join. In

particular, in each computation stage, a group of functions will

invoke other functions through REST following the schedul-

ing decisions and receive their states upon their completion.

Leveraging the benefits of warm containers, this group of

functions will continue for the next stage processing, avoiding

cold-start latency and state sharing overhead if new functions

were invoked. The scheduling of function invocations will be

judiciously determined in ACTS to avoid function idle time

waiting for data transfer. ACTS further explores the space

of fine-grained workload distribution and function resource

configuration for cost efficiency. Based on a cost model, ACTS

solves an optimization problem to minimize the monetary

cost of a serverless data analytics job, without violating the

platform limitations such as the function temporary storage

size and the data transfer size.

Finally, we have implemented ACTS and deployed it on

AWS Lambda for extensive performance evaluation. Real-

world experiments have been conducted with various data

anaytics workloads at different scales, including three types

of queries over Uservisits and Rankings datasets, sort, and

two different machine learning workloads. Results demonstrate

the effectiveness of ACTS in automatically configuring and

orchestrating lambda functions for data analytics towards

monetary cost minimization. Compared with the state-of-the-

art baselines, ACTS consistently exhibits its advantages of cost

saving, as well as performance improvement: it achieves cost

reduction up to 98% for the queries workloads, at least 49%
for the machine learning jobs, and up to 45% for the sort job,

while maintaining superior job completion time performance

with 6% to 62% improvement.

The rest of the paper is organized as follows. Sec. II

presents the background of serverless analytics and motivates

our design of ACTS with an intuitive example. Sec. III presents

our proposed approach on task-level orchestration in detail.

Sec. IV implements ACTS and demonstrates its advantages

over the baselines with real-world experiments. Sec. V dis-

cusses the related work, and Sec. VI presents concluding

remarks.

II. BACKGROUND AND MOTIVATION

In this section, we present a brief background of serverless

computing, particularly focused on data analytics. We then

identify the limitations in current serverless analytics and

motivate our design with an intuitive example.

A. Serverless Data Analytics

Serverless computing has emerged as a promising paradigm

with increasing popularity because of its ability to simplify

the code deployment with one-click upload and lightweight

execution. With serverless computing, users no longer need to

handle the complexities of cluster provisioning and manage-

ment. The fine-grained pay-per-use billing model and high-

elasticity in serverless computing also benefit a user in terms

of cost efficiency, since the user does not have to pay for idle

virtual machines during workload dynamics as in traditional

cloud computing. Due to these compelling features, the past

several years have witnessed the computing paradigm shift

among a wide array of real-world applications ([5]±[7], [17]±

[19] etc.), including data analytics (e.g., [7]).

However, such a paradigm shift is nontrivial for data ana-

lytics applications, which typically proceed in interdependent

computation stages. Although parallel tasks within a single

stage can be directly mapped to stateless serverless functions,

the intermediate data transfer across consecutive stages poses

challenges in the serverless environment, as direct communica-

tions between serverless functions are not supported by cloud

providers [4]. Existing works thus turn to commercial storage

or caching services (such as Amazon S3 [14], ElastiCache

[20]) or build dedicated far-memory systems (Pocket [8], Jiffy

[9], etc.) for state sharing at extra expense. The choice of

data transfer mechanism would impact the end-to-end job

completion time, as well as the total monetary cost. Another

performance factor with serverless architecture is the function

cold-start latency, which is the time taken for allocating an

ephemeral container and initializing function modules when

the function is launched for the first time. Thus, leveraging

warm containers when planning task executions offers an

intuitive optimization perspective for job completion time per-

formance. Finally, cloud users have more flexibility for their

jobs on serverless platforms, as resources are allocated and

charged at function-level granularity. With such flexibility, the

promise is that a user could plan its end-to-end job execution,

by launching functions at just the right time and allocating

function resources with just the right amount, to optimize

his cost-efficiency. However, there lacks general guidance on

fine-grained function scheduling and resource configuration,

making it hard for cloud users, especially nonexperts in

distributed computing or programming, to navigate the large

design space with coupled decision variables. Therefore, in

this paper, we are motivated to tackle these challenges in

serverless analytics, to fulfil its promise on cost efficiency to

an maximum extent.

B. Motivation Experiment

We consider an example MapReduce job for Wordcount to

motivate our desgin for serverless data analytics. As a sample

execution setting, without loss of generality, eight mappers are

launched concurrently, followed by three reducing stages, as

shown in Fig. 2. More specifically, reducer s1r1 in the first

reducing stage reads and handles the outputs from mappers

m1, m2, and m3. Similarly, reducers s1r2 and s1r3 process

the outputs of m4-m6 and m7-m8, respectively. In the next

reducing stage, reducer s2r1 is executed to handle the outputs

from reducers s1r1 and s1r2 in the previous stage. The final

reducer s3r1 processes the intermediate data from s2r1 and

s1r3. All the intermediate data are communicated through

standard storage service. The memory size for each lambda

function is 256 MB. Fig. 2 presents the execution timeline of

the MapReduce job on AWS Lambda, under different schedule

of function tasks, respectively. The block length for each

function task represents the function running time (or the task

execution/completion time), including the storage reading and

writing time.

In Fig. 2a, tasks are scheduled with the Lazy approach: a

task will not be started until all its upstream tasks, i.e., the tasks

with the outputs it needs to read, have finished. As illustrated,

s1r1 is scheduled when the slowest mapper m1, among all the

upstream tasks m1-m3, finishes. Following such a scheduling,

m1
m2
m3

Mappers

m4
m5
m6

m7
m8

s1r1

s1r2

s1r3

s2r1

s3r1

Stage 1
reducers

Stage 2
reducers

Stage 3
reducers

62s

Time(s)

22s

129s 248s

m1
m2
m3

m4
m5
m6

m7
m8

Time(s)

123s
175s

39s

s1r1

Read

Computation

(a) Lazy

(b) NIMBLE

s1r2

s1r3
s3r1

r1
113s

m1
m2
m3

m4
m5

m7
m6

m8
Time(s)

(c) Proposed orchestration

REST
transfer

Invoke

s2r1

s3r1

Fig. 2: Execution timeline of a MapReduce job for Wordcount under three
different scheduling (and different state sharing) of function tasks in the
serverless environment: (a) lazy scheduling as the default, (b) NIMBLE [12]
scheduling as the state-of-the-art, (c) ACTS scheduling as our approach.

the job completes when the last task s3r1 finishes, yielding

a job completion time of 248 seconds. Fig. 2b presents the

timeline when tasks are scheduled with NIMBLE [12], the

state-of-the-art task-level scheduling algorithm for serverless

analytics. The general idea of NIMBLE is to optimally overlap

the downstream reading with upstream computation, so that

the non-pipelineable computation in the downstream task can

start as soon as possible for fastest job completion while

the pipelineable data reading takes the shortest possible time

for minimum monetary cost. As shown in Fig. 2b, each

reducer task can be split into read and computation phases,

which are pipelineable and non-pipelineable, respectively. For

reducer s1r1, its computation phase starts almost immediately

when the last mapper it relies on (m1) finishes, as the data

reading phase is ideally scheduled and overlapped with the

upstream mappers. Such a pipelining way of reading and

computation continues until the final stage, resulting in a faster

job completion time of 175 seconds compared with the lazy

schedule.

Next, we present our proposed idea of task-level function

orchestration, applied to the same Wordcount workload. As

previously illustrated by Fig. 1, warm lambdas and REST

data transfer will be leveraged in our framework named ACTS.

Fig. 2c presents the execution of function tasks with ACTS,

where mappers m7 and m8 invoke m1-m5 and m6, respectively,

at appropriate time instants through REST API. When the

Algorithm 1 Orch_Heuristic

Input: H: The list of input object size, O, Q
Output: Orchestration j

1: Define N ← 0, boolean stagecheck=TRUE, Orchestration j
2: while stagecheck do //Create stage s
3: N ← N + 1, warmcheck ← FALSE
4: Define list Lambdas← λ1

s ,λ2
s ,....λPs

s ,list output
5: for i← Lambdas do

6: Create a list warmsets,i
7: Allocate object size fj

i,s from H with λi
s

8: Append the binary label warm Wi,s = 1 to λi
s

9: Append λi
s to warmsets,i

10: Define Size← fj
i,s + fj

i,s/z

11: Remove λi
s from Lambdas

12: for l← Lambdas do

13: Size← Size+ fj

l,s
/z

14: Allocate object size fj

l,s
from H with λl

s

15: if (Size >= O or fj

l,s
/z >= Q) then Break

16: else

17: Append the binary label warm Wi,s = 0 to λl
s

18: Append λl
s to warmsets,i

19: warmcheck=TRUE
20: Remove λl

s from Lambdas

21: Append output size (Size− fj
i,s)/z to output

22: Append warmsets,i to Orchestration j for stage s

23: H ← output
24: if length of H==1 then stagecheck=FALSE

25: if warmcheck==FALSE then Set Orchestration [j] as NULL
26: Break
27: Return Orchestration j

functions m1-m5 finish computing, they will transfer their data

back to the function m7 which invokes them. Upon receiving

all the data through REST, function m7 will be kept alive and

proceed to the next stage processing, which is the reducing.

The same applies to function m8. All the functions have the

same memory allocation as in the previous settings. Compared

with the previous two approaches in Fig. 2, our approach

ACTS, with resource configurations yet to be further optimized,

manages to reduce the job completion time by about 35%
over the state-of-the-art NIMBLE scheduling, as evidence by

the completion time in Fig. 2c. Moreover, with respect to the

monetary cost for executing the same analytics, ACTS achieves

at least 63% cost saving compared to lazy and NIMBLE

scheduling. Such an improvement is due to multi-dimensional

factors, including better execution plan, workload distribution,

and the advantages of warm functions and REST data transfer.

III. DESIGN OF ACTS FOR COST-EFFICIENT SERVERLESS

ANALYTICS

Based on the observations from our motivation experiment

in Section 2, we present the detailed design of our serverless

analytics framework in what follows.

A. Task Orchestration

Our two-phase job modeling consists of mapper and reducer

phases. The reducer phase has more than one stage. We

consider a particular orchestration j. Each stage s can have

a total of Ps(s ∈ {1, 2, , N}) number of lambdas. The warm

lambdas in each stage are labeled as Wi,s = 1. In each stage, a

lambda processes the input data of size f j
i,s. Each lambda will

Lazy NIMBLE Orch_Heuristic
0.00

0.02

0.04

0.06

0.08

0.10

C
os

t($
)

(a) Cost

Lazy NIMBLE Orch_Heuristic
0

50

100

150

200

Jo
b

co
m

pl
et

io
n

tim
e(

s)

(b) Job completion time

Fig. 3: Job completion times and monetary costs of three different settings:
Lazy, NIMBLE, and Orch_Heuristic.

 diff_mem ran_mem diff_obj
0.000

0.002

0.004

0.006

C
os

t (
$)

(a) Cost

 diff_mem ran_mem diff_obj
0

25

50

75

100

125

Jo
b

co
m

pl
et

io
n

tim
e

(s
)

(b) Job completion time

Fig. 4: Job completion times and monetary costs of three different resource
configuration settings.

output the objects with smaller size as f j
i,s/z, where z is the

assumed deviation of lambda processed output. For example,

in the first stage, the first lambda will read the objects with

a total size of f j
1,1. We consider this lambda λ1

1
as a warm

lambda. Consider that the next stage’s first lambda reads λ1

1
’s

output. So, λ2

1
’s input is f j

1,2 = (f j
1,1/z+ f j

2,1/z+ f j
3,1/z)/z.

Here f j
2,1 and f j

3,1 are the inputs of the first stage lambdas that

are attached to the warm lambda λ1

1
. The orchestration j can

have flexible resource allocation and provisioning, including

the number of stages, the number of lambdas in each stage,

any number of warm lambdas in each stage, and any lambdas

that can be attached to a warm lambda Wi,s = 0.

We propose a heuristic called Orch_Heuristic to distribute

computation workloads to the lambdas, select and label warm

lambdas, and append a set of lambdas to the warm lambdas.

Our Algorithm 1 develops an orchestration using the heuristic

considering temporary storage limitation O and REST data

transfer limitation Q with a serverless platform. Algorithm

1 creates a particular orchestration for a given set of object

sizes H. The loop (line 5) runs the stages to create an

orchestration j until the final output of that stage is empty. In

each stage, the algorithm labels warm lambdas as Wi,s = 1,

attaches objects sizes, and creates a set of lambdas (Wi,s = 0)

called warmsets,i for each warm lambda (lines 7-9). The

algorithm checks the need for temporary storage and data

transfer size of each warm lambda when appending the other

lambdas to warmsets,i over the limitations O and Q (lines

15-20). For each stage, when each set of lambdas Wi,s = 0 or

1 is ready, the warmsets,i is appended to the jth orchestration

(lines 22). At the end of each stage, the outputs are stored

in the list H. If H has only one output then it will be the

final output (line 24). Otherwise it will go to the next stage

and continue the loop. We check whether there are lambdas

Wi,s = 0 attached to warm lambdas to avoid creating more

stages like other existing approaches with fixed orchestrations

(line 25). Finally, Algorithm 1 returns the orchestration j.

We implement Algorithm 1 in Python, execute it for a

10 GB two-phase (MapReduce) Wordcount job, and find the

1 2 3 4 5 6 7 8 9 10
Memory blocks

340

360

380

400

420

T
im

e
(m

s)

128-137
1435-1444

2999-3008
5308-5317

Fig. 5: Processing time of a lambda function for the same workload when
allocated with different memory blocks.

orchestration for one input object size per lambda. Then we

run the orchestration on the AWS Lambda platform. We

execute the same job using lazy and NIMBLE approaches.

All three settings are allocated the same randomly selected

memory of 1536 MB. We present the results of job comple-

tion time and total cost in Fig. 3 to evaluate our algorithm

against the other two. Fig. 3b shows 28% performance

improvement for Orch_Heuristic compared to the NIMBLE

approach and Fig. 3a shows at most 71% cost reduction for

Orch_Heuristic over other settings. The NIMBLE approach

uses two EC2 instances whereas lazy uses S3 for the data

transfer. Orch_Heuristic gives 65% cost reduction compared

to the NIMBLE approach without incurring the EC2 instance

cost. The reason behind the results of Orch_Heuristic is that it

carefully packs the objects into warm lambdas and runs in two

stages, while other approaches complete the job through four

stages. Also, Algorithm 1 reduces the lambdas’ initialization

times by aggregating tasks in warm lambdas, and reduces the

cost as well as time by REST data transferring.

B. Resource Configuration

In AWS Lambda, we can allocate the memory for a lambda

from 128 MB to 10,240 MB in unit MB increments. The CPU

capacity of a lambda function is proportional to the allocated

function memory. We elaborate on the benefits of appropriate

resource allocations and provisioning by executing a 10 GB

Wordcount job on AWS Lambda in three different settings.

Setting 1 (called ran_mem) and setting 2 (called diff_mem)

follow Algorithm 1 for one object per lambda. ran_mem is

allocated with 1536 MB for all stages, whereas different ran-

domly selected memories for each stage (512 MB, 1024 MB)

are allocated for diff_mem. The setting 3 diff_obj allocates two

objects per lambda and different memories for different stages

(1024 MB, 2048 MB). Fig. 4a and Fig. 4b show the monetary

costs and job completion times, respectively, for the three

settings. There is 8% completion time reduction in ran_mem

over diff_mem. Since diff_obj allocates more objects than

other settings, the number of lambda invocations is smaller.

However, diff_mem shows at least 20% cost reduction over

the other two settings. Thus, a number of factors, including

memory allocations, the number of lambdas, and object size

allocations (i.e., workload distributions), collectively impact

the job performance and cost on serverless platforms. This

sample experiment shows that our heuristic (Algorithm 1)

can be coupled with variables of different dimensions to

generate different orchestrations. In the upcoming subsections,

we derive a cost model and formulate a cost optimization

problem to navigate the design space of multi-dimensional

variables such as memory allocation and function scheduling.

C. Cost Modeling

We define a binary variable yj(j ∈ 1, 2, , n) for each

orchestration j, where n denotes the length of a complete

set of possible orchestrations for a MapReduce job. In an

orchestration j (generated by Algorithm 1), the total number of

possible stages, including mapper and all reducer stages, is N .

Each stage s can have a total of Ps(s ∈ {1, 2, , N}) lambdas.

Each lambda i(i ∈ Ps) in stage s appends the details such as

whether it is warm or not (warm lambda is represented with

Wi,s = 1), the lambdas that belong to a warm lambda (l ∈ qi:
qi represents the set of lambdas which belong to the warm

lambda i), and the set of objects’ sizes f j
i . We use the words

step and stage interchangeably and will add explanation where

used differently.
As mentioned in the previous subsection, in AWS Lambda,

we can allocate the memory for a lambda within the 128

MB to 10,240 MB range. The CPU allocation of a lambda

function is roughly proportional to the function memory range.

AWS Lambda can allocate 2 to 6 vCPUs to a function. For

example, when configuring memory within the 128 - 3008

MB range, a maximum of 2vCPUs can be allocated by the

provider. Similarly, different ranges of memory blocks will

lead to a different allocation of vCPUs. Fig. 5 presents the

lambda processing time of a 1MB job (deployed on a single

lambda) given four different ranges of memory allocations.

All the four ranges show relatively small variations in lambda

processing time within the ranges. The three ranges 128-137
MB, 1435-1444 MB, and 2999-3008 MB are associated with

the CPU allocation of 2 vCPUs while the 5308-5317 MB

setting has 4 vCPUs. Hence, the gap of the processing times

between the memory allocations of different CPU capacities is

larger than between the settings of memory blocks associated

with the same CPU allocation. The cost of a lambda function

largely relies on its runtime and the price of its compute

resource allocation (memory size). Based on the experimental

observation in Fig. 5 and for problem tractability, we consider

a total of L types of memory allocations, which evenly spread

out the allowable range.
We use binary variable xs

j,k, (k = 1, 2, · · · , L) to specify

whether the k-th type of memory is allocated out of the L
categories for lambdas of stage s. Intuitively, we have

xs
j,k ∈ {0, 1}, ∀k ∈ {1, 2, · · · , L};

∑L

k=1
xs
j,k = 1, (1)

which indicates that only one category of memory allocation

can be assigned by nature. For an orchestration j from

Algorithm 1 in AWS Lambda, REST data transfer is used

between warm and other lambdas within an individual stage,

whereas Amazon S3 is used between stages for intermediate

data storage. Since Algorithm 1 compacts stages into a fewer

number than that in the lazy approach, the need for S3 is

very less or eliminated. The total cost of a particular lambda

includes the S3 input read cost and its own processing cost.

In addition, if it is a warm lambda, the total cost further

includes the processing cost of the outputs from other lambdas

belonging to it and the S3 write cost. Otherwise, the total

cost of a non-warm lambda includes the REST transfer cost.

Data read request cost per second is denoted as D. The size

of input read by the i th lambda is (yjf
j
i). The S3-Lambda

bandwidth is denoted as B. The warm lambdas (Wi,s = 1)

write the output to the S3. Data write request cost per second

is denoted as G. The warm lambda output is expressed as

F j
i,s = [(f j

i,s/z) +
∑

l∈qi
(f j

l /z)]/z. The lambdas (Wi,s = 0)

that belong to a warm lambda transfer their outputs to the

warm lambda. Data transfer cost per MB size is denoted

as E. We use vj,k and us
j,k to represent the price and unit

computation time of the particular type of lambda. Then we

have the read, processing, write and transfer costs expressed

as:

Uread = D(yjf
j
i,s)/B (2)

Uprocess =
∑L

k=1
xs
j,ku

s
j,k[(yjf

j
i,s) +Wi,s(yjf

j
i,s)/z+(3)

Wi,s

∑

l∈qi
(yjf

j
l,s)/z]

∑

k∈L vsj,kx
s
j,k

Uwrite = (G/B)Wi,s(yjF
j
i,s), Usend = E(yjf

j
l,s)/z (4)

The initialization time of a lambda is denoted as ti, and

the invoking cost is represented as I . Then the total cost of a

lambda can be expressed as:

Cj
i,s = Uread + Uprocess + Uwrite+ (5)

(1−Wi,s)Usend + I + ti
∑

k∈L vsj,kx
s
j,k

D. Cost Minimization

The objective of our formulation is to minimize the mon-

etary cost, which is
∑

j∈n

∑

s∈N

∑

i∈P∫
Cj

i,s, over variables

yj and xs
j,k, represented as follows.

min
x,yx,yx,y

F (x, y) =
∑

j∈n

∑

s∈N

∑

i∈Ps

Cj
i,s (6)

s.t. Eq.(1), yj ∈ {0, 1}, ∀j ∈ {1, 2, · · · , n} (7)

For a particular orchestration j, yj = 1, the objective Eq. (6)

can be written as G(x, ȳ). Now the formulation on variable x
is:

min
xxx

G(x, ȳx, ȳx, ȳ) (8)

s.t. Eq. (1) (9)

The formulation falls into the category of linearly-constrained

zero-one quadratic program on xxx, given any yyy. The objective

in Eq. (8) consists of constant items (f j
i,s, z, G,B, etc. from

Eq. (6)). Replacing them with real numbers Qk and Pk for a

particular j, we can rearrange the formulation as:

min
xxx

L
∑

j=1

Qjxjxj +
L
∑

j=1

Pjxj (10)

s.t. xj ∈ {0, 1}L (11)

To solve this problem, we build a quadratic convex reformu-

lation using semidefinite relaxation [21]. As we do not have

any equality constraint, replacing the product of xjxj by a

variable Xj yields:

min

L
∑

j=1

QjXj +

L
∑

j=1

Pjxj (12)

s.t. Xj = xjxj , xj ∈ {0, 1}L (13)

Using the semidefinite relaxation of the previous formulation,

we can replace the constraints Eq. (15) and (16) with the

linear matrix inequality X = xxt ≥ 0. From Schur’s Lemma

[22], the linear matrix is equivalent to

[

1 xt

x X

]

≥ 0. Now the

obtained form of SDP relaxation is:

min

L
∑

j=1

QjXj +

L
∑

j=1

Pjxj (14)

s.t.

[

1 xt

x X

]

≥ 0, x ∈ R
L, X ∈ SL (15)

Here the SL defines L × L symmetric matrix. Now we

use the optimal solution to this SDP in order to build a

quadratic reformulation. We introduce the QCR method [21]

of reformulating the formulation by adding a combination of

quadratic functions that can vanish on a feasible solution set

X . For any µ ∈ R
L

Gµ(x, ȳ) =

L
∑

j=1

Qjxjxj +

L
∑

j=1

Pjxj +

L
∑

j=1

µj(x
2

j − xj) (16)

The function Gµ(x, y) is a reformulation since for all x ∈ X ,

Gµ(x, y) is equal to G(x, y). And we have to find the

µ such that Gµ(x, y) is convex. So, from the semidefinite

relaxation, G(x, y) is transformed into convex. We can solve

the reformulated problem (16) using mixed-integer convex

quadratic programming. It has already been proved in [21]

that solving the above semidefinite relaxation SDP allows us

to deduce optimal values for µ. The optimal value µ∗
j of

µj ; j ∈ {1, 2, · · · , L} will be given by the optimal values of

the dual variables associated with constraint (20). The resulting

quadratic convex reformulation is:

RQconv : Min Gµ∗(x, y) (17)

s.t. xj ∈ {0, 1}L (18)

The formulation Eq. (7)-(9) can be rewritten as,

min
x∈R

L,y∈R
nx∈R

L,y∈R
n

x∈R
L,y∈R

n

φ(X, y) :
L
∑

k=1

n
∑

j=1

ak,jX +
n
∑

j=1

bjyj +
L
∑

k=1

dkxk (19)

[

1 xt

x X

]

≥ 0, Eq. (1)and(7) x ∈ R
L, X ∈ SL (20)

Here real number ak,j , bj , and dk consists of constants

(f j
i,s, z, G,B, etc.) from Eq. (6). We denote that φmin and

ρ are the optimal values of (19) and (8) for a particular y,

respectively. We’ve shown that Eq. (6) formulation can be

relaxed on any given y and it is clear that φmin <= ρ. So, the

global minimum of y will give the optimal value for (6). The

formulation (19) confirms that it is a binary quadratic problem.

Hence any MIQP and BQP [23] [24] solvers can be used to

solve this problem.

Algorithm 2 ACTS

Input: M: Number of objects, H: The set of input objects sizes
Output: Orchestration and configuration

1: for j ← [1, 5] do

2: Create object size list H by summing sizes of j objects
3: Execute Algorithm 1 for input objects H
4: if Orchestration [j]==NULL then Break

5: Define binary variables y and x
6: Calculate cost as in Eq. (6)
7: Define formulation as in Eq. (7)-(9)
8: (x, y)←Execute the optimizer
9: Define S_MR from (x, y)

10: for s← 0, N do //For the S_MR
11: for i← 0, Ps do

12: Calculate launch time ← (Tw − Tl), Update S_MR.

13: Execute S_MR on AWS Lambda

Orchestrations (n),
Memory blocks

Profiler Orch_GeneratorObject size list

Cost
Optimizer

Orchestration j

Driver
Best Orchestration
and Configuration

...
.
.

...
Stage 1

...
.
.

...
Stage n

. . .

Invoke REST Transfer

Deploy

User
Input

Fig. 6: Architecture overview of ACTS for serverless analytics with au-
tonomous cost-efficient task orchestration.

E. Design of ACTS

We next develop Algorithm 2 to find the cost-minimal

orchestration with the best resource configuration for a two-

phase multi-stage job. First, it creates an input object sizes

list. For example, if the number of objects per lambda is 2
(j = 2 in line 1), then the sum of each two objects will be

inserted in the list H. We assumed the number of repetitions

as 5 for the loop to eliminate big object size summations (H)

and unnecessary time for limitations checking of Algorithm

1. As in line 3, it executes Algorithm 1 and finds the

best orchestration for j, and if there is no set of lambdas

attached to the warm, Algorithm 2 will break and re-enter the

loop (line 4). If there is no orchestrations listed, because of

limitations, then the Lazy approach solution will be followed

with memory configurations [13]. Algorithm 2 creates the

formulation in Eq. (7)-(9), executes the optimizer, and finds

the best orchestration (S_MR) with appropriate resource

provisioning plan (line [7-9]). For this best orchestration, it

calculates the launch times of each lambda (line [11-13]),

to be elaborated soon. Finally, ACTS deploys the orchestration

with appropriate memory configurations using found resource

provisioning plan on AWS Lambda.

Lambda Function Scheduling. In each stage s, warm

lambdas are launched concurrently at the initiation of that

stage. Other lambdas that belong to a particular warm lambda

are invoked by the warm lambda. As shown in Fig. 7, the

launch time of a non-warm lambda is Tw − Tl. Here Tw is

S3 read Process

S3 read Process

W_{i,s}=1

W_{i,s}=0

t_rT_w

T_l

Fig. 7: Function launch time.

the summation of S3 read and processing time of the warm

lambda’s own input. Tl is the summation of S3 read and

processing time of the lambda attached to the warm lambda.

The following equations substitute lambda i with warm for

warm lambda and nwarm for the other attached lambdas.

Tw = (yjf
j
warm,s)/B +

∑L

k=1
xs
j,ku

s
j,kyjf

j
warm,s (21)

Tl = (yjf
j
nwarm,s)/B +

∑L

k=1
xs
j,ku

s
j,kyjf

j
nwarm,s (22)

Now, we are ready to integrate each component into our

automated prototype ACTS for the fine-grained task-level

orchestration. As illustrated in Fig. 6, given the user input,

the Profiler creates multiple orchestrations as in Algorithm

2 (line[1-5]) using the Orch_Generator component and

passes the orchestrations and the selected memory blocks (as

explained in Section 3.2) to the Cost Optimizer. Then the

Cost Optimizer runs the solver and results in the best orches-

tration with resource provisioning plan and configurations as

in Algorithm 2 (line[6-10]). Finally, the Driver deploys

and executes the analytics job on the serverless platform

accordingly.

IV. PERFORMANCE EVALUATION

In this section, we present the implementation of ACTS, and

evaluate its performance with real-world experiments.

A. Prototype Implementation and Experimental Setup

ACTS prototype is implemented to run on the AWS Lambda

platform. The algorithm explained in the previous section

is implemented in Python to run on the client machine. It

includes the profiler and optimizer. After orchestration is

ready, the prototype is deployed as Mapper and Reducer

task zip files in the AWS Lambda platform, and input is

uploaded to the AWS S3. ACTS utilizes REST API to handle

the intermediate data transfer. We have implemented different

baseline settings to compare with our prototype.

Baseline Lazy: The MapReduce style prototypes such as

PyWren [16] and Locus [7] follow the Lazy scheduling as

explained in previous sections. Our baseline has the multi-

stage MapReduce style, and functions are allocated 3008 MB

of memory. It consists of a number steps with 1 object per

mapper and 2 objects per reducer. Here AWS S3 is used to

store the input and intermediate outputs.

Baseline NIMBLE: NIMBLE baseline is implemented by

following the state-of-the-art Caerus. Since it does not consider

any technique to allocate memory or objects per lambda,

0 500 1000 1500
Time (s)

0

100

200

300

400

St
ag

es
 &

 W
or

ke
rs

(a) Lazy

0 200 400 600
Time (s)

0

100

200

300

400

St
ag

es
 &

 W
or

ke
rs

(b) NIMBLE

0 200 400 600
Time (s)

0

50

100

150

200

250

St
ag

es
 &

 W
or

ke
rs

(c) ACTS

Fig. 8: Job completion time breakdown of Aggregation query workload under Lazy, NIMBLE, and ACTS settings.

we follow the same configuration as our baseline Lazy. We

employed two m4.4xlarge instances to handle the intermediate

outputs and AWS S3 to store input data.

In our evaluations, we illustrate the performance and mone-

tary cost with error bars of standard deviation by running each

of the experiments three times. In the following subsections,

we present the results and analysis of three groups of exper-

iments. We compare our ACTS with the two baselines Lazy

and NIMBLE for various data analytics workloads, including

three different BigData Benchmark queries [25], two machine

learning workloads, and MapReduce sort (100GB).

B. Results and Analysis

Big Data Benchmark. In our first set of evaluations, we

run the three Big Data Benchmark queries in three different

settings: Lazy, NIMBLE and ACTS. Here, the selection queries

(Scan1a, Scan2a) of the PageRank algorithm are executed

over the Rankings dataset, with 90 million rows and a size

of 6.38 GB. More specifically, Scan1a and Scan2a are se-

lection queries that correspond to two different conditions of

pageRank>1000 and pageRank>100, respectively. Aggrega-

tion query, referred to as Aggregation2a, is evaluated on the

Uservisits dataset with 155 million rows and 25.4 GB size.

Fig. 9a presents the total monetary cost of our prototype,

in comparison with the two baselines, over the three different

queries stated above. Our ACTS shows 91%, 93%, and 53%

cost reductions over Lazy approach. The task orchestration

with ACTS results in 3 stages for two Scan queries and 4 stages

to finish the Aggregation query, whereas the Lazy setting

has 5 stages to finish the selection queries and 9 stages for

the aggregation query. Leveraging warm lambdas and REST

data transfer together lead to the reduction of intermediate

storage cost and function invocation cost in ACTS, as com-

pared to Lazy. Also, the coarse-grained sub-optimal memory

allocations with Lazy is avoided by fine-grained appropriate

configurations in ACTS, contributing to the reduction of the

total monetary cost. Compared with the NIMBLE baseline,

ACTS shows nearly 98%, 98%, and 82% reductions in total

costs. If we do not account for the cost incurred by the EC2

instances used in NIMBLE for intermediate data sharing, ACTS

still exhibits nearly 60%, 63%, and 45% cost savings.

While ACTS is demonstrated to optimize the monetary cost,

it also exhibits advantages with respect to job completion time

performance, achieving better or at least similar performance

Scan1a Scan2a Agg.2a
0.00

0.01

0.02

0.03

0.04

0.05

0.06

C
os

t (
$)

Lazy
NIMBLE
ACTS

(a) Cost

Scan1a Scan2a Agg.2a
0

500

1000

1500

Jo
b

co
m

pl
et

io
n

tim
e

(s
) Lazy

NIMBLE
ACTS

(b) Job completion time

Fig. 9: Monetary costs and job completion times of different queries workloads
under Lazy, NIMBLE, and ACTS settings.

KNN(10GB) KMeans(10GB)0.000

0.005

0.010

0.015

0.020

0.025

C
os

t (
$)

Lazy
NIMBLE
ACTS

(a) Cost

KNN(10GB) KMeans(10GB)0

25

50

75

100

125

Jo
b

co
m

pl
et

io
n

tim
e

(s
) Lazy

NIMBLE
ACTS

(b) Job completion time

Fig. 10: Monetary costs and job completion times of machine learning
workloads (KNN and KMeans) under Lazy, NIMBLE, and ACTS settings.

level compared to the baseline approaches. As evidenced

by Fig. 9b, ACTS shows 62%, 58%, and 58% performance

improvement compared to Lazy. Also, ACTS shows 28%,

25%, and 6% performance improvement over NIMBLE. The

reasons for the performance improvement include the usage

of warm lambdas (task aggregation), REST data transfer, ap-

propriate stage level memory allocations, judicious association

of lambdas with each warm lambda, and reduced number of

stages, which contribute to the cost minimization as well. In

a more intuitive way, Fig. 8 presents the stage-level timeline

breakdown for the Aggregation 2a query job, to more clearly

illustrate the job execution details under different settings. The

Lazy and NIMBLE prototypes in Fig. 8a and Fig. 8b execute

202 lambdas concurrently in stage 1 since they don’t follow

any heuristic to check objects sizes and distribute workloads.

In contrast, the heuristic with ACTS presented in Algorithm 1

carefully packs the input objects in stage 1 by considering the

platform limitations like temporary storage and data transfer

(for REST) sizes. Also, ACTS uses S3 as intermediate storage

within stages for only three times. As shown in Fig. 8c, all

the warm lambdas start the execution concurrently whereas

others are launched at different times calculated by Algorithm

2. The Lazy approach starts all the lambdas concurrently in

all stages when the outputs are ready for intake in each other

stage. NIMBLE’s first stage lambdas execute concurrently and

continue launching the next stage when a part of the output

is ready. Due to the appropriate workload assignment across

lambdas through Algorithm 2, the total number of lambda

invocations is fewer in ACTS compared to the other two

baselines. These reasons behind the performance improvement

of ACTS contribute to the cost saving as well. For example,

fewer lambda launches, less usage of storage services, and

fine-grained appropriate memory allocations also reduce the

monetary cost of ACTS compared to the baselines.

Machine Learning Analytics. We further evaluate the mon-

etary cost of ACTS in comparison with the baselines Lazy and

NIMBLE for two machine learning workloads elaborated as

follows. The first evaluation involves the K-nearest neighbors

algorithm for classification problems. This supervised classifi-

cation algorithm classifies unlabeled data from labeled inputs

by comparing the k numbers of known classified neighbors.

The similarities can be calculated based on Euclidean distance,

Manhattan distance, or Hamming distance. We execute the K-

nearest neighbors in ACTS, Lazy , and NIMBLE prototypes

following the MapReduce paradigm. More specifically, map-

pers compute the Euclidean distance, and reducers sort the

distances and predict using k-closest neighbors. The K-nearest

neighbors algorithm is trained on a 10 GB dataset to predict the

price of a laptop given its configuration. Fig. 10a and Fig. 10b

present the evaluation results in terms of monetary cost and job

completion time for two types of jobs, including the K-nearest

neighbors job referred to as KNN. As clearly observed, ACTS

results in 49% cost reduction compared to Lazy, and 96% cost

reduction over NIMBLE.

The second job is the K-means clustering, an unsupervised

machine learning algorithm that discovers patterns by grouping

similar data points into K clusters. ACTS, Lazy, and NIMBLE

implement it in the MapReduce form. Mappers accept data

and a list of centers (global constant), compute the nearest

center for each data, and finally store centers and their data

points. Reducers take the former outputs from mappers and

compute the new centers based on distance calculation. Each

iteration is transformed into a series of reducer steps. We apply

K-means clustering on a 10 GB seeds dataset. As shown in

Fig. 10a, ACTS achieves 56% and 96% cost reductions over

Lazy and NIMBLE approaches, respectively. When eliminating

the cost of EC2 instances for NIMBLE, ACTS still shows

60% cost reduction over it. While minimizing the cost, ACTS

also manages to achieve 33% and 15% performance improve-

ment over Lazy and NIMBLE, respectively, as illustrated in

Fig. 10b. Therefore, ACTS works effectively and maintains its

advantages over the baselines for the MapReduce convertible

machine learning workloads.

MapReduce Sort. Finally, we evaluate our prototype with a

100 GB sorting job, still in comparison with the two baseline

settings. Fig. 11a and Fig. 11b present the total monetary

cost and completion time of the job achieved by ACTS, in

comparison with Lazy and NIMBLE. Again, ACTS shows 45%

and 9% cost reductions over NIMBLE and Lazy baselines,

respectively, while achieving 6% and 26% performance

improvements. In summary, ACTS consistently exhibits its

Sort(100GB)
0.00

0.02

0.04

0.06

0.08

0.10

C
os

t (
$)

Lazy
NIMBLE
ACTS

(a) Cost

Sort(100GB)
0

500

1000

1500

2000

Jo
b

co
m

pl
et

io
n

tim
e

(s
) Lazy

NIMBLE
ACTS

(b) Job completion time

Fig. 11: Monetary costs and job completion times of Sort (100GB) workloads
under Lazy, NIMBLE, and ACTS settings.

advantages over the state-of-the-art baselines, with respect to

both the monetary cost and job completion time performance.

C. Discussion

The running time overhead of ACTS incurred by the BQP

solver is within a few seconds on a laptop (Intel®Core™i7-

8750H CPU@2.20 GHz×12,2×8GiB memory). It is expected

that the overhead can be negligible (in milliseconds) on a

more powerful commodity server. Though implemented in

AWS Lambda, ACTS can be adapted to Google Functions

and Azure Functions with minimal modifications in our model

and problem formulation. Extension to other platforms will

be left as our future work. Our current study is focused on a

two-phase (MapReduce style) multi-stage serverless analytics

job. Extending it to a more general data analytics job, with a

complex DAG (Directed Acyclic Graph) of stages, is nontrivial

and remains open, which will be left as our future direction.

V. RELATED WORKS

On serverless platforms, users can deploy and run their

applications without worrying about the infrastructure com-

plexities, charged at the function invocation granularity. To

deploy data analytics applications in the serverless environ-

ment, challenges arise due to the need for data analytics tasks

to exchange intermediate data which is not well supported by

serverless providers. To address the challenges, existing works

either subscribe to commercial storage or caching services

provided in the cloud (such as Amazon S3 [14], ElastiCache

[20]) or manually build far-memory systems (Pocket [8], Jiffy

[9], etc.) that are dedicated and optimized for serverless state

sharing at extra expense. For example, PyWren [16], Server-

less architecture [26], MARLA [27], and Astra [13] utilize

S3 for the intermediate data transfer for MapReduce or query

style analytics jobs. Lambada [28] and Flint [29] leverage SQS

and/or DynamoDB to store and retrieve the data. Locus [7]

extends Pywren and augments shuffle in MapReduce using

expensive fast ElastiCache (Redis) [20] instances combined

with the much cheaper S3 service. Pocket [8] presents a

distributed far-memory system for high-throughput and low-

latency intermediate data transfer of serverless analytics. Jiffy

[9] further enables fine-grained far-memory sharing and multi-

plexing across concurrent serverless analytics jobs. The data-

centric approach [30] provides a data bucket abstraction to

hold the intermediate data generated by functions. Different

from these efforts, ACTS leverages the advantages of REST

API for function invocations and data transfer, aiming at cost

efficiency for serverless analytics jobs.

Apart from the existing state sharing or intermediate data

transfer solutions for serverless data analytics aforementioned,

recently, task level scheduling for serverless analytics has

increasingly gained research attention. Wukong [11] adopts

decentralized scheduling and task clustering in its serverless

framework that can reduce data movement over the network

and improve cost-effectiveness. Orion [31] provisions VMs,

bundles functions, and pre-warms at appropriate timings for

serverless DAG applications according to a distribution-based

latency model which requires repeated dry-runs. The state-of-

the-art Caerus [12] theoretically defines and studies the server-

less scheduling problem for data analytics as a new problem.

It presents NIMBLE scheduling to efficiently pipeline task ex-

ecutions within a data analytics job, minimizing execution cost

while being Pareto-optimal between cost and job completion

time for serverless analytics. Compared to these efforts, ACTS

incorporates the consideration of task level scheduling, while

targeting a more complex problem with multi-dimensional

decisions to make. As demonstrated in our evaluation, task-

level orchestration, coupled with warm containers, REST data

transfer, fine-grained resource provisioning, can be more cost-

efficient.

VI. CONCLUSION

We present ACTS for serverless data analytics in this

paper, which is an autonomous framework that generates

and enforces cost-efficient task orchestration and resource

configuration for data analytics jobs. ACTS relies on function

invocation and state sharing in a mode similar to fork-join,

exploiting warm containers and REST data transfer to reduce

the overhead of cold-start latency and function state sharing.

In addition to the careful scheduling of function invocations,

it further explores the fine-grained resource configuration and

workload assignment space to generate and enforce cost-

minimal decisions. We have implemented ACTS and deployed

it on AWS Lambda for extensive real-world experiments. Eval-

uated with various data analytics workloads, ACTS consistently

exhibits better performance with respect to both monetary cost

saving and job completion time reduction, in comparison with

the state-of-the-art baselines.

REFERENCES

[1] (2022) AWS Lambda. [Online]. Available: https://aws.amazon.com/
lambda/

[2] (2022) Cloud Functions. [Online]. Available: https://cloud.google.com/
functions

[3] (2022) Azure Functions. [Online]. Available: https://azure.microsoft.
com/en-us/services/functions/

[4] J. Schleier-Smith and et al., ªWhat Serverless Computing is and should
Become: The Next Phase of Cloud Computing,º Communications of the

ACM, vol. 64, no. 5, pp. 76±84, 2021.
[5] S. Fouladi and et al., ªEncoding, Fast and Slow: Low-Latency Video

Processing Using Thousands of Tiny Threads,º in 14th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI), 2017.
[6] J. Carreira and et al., ªCirrus: a Serverless Framework for End-to-

end ML Workflows,º in Proceedings of ACM Symposium on Cloud

Computing (SoCC’19), Nov. 2019, pp. 13±24.
[7] Q. Pu and et al., ªShuffling, Fast and Slow: Scalable Analytics on

Serverless Infrastructure,º in 16th USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2019.

[8] A. Klimovic and et al., ªPocket: Elastic Ephemeral Storage for Server-
less Analytics,º in 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 2018.
[9] A. Khandelwal and Y. T. W. Serverless, ªJiffy: Elastic Far-memory

for Stateful Serverless analytics,º in Proceedings of the Seventeenth

European Conference on Computer Systems, 2022, pp. 697±713.
[10] A. Lagar-Cavilla, J. Ahn, and et al., ªSoftware-defined Far Memory

in Warehouse-scale Computers,º in Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming

Languages and Operating Systems, 2019, pp. 317±330.
[11] B. Carver and et al., ªIn Search of a Fast and Efficient Serverless

DAG Engine,º in Fourth International Parallel Data Systems Workshop

(PDSW), 2019.
[12] H. Zhang and et al., ªCaerus: NIMBLE Task Scheduling for Serverless

Analytics,º in Proceedings of 18th USENIX Symposium on Networked

Systems Design and Implementation (NSDI’21), Apr. 2021, pp. 653±669.
[13] J. Jarachanthan and et al., ªAstra:Autonomous Serverless Analytics

with Cost-Efficiency and QoS-Awareness,º in 35th IEEE International

Parallel and Distributed Processing Symposium (IPDPS), 2021.
[14] (2022) Amazon S3. [Online]. Available: https://aws.amazon.com/s3/
[15] P. Vahidinia and et al., ªMitigating Cold Start Problem in Serverless

Computing: A Reinforcement Learning Approach,º IEEE Internet of

Things Journal, 2022.
[16] E. Jonas and et al., ªOccupy the Cloud: Distributed Computing for the

99%,º in Proceedings of the 2017 Symposium on Cloud Computing,
2017.

[17] M. Yu, Z. Jiang, and et al., ªGillis: Serving Large Neural Networks in
ServerlessFunctions with Automatic Model Partitioning,º in 41st IEEE

International Conference on Distributed Computing Systems, 2021.
[18] F. Xu and et al., ªλDNN: Achieving Predictable Distributed DNN Train-

ing with Serverless Architectures,º IEEE Transactions on Computers,
2021.

[19] J. Jarachanthan, L. Chen, and et al., ªAMPS-Inf: Automatic Model
Partitioning for Serverless Inference with Cost Efficiency,º in 50th

International Conference on Parallel Processing (ICPP), Aug., pp. 1±12.
[20] (2022) Amazon ElastiCache. [Online]. Available: https://aws.amazon.

com/elasticache/
[21] A. Billionnet, S. Elloumi, and M.-C. Plateau, ªQuadratic 0±1 Program-

ming: Tightening Linear or Quadratic Convex Reformulation by Use of
Relaxations,º vol. 42, no. 2. EDP Sciences, 2008, pp. 103±121.

[22] F. Zhang, The Schur Complement and Its Applications. Springer Science
& Business Media, 2006, vol. 4.

[23] (2008) GUROBI. [Online]. Available: https://www.gurobi.com/
[24] C. Bliek1ú, P. Bonami, and A. Lodi, ªSolving Mixed-Integer Quadratic

Programming Problems with IBM-CPLEX: a Progress Report,º in
Proceedings of the twenty-sixth RAMP symposium, 2014, pp. 16±17.

[25] (2014) Big Data Benchmark. [Online]. Available: https://amplab.cs.
berkeley.edu/benchmark/

[26] (2022) MapReduce. [Online]. Available: https://aws.amazon.com/blogs/
compute/ad-hoc-big-data-processing-made-simple-with-serverless-
mapreduce/

[27] V. Giménez-Alventosa, G. Moltó, and M. Caballer, ªA framework and a
Performance Assessment for Serverless MapReduce on AWS Lambda,º
Future Generation Computer Systems, vol. 97, pp. 259±274, 2019.

[28] I. Müller and et al., ªLambada: Interactive Data Analytics on Cold
Data Using Serverless Cloud Infrastructure,º in ACM International

Conference on Management of Data (SIGMOD), 2020.
[29] Y. Kim and J. Lin, ªServerless Data Analytics with Flint,º in 11th

International Conference on Cloud Computing (CLOUD). IEEE, 2018.
[30] M. Yu and et al., ªFollowing the Data, Not the Function: Rethinking

Function Orchestration in Serverless Computing,º in 20th USENIX

Symposium on Networked Systems Design and Implementation (NSDI),
2023.

[31] A. Mahgoub, E. B. Yi, and et al., ªOrion and the Three Rights: Sizing,
Bundling, and Prewarming for Serverless DAGs,º in 16th USENIX

Symposium on Operating Systems Design and Implementation (OSDI),
2022.

